
faculty of science
and engineering

mathematics and applied
mathematics

An integer programming
model for timetabling at
the University of
Groningen

Bachelor’s Project Mathematics

June 2024

Student: Roberto Schininà

First supervisor: prof. dr. Juan Peypouquet

Second assessor: prof. dr. ir. Bart Besselink

Abstract

University Course Timetabling is a big challenge that many universities must go through before
the start of each academic year. This is a very complex administrative task that sometimes takes
months to complete. Due to the many constraints and limited resources, it is not always possible
to satisfy all requests. In this thesis, we propose a model for the curriculum-based university course
timetabling problem at the University of Groningen (RUG) that guarantees parent-child relation-
ships between lectures and other events such as tutorials and computer laboratories. While doing so,
we also optimize the number of rooms used and wasted seating spaces in the classrooms. This model
is then applied to all the courses given by the Department of Mathematics of the RUG in the aca-
demic year 2023/2024.

1

Contents

Contents

1. Introduction 3

2. Preliminaries 5

2.1. Optimization . 5

2.2. Linear Algebra . 6

2.3. The geometry of polyhedrons . 7

3. Linear Programming 12

3.1. Definitions and main results . 12

3.2. LP in standard form . 16

3.2.1. Adjacent extreme points . 18

3.3. Solving linear programming problems: the Simplex Method 20

3.3.1. Phase II of the Simplex Method 21

3.3.2. Phase I of the Simplex Method . 25

3.3.3. Convergence of the Simplex Method 26

3.4. Solving (Mixed) Integer Programming problems 28

3.4.1. Branch and bound . 28

3.4.2. Cutting planes . 30

4. Timetabling at the University of Groningen 31

4.1. Problem description . 31

4.2. Proposed integer programming model . 33

4.2.1. Definition of sets and parameters 33

4.2.2. Definition of decision variables . 35

4.2.3. Constraints . 36

4.3. Analysis of results . 43

5. Conclusion 46

6. Bibliography 48

1

Contents

A. Appendix 52

A.1. Duality . 52

A.2. Data . 53

A.3. Figures . 57

2

1. Introduction

1. Introduction

Before the start of each academic year, educational institutions must perform the diffi-

cult task of allocating courses’ events to rooms and timeslots while avoiding scheduling

conflicts: this is known as the educational timetabling problem (ETP) (Ceschia, Di Gas-

pero & Schaerf, 2023). It is often solved manually and, depending on the institution’s

size, it may take a long time to complete (Soyemi, John Lekan & Oloruntoba, 2017).

For example at the University of Groningen, it takes months to schedule the activities

of the Faculty of Science and Engineering (Groningen, 2023). Moreover, this method is

prone to mistakes and does not guarantee optimality.

ETPs have been studied extensively since the first half of the 20th century (Schmidt

& Ströhlein, 1980) and they come in three different varieties (Ceschia, Di Gaspero &

Schaerf, 2023) 1:

• High-School Timetabling (HTT) which consists of scheduling, without any overlap,

all lectures while avoiding the double allocation of teachers.

• University Examination Timetabling (ETT). This consists of scheduling all the

exams without overlapping the ones with common students.

• University Course Timetabling (CTT) whose objective is to schedule lectures and

other activities (for example tutorials and computer laboratories) without any

overlap of events that have common students

While this subject has been researched for many years, its output was not oriented

towards real-life application (RLA): researchers created models that could not be applied

due to oversimplification and picked data sets carefully, ensuring that they worked with

the models in question (Mccollum, 2006). This created a gap between research and RLA.

Thankfully, the International Timetabling Competitions (ITCs) were able to push the

research towards solving complex course timetabling problems without any shortcuts

(Müller, Rudová & Müllerová, 2024). An example of the impact that the ITCs had, can

1Different institutions have different requirements so the following definitions may vary.

3

1. Introduction

be found at Purdue University where the timetabling for all departments is automated

(Rudová, Müller & Murray, 2011).

It is important to note that timetabling problems are proven to be NP-hard (Mahlous

& Mahlous, 2023). Because of this, heuristic methods are often used to deal with these

problems. However, there are other methods as well, such as operational research meth-

ods and hybrid approaches (Chen et al., 2021).

In this thesis, we propose a model to solve the CTT at the University of Groningen

(RUG) using integer linear programming (which is a special type of operational research

method). Particularly we focus on creating a timetable for the Mathematics Department.

One of the main problems schedulers at the RUG have is not assigning lectures, but

scheduling tutorials and laboratories. This is for two main reasons:

• lectures, tutorials, and laboratories must respect a parent-child relationship. This

means that tutorials and labs must be scheduled after their corresponding lectures

in order to adhere to the pattern ”Lecture, Tutorial/Lab, Lecture, Tutorial/Lab”.

• Course attendees are split into groups when attending tutorials and laboratories.

This puts a strain on the limited number of resources (e.g rooms) that are available.

Therefore, the aim of this thesis is to create a schedule that satisfies this specific parent-

child relationship. The inspiration for our model came from the work of Hav̊as et al.,

2013. However, the model they proposed does not have a parent-child relationship as

strict as we have in Groningen. This necessitates the creation of a different model that

guarantees a higher control over our timetable.

The main body of the thesis is divided into 3 Chapters. In Chapter 2 we provide

the basic definitions and results from optimization, linear algebra, and the geometry of

polyhedrons. From this, in Chapter 3, we present the main results of Linear program-

ming; in particular, we prove the Fundamental Theorem of Linear Programming and we

discuss how to solve (integer) linear programs using the Simplex algorithm and Branch

and Cut methods. In Chapter 4 we define our model and we test it using data collected

from the University of Groningen.

4

2. Preliminaries 2.1. Optimization

2. Preliminaries

In this chapter, we present some definitions and properties that will be used throughout

the rest of the thesis. We only provide proofs of results that aid the understanding and

the intuition behind the fundamental theorem of linear programming. Other proofs are

omitted as they do not enter the scope of this thesis.

2.1. Optimization

Since timetabling can be modeled as optimization problems, we recall some basic defin-

itions of optimization theory that are taken from (Rader, 2010).

An optimization model is a problem that can be written in the following way:

minimize/maximize
x∈C

f(x)

where f : Rn → R is the objective function, x is a vector formed by n independent

variables (that we call decision variables) and C is the feasible set (or set of constraints).

The constraints are of two types:

• variable bounds: they specify the values for which the decision variables xi (for

i ∈ {1, ..., n}) have meaning.

• General constraints: which specify all other requirements of the problem.

In order to stay consistent with the literature, throughout this thesis, every optimization

problem will be written in the following form:

minimize/maximize
x

f(x)

subject to (general constraints),

(variable bounds).

Ultimately we wish to find solutions to the optimization problem. The x that satisfies

the constraints (i.e. x ∈ C) is known as a feasible solution. A feasible solution x̂

5

2. Preliminaries 2.2. Linear Algebra

that satisfies f(x̂) < f(x) for all x ∈ C is called an optimal solution (this is for the

minimization problem, in the other case the sign is flipped). Optimization problems

can have multiple global solutions or none at all. The latter can happen for one of the

following two reasons:

• The set of feasible solutions is empty. Then the problem is called infeasible.

• For any feasible solution x ∈ C we can always find a y ∈ C that improves the value

objective function more than x. These problems are called unbounded.

2.2. Linear Algebra

We assume the reader has some basic knowledge of linear algebra and therefore we report

only one result that will be necessary when describing the geometry of polyhedrons.

First, we present the definition of active constraints which was adapted from Definition

2.8 of (Bertsimas & Tsitsiklis, 1997).

Definition 1. Let A be a matrix in Rm×n and b a vector in Rm. If a vector x̂ ∈ Rn

satisfies aTi x̂ = bi (where a
T
i is the ith row of A) for some i, we say that the corresponding

constraint is active at x̂. Furthermore, we define the set of indices of constraints that

are active at x̂ as follows:

I(x̂) = {i ∈ {1, ...,m} | aTi x̂ = bi}

If there are n constraints that are active at x̂, then x̂ satisfies a system of n linear

equations. The uniqueness of the solution of this system is discussed in the next theorem

(for the proof see Theorem 2.2 from (Bertsimas & Tsitsiklis, 1997)).

Theorem 1. Let x̂ ∈ Rn and I(x̂) as in the definition above. Then, the following are

equivalent:

• There exist n vectors in the set {ai|i ∈ I(x̂)}, which are linearly independent.

• The span of the vectors ai, i ∈ I(x̂), is equal to Rn

• The system of equations aTi x = bi, i ∈ I(x̂), has a unique solution.

6

2. Preliminaries 2.3. The geometry of polyhedrons

2.3. The geometry of polyhedrons

This section is essential for the development of linear programming, as the feasibility

region of a linear program is a polyhedron. Almost all these results are taken from

(Bertsimas & Tsitsiklis, 1997). Whenever a result from Bertsimas is used, we will write

its corresponding location (theorem, proposition, etc.) in brackets. We begin with the

standard definition of hyperplanes and halfspaces.

Definition 2. (From Definition 2.3) Let a ∈ Rn be a nonzero vector and let b be a

scalar.

• The set {x ∈ Rn | aTx = b} is called a hyperplane.

• The set {x ∈ Rn | aTx ≥ b} is called a halfspace.

By combining multiple halfspaces we obtain polyhedrons. Formally:

Definition 3. (Adapted from Definition 2.1) A polyhedron P ⊆ Rn is a set that can be

described as

P = {x ∈ Rn|Ax ≥ b}

where A ∈ Rm×n and b ∈ Rm.

Therefore a polyhedron is obtained from the the intersection of finitely many half-

spaces. This allows us to easily prove that polyhedrons are convex.

Proposition 1. Polyhedrons are convex.

Proof. First, we show that any halfspace is convex. To this end let H = {x | aTx ≥ b}
be an arbitrary halfspace for some a ∈ Rn and b ∈ R . Consider two arbitrary points

x, y ∈ H. Then, for all λ ∈ [0, 1]:

aT (λx+ (1− λ)y) = λaTx+ (1− λ)aT y ≥ λb+ (1− λ)b = b

Thus (λx+ (1− λ)y) ∈ H for any x, y ∈ H and λ ∈ [0, 1], which implies that halfspaces

are convex.

Since any polyhedron can be described as an intersection of finitely many halfspaces we

can conclude that polyhedrons are convex 1.

1Recall from convex analysis that the intersection of any finite number of convex sets is a convex set.

7

2. Preliminaries 2.3. The geometry of polyhedrons

As we will see in Chapter 3 the optimal solution(s) of a linear programming problem

occur on the corner(s) of a polyhedron. Three equivalent definitions characterize these

corners. We begin with a geometric definition. In this case, we call the corner an extreme

point.

Definition 4. (From Definition 2.6) Let P be a polyhedron. A vector x ∈ P is an

extreme point of P if we cannot find two vectors y, z ∈ P , both different from x, and a

scalar λ ∈ [0, 1], such that:

x = λy + (1− λ)z

We could also define a corner from an optimization perspective. In this case, we call

the corner a vertex.

Definition 5. (From Definition 2.7) Let P ⊆ Rn be a polyhedron. A vector x ∈ P is

vertex of P if it exists c ∈ Rn such that

cTx < cT y

for all y ∈ P with y ̸= x.

Unfortunately, while the two definitions above are very important and will be used

throughout the thesis, they are not ideal when describing algorithmic procedures. Hence,

we provide an algebraic definition of corners.

Definition 6. (From Definition 2.9) Consider a polyhedron P ⊆ Rn defined by linear

equality and inequality constraints and let x̂ ∈ Rn. Then:

1. The vector x̂ is a basic solution if all equality constraints are active at x̂ and n of

them are linearly independent.

2. If x̂ is a basic solution that satisfies all constraints (equalities and inequalities), we

say it is a basic feasible solution.

In geometry, vertexes and extreme points are often interchangeable so it may not be

surprising that they represent the same object. Nonetheless, since we defined corners

also algebraically, we want to prove the equivalence of all three definitions.

8

2. Preliminaries 2.3. The geometry of polyhedrons

Theorem 2. (From Theorem 2.3) Let P = {x ∈ Rn|Ax ≥ b} be a nonempty polyhedron

and x̂ ∈ P with I = {i ∈ {1, ...,m} | aTi x̂ = bi}. Then, the following are equivalent:

1. x̂ is a vertex.

2. x̂ is an extreme point.

3. x̂ is a basic feasible solution.

Proof.

(1) ⇒ (2) We assume that x̂ is a vertex. Then by Definition 5 there exists c ∈ Rn such

that cT x̂ < cT y for all y ∈ P with y ̸= x̂.

Suppose x̂ was not an extreme point. From Definition 4, there exists a λ ∈ [0, 1] such

that x̂ = λy + (1− λ)z for some y, z ∈ P both different from x̂. If we multiply x̂ by cT

we obtain the following:

cT x̂ = cT (λy + (1− λ)z) = λcT y + (1− λ)cT z

using the vertex assumption:

cT x̂ = λcT y + (1− λ)cT z > λcT x̂+ (1− λ)cT x̂ = cT x̂

This is a contradiction, which implies that x̂ is also an extreme point.

(2) ⇒ (3) Assume x̂ is an extreme point. Then by Definition 4 we cannot find y, z ∈ P

(with y, z ̸= x̂) such that x̂ = λy + (1 − λ)z for any λ ∈ [0, 1]. Suppose that x̂ is not a

basic feasible solution. Then the number of linearly independent active constraints aTi
(i ∈ I) is less than n. Because of this there must exist a vector d ∈ Rn such that

aTi d = 0 for all i ∈ I. (2.1)

Consider now two vectors y, z such that, for some ϵ > 0 we have:

y = x̂− ϵd

z = x̂+ ϵd

By choosing 2 ϵ such that ϵ|aTi d| < aTi x̂− bi we get that for i ̸∈ I

aTi y = aTi x̂− ϵaTi d > aTi x̂− aTi x̂+ bi = bi

2We can do this as aT
i x̂ > bi for all i ̸∈ I

9

2. Preliminaries 2.3. The geometry of polyhedrons

aTi z = aTi x̂+ ϵaTi d > aTi x̂− aTi x̂+ bi = bi

On the order side, for any i ∈ I, it follows from (2.1):

aTi y = aTi x̂− ϵaTi d = bi − 0 = bi

aTi z = aTi x̂+ ϵaTi d = bi − 0 = bi

Therefore, since y, z satisfy all active and non-active constraints, it follows that y, z ∈ P .

In particular we have x̂ = y+z
2 with y, z ̸= x̂. This contradicts the assumption that x̂ is

an extreme point of P .

We conclude that x̂ is also a basic feasible solution.

(3) ⇒ (1) Assume x̂ is a basic feasible solution. Define c =
∑
i∈I

ai. Then if we multiply cT

and x̂ we get:

cT x̂ = (
∑
i∈I

aTi)x̂ =
∑
i∈I

(aTi x̂) =
∑
i∈I

bi

Moreover, for any y ∈ P and i ∈ I, we have aTi y ≥ bi. Thus:

cT y = (
∑
i∈I

aTi)y =
∑
i∈I

(aTi y) ≥
∑
i∈I

bi (2.2)

This implies that x̂ is a (not necessarily unique) global minimizer of the function cTx

over P . Moreover, since aTi x ≥ bi ∀ i ∈ I, it follows that the equality in (2.2) holds if an

only if aTi x = bi ∀ i ∈ I.

Since x̂ is a basic feasible solution, there exist n vectors in the set {aTi | i ∈ I}, which
are linearly independent. Therefore by Theorem 1 there is a unique solution (i.e. x̂) to

the system of equations aTi x = bi, i ∈ I. Thus we have that

cT y >
∑
i∈I

bi = cT x̂

for all y ∈ P with y ̸= x̂. This implies that x̂ is the unique global minimizer of cTx over

P and by Definition 5 it is a vertex.

10

2. Preliminaries 2.3. The geometry of polyhedrons

This equivalence relation allows us to prove the following property.

Corollary 1. A polyhedron P = {x ∈ Rn | Ax ≥ b}, where A ∈ Rm×n, has a finite

number of vertices.

Proof. If m < n then, by Definition 6, we cannot have any basic feasible solution and,

by Theorem 2, not a single vertex. If m ≥ n then we can have at most k =
(
m
n

)
sets

of indices of active constraints. Since k < ∞ it follows that we have at most k feasible

solutions and again, by Theorem 2, at most k vertexes.

This result is significant. As stated above, in Chapter 3 we will show that optimal

solutions are achieved on the vertexes; since they are finite we can limit our search of

the optimal solution by only checking the vertexes.

Until now we discussed extreme points without giving criteria for their existence. It

can be shown that the existence of extreme points is related to the concept of containing

lines which we define as follows:

Definition 7. (From Definition 2.12) A polyhedron P ⊆ Rn contains a line if it exists

a vector x ∈ P and d ∈ Rn\{0} such that (x+ λd) ∈ P for all λ ∈ R.

We report the theorem concerning the existence of extreme points but we do not prove

it as it goes beyond the scope of this thesis.

Theorem 3. (Adapted from Theorem 2.6) A nonempty polyhedron has a vertex if and

only if it does not contain a line.

We conclude the preliminaries by providing a definition that will be used in one of the

proofs of Chapter 3.

Definition 8. (Defined in the proof of Theorem 2.8) A polyhedron P ⊆ Rn contains

a half-line if it exists a vector x ∈ P and d ∈ Rn\{0} such that (x + λd) ∈ P for all

λ ∈ R>0.

Remark. A polyhedron either contains one point or infinitely many. The reason is that

if it contains two points then, as polyhedrons are convex, it must also contain the segment

that connects them. In particular, this segment contains infinitely many points.

11

3. Linear Programming 3.1. Definitions and main results

3. Linear Programming

Linear programming is not as new as people think. The first example is attributed

to Fourier, who in 1823 wrote a paper discussing how to determine if a polyhedron

is nonempty. However, until the 1930s, there was no further research due to lack of

application (Chakraborty, Chandru & Rao, 2020). Then, in 1939, Leonid Vitaliyevich

Kantorovich published Mathematical Methods in the Organization and Planning of Pro-

duction which is the first formal resource in Linear programming (Kutateladze, 2012).

Unfortunately, due to the Cold War, his work was unknown in the West. Meanwhile, in

the United States, Wassily Leontief formulated the Inter-industry Model of the American

Economy. This model was later generalized by George Dantzig (known as the father of

Linear programming), who at the time was working on logistical problems for the US Air

Force. This generalization is now known as the Linear Programming 1 Model. (Albers

& Reid, 1986).

3.1. Definitions and main results

Definition 9. A linear program (LP) is an optimization problem in which the objective

and the constraints are linear functions. It can be written in the following form:

minimize cTx

subject to Ax ≥ b
(3.1)

Before presenting the proof of the Fundamental Theorem we prove a lemma that is

cardinal for the proof of the theorem. The statements of the lemma and theorem are

taken from (Roma, 2019, Lemma 5.2.1, Theorem 5.2.1) which is published in Italian.

There are equivalent statements in (Bertsimas & Tsitsiklis, 1997) (which we specify in

parenthesis as we did in Chapter 2) but we report the “Italian” results. The reason for

this choice is to enhance clarity.

1Interestingly the term programming has nothing to do with coding or computer science. It is a military
term that refers to planning schedules efficiently or deploying men optimally (Dias Rasteiro, 2020).

12

3. Linear Programming 3.1. Definitions and main results

Lemma 1 (Adapted from Theorem 2.8). Consider the following LP

minimize cTx

subject to Ax ≥ b

and assume that P = {x ∈ Rn|Ax ≥ b} is nonempty, does not contain a line, and that

it is bounded below. Then if y ∈ P is not a vertex of P we can find a vector z ∈ P such

that cT z ≤ cT y and the number of linearly independent active constraints of z is larger

than the one of y.

Proof. Suppose that y ∈ P is not a vertex. Then, by Theorem 2, the number of linearly

independent active constraints at y is less than n, say k. Because of this it must exist a

non-zero vector d ∈ Rn such that:

aTi d = 0

for all i ∈ I = {i | aTi y = bi}. Without loss of generality, we assume that cTd ≤ 0 (if not

then we can pick −d instead of d). We distinguish two cases:

• First case: cTd < 0. Consider the half line z(λ) = y+ λd with λ ∈ R>0. Then for

all i ∈ I we have:

aTi z(λ) = aTi y + λaTi d = aTi y + 0 = aTi y = bi

If (y + λd) ∈ P for all λ ∈ R>0 (that is, the whole half-line is contained in P) we

would have:

lim
λ→∞

cT (y + λd) = −∞

This would violate the assumption that the problem is bounded from below. There-

fore the half-line must, eventually, exit P . Thus there exists a “last” λ̂ > 0 such

that, for some j ̸∈ I:

aTj (y + λ̂d) = aTj y + λ̂aTj d = bj

Geometrically this means that the half line intersects the hyperplane aTj x = bj .

Using these information, and the fact that cTd < 0, we have:

cT z(λ̂) = cT y + λ̂cTd < cT y

Note that, for j ̸∈ I, we must have aTj d ̸= 0 (as aTj y ̸= bj and aTj (y + λd) = bj).

Since d is orthogonal to all aTi (i ∈ I), it must also be orthogonal to any of their

linear combinations. We conclude that aj is linearly independent from all the a′is

13

3. Linear Programming 3.1. Definitions and main results

(i ∈ I). Therefore we have cT z(λ̂) < cT y and z(λ̂) has at least k + 1 linearly

independent active constraints.

• cTd = 0: Consider the line z(λ) = y + λd. Since P does not contain any line it

means that there exists λ̂ ∈ R and j ̸∈ I such that aTj (y + λ̂d) = bj . In this case

we have:

cT z(λ̂) = cT y + λ̂cTd = cT y

Using the same reasoning as before, aj is independent from all other a′is for i ∈ I,

and therefore there are at least k + 1 linearly independent active constraints at

z(λ̂).

Since we found a vector z (namely z(λ̂)) with a number of linearly independent active

constraints larger than y and cT z ≤ cT y the proof is concluded.

Finally, we are ready to prove the theorem that Dantzig first proved in 1951 (Dantzig,

1951).

Theorem 4 (Fundamental Theorem of Linear Programming from Theorem 2.8 and

Corollary 2.3). Consider the following LP

minimize cTx

subject to Ax ≥ b

and assume that P = {x ∈ Rn|Ax ≥ b} does not contain a line. Then only one of the

following holds:

• The problem is infeasible.

• The problem is unbounded from below.

• The problem admits optimal solutions and at least one of them is a vertex of P .

Proof. Note that the 3 statements are mutually exclusive. Therefore we can prove the

theorem by showing that at least one of them is true. We assume that P ̸= ∅ and that

the problem is bounded from below. Then we consider two cases:

• Assume that P = {x}. Since P does not contain a line it follows that P must

contain a vertex. As x is the only point, it must be the vertex and also the optimal

solution.

14

3. Linear Programming 3.1. Definitions and main results

• Assume P contains infinitely many points 2. Since the problem is feasible and

bounded from below we know there is at least one feasible solution. Call this

solution x. We distinguish two cases:

1. Assume x is a vertex. By Corollary 1 the number of vertices is finite (we

denote the set of vertices by V) and therefore we can find that vertex v̂ such

that:

cT v̂ ≤ cT v

for all v ∈ V .

2. If x ∈ P is not a vertex then we can use Lemma 1 a (finite) number of times

until we find a vector v ∈ P with n linearly independent active constraints

and cT v ≤ cTx (we cannot use Lemma 1 more than n times because in Rn

we have at most n linearly independent vectors). But then this vector v is a

basic feasible solution and therefore a vertex. Then again, using the fact that

the set of vertices is finite, we can find a vertex v̂ such that:

cT v̂ ≤ cT v ≤ cTx

for all v ∈ V .

This shows that the vertex v̂ is an optimal solution to the problem. Therefore

statement 3 is true and the proof is complete.

2From the Remark at the bottom of the preliminaries we know that a polyhedron either contains one
point or infinitely many.

15

3. Linear Programming 3.2. LP in standard form

3.2. LP in standard form

In this section, we do not consider general polyhedrons but polyhedrons in standard form

(which are defined by hyperplanes only). We show that it is always possible to write

a linear program in general form to an equivalent one in standard form. The reason

behind this choice is that the Simplex method, which we use to solve linear programs,

is defined using the standard form.

Definition 10. A linear program is said to be in standard form if:

• All constraints are equalities.

• All of the elements of vector b are non-negative.

• All decision variables in the model are non-negative.

It can be written in the following form:

minimize z = cTx

subject to Ax = b,

x ≥ 0

(3.2)

Now we show how to transform a general LP into an equivalent one in standard form.

1. The objective function

If needed, we transform the maximization problem into a minimization one. Recall

that the maximum value of the function z is equivalent to the minimum of −z.

Therefore:

max(z) = cTx becomes min(−z) = −cTx

2. Constraints

If bi ≤ 0 for some i, we multiply by (−1) the corresponding row of A (i.e. aTi).

Then inequality constraints can be converted into equality constraints by adding

slack and surplus variables:

n∑
j=0

aijxj ≤ bi becomes

n∑
j=0

aijxj + s1 = bi

and
n∑

j=0

aijxj ≥ bi becomes

n∑
j=0

aijxj − s2 = bi

16

3. Linear Programming 3.2. LP in standard form

where s1, s2 ≥ 0 are the slack and surplus variable respectively.

3. Variables

Lastly, decision variables need to be non-negative. In order to satisfy this require-

ment we consider the following transformations;

• If xi ≤ 0 then we just substitute xi with −xi.

• If xi is a free variable then we define two variables x+i , x
−
i ≥ 0 such that

xi = x+i − x−i .

We want to stress the fact that while the optimal value is the same for both problems

(in standard and in general form), the optimal solution is different as we are considering

two different polyhedrons.

Throughout the rest of Chapter 3, we will always assume that matrix A is full rank

and that m < n 3 (if m ≥ n then our system will have at most one solution. This is

not interesting in an optimization problem). The full rank assumption is without loss

of generality from an Operation Research perspective. When building an LP model,

scientists do not include repetitive constraints which therefore guarantees that the the

constraint matrix A is full rank.

Now that we have rewritten the problem, we can provide a different definition of basic

(feasible) solutions in order to simplify our treatment of the Simplex algorithm. For

the remainder of section 3.2 and all 3.3 we use as reference (Andreasson, Evgrafov &

Patriksson, 2005). As we have done before, we place between parentheses the location

of the corresponding results.

Definition 11. (See page 215)

Consider problem (3.2) with rank(A) = m (with A ∈ Rm×n) and m < n. A point x̂ is

a basic solution of (3.2) if:

• Ax̂ = b; and

• the columns of A corresponding to the non-zero components of x̂ are linearly inde-

pendent.

If, moreover, x̂ satisfies x̂ ≥ 0 then we call it a basic feasible solution.

3The reader may recall that in Corollary 1 we required m ≥ n. Now we want m < n because we are
redefining the definition of a basic (feasible) solution. However, all theorems and results still hold
with this new definition.

17

3. Linear Programming 3.2. LP in standard form

Since A is full rank we can solve the system Ax = b by partitioning matrix A in two.

The first sub-matrix, which we denote as N , is composed of the n − m columns of A

corresponding to components of x that are set to 0; we call them non-basic variables and

we denote them by the sub-vector xN . The second sub-matrix, denoted by B, is formed

by m linearly independent columns of A (which then guarantees that B is non-singular).

Then, the remaining components of x are known as basic variables and are denoted by

xB.

Proposition 2. (See page 215) Let x =

(
xB

xN

)
=

(
xB

0

)
and A =

(
B N

)
defined as

above. If xB = B−1b then x is a basic solution.

Proof. By construction, the columns of A corresponding to the non-zero components of

x are linearly independent: thus rank(A) = m. We only need to show that Ax = b.

Indeed:

Ax =
(
B N

)(xB

xN

)
= BxB +NxN =

Since xN = 0 by construction and xB = B−1b we get:

= BxB = BB−1b = b

Therefore x is a basic solution.

Corollary 2. (See page 215) Let x be as above. If xB = B−1b ≥ 0 then x is a basic

feasible solution

In the next subsection, we show a way to characterize adjacent extreme points. But

why are we interested in it? From the Fundamental Theorem, we know that if a problem

has an optimal solution then we can find it on an extreme point; instead of going through

all the vertexes we “jump” from vertex to an adjacent vertex (this is effectively the idea

behind the Simplex Method).

3.2.1. Adjacent extreme points

Definition 12. (Algebraic characterization of adjacency from Definition 8.12) Two ex-

treme points x, y of a polyhedron P are adjacent if all points z on the line segment

between x and y satisfy the following property: if z = λu+(1−λ)w (for some λ ∈ (0, 1)

and u,w ∈ P) then u,w must be on the line segment between x and y.

18

3. Linear Programming 3.2. LP in standard form

Consider the linear program in standard form and let x be a basic feasible solution

corresponding to the partition A =
(
B1 N1

)
. We can rewrite the two sub-matrices in

the following way

B1 = (b1, .., bm) and N1 = (n1, .., nn−m)

If we swap the columns b1 and n1 (this is done without loss of generality since we can

always reorder the constraints) we get a new partition of A. In particular A =
(
B2 N2

)
where:

B2 = (n1, .., bm) and N2 = (b1, .., nn−m)

Using this construction we can prove an important result, central to the simplex

algorithm’s treatment.

Proposition 3 (Algebraic characterization of adjacency from Proposition 8.13). Let

u, v ∈ P be two extreme points that correspond, respectively, to the partitions,
(
B1 N1

)
and

(
B2 N2

)
defined above. Then u, v are adjacent extreme points.

Proof. First, assume that the variables of u and v are ordered in the same way (without

loss of generality since it is a matter of reordering). Then we can write:

u = (u1, ..., um, 0, ..., 0)T

and

v = (0, v2, ..., vm+1, 0, ..., 0)
T

Let z be an arbitrary point in the segment between u and v. That is:

x = λu+ (1− λ)v

for some λ ∈ (0, 1). In order to prove the proposition we must show that if

x = αy1 + (1− α)y2 (for some y1, y2 ∈ P and α ∈ (0, 1)) then y1 and y2 must belong to

the segment connecting u and v.

19

3. Linear Programming3.3. Solving linear programming problems: the Simplex Method

Since y1 and y2 are feasible solution they must satisfy the following system:

x1b1 + x2b2 + ...+ xm+1n1 = b

xm+2, ..., xn = 0

x ≥ 0

or 
x1
...

xm

B + xm+1n1 = b

xm+2, ..., xn = 0

x ≥ 0

If xm+1 = 0 then the unique solution (recall that B is invertible) of the above system

is x = u while if xm+1 = vm+1 the unique solution of the above system is x = v. This

shows that y1 and y2 belong to the segment connecting u and v which allows us to

conclude that u, v are adjacent.

3.3. Solving linear programming problems: the Simplex

Method

From the Fundamental Theorem of Linear Programming, we know that if a linear pro-

gram has a solution then we can find it on a vertex of the polyhedron. Therefore we

could iterate over all the possible vertices and find the global minimum.

This may seem like a good method. However, the number of vertices could be con-

siderably large. For example, the n dimensional hypercube has 2n many vertices; com-

putationally this would be quite expensive as n increases. Therefore we want to pick a

subset of the vertices in a “smart way”. To do this we will use the notion of adjacency

we presented in the previous section. Starting from one vertex we jump to an adjacent

one only if the value of the objective function improves: this is known as the Simplex

Method. The method is composed of two phases: Phase I allows us to determine our

initial vertex while Phase II determines the “jumping” part. We begin with the latter.

20

3. Linear Programming3.3. Solving linear programming problems: the Simplex Method

Figure 3.1.: A simplex path on a convex polyhedron (Huiberts, 2022)

3.3.1. Phase II of the Simplex Method

As reference we use section 9.1.1 of Andreasson, Evgrafov and Patriksson, 2005. Consider

a linear program in standard form:

minimize z = cTx

subject to Ax = b,

x ≥ 0

(3.3)

Step 1

Let x =

(
xB

xN

)
be an extreme point corresponding to the partition A = (B,N). First,

we rewrite the constraints using the partition:

Ax = (B,N)

(
xB

xN

)
= BxB +NxN = b

or, equivalently,

xB = B−1b−B−1NxN (3.4)

We can also rewrite the objective function using the partition. Rearrange the components

of c such that c =

(
cB

cN

)
. Then if we multiply the partition of c and x we get:

cTx = cTBxB + cTNxN =

substituting equation (3.4) we obtain:

= cTB(B
−1b−B−1NxN) + cTNxN

21

3. Linear Programming3.3. Solving linear programming problems: the Simplex Method

= cTBB
−1b+ (cTN − cTBB

−1N)xN (3.5)

Then we define c̃N := (cTN − cTBB
−1N): this is known as the reduced cost vector of the

non-basic variable. Using c̃N we can rewrite Equation (3.4) as:

cTx = cTBB
−1b+ c̃NxN (3.6)

Step 2

In this step, we check if our current extreme point is an optimal solution. In order to do

this we increase the non-basic vector (xN)j from 0 to 1. Now consider the jth component

of c̃N :

(c̃N)j = ((cTN − cTBB
−1N)xN)j = (cTN − cTBB

−1N)j · 1 = (cTN − cTBB
−1N)j

If (c̃N)j ≥ 0 for all j = 1, .., n−m, there does not exist any adjacent extreme point that

improves the objective value. This implies that x is an optimal solution (see Theorem 5

at the end of this sub-chapter for the proof).

Step 3

If there is at least one negative reduced cost, then we need to keep searching: i.e.

determine a new vertex. In particular Proposition 3 tells us that we determine this

point by swapping one column of B and one column of N . In order to minimize the

function the quickest we choose the nonbasic variable with the most negative reduced

cost: the column of N corresponding (same index) to that nonbasic variable will be

swapped (in this case we say that the variable (xN)j enters the basis).

We are left to determine which column of B will be swapped. Assume that the variable

(xN)j has entered the basis and consider the extreme point of step 1. Then, as (xN)j

increases from 0 to 1 we will move along the following half line:

l(α) =

(
B−1b

0

)
+ α

(
−B−1Nj

ej

)
α ≥ 0

To satisfy the nonnegativity constraints we must have l(α) ≥ 0 for all α ≥ 0. Moreover,

the unboundedness constraints are satisfied only if B−1Nj ∈ Rm has at least one positive

element (see Theorem 6 for the proof).

The maximal value of α that maintains feasibility is given by the following minimization

22

3. Linear Programming3.3. Solving linear programming problems: the Simplex Method

problem:

α̂ = min
i∈{k|(B−1Nj)k>0}

(B−1b)i
(B−1Nj)i

Remark. This pricing rule is known as the minimum ratio test. We consider this

because it is the standard one, but other rules exist and can be implemented according to

the problem’s needs (Ploskas & Samaras, 2014).

Then, the index of the column of B that will be swapped is given by:

i = argmin
i∈{k|(B−1Nj)k>0}

(B−1b)i
(B−1Nj)i

Step 4

Construct a new partition by swapping the jth column of N with the ith column of B.

Next, we present the optimality conditions of the Simplex Method. The proofs we use

are taken from Theorem 6.4.1 and Corollary 6.4.1 of (Roma, 2019).

Theorem 5 (Optimality condition of the simplex method). [Adapted from Proposition

9.1] Consider a linear program in standard form and let x̂ =

(
B−1b

0

)
be the extreme

point that corresponds to the partition A = (B,N). If the reduced cost (c̃N)j ≥ 0 for all

j = 1, ..., n−m, then x̂ is an optimal solution.

Proof. Let x =

(
xB

xN

)
be an arbitrary feasible point. Then, from equation (3.6) we

have:

cTx = cTBxB + cTNxN = cTBB
−1b+ c̃NxN

Since (c̃N)j ≥ 0 for all j = 1, ..., n−m and xN ≥ 0, it follows that:

(cTx)j ≥ (cTBB
−1b)j = (cTBB

−1b+ cTN0)j = (cT x̂)j

for all j = 1, ..., n−m. Therefore x̂ is an optimal solution for the problem

Corollary 3 (Adapted from Proposition 9.10). Consider a linear program in standard

form and let x̂ =

(
B−1b

0

)
be the extreme point that corresponds to the partition A =

(B,N). If the reduced cost (c̃N)j > 0 for all j = 1, ..., n−m, then x̂ is the unique optimal

solution.

23

3. Linear Programming3.3. Solving linear programming problems: the Simplex Method

Proof. Using the same reasoning as in Theorem 5 we obtain that :

(cTx)j > (cTBB
−1b)j = (cTBB

−1b+ cTN0)j = (cT x̂)j

for all j = 1, ..., n−m.The strict inequality implies that x̂ is the unique optimal solution

Lastly, we consider the unboundedness criterion of the simplex method that is needed

to justify the choices of step 3. In Andreasson, Evgrafov and Patriksson, 2005 only the

statement is provided on page 228. The proof comes from Theorem 6.4.2 of (Roma,

2019).

Theorem 6. Consider problem (3.3) and let (B,N) be a valid partition of A. If there

exists some j ∈ {1, .., n−m} such that:

• (c̃N)j < 0.

• B−1Nj ≤ 0.

then the problem is unbounded from below

Proof. Consider the half line defined in step 3. That is:

l(α) =

(
B−1b

0

)
+ α

(
−B−1Nj

ej

)
α ≥ 0

Using this we define:

lN (α) := αej

lB(α) := B−1b− αB−1Nj

Then we have:

Al(α) = BlB(α) +NlN (α) = b

Clearly have lN (α) ≥ 0 and, using the second assumption, we obtain:

lB(α) = B−1b− αB−1Nj ≥ 0

Therefore all the constraints of (3.3) are satisfied. Now consider the value of the objective

function at l(α); from equation (3.6) we obtain:

z(l(α)) = cTBB
−1b+ c̃N lN (α) = cTBB

−1b+ α(c̃N)j

24

3. Linear Programming3.3. Solving linear programming problems: the Simplex Method

Then as α → ∞ we have z(l(α)) → −∞ which shows that the problem is unbounded

from below.

3.3.2. Phase I of the Simplex Method

But how can we solve Phase II if we do not have an initial extreme point? In two or

three dimensions we may determine it by plotting the polyhedron. But what if we are

solving a problem with a dimension larger than three? In that case, we apply Phase I.

Again, consider the LP in standard form:

minimize z = cTx

subject to Ax = b,

x ≥ 0

(3.7)

then its correspondent Phase I problem is:

minimize w =

m∑
i=1

ai

subject to Ima+Ax = b,

x ≥ 0

a ≥ 0

(3.8)

where the elements of a ∈ Rm are known as artificial variables. Notice that this problem

always admits an optimal solution as:

•

(
a

x

)
=

(
b

0

)
is a solution of (3.8). Therefore the feasible set (or the polyhedron)

is not empty.

• The problem is bounded from below as each element of a is nonnegative.

• A vertex exists as the partition (Im, A) corresponds to a basic feasible solution

(with N = A and Im = B).

Therefore, by the Fundamental Theorem of Linear Programming, problem (3.8) admits

an optimal solution.

Knowing that an optimal solution exists for the Phase I problem allows us to determine

if the initial problem is solvable or not. This is discussed in the next theorem.

25

3. Linear Programming3.3. Solving linear programming problems: the Simplex Method

Theorem 7 (Adapted from Theorem 6.5.1). The point x̂ is a feasible solution of the

LP (3.7) if and only if the optimal solution

(
â

x̂

)
of (3.8) is equal to

(
0m

x̂

)
.

Proof.

(⇒) Assume that x̂ is a feasible solution of (3.7) and that

(
â

x̂

)
is the optimal solution

of the Phase I problem for some â ∈ Rm and a ≥ 0. Suppose there is some j ∈ {1, ..,m}
such that (â)j > 0. Then, the optimal value is larger than 0. Since x̂ is a solution of (3.7)

we must have Ax̂ = b. Then the vector

(
0m

x̂

)
is a solution for (3.8) and the value of the

objective function at this point is 0. We have found a solution that is better than the

optimal one. This is a contradiction and therefore the optimal solution of (3.8) is

(
0m

x̂

)
.

(⇐) Assume

(
0m

x̂

)
is an optimal solution for (3.8). Then:

Imâ+Ax̂ = 0 +Ax̂ = b

which implies that x̂ is a feasible solution for (3.7)

Corollary 4 (Adapted from Corollary 6.5.1). Let ŵ be the optimal value of (3.8). If

ŵ = 0 then the problem (3.7) has a basic feasible solution. If ŵ > 0 then the original

problem is infeasible.

Therefore, if ŵ = 0, an extreme point can be found by solving the Phase I problem

which can later be used as the starting vertex for the Phase II problem.

3.3.3. Convergence of the Simplex Method

We conclude the treatment of the Simplex method by discussing its convergence prop-

erties. To this end, we need to define degenerate solutions.

Definition 13. (From Remark 8.4) If more than n − m variables are zero at a basic

solution x, then the corresponding partition is not unique. Such a basic solution is called

degenerate.

If there is a degenerate solution it is possible that the algorithm cycles between some

vertices and thus never terminates. We do not consider this problem in the thesis as it

26

3. Linear Programming3.3. Solving linear programming problems: the Simplex Method

does not enter the main focus 4. However, it is worth noting that there exist rules that

avoid cycling; an example is Bland’s rule (Bland, 1977).

However, if there are no degenerate solutions we can easily prove that the algorithm

terminates in a finite number of steps.

Theorem 8. (From Theorem 9.11) If all of the basic feasible solutions are non-degenerate,

then the simplex algorithm terminates after a finite number of iterations.

Proof. Recall that one of the conditions of problem (3.3) is x ≥ 0. Therefore if the basic

feasible solution x is non degenerate, it has exactly m positive components. Then if we

consider the minimum ratio test we have that:

α̂ = min
i∈{k|(B−1Nj)k>0}

(B−1b)i
(B−1Nj)i

> 0

Therefore, at each iteration, the objective value decreases and thus we never visit the

same vertex twice (i.e. we never cycle).

Since the number of vertices is finite the Simplex Method terminates after a finite number

of iterations.

4Note that cycling from degeneracy does not seem to occur often in practical application (Andreasson,
Evgrafov & Patriksson, 2005).

27

3. Linear Programming 3.4. Solving (Mixed) Integer Programming problems

3.4. Solving (Mixed) Integer Programming problems

A mixed integer program (MIP) is a linear program in which we impose integrality con-

straints on at least one decision variable. If we require integrality for all the decision

variables we then call it a pure integer program.

A naive method to solve MIPs would be finding the optimal solution (e.g. using the Sim-

plex Method), and then rounding the decision variables to the nearest integer. However,

this method may not give us the optimal solution, or, in the worst case, it might not

even be feasible. Therefore, to solve this kind of problem, we use two different methods
5 (which are often combined): branch and bound, and cutting planes.

3.4.1. Branch and bound

We introduce this method by employing an example (for reference see Chapter 23 section

5 of Vanderbei, 2020). Consider the following IP problem.

minimize z = x1 + 2x2

subject to − x1 + x2 ≤
16

3

2x1 + x2 ≤
23

2

x1 ≤
11

2

x2 ≤
15

2

x ∈ Zn

(3.9)

5The methods are valid for both MIPs and pure integer programs.

28

3. Linear Programming 3.4. Solving (Mixed) Integer Programming problems

Figure 3.2.: Branch and Bound method for Example 3.9. The red square represents the

optimal integer solution. The dark blue square represents a branch that did

not improve the objective function. The image was generated using the gilp

python library(Robbins et al., 2023)

.

First, we solve the problem without the integrality constraint (the removal is called LP

relaxation). The optimal solution is (2.056, 7.389) with an optimal value of 16.833. Since

the solution is not integral (if it was then we would be done) we perform a branching

operation. Choose a decision variable that does not satisfy integrality: for example x1.

Then solve two problems with the same objective function of (3.9) but with the following

variations:

1. One adding the constraint x1 ≤ ⌊2.056⌋ = 2. In this case, the optimal solution is

(2, 7.333) and the optimal value 16.667.

2. The other adding the constraint x1 ≥ ⌈2.056⌉ = 3. In this case the optimal solution

is (3, 5.5) and the optimal value 14

Now we solve subproblem (1): we get two nodes: one that gives an infeasible solution

and one that gives an integral solution. The latter gives us an optimal value that is

larger than the right-hand branch (the blue square in the picture). Therefore we do not

need to explore the right branch and the optimal solution of (3.9) is (2, 7).

In our example could we have branched on x2 first rather than x1? The answer is

yes, but this choice was not dictated by us but by Robbins et al., 2023 who wrote

29

3. Linear Programming 3.4. Solving (Mixed) Integer Programming problems

the program. In particular, there are different strategies for branching, searching (the

order in which subproblems in the tree are solved), and pruning (rules that prevent

exploration of suboptimal regions of the tree) (Morrison et al., 2016). We do not explore

these different strategies as they do not enter the focus of this thesis.

3.4.2. Cutting planes

The cutting planes method consists of considering additional constraints to the IP prob-

lem. These additional constraints are known as valid cuts. As a reference for this section

we used (Lessard, 2017-18)

Definition 14. Let P denote the feasible set for (3.8). We call an inequality a valid

inequality (or valid cut) if and only if it does not eliminate any feasible integer solutions.

The cutting planes method is similar to the Branch and Bound one.

1. Solve the LP relaxation of (3.9).

2. If the solution is integral then we are done.

3. If it is not integral then execute a valid cut.

4. Add the new cut constraint to (3.8) and go to step 1

It is very important to note that, since the LP relaxation’s feasible set of (??) is convex,

we can always find a valid cut. This is a consequence of the hyperplane separation

theorem.

As in Branch and Bound, there are different strategies for creating valid cuts in order

to reduce the computations needed to find the optimal solutions. Since this is not the

focus of the thesis we refer the reader to Cornuéjols, 2008.

30

4. Timetabling at the University of Groningen 4.1. Problem description

4. Timetabling at the University of

Groningen

As stated in the introduction, this thesis aims at creating a model for university course

timetabling. There are two main variants for this problem (Ceschia, Di Gaspero &

Schaerf, 2023):

• Post-Enrolment course timetabling (PE-CTT): where students can enroll in any

courses they wish to.

• Curriculum-Based course timetabling (CB-CTT): in which students must follow a

predetermined set of courses.

At the University of Groningen, we focus on CB-CTT as students are enrolled in three

different tracks: applied mathematics, general mathematics, and probability and stat-

istics. Before delving into the mathematical formulation we want to provide an overview

of the different elements that we need to take into consideration when creating the

timetable.

4.1. Problem description

• Blocks. The academic year at the university is divided into four blocks (trimesters):

1A, 1B, 2A, and 2B. Each block has a different number of activities that must be

scheduled.

• Rooms. In our model, we include 56 rooms: 44 of them are for lectures and

tutorials while the remaining 12 are for computer laboratories.

• Lecturers. They are in charge of teaching courses. Sometimes they may teach

multiple courses in a single block or multiple teachers may teach the same course.

• Students. There are two main types of mathematics students at the University of

Groningen: bachelor’s and master’s. First-year bachelor’s students follow a com-

mon path while second and third years can specialize in the three tracks described

31

4. Timetabling at the University of Groningen 4.1. Problem description

above. Master students on the other side are split in general and applied. Within

these two tracks, there are several specializations. However, as it is also possible

to follow a specialization-free master we do not consider any specialization, only

the two tracks.

• Courses. As our university uses a Curriculum Based Timetabling system we ef-

fectively ignore the single students because it is implied that they are following

the courses assigned to them. Therefore all the constraints put in place to avoid

conflict will be based on the tracks and not on the students.

• Time. Our model creates a weekly schedule that will be therefore repeated for the

rest of the trimester. Each week has five days (from Monday to Friday) and on

each day there are 5 timeslots of 2 hours each: 9 to 11, 11 to 13, 13 to 15, 15 to

17, and 17 to 19.

Now we can list all the constraints. These are the same constraints that schedulers at

the University of Groningen must use. We take this opportunity to thank them for the

information provided.

Hard Constraints

• All events for each course are scheduled.

• Each room can hold at most one event in a day and timeslot.

• Courses of the same specialization/track must not collide.

• Lecturers must teach the courses they are assigned to.

• Lecturers may teach at most one course at a given timeslot and day.

• Computer rooms cannot be used for tutorials and lectures. Similarly, lecture and

tutorial rooms cannot be used for computer labs.

• Each room must be large enough for all students participating in a specific event.

• Lectures cannot be scheduled on Friday and two lectures should be at least one

day apart.

• If a course has several groups attending tutorials and/or labs then they must all

follow it at the same time.

32

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

• Parent-child relationship (the pattern ”Lecture, Tutorial/Lab, Lecture, Tutorial/Lab”)

must be respected.

• Laboratories must be scheduled in the timeslot after the tutorial.

Objectives

Our model considers three sub-objectives that we wish to minimize. The first two are

the same that the timetablers try to minimize while the third one is proposed by us.

• The number of events happening in the timeslot 17 to 19.

• The number of unused seats.

• The number of rooms used.

4.2. Proposed integer programming model

Now we list all sets, parameters, and variables that will be used in our implementation.

4.2.1. Definition of sets and parameters

• C1
B: Courses offered to all first-year bachelor students.

• C2
BA: Courses offered to second-year bachelor students specializing in Applied

Mathematics.

• C2
BG: Courses offered to second-year bachelor students specializing in General

Mathematics.

• C2
BP : Courses offered to second-year bachelor students specializing in Probability

and Statistics.

• C3
BA: Courses offered to third-year bachelor students specializing in Applied Math-

ematics.

• C3
BG: Courses offered to third-year bachelor students specializing in General Math-

ematics.

• C3
BP : Courses offered to third-year bachelor students specializing in Probability

and Statistics.

33

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

• CMG: Courses offered to master students specializing in General Mathematics.

• CMA: Courses offered to master students specializing in Applied Mathematics.

• C: set of all offered courses.

• D = {1, 2, 3, 4, 5}: Set of days from Monday to Friday.

• T = {1, 2, 3, 4, 5}: Set of time slots in a day.

• RLT : Set of rooms used for lectures and tutorials.

• RLAB: Set of rooms used for computer labs.

• R: set of all rooms available.

• L: sets of all lecturers.

• S := C×D×T ×L (where × represents the Cartesian product): set that represents

all possible events.

• nr: number of available seating places in room r ∈ R.

• nc: number of students enrolled in course c ∈ C.

• n1lec,c =

1, if the first lecture for course c ∈ C takes place.

0, otherwise

• n2lec,c =

1, if the second lecture for course c ∈ C takes place.

0, otherwise

• n1tut,c =

1, if the first tutorial for course c ∈ C takes place.

0, otherwise

• n2tut,c =

1, if the second tutorial for course c ∈ C takes place.

0, otherwise

• n1lab,c =

1, if the first lab for course c ∈ C takes place.

0, otherwise

• n2lab,c =

1, if the second lab for course c ∈ C takes place.

0, otherwise

34

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

• ng,c: number of tutorial groups for course c ∈ C.

• kpresent: coefficient that represents the proportion of students that are present at

an event. It is equal to 0.9 for blocks 1A and 1B while it is 0.8 for blocks 2A and

2B.

• M : matrix in R|L|×|C| with the following assignment rule:

Mlc =

1, if professor l ∈ L is teaching course c ∈ C.

0, otherwise.

4.2.2. Definition of decision variables

As stated in the introduction, the inspiration for our model comes from Hav̊as et al., 2013.

Their model uses only three variables to represent lectures, tutorials, and labs which are

xc,d,t,r, yc,d,t,rand zc,d,t,r respectively. However, their model needs to be modified as their

university has a different parent-child relationship (less strict) than ours. To do this, as

in the mathematics department of the RUG there are at most two lectures, tutorials,

and labs per week, we use two variables for each of the three types of events. This allows

us to order the variables in a way that increases control over the timetable (and satisfies

the pattern required).

• x1c,d,t,r,l: binary variable that takes 1 if course c ∈ C has the first lecture on day

d ∈ D in the time slot t ∈ T in room r ∈ R taught by lecturer l ∈ L and it is 0

otherwise.

• x2c,d,t,r,l: binary variable that takes 1 if course c ∈ C has the second lecture on day

d ∈ D in the time slot t ∈ T in room r ∈ R taught by lecturer l ∈ L and it is 0

otherwise.

• y1c,d,t,r: binary variable that takes 1 if course c ∈ C has the first tutorial on day

d ∈ D in the time slot t ∈ T in room r ∈ R and it is 0 otherwise.

• y2c,d,t,r: binary variable that takes 1 if course c ∈ C has the second tutorial on day

d ∈ D in the time slot t ∈ T in room r ∈ R and it is 0 otherwise.

• z1c,d,t,r: binary variable that takes 1 if course c ∈ C has the first computer lab on

day d ∈ D in the time slot t ∈ T in room r ∈ R and it is 0 otherwise.

• z2c,d,t,r: binary variable that takes 1 if course c ∈ C has the second computer lab

on day d ∈ D in the time slot t ∈ T in room r ∈ R and it is 0 otherwise.

35

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

• u1c,d,t: binary variable that takes 1 if course c ∈ C has a tutorial on day d ∈ D in

the time slot t ∈ T and it is 0 otherwise (used to force first tutorials to happen at

the same time)

• u2c,d,t: binary variable that takes 1 if course c ∈ C has a tutorial on day d ∈ D in

the time slot t ∈ T and it is 0 otherwise (used to force second tutorials to happen

at the same time)

• v1c,d,t: binary variable that takes 1 if course c ∈ C has a lab on day d ∈ D in the

time slot t ∈ T and it is 0 otherwise (used to force first labs to happen at the same

time)

• v2c,d,t: binary variable that takes 1 if course c ∈ C has a lab on day d ∈ D in the

time slot t ∈ T and it is 0 otherwise (used to force second labs to happen at the

same time)

• usedr: binary variables that takes 1 if room r is used at least once and it is 0

otherwise.

4.2.3. Constraints

Lecturers-Courses constraints

Lecturers can only teach courses that are assigned to them. This is enforced by equation

(4.1) and (4.2). Moreover, since lecturers may teach more than one course in a given

trimester, we must ensure that, at any given time, a lecturer is holding at most one

lecture. This is enforced by equations (4.3) and (4.4).∑
d∈D

∑
t∈T

∑
r∈RLT

x1c,d,t,r,l = Mlc · n1lec,c ∀ c ∈ C, l ∈ L (4.1)

∑
d∈D

∑
t∈T

∑
r∈RLT

x2c,d,t,r,l = Mlc · n2lec,c ∀ c ∈ C, l ∈ L (4.2)

∑
c∈C

∑
r∈RLT

x1c,d,t,r,l ≤ 1 ∀ d ∈ D, t ∈ T , l ∈ L (4.3)

∑
c∈C

∑
r∈RLT

x2c,d,t,r,l ≤ 1 ∀ d ∈ D, t ∈ T , l ∈ L (4.4)

36

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

Courses-Rooms constraints

Lectures and tutorials must not be assigned to rooms that are designed for computer

labs. This is enforced by equations (4.5) to (4.8). Similarly, computer labs must be

scheduled in rooms with computers. This is enforced by equations (4.9) and (4.10).

x1c,d,t,r,l = 0 ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLAB, l ∈ L (4.5)

x2c,d,t,r,l = 0 ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLAB, l ∈ L (4.6)

y1c,d,t,r = 0 ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLAB (4.7)

y2c,d,t,r = 0 ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLAB (4.8)

z1c,d,t,r = 0 ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLT (4.9)

z2c,d,t,r = 0 ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLT (4.10)

Rooms capacity constraints

The following six equations guarantee that an event can be assigned to a room only if

that room has enough space. Since not all students that are enrolled in the course will

show up we multiply the number of enrolled students by the coefficient kpresent. Moreover

in equation (4.13) to (4.16) we divide the number of students enrolled by the number of

groups. We do this because the course audience is divided into groups for tutorials and

labs.

x1c,d,t,r,l · kpresent · nc ≤ nr ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLT , l ∈ L (4.11)

x2c,d,t,r,l · kpresent · nc ≤ nr ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLT , l ∈ L (4.12)

y1c,d,t,r · kpresent ·
⌈
nc

ng,c

⌉
≤ nr ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLT (4.13)

y2c,d,t,r · kpresent ·
⌈
nc

ng,c

⌉
≤ nr ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLT (4.14)

z1c,d,t,r · kpresent ·
⌈
nc

ng,c

⌉
≤ nr ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLAB (4.15)

z2c,d,t,r · kpresent ·
⌈
nc

ng,c

⌉
≤ nr ∀ c ∈ C, d ∈ D, t ∈ T , r ∈ RLAB (4.16)

37

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

Correct number of events

Our timetable model must allocate the correct number of tutorials and labs for each

course. Since there are multiple groups for each of these events we multiply the number

of events by the number of groups. Note that we do not do this for the lectures because

we have already done it in (4.1) and (4.2).∑
d∈D

∑
t∈T

∑
RLT

y1c,d,t,r = n1tut,c · ng,c ∀ c ∈ C (4.17)

∑
d∈D

∑
t∈T

∑
r∈RLT

y2c,d,t,r = n2tut,c · ng,c ∀ c ∈ C (4.18)

∑
d∈D

∑
t∈T

∑
r∈RLAB

z1c,d,t,r = n1lab,c · ng,c ∀ c ∈ C (4.19)

∑
d∈D

∑
t∈T

∑
r∈RLAB

z2c,d,t,r = n2lab,c · ng,c ∀ c ∈ C (4.20)

Ordering of lectures constraints

As stated in the problem description we are splitting the week in two. Therefore the

first lecture must happen within the first three days and the second one on the third or

fourth day. This is enforced by equations (4.21) and (4.22). Moreover, they must not

be scheduled on the same day 1 and there should be at least one day off between the

lectures. This is guaranteed by equation (4.23) and (4.24) respectively.

x1c,d,t,r,l = 0 ∀ c ∈ C, d ∈ {4, 5}, t ∈ T , r ∈ RLT , l ∈ L (4.21)

x2c,d,t,r,l = 0 ∀ c ∈ C, d ∈ {1, 2, 5}, t ∈ T , r ∈ RLT , l ∈ L (4.22)∑
t∈T

∑
r∈RLT

∑
l∈L

x1c,3,t,r,l + x2c,3,t,r,l ≤ 1 ∀ c ∈ C (4.23)

∑
t∈T

∑
r∈RLT

∑
l∈L

x1c,d,t,r,l + x2c,d+1,t,r,l ≤ 1 ∀ c ∈ C, d ∈ D\{5} (4.24)

1The only day that they could be scheduled together is day 3 which is Wednesday.

38

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

Unique allocation and collisions constraints

At any given time a room can be used for, at most, one event. This is enforced by (4.25).

All other equations guarantee that, for a given track and year, the different subjects’

events do not collide.

∑
c∈C

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+y1c,d,t,r+y2c,d,t,r+z1c,d,t,r+z2c,d,t,r ≤ 1 ∀ d ∈ D, t ∈ T , r ∈ R

(4.25)∑
c∈C1

B

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.26)∑
c∈C2

BG

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.27)∑
c∈C2

BA

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.28)∑
c∈C2

BP

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.29)∑
c∈C3

BG

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.30)∑
c∈C3

BA

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.31)∑
c∈C3

BP

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.32)∑
c∈CMG

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.33)∑
c∈CMA

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+
y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r

ng,c
≤ 1 ∀ d ∈ D, t ∈ T

(4.34)

39

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

Groups have labs and tutorials at the same time

Using the auxiliary variables u1, u2, v1, v2, if one group has an event (tutorial or lab) at

a given time, then all groups will have the same type of event at that same time.∑
r∈RLT

y1c,d,t,r = u1c,d,t · n1tut,c · ng,c ∀ c ∈ C, d ∈ D, t ∈ T (4.35)

∑
r∈RLT

y2c,d,t,r = u2c,d,t · n2tut,c · ng,c ∀ c ∈ C, d ∈ D, t ∈ T (4.36)

∑
r∈RLAB

z1c,d,t,r = v1c,d,t · n1lab,c · ng,c ∀ c ∈ C, d ∈ D, t ∈ T (4.37)

∑
r∈RLAB

z2c,d,t,r = v2c,d,t · n2lab,c · ng,c ∀ c ∈ C, d ∈ D, t ∈ T (4.38)

Pattern for tutorials and labs constraint

Lectures and laboratories must occur on the day after their respective lectures. This

is enforced by equations (4.39) to (4.42). Equations (4.43) to (4.46) guarantee that

tutorials and labs are not scheduled on Mondays.

Equations (4.47) and (4.48) satisfy the constraint “laboratories are scheduled in the

timeslot after the tutorial”. Equations (4.49) and (4.50) guarantee that, if there is

a tutorial and a lab assigned to a lecture, then the lab does not happen in the first

timeslot.


∑

r∈RLT

∑
t∈T

x1c,d,t,r,l −
y1c,d+1,t,r

ng,c
≤ 0, if n1tut,c > 0

no constraint, otherwise

∀ c ∈ C, d ∈ D\{5}, l ∈ L

(4.39)
∑

r∈RLT

∑
t∈T

x2c,d,t,r,l −
y2c,d+1,t,r

ng,c
≤ 0, if n2tut,c > 0

no constraint, otherwise

∀ c ∈ C, d ∈ D\{5}, l ∈ L

(4.40)


∑
r∈R

∑
t∈T

x1c,d,t,r,l −
z1c,d+1,t,r

ng,c
≤ 0, if n1lab,c > 0 and n1tut,c = 0

no constraint, otherwise

∀ c ∈ C, d ∈ D\{5}, l ∈ L

(4.41)

40

4. Timetabling at the University of Groningen4.2. Proposed integer programming model


∑
r∈R

∑
t∈T

x2c,d,t,r,l −
z2c,d+1,t,r

ng,c
≤ 0, if n2lab,c > 0 and n2tut,c = 0

no constraint, otherwise

∀ c ∈ C, d ∈ D\{5}, l ∈ L

(4.42)

y1c,1,t,r = 0 ∀ c ∈ C, t ∈ T , r ∈ R (4.43)

y2c,1,t,r = 0 ∀ c ∈ C, t ∈ T , r ∈ R (4.44)

z1c,1,t,r = 0 ∀ c ∈ C, t ∈ T , r ∈ R (4.45)

z2c,1,t,r = 0 ∀ c ∈ C, t ∈ T , r ∈ R (4.46)


∑
r∈R

z1c,d,t,r − y1c,d,t−1,r ≤ 0, if n1lab,c > 0

no constraint, otherwise

∀ c ∈ C, d ∈ D, t ∈ T \{1} (4.47)


∑
r∈R

z2c,d,t,r − y2c,d,t−1,r ≤ 0, if n2lab,c > 0

no constraint, otherwise

∀ c ∈ C, d ∈ D, t ∈ T \{1} (4.48)

z1c,d,1,r = 0, if n1tut,c > 0

no constraint, otherwise
∀ c ∈ C, d ∈ D, r ∈ RLAB (4.49)

z2c,d,1,r = 0, if n2tut,c > 0

no constraint, otherwise
∀ c ∈ C, d ∈ D, r ∈ RLAB (4.50)

41

4. Timetabling at the University of Groningen4.2. Proposed integer programming model

Rooms used

The binary variable usedr determines whether room r is used. Note that, for a given

combination of c, d, t, and l, at most one among the variables, x’s,y’s, and z’s is equal

to one. Therefore, |S| is an upper bound of the right-hand side of the inequality. Thus,

if a room is used even once, usedr will be equal to 1 (and 0 otherwise).

∑
c∈C

∑
d∈D

∑
t∈T

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
+y1c,d,t,r+y2c,d,t,r+z1c,d,t,r+z2c,d,t,r ≤ |S|·usedr ∀ r ∈ R.

(4.51)

Objective function

The objectives function is a combination of three different sub-objectives. Equation

(4.52) measures the number of events that take place in the last timeslot (i.e 17 to 19).

Equation (4.53) quantifies the number of wasted seating spaces while (4.54) the number

of rooms that have been used.

f1 =
∑
c∈C

∑
d∈D

∑
r∈R

(∑
l∈L

x1c,d,5,r,l + x2c,d,5,r,l

)
+ y1c,d,5,r + y2c,d,5,r + z1c,d,5,r + z2c,d,5,r

(4.52)

f2 =
∑
c∈C

∑
d∈D

∑
t∈T

∑
r∈R

(∑
l∈L

x1c,d,t,r,l + x2c,d,t,r,l

)
· (nr − kpresent · nc)

+ (nr −
kpresent · nc

ng,c
) · (y1c,d,t,r + y2c,d,t,r + z1c,d,t,r + z2c,d,t,r)

(4.53)

f3 =
∑
r∈R

usedr (4.54)

We want to try to minimize all three. In order to do this we consider the following two

objective functions.

z1 = f1 + f2 + f3 (Model 1)

z2 = f1 + 0.1 · f2 + f3 (Model 2)

Model 1 gives an equal weight to all three soft constraints while model two gives more

importance to rooms used and events taking place in the last timeslot rather than wasted

space.

42

4. Timetabling at the University of Groningen 4.3. Analysis of results

4.3. Analysis of results

The model was implemented in Python 3.12 using the AMPL Python API (Fourer, Gay

& Kernighan, 2003) and it was solved using HiGHS (Huangfu & Hall, 2018), an open

solver for optimization problems. All the tests were executed using an Intel Core i7-

12700H 4.7GHz and 16GB RAM. The code may be found on https://github.com/

scinii/timetabling_RUG.

We test our two models on four different instances. Each instance corresponds to

a block (or trimester) at the University of Groningen. Table 4.1 provides a general

overview of each block (for a complete description see Appendix A.2).

Block #Events #Lectures #Labs #Tutorials

1A 109 42 2 65

1B 102 45 2 55

2A 81 34 10 37

2B 65 20 8 37

Table 4.1.: Overview of each block’s events

Block z1 Room 17-19 Wasted Space Time (min)

1A 714.8 22 4 688.8 0.493

1B 533 24 4 505 1.188

2A 424.4 26 0 398.4 0.397

2B 302.4 26 0 276.4 0.339

Table 4.2.: Results Model 1 (z = f1 + f2 + f3)

Block z2 Room 17-19 Wasted Space Time (min)

1A 90.48 18 0 724.8 55.528

1B 74.5 19 1 545 171.577

2A 64.84 22 1 418.4 52.479

2B 51.24 22 0 292.4 23.846

Table 4.3.: Results Model 2 (z = f1 + 0.1 · f2 + f3)

43

https://github.com/scinii/timetabling_RUG
https://github.com/scinii/timetabling_RUG

4. Timetabling at the University of Groningen 4.3. Analysis of results

Block Model 1 Model 2

1A 6.3 6.7

1B 4.9 5.3

2A 4.9 5.2

2B 4.3 4.5

Table 4.4.: Average wasted seating spaces per event for each block

As it is possible to see from the two tables above 4.3 and 4.2 the two models give us

very different results 2. In Model 1 (table 4.2) the average number of wasted spaces per

event (see table 4.4) goes from a minimum of 4.3 to a maximum of 6.3. Moreover, there

is a total of 8 events scheduled from 17 to 19 and the number of rooms used goes from

a minimum of 22 to a maximum of 26.

On the other side, in Model 2, the number of wasted spaces increases as scaling the

function f2 is equivalent to giving it more slack. However, the number of events scheduled

in the fifth timeslot goes to 2 and the number of rooms decreases to a minimum of 18,

reaching a maximum of 22. Another evident difference between the two models is the

average running time: Model 2 takes significantly more time than the other.

While the two models provide us different results they have two similar characteristics.

The first one is obvious: as the size of the problem increases the average running time

increases. The second, and more interesting one, is that even if blocks 1A and 1B have a

similar number of total events and type of events the latter takes much longer than the

former. The reason for this “odd” behavior resides in the fact that our university uses

a curriculum course-based timetabling system. In block 1B, third-year students choose

their electives which means that several courses should be available for all the different

tracks. Therefore the computations needed to find a conflict-free timetable lead to an

increase in average running time.

Figure 4.1 shows a visual output of our model. On the horizontal axis, we have the

five timeslots while on the vertical axis, we have the rooms that are used within that

block (in this case 2A). The orange, light blue, and purple represent lectures, tutorials,

and computer labs respectively. To see all the visual outputs see Appendix A.3

2In order to compute the time we run each instance multiple times and take the average. This is
because the running time depends on the initial vertex choice. Therefore the average allows us to
give a more realistic running time.

44

4. Timetabling at the University of Groningen 4.3. Analysis of results

Figure 4.1.: Sample output for Wednesday Block 2A

45

5. Conclusion

5. Conclusion

In this thesis, we developed an integer programming model for timetabling at the Uni-

versity of Groningen (RUG). To do this we introduced (integer) linear programming,

proving some fundamental results which later allowed us to discuss the algorithms and

methods used to solve these special optimization problems.

Furthermore, we introduced our model which provides a higher degree of control over

the timetable (in particular a stronger parent-child relationship between the events)

than (Hav̊as et al., 2013). Our model was implemented in AMPL and Python and

later was tested (using the HiGHS solver) with 4 datasets obtained via the mathematics

department of the RUG. All the tests were successful as the constraints were satisfied

and the results showed us it is possible to improve how the university resources are used.

Even though our model provides us solid results it still possesses some limitations. In

this section, we briefly discuss them and their possible solutions.

Extensions to the entire faculty

As of now the model was only aimed at and tested on the mathematics department

of the RUG. Ideally, we would want the model to be extended to the entire Faculty

of Science and Engineering (and possibly to the entire university). A possible way to

do this would be the following. Use our model (or a slight variant of it) to determine

the minimum number of rooms needed by similar departments (for example physics and

mathematics or computer science and artificial intelligence). Then we could partition

the university and assign a set of rooms to those departments only. Then our running

time would decrease as the total number of variables would be smaller.

Objectives scaling

In the thesis, we considered two models: one in which we sum the 3 sub-objective

functions and one in which, before summing, we scaled the wasted space function (i.e.

f2) by a factor 0.1. The rationale behind this choice was to match the magnitude of

46

5. Conclusion

f2 with the magnitude of the other two sub-objectives. However, this is likely not the

optimal choice. A possible extension should, therefore, research appropriate scaling

factors for three different functions and in particular f2. However, this scaling may

negatively affect the running time of the model. To diminish this effect we suggest using

more powerful machines and using a different solver, for example, CPLEX (Cplex, 2009).

Student sectioning

As we have seen in both models it takes a longer time to find the optimal solutions for

block 1B, as in that trimester third-year students can choose among several electives that

are available to all the tracks. This creates a problem as now many courses must not be

scheduled at the same time. To overcome this we could employ student sectioning. This

is itself a problem which consists of partitioning the student sets to avoid any scheduling

conflicts.

47

6. Bibliography

6. Bibliography

Albers, Donald J. and Constance Reid (1986). “An Interview with George B. Dantzig:

The Father of Linear Programming”. In: The College Mathematics Journal 17.4,

pp. 292–314. doi: 10.1080/07468342.1986.11972971. eprint: https://doi.org/

10.1080/07468342.1986.11972971. url: https://doi.org/10.1080/07468342.

1986.11972971.

Andreasson, Niclas, Anton Evgrafov and Michael Patriksson (2005). An introduction to

continuous optimization : foundations and fundamental algorithms. English. Lund,

Sweden: Studentlitteratur. isbn: 9144044550; 9789144044552.

Bertsimas, Dimitris and John Tsitsiklis (1997). Introduction to Linear Optimization. 1st.

Athena Scientific. isbn: 1886529191.

Bland, Robert G. (1977). “New Finite Pivoting Rules for the Simplex Method”. In:

Mathematics of Operations Research 2.2, pp. 103–107. issn: 0364765X, 15265471.

url: http://www.jstor.org/stable/3689647 (visited on 26/06/2024).

Ceschia, Sara, Luca Di Gaspero and Andrea Schaerf (2023). “Educational timetabling:

Problems, benchmarks, and state-of-the-art results”. In: European Journal of Op-

erational Research 308.1, pp. 1–18. issn: 0377-2217. doi: https://doi.org/10.

1016/j.ejor.2022.07.011. url: https://www.sciencedirect.com/science/

article/pii/S0377221722005641.

Chakraborty, Atlanta, Vijay Chandru and M. R. Rao (2020). “A linear programming

primer: from Fourier to Karmarkar”. In: Annals of Operations Research 287.2,

pp. 593–616. issn: 1572-9338. doi: 10.1007/s10479-019-03186-2. url: https:

//doi.org/10.1007/s10479-019-03186-2.

Chen, Mei Ching et al. (2021). “A Survey of University Course Timetabling Problem:

Perspectives, Trends and Opportunities”. In: IEEE Access 9, pp. 106515–106529.

doi: 10.1109/ACCESS.2021.3100613.

Cornuéjols, Gérard (2008). “Valid inequalities for mixed integer linear programs”. In:

Mathematical Programming 112.1, pp. 3–44. issn: 1436-4646. doi: 10.1007/s10107-

006-0086-0. url: https://doi.org/10.1007/s10107-006-0086-0.

48

https://doi.org/10.1080/07468342.1986.11972971
https://doi.org/10.1080/07468342.1986.11972971
https://doi.org/10.1080/07468342.1986.11972971
https://doi.org/10.1080/07468342.1986.11972971
https://doi.org/10.1080/07468342.1986.11972971
http://www.jstor.org/stable/3689647
https://doi.org/https://doi.org/10.1016/j.ejor.2022.07.011
https://doi.org/https://doi.org/10.1016/j.ejor.2022.07.011
https://www.sciencedirect.com/science/article/pii/S0377221722005641
https://www.sciencedirect.com/science/article/pii/S0377221722005641
https://doi.org/10.1007/s10479-019-03186-2
https://doi.org/10.1007/s10479-019-03186-2
https://doi.org/10.1007/s10479-019-03186-2
https://doi.org/10.1109/ACCESS.2021.3100613
https://doi.org/10.1007/s10107-006-0086-0
https://doi.org/10.1007/s10107-006-0086-0
https://doi.org/10.1007/s10107-006-0086-0

6. Bibliography

Cplex, IBM ILOG (2009). “V12. 1: User’s Manual for CPLEX”. In: International Busi-

ness Machines Corporation 46.53, p. 157.

Dantzig, G. B. (1951). “Maximization of a linear function of variables subject to linear

inequalities”. In: Activity Analysis of Production and Allocation. Ed. by Tjalling C.

Koopmans. Proceedings of a Conference (Proceedings Conference on Linear Pro-

gramming, Chicago, Illinois, 1949). New York: Wiley, pp. 339–347.

Dias Rasteiro, Deolinda M.L. (2020). “9 - Shortest path problem and computer al-

gorithms”. In: Calculus for Engineering Students. Ed. by Jesús Mart́ın-Vaquero et

al. Mathematics in Science and Engineering. Academic Press, pp. 179–195. doi:

https://doi.org/10.1016/B978- 0- 12- 817210- 0.00016- 3. url: https:

//www.sciencedirect.com/science/article/pii/B9780128172100000163.

Fourer, R., D.M. Gay and B.W. Kernighan (2003). AMPL: A Modeling Language for

Mathematical Programming. Scientific Press series. Thomson/Brooks/Cole. isbn:

9780534388096. url: https://books.google.nl/books?id=Ij8ZAQAAIAAJ.

Groningen, University of (2023). Deadlines timetabling Faculty of Science and Engin-

eering. url: https://www.rug.nl/fse/timetabling/deadlines-timetabling

(visited on 27/11/2023).

Hav̊as, Johan et al. (2013). “Modeling and optimization of university timetabling - A

case study in integer programming”. In: url: https://api.semanticscholar.

org/CorpusID:59868847.

Huangfu, Q. and J. A. J. Hall (2018). “Parallelizing the dual revised simplex method”. In:

Mathematical Programming Computation 10.1, pp. 119–142. doi: 10.1007/s12532-

017-0130-5.

Huiberts, Sophie (2022). “Geometric aspects of linear programming : shadow paths,

central paths, and a cutting plane method”. PhD thesis.

Kutateladze, Semen (Mar. 2012). “MATHEMATICS AND ECONOMICS IN THE LEG-

ACY OF LEONID KANTOROVICH”. In: Владикавказский математический
журнал. doi: 10.23671/VNC.2012.14.10950.

Lessard, Laurent (2017-18). Cutting planes, branch and bound.

Mahlous, Ahmed Redha and Houssam Mahlous (Feb. 2023). “Student timetabling ge-

netic algorithm accounting for student preferences”. en. In: PeerJ Comput. Sci. 9,

e1200.

Mccollum, Barry (Aug. 2006). “A Perspective on Bridging the Gap Between Theory and

Practice in University Timetabling”. In: vol. 3867, pp. 3–23. isbn: 978-3-540-77344-3.

doi: 10.1007/978-3-540-77345-0_1.

49

https://doi.org/https://doi.org/10.1016/B978-0-12-817210-0.00016-3
https://www.sciencedirect.com/science/article/pii/B9780128172100000163
https://www.sciencedirect.com/science/article/pii/B9780128172100000163
https://books.google.nl/books?id=Ij8ZAQAAIAAJ
https://www.rug.nl/fse/timetabling/deadlines-timetabling
https://api.semanticscholar.org/CorpusID:59868847
https://api.semanticscholar.org/CorpusID:59868847
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.23671/VNC.2012.14.10950
https://doi.org/10.1007/978-3-540-77345-0_1

6. Bibliography

Morrison, David R. et al. (2016). “Branch-and-bound algorithms: A survey of recent ad-

vances in searching, branching, and pruning”. In: Discrete Optimization 19, pp. 79–

102. issn: 1572-5286. doi: https://doi.org/10.1016/j.disopt.2016.01.005.

url: https://www.sciencedirect.com/science/article/pii/S1572528616000062.

Müller, Tomáš, Hana Rudová and Zuzana Müllerová (2024). “Real-world university

course timetabling at the International Timetabling Competition 2019”. In: Journal

of Scheduling. issn: 1099-1425. doi: 10.1007/s10951-023-00801-w. url: https:

//doi.org/10.1007/s10951-023-00801-w.

Ploskas, Nikolaos and Nikolaos Samaras (Jan. 2014). “Pivoting rules for the revised

simplex algorithm”. In: Yugoslav Journal of Operations Research 24, pp. 321–332.

doi: 10.2298/YJOR140228016P.

Rader, David J. (2010). Deterministic operations research : models and methods in linear

optimization. English. Hoboken, N.J.: John Wiley & Sons, Inc. isbn: 9780470484517;

0470484519.

Robbins, Henry W. et al. (2023). “GILP: An Interactive Tool for Visualizing the Sim-

plex Algorithm”. In: Proceedings of the 54th ACM Technical Symposium on Com-

puter Science Education V. 1. SIGCSE 2023. Association for Computing Machinery,

pp. 108–114. doi: 10.1145/3545945.3569815.

Roma, Massimo (2019). Appunti dalle lezioni di Ricerca Operativa.

Rudová, Hana, Tomáš Müller and Keith Murray (2011). “Complex university course

timetabling”. In: Journal of Scheduling 14.2, pp. 187–207. issn: 1099-1425. doi:

10.1007/s10951-010-0171-3. url: https://doi.org/10.1007/s10951-010-

0171-3.

Schmidt, G. and T. Ströhlein (Jan. 1980). “Timetable construction – an annotated bib-

liography”. In: The Computer Journal 23.4, pp. 307–316. issn: 0010-4620. doi: 10.

1093/comjnl/23.4.307. eprint: https://academic.oup.com/comjnl/article-

pdf/23/4/307/993940/230307.pdf. url: https://doi.org/10.1093/comjnl/

23.4.307.

Soyemi, Jumoke, Akinode John Lekan and Abiodun Oloruntoba (Aug. 2017). “Auto-

mated Lecture Time-tabling System for Tertiary Institutions”. In: International

Journal of Applied Information Systems (IJAIS). Foundation of Computer Science

FCS, New York, USA 12, pp. 21–27. doi: 10.5120/ijais2017451700.

Tehranchi, Michael (2017a). IB Optimisation: Lecture 5. url: https://www.statslab.

cam.ac.uk/~mike/optimisation/lecture5.pdf.

— (2017b). The fundamental theorem of linear programming. url: https :/ / www.

statslab.cam.ac.uk/~mike/optimisation/linearprogram.pdf.

50

https://doi.org/https://doi.org/10.1016/j.disopt.2016.01.005
https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://doi.org/10.1007/s10951-023-00801-w
https://doi.org/10.1007/s10951-023-00801-w
https://doi.org/10.1007/s10951-023-00801-w
https://doi.org/10.2298/YJOR140228016P
https://doi.org/10.1145/3545945.3569815
https://doi.org/10.1007/s10951-010-0171-3
https://doi.org/10.1007/s10951-010-0171-3
https://doi.org/10.1007/s10951-010-0171-3
https://doi.org/10.1093/comjnl/23.4.307
https://doi.org/10.1093/comjnl/23.4.307
https://academic.oup.com/comjnl/article-pdf/23/4/307/993940/230307.pdf
https://academic.oup.com/comjnl/article-pdf/23/4/307/993940/230307.pdf
https://doi.org/10.1093/comjnl/23.4.307
https://doi.org/10.1093/comjnl/23.4.307
https://doi.org/10.5120/ijais2017451700
https://www.statslab.cam.ac.uk/~mike/optimisation/lecture5.pdf
https://www.statslab.cam.ac.uk/~mike/optimisation/lecture5.pdf
https://www.statslab.cam.ac.uk/~mike/optimisation/linearprogram.pdf
https://www.statslab.cam.ac.uk/~mike/optimisation/linearprogram.pdf

6. Bibliography

Vanderbei, Robert J. (2020). Linear programming : foundations and extensions. Eng-

lish. International Series in Operations Research & Management Science. Boston:

Springer Cham. isbn: 978-3-030-39415-8; 978-3-030-39414-1.

51

A. Appendix A.1. Duality

A. Appendix

A.1. Duality

To solve our timetabling problem we use a solver known as HiGHS (Huangfu & Hall,
2018). It solves either the primal or the dual problem. Therefore below we provide a
brief recap of duality. For more information regarding the Dual Simplex Method see
section 4.5 of Bertsimas and Tsitsiklis, 1997.

Consider the following LP problem

maximize cTx

subject to Ax ≤ b,

x ≥ 0

(P)

We call this the primal problem. Its corresponding dual problem is the following (Tehran-
chi, 2017a):

minimize bT y

subject to AT y ≥ c,

t ≥ 0

(D)

Define the two following quantities:

p = sup{cTx : x ∈ Rn, Ax ≤ b, x ≥ 0}

and
d = inf{bT y : y ∈ Rm, AT y ≥ c, y ≥ 0}

with the convention that sup ∅ = −∞ and inf ∅ = ∞. Then we have two important
results (Tehranchi, 2017b).

Theorem 9. (Weak duality) For p and d as above we have p ≤ d.

Theorem 10. (Strong duality) For p and d as above if either p > −∞ or d < ∞ then
p = d.

52

A. Appendix A.2. Data

A.2. Data

Room Capacity Type

EA010 40 LT

EA029 203 LT

EA058 28 LT

EA062 44 LT

EA110 38 LT

EA114 34 LT

BB041b 36 LT

BB105 120 LT

BB151 294 LT

BB222 36 LT

BB253 130 LT

BB267 89 LT

BB289 40 LT

BB293 40 LT

LB704 22 LT

LB045 24 LT

LB050 30 LT

LB055 60 LT

LB141 34 LT

LB149 36 LT

LB151 30 LT

LB157 34 LT

LB165 32 LT

LB176 24 LT

LB217 24 LT

LB034 24 LT

NB006 22 LT

NB022 200 LT

NB080 145 LT

NB012 28 LT

NB104 28 LT

NB201 30 LT

NB202 40 LT

NB004 40 LT

NB043 56 LT

NB008 18 LT

NB013 30 LT

NB014 16 LT

53

A. Appendix A.2. Data

NB017 24 LT

NB020 14 LT

NB317 40 LT

NB-152 56 LT

NB-156 58 LT

NB161 28 LT

BB204 12 LAB

BB207 14 LAB

BB208 17 LAB

BB216 18 LAB

BB228 30 LAB

BB273 32 LAB

BB283 24 LAB

LB076 32 LAB

LB169 45 LAB

NB057 48 LAB

NB071 48 LAB

NB315 22 LAB

Table A.1.: Avaliable Rooms

Course Code Track 1 Track #Students #Groups #Lec 1 # Lec 2 # Tut 1 # Tut 2 # Lab 1 # Lab 2 Lecturer

WBMA003-05 B1 B1 150 5 1 1 1 1 0 0 L1

WBMA020-05 B1 B1 168 5 1 1 1 1 0 0 L2

WBMA051-05 B1 B1 167 5 1 1 1 1 0 0 L3

WBMA005-05 B2 BA3 106 4 1 1 1 1 0 0 L4

WBMA036-05 B2 B2 112 3 1 1 1 1 0 0 L5

WBMA009-05 B2 B2 80 3 1 1 1 1 0 0 L6

WBMA054-05 B3 BA2 45 1 1 1 1 1 0 0 L7

WBMA058-05 BG3 BG3 23 1 1 1 1 1 0 0 L8

WBMA004-05 BA3 BA3 14 1 1 1 0 1 0 1 L9

WBMA057-05 BG3 BG3 29 1 1 1 1 1 0 0 L4

WBMA059-05 BG3 BG3 14 1 1 1 1 1 0 0 L10

WMMA012-05 MA MA 9 1 1 1 0 0 0 0 L11

WMMA054-05 MA MA 6 1 1 1 1 0 0 0 L12

WMMA021-05 MA MA 15 1 1 1 0 0 0 0 L13

WMMA015-05 MA MA 22 1 1 1 0 0 1 0 L6

WMMA039-05 MA MA 17 1 1 1 0 0 0 0 L14

WMMA049-05 MG MG 10 1 1 1 1 1 0 0 L15

WMMA019-05 MG MG 10 1 1 1 0 0 0 0 L16

WMMA043-05 MG MG 8 1 1 1 1 0 0 0 L17

WMMA033-05 MG MG 9 1 1 1 1 1 0 0 L18

WMMA042-05 MG MG 5 1 1 1 0 0 0 0 L19

Table A.2.: Courses for Block 1A and their requirements

54

A. Appendix A.2. Data

Course Code Track 1 Track #Students #Groups #Lec 1 # Lec 2 # Tut 1 # Tut 2 # Lab 1 # Lab 2 Lecturer

WBMA012-05 B1 B1 173 4 1 1 1 1 0 0 L1

WBMA052-05 B1 B1 145 4 1 1 1 1 0 0 L2

WBMA060-05 B1 B1 28 1 1 1 1 1 0 0 L3

WBMA018-05 B2 B2 102 3 1 1 1 1 0 0 L4

WBMA019-05 BG3 BP2 43 1 1 1 1 1 0 0 L2

WBMA022-05 B2 B2 100 3 1 1 1 1 0 0 L5

WBMA031-05 BA2 BG2 91 3 1 1 1 1 0 0 L6

WBMA011-05 B3 B3 26 1 1 1 1 1 0 0 L7

WBMA013-05 B3 B3 25 1 1 1 1 1 0 0 L8

WBMA048-05 B3 B3 33 1 1 1 1 1 0 0 L9

WBMA028-05 BA2 BP2 23 1 1 0 1 0 0 1 L10

WBMA023-05 BA3 BA3 13 1 1 1 1 0 0 0 L11

WBMA001-05 BA3 BA3 11 1 1 1 1 0 0 0 L12

WMMA051-05 MA MA 11 1 1 1 0 0 0 1 L13

WMMA057-05 MA MA 14 1 1 1 1 0 0 0 L14

WMMA058-05 MA MA 12 1 1 1 0 0 0 0 L15

WMMA056-05 MA MA 8 1 1 1 1 1 0 0 L16

WMMA061-05 MA MA 18 1 1 1 1 1 0 0 L17

WMMA037-05 MG MG 1 1 1 1 0 0 0 0 L18

WMMA047-05 MG MG 6 1 1 1 0 0 0 0 L8

WMMA018-05 MG MG 15 1 1 1 1 1 0 0 L19

WMMA040-05 MG MG 6 1 1 1 1 0 0 0 L20

WMMA048-05 MG MG 15 1 1 1 0 0 0 0 L21

Table A.3.: Courses for Block 1B and their requirements

Course Code Track 1 Track 2 #Students #Groups #Lec 1 #Lec 2 #Tut 1 #Tut 2 #Lab 1 #Lab 2 Lecturer

WBMA029-05 B1 B1 159 4 1 1 1 1 0 0 L1

WBMA035-05 B1 B1 186 4 1 1 1 1 0 0 L2

WBMA053-05 B1 B1 144 4 1 1 0 0 1 1 L3

WBMA033-05 B2 B2 91 2 1 1 1 1 0 0 L4

WBMA034-05 BG2 BP2 85 2 1 1 1 1 0 0 L5

WBMA038-05 BP2 BP2 20 1 1 1 1 0 0 1 L6

WBMA026-05 BG2 BP2 27 1 1 1 0 1 0 0 L7

WBMA061-05 BA2 BA2 29 1 1 1 1 1 0 0 L8

WBMA027-05 BA2 BA2 17 1 1 1 0 0 0 0 L9

WBMA056-05 B3 B3 48 1 1 0 0 0 0 0 L10

WMMA013-05 M M 38 1 1 0 1 0 0 0 L11

WMMA055-05 MA MA 4 1 1 1 0 1 0 0 L12

WMMA059-05 MA MA 13 1 1 1 0 0 0 0 L13

WMMA020-05 MA MA 28 1 1 1 0 0 0 0 L14

WMMA008-05 MA MA 23 1 1 1 0 0 1 0 L15

WMMA045-05 MG MG 16 1 1 1 0 1 0 0 L16

WMMA035-05 MG MG 8 1 1 1 0 0 0 0 L17

WBMA049-05 B2 B3 70 3 1 1 1 1 0 0 L18

Table A.4.: Courses for Block 2A and their requirements

55

A. Appendix A.2. Data

Course Code Track 1 Track 2 #Students #Groups #Lec 1 #Lec 2 #Tut 1 #Tut 2 #Lab 1 #Lab 2 Lecturer

WBMA040-05 B1 B1 135 1 1 1 0 0 0 0 L1

WBMA043-05 B1 B1 171 4 1 1 1 1 0 0 L2

WBMA046-05 B1 B1 187 4 1 1 1 1 0 0 L3

WBMA007-05 BA2 BA2 37 1 1 1 0 0 0 0 L4

WBMA045-05 B2 B2 160 4 1 1 1 1 1 1 L5

WBMA008-05 B2 B2 110 3 1 1 1 1 0 0 L6

WBMA039-05 BG2 BG2 74 1 1 1 1 1 0 0 L7

WBMA024-05 BP2 BP2 46 1 1 1 1 1 0 0 L3

WMMA029-05 M M 30 1 1 1 1 0 0 0 L9

WMMA046-05 MG MG 14 1 1 1 1 1 0 0 L10

Table A.5.: Courses for Block 2B and their requirements

56

A. Appendix A.3. Figures

A.3. Figures

Figure A.1.: Block 1A - Model 1

57

A. Appendix A.3. Figures

Figure A.2.: Block 1A - Model 1

58

A. Appendix A.3. Figures

Figure A.3.: Block 1A - Model 1

59

A. Appendix A.3. Figures

Figure A.4.: Block 1A - Model 1

60

A. Appendix A.3. Figures

Figure A.5.: Block 1A - Model 1

61

A. Appendix A.3. Figures

Figure A.6.: Block 1B - Model 1

62

A. Appendix A.3. Figures

Figure A.7.: Block 1B - Model 1

63

A. Appendix A.3. Figures

Figure A.8.: Block 1B - Model 1

64

A. Appendix A.3. Figures

Figure A.9.: Block 1B - Model 1

65

A. Appendix A.3. Figures

Figure A.10.: Block 1B - Model 1

66

A. Appendix A.3. Figures

Figure A.11.: Block 2A - Model 1

67

A. Appendix A.3. Figures

Figure A.12.: Block 2A - Model 1

68

A. Appendix A.3. Figures

Figure A.13.: Block 2A - Model 1

69

A. Appendix A.3. Figures

Figure A.14.: Block 2A - Model 1

70

A. Appendix A.3. Figures

Figure A.15.: Block 2A - Model 1

71

A. Appendix A.3. Figures

Figure A.16.: Block 2B - Model 1

72

A. Appendix A.3. Figures

Figure A.17.: Block 2B - Model 1

73

A. Appendix A.3. Figures

Figure A.18.: Block 2B - Model 1

74

A. Appendix A.3. Figures

Figure A.19.: Block 2B - Model 1

75

A. Appendix A.3. Figures

Figure A.20.: Block 2B - Model 1

76

A. Appendix A.3. Figures

Figure A.21.: Block 1A - Model 2

77

A. Appendix A.3. Figures

Figure A.22.: Block 1A - Model 2

78

A. Appendix A.3. Figures

Figure A.23.: Block 1A - Model 2

79

A. Appendix A.3. Figures

Figure A.24.: Block 1A - Model 2

80

A. Appendix A.3. Figures

Figure A.25.: Block 1A - Model 2

81

A. Appendix A.3. Figures

Figure A.26.: Block 1B - Model 2

82

A. Appendix A.3. Figures

Figure A.27.: Block 1B - Model 2

83

A. Appendix A.3. Figures

Figure A.28.: Block 1B - Model 2

84

A. Appendix A.3. Figures

Figure A.29.: Block 1B - Model 2

85

A. Appendix A.3. Figures

Figure A.30.: Block 1B - Model 2

86

A. Appendix A.3. Figures

Figure A.31.: Block 2A - Model 2

87

A. Appendix A.3. Figures

Figure A.32.: Block 2A - Model 2

88

A. Appendix A.3. Figures

Figure A.33.: Block 2A - Model 2

89

A. Appendix A.3. Figures

Figure A.34.: Block 2A - Model 2

90

A. Appendix A.3. Figures

Figure A.35.: Block 2A - Model 2

91

A. Appendix A.3. Figures

Figure A.36.: Block 2B - Model 2

92

A. Appendix A.3. Figures

Figure A.37.: Block 2B - Model 2

93

A. Appendix A.3. Figures

Figure A.38.: Block 2B - Model 2

94

A. Appendix A.3. Figures

Figure A.39.: Block 2B - Model 2

95

A. Appendix A.3. Figures

Figure A.40.: Block 2B - Model 2

96

	Introduction
	Preliminaries
	Optimization
	Linear Algebra
	The geometry of polyhedrons

	Linear Programming
	Definitions and main results
	LP in standard form
	Adjacent extreme points

	Solving linear programming problems: the Simplex Method
	Phase II of the Simplex Method
	Phase I of the Simplex Method
	Convergence of the Simplex Method

	Solving (Mixed) Integer Programming problems
	Branch and bound
	Cutting planes

	Timetabling at the University of Groningen
	Problem description
	Proposed integer programming model
	Definition of sets and parameters
	Definition of decision variables
	Constraints

	Analysis of results

	Conclusion
	Bibliography
	Appendix
	Duality
	Data
	Figures

