
Liquid Democracy:
A comparison of
delegation mechanisms
in a misinformed and
communicative world.

Bachelor’s Project Mathematics

June 2024

Student: L. Nieuwenhout

First supervisor: Prof. J. Peypouquet

Second assessor: Prof.dr.ir. B. Besselink

1

Contents

1 Introduction 3

2 Liquid Democracy 5

3 Problem Statement 6

4 Preliminaries 7
4.1 Contact Graphs . 7
4.2 Opinion Diffusion . 7
4.3 Delegations and Cycles . 9

5 The Model 14
5.1 Initial Data . 14
5.2 Delegation Mechanisms . 14
5.3 Two stages . 15
5.4 Implementation . 16

6 Results 23

7 Conclusion 27

8 Discussion 28

9 Appendix 30
9.1 A: Tables . 30
9.2 B: Graphs . 56
9.3 C: Code . 83

2

Abstract

Liquid democracy is often seen as the middle ground between representative
democracy and direct democracy. We will look at ways to model different
delegation mechanisms for liquid democracy and devise a way to deal with
delegation cycles. The importance of misinformation and the ability of voters
influencing each other over time is taken into account, the latter through a
process called opinion diffusion. Using this model we examine which delegation
mechanisms, if any at all, can result in a better voting outcome compared to a
direct democracy.

1 Introduction

In 2024 democracy is the most common form of government on a national
level[9]. Most of these democracies are so-called representative democracies.
Once every couple of years, depending on the country, there will be national
elections where every citizen can vote for a political representative belonging to
a political party. This representative, when elected, is then supposed to fight
for the wants and needs of the people who voted for them. Opposite to rep-
resentative democracy stands direct democracy, which is as the name implies,
a more direct form of democracy. Within this version of democracy citizens
themselves have the ability to vote on legislation, instead of having to vote for
representatives who then cast their vote on the legislation. An occurence of a
push toward more direct democracy is currently happening in the Netherlands.
During the last two national elections, some political parties were advocating
for more binding referenda i.e. more direct democracy[12][11].

But there exist alternatives that can bridge the gap between representative
democracy and direct democracy. Liquid democracy is one of these alterna-
tives. This is a form of democracy that uses direct democracy as its basis,
hence all voters are allowed to vote directly. In addition to this, a voter can also
delegate their vote to a proxy. This proxy is a voter too, and can also decide to
either delegate or vote directly. This system has been applied by the German
Pirate Party who have used it for decision-making within the party itself[7]. It
has also been used by Google, which implemented it in an app where employees
could vote or delegate on certain decisions within the company[3].

Besides a call for direct democracy by certain political parties and speakers,
other developments such as the spread of misinformation have been on the rise
as well. This misinformation has mainly been employed in an effort to sway the
opinions of voters on parties who participate in the elections. Such misinfor-
mation campaigns have been reported during the 2016 USA elections, the 2017
French elections and the 2019 Indian elections, but is not limited to just these
three elections. One form of this kind of misinformation is fake news which uses

3

untrue statements in order to rile up an audience. Although fake news gener-
ally has a short lifespan, by the time it has been verified as misinformation and
discredited, it can already have reached its goal[8].

This misinformation can just as well be spread by word of mouth, either online
or physically, and be used within echo chambers to strengthen already estab-
lished beliefs[8]. This way of information spread is one that is difficult put into
numbers, but may be one of the most effective ways to spread this information.

This paper was initially inspired by the work of Becker et al.[1] who consid-
ered the case where voter probabilities could be lower than 0.5, representing
a voter to be misinformed. This stands out because most other research that
has been done on liquid democracy only considered voter probabilities greater
or equal to 0.5. In addition to allowing misinformation in their simulations,
Becker et al.[1] looked at different network structures and deterministic delega-
tion mechanisms such as the capped delegation, where a delegate is not allowed
to obtain more than a capped number of votes. With these three parts they try
to solve the optimal delegation problem, and compare their results to a direct
democracy.

Two other studies, one by Kahng, MacKenzie and Procaccia[4] and the other
by Campbell et al.[3], also discuss liquid democracy. Both of these studies make
one big assumption which is that all delegation mechanisms used are created in
such a way that delegation cycles cannot occur. This is a common trend among
research into liquid democracy, yet is a deterministic way of looking at things,
leaving voters out of control of their delegation choices.

4

2 Liquid Democracy

What exactly is liquid democracy? This is a question that can have many differ-
ent answers according to whom you ask. Many researchers have come up with
their own definitions and requirements for something to be allowed to be called
a liquid democracy. Due to this issue, we will use the definition put forward
by Valsangiacomo[10], who tried to create a single well-constructed definition of
liquid democracy and set its basic requirements. These requirements are first:
Delegations need to be transitive, and secondly: Delegations need to be volun-
tary.

Transitivity of voting implies that if we have three voters A, B and C, if A
delegates his vote to B and B delegates its vote to C, then A’s vote also gets
delegated to voter C through voter B. One way of looking at this is that after
voter A delegated his vote to voter B, B has both his own vote and A’s vote
to either delegate or directly vote with. But then if voter B also chooses to
delegate his vote, in this case to voter C, he must delegate both the vote that
he started with and the one he received from voter A.

Voluntary delegation implies that if a voter delegates their vote, he has full
agency to retract their delegation whenever their vote gets delegated to a per-
son they do not approve of. In addition to this, a voter should not be forced by
an institution, entity or deterministic process to delegate in a particular way.
To use the same example that we used for the transitive delegation case, A’s
vote ends up at voter C. But if voter A does not approve of voter C, then voter
A is allowed to retract their vote and either redelegate their vote to someone
new or vote directly.

The voluntary delegation requirement also implies that looking for optimal
delegation results within liquid democracy and steering to such solution should
not be allowed. This is because such algorithms and methods rely on deter-
ministic non-local delegation mechanisms which force voters to vote along a set
path[4][1], and thus the voter loses their agency which violates the voluntary
delegation principle.

5

3 Problem Statement

In much of the current research on liquid democracy, only the case where a
voter’s probability of picking the ”correct” option is at least 0.5 is considered.
In addition to this, they usually also only consider optimal delegations. For ex-
ample in the paper by Becker et al[1] they do consider a probability lower than
0.5, yet are only concerned about the optimal outcomes of delegations. They
even state that although their outcomes are the optimal ones, there might not
actually exist a delegation mechanism that can reach these outcomes.

To more accurately give a realistic description of the real world, we will be con-
sidering the case where voters can be misinformed and also use non-optimized
delegation mechanisms; e.g. a voter will only base their decision to delegate
on their direct neighbourhood instead of considering the entire population. Im-
portant to notice is that society isn’t static and that people can influence each
other’s opinions. We will model the misinformedness by letting people have
probabilities between 0 and 1 where a probability of 0.5 implies that a voter
is equally as misinformed as it is informed. It is also important to model how
people can influence each other’s opinions. Through this we can discuss if an
outcome of a vote done according to liquid democracy changes if people have had
time to discuss the topic at hand. We have chosen to model these discussions
through so-called ”opinion diffusion” for which we use the Hegselmann-Kreuse
model. The workings of this model will be discussed in section 4.2.

Furthermore, we need our model to be in line with our definition of liquid
democracy. This means we need to account for voluntary delegation and tran-
sitivity. Transitivity is built into our choices of delegation mechanisms so that
will not be an issue. Voluntary delegation will make the model more complex
and we will tackle this complexity in two ways: First we use a method where
after the delegation process is finished, if a voter is not happy with who got to
delegate their vote, they can retract it. Secondly we will use a viscous voting
system where votes will not be retracted, but instead, the impact of a voter’s
delegated vote will diminish the longer the chain of delegations becomes.

Finally, we will use python to simulate liquid democracy according to all the
criteria discussed above. In addition to simulating liquid democracy, we will
also simulate a direct democracy, so that we can compare the both results with
each other. Through this comparison, within our model, we can see if a liquid
democracy is more likely to give a preferable voting result compared to a direct
democracy.

6

4 Preliminaries

4.1 Contact Graphs

To be able to model liquid democracy we need both a vector showing the in-
formedness of each voter and a graph structure on how these voters are con-
nected to each other. Both undirected and directed graphs will be used, but in
this section, we only discuss the undirected graphs. If we have n voters, then
we need a vector of length n called x where each xi represents how informed or
misinformed a voter is. Then we need to know for each voter i with which other
voters j they are in contact with. We define ”being in contact with” as a binary
relation. If voter i is in contact with voter j, then voter j is also in contact with
voter i. We assume that voters are always in contact with themselves. This
means that the graph that represents the structure of all contact links is shown
as a self-connected undirected graph. Knowing the structure of the graph we
can construct the adjacency matrix.

Definition 1. An adjacency matrix A is an n × n matrix where each Aij = 1
if i is connected to j and Aij = 0 if i is not connected to j.

Definition 1 implies that the adjacency matrix for the contact graph will be
symmetric as the binary relation tells us that Aij = Aji and each Aii = 1 as
each voter i is in contact with themselves.

Definition 2. The outdegree Out(i) represents the number of connections from
i to any j and the indegree In(i) is the number of connections from any j to i.
They can be computed from the adjacency matrix A by taking:

Out(i) =

n∑
j=0

Aij

In(i) =

n∑
j=0

Aji

Because Aij = Aji is a property of our adjacency matrix we have as a
consequence that Out(i) = In(i) is true for all i. This stops being the case when
we will be looking at delegation matrices in section 4.3. It is also important to
grasp that the rows of the adjacency matrix represent all outgoing connections
of a voter and the columns represent all incoming connections of a voter.

4.2 Opinion Diffusion

We want to give a somewhat realistic view of how liquid democracy works in the
real world through our simulations. To do this we need to take into account that
voters have the ability to change each other’s opinion. Let’s say that voter i is in
contact with voter j then it is likely that they, either knowingly or unknowingly,

7

can change each others opinion on the topic at hand. To be able to simulate
this we will use the agent-based Hegselmann-Krause model with heterogenous
bounds. Before we will discuss this model we have to define what a confidence
bound and an interval confidence set are.

Definition 3. Confidence bound
Let x(t) be the n-vector of voter probabilities after t diffusion steps. Define ϵi(t)
as the confidence bound of voter i with ϵi = 0.5− |0.5− xi(t)|. Then ϵ(t) is the
n-vector consisting of confidence bounds of each i at diffusion step t.

We choose ϵi(t) in this manner to simulate how voters who are more un-
equally (mis)informed (e.g. either more informed or more misinformed and
thus have a probability further from 0.5) are less likely to be influenced by dif-
ferent opinions. In a way they are more headstrong in their beliefs and are only
nudged by people somewhat equally (mis)informed as them. Meanwhile people
who are about equally as informed as misinformed, and thusly have probabilities
closer to 0.5, are more likely to be influenced by people further removed from 0.5.

Next up we want to know for all i, which voters j, k, l, ... have probabilities
within the confidence interval ϵi centered around i’s probability xi. For this we
define the following set for each i:

Definition 4. Interval confidence set
Let xi(t) ∈ x(t) and let ϵi(t) be its corresponding confidence bound. Define
Iϵ(i,x, t) to be the interval confidence set consisting of all j such that
|xj(t)− xi(t)| ≤ ϵi(t). Formally:

Iϵ(i,x, t) := {j ∈ Z≥0 : |xj − xi| ≤ ϵi}

Using definitions 3 and 4 we can start constructing the diffusion matrix C and
define the HK model:

Definition 5. HK-model
Let x(t) be the vector of voter probabilities at diffusion stage t and ϵ(t) the vec-
tor of all confidence bounds of x(t) at diffusion stage t. Then we construct the
diffusion matrix C in the following manner:

Cij=

{
0 if j /∈ Iϵ(i,x, t)

1
#Iϵ(i,x,t)

if j ∈ Iϵ(i,x, t)

and multiplying our diffusion matrix C with probability vector x(t) lets us obtain
the diffused probability vector x(t+ 1), in short: Cx(t) = x(t+ 1)

During the diffusion process we update the values of each xi(t) to the value
xi(t + 1) by letting xi(t + 1) be the mean of all xj(t) within the confidence
interval centered around xi(t). For the next step we then need to create another
confidence bound vector ϵ(t+1) and a new interval confidence set Iϵ(i,x, t+1).

8

Because we are taking the mean averages for each step, the values of x(t) will
most likely converge to a steady state after a certain number of steps t. We
say most likely here because there is no proof that confirms this, but extensive
numerical tests give reason for this to be true. In the case of homogeneous
bounds, there is a proof of convergence[5]. This convergence represents the
forming of a consensus within subsets of the voting population because people
will no longer be able to change each other’s opinions.

4.3 Delegations and Cycles

Now that we have discussed adjacency matrices and opinion diffusion we can
start talking about delegation mechanisms. A delegation mechanism is nothing
more than the conceptualization of a specific decision-making process. After
conceptualizing this delegation mechanism, we then model this decision-making
process by creating a delegation function that will output a delegation matrix,
depending the input data. Within this paper, we will only consider delegation
mechanisms for which the delegation function outputs a delegation graph where
every vertex αi has an outdegree Out(αi)=1. An example scenario:
Alice, Bob, Charlie, and Dave all want to have a healthy dinner together and
Alice, Bob, and Charlie know each other well with Charlie bringing Dave along
as a guest. Dave only knows Charlie, and Alice and Bob don’t know Dave
either. Now unbeknownst to Alice and Bob, Dave is a health coach, while they
themselves don’t know much about eating healthily. Alice and Bob do know that
Charlie is at least somewhat knowledgeable about healthy food. Now to decide
on what to make for dinner Alice and Bob both choose to let Charlie decide on
what to have for dinner, yet Charlie has chosen Dave. Transitively Alice- and
Bob’s votes end up at Dave through Charlie. This is just a specific outcome
of a delegation function being applied to a population, with the population
consisting of Alice, Bob, Charlie, and Dave. To be able to try and model this
we will do the following:

Let A be the adjacency matrix, x be the probability vector of choosing a
healthy dinner where x1, x2, x3, and x4 respectively represent Alice’s, Bob’s,
Charlie’s, and Dave’s probabilities. We let d(A,x) be the delegation function
defined by the decision making process of choosing the highest adjacent proba-

9

bility. Then after conjuring up some values for xi we get:

A =


1 1 1 0
1 1 1 0
1 1 1 1
0 0 1 1



x =


0.25
0.45
0.70
0.93



d(A,x) =


0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


With the graphs from before and after applying the delegation function:

A

B

C

D

Contact graph

A

B

C

D

Delegation graph

Using a delegation mechanism where voters delegate at random we define a
different scenario: A is only in contact with B and D, B is only in contact with
A and C, C is only in contact with B and D and D is only in contact with A
and C. This gives the following graph and adjacency matrix:

A

B C

D

Contact Graph

A =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


Then if we apply the delegation function drandom(A,x) we cannot exclude the
possibility of obtaining the following delegation graph and corresponding dele-
gation matrix D:

10

A

B C

D

Delegation Graph

D =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Within this example, we see that we have obtained a cycle! We want to avoid
this when trying to model liquid democracy, because within cycles no actual
voting occurs. All the votes that enter the cycle will be stuck in there which
might skew the results if we just simply exclude these votes after we detect
the cycle. To solve this problem we create a method to both detect and deal
with cycles within delegations. It is very important that the implementation of
this will not, or at least try very hard not to, violate the voluntary delegation
principle discussed in section 1. Before we can do this, we first need to be sure
that any vertex ending in a guru (a person who votes and does not delegate)
cannot be part of a cycle.

Definition 6. Delegation Cycle
Let d be a delegation function and α a subgraph of the contact graph A such that
Out(αi) = 1 for all αi ∈ α. If for some n ≥ 2 we have dn(αi) = αi then αi

is part of a delegation cycle for the delegation function d. If for all αi ∈ α this
property applies, then α is a delegation cycle.

Corollary 4.0.1. A delegation cycle α has length k if and only if k is the
minimal k ≥ 2 such that dk(αi) = αi for all αi ∈ α.

Proof. If k ≥ 2 is the minimal k such that dk(αi) = αi for all αi ∈ α then α is
a delegation cycle by definition.

If α is a delegation cycle of length k under d, then α = {α1, ..., αk}. If t < k
exists such that dt(αi) = αi then only a subset of α can be reached through
repeated application of the function d. For example, α1 will only range from
α1 through αt−1 after an arbitrary number of applications of d. This means
the elements αt, ..., αk are skipped. Thus we have arrived at a contradiction,
proving that k is the minimal k ≥ 2 such that dk(αi) = αi.

Theorem 4.1. Let d be a delegation function such that Out(αi) = 1 for all
i ∈ {0, ..., n} and let d(α∗) = α∗ and dn(αi) = α∗ for some n, i ∈ Z≥0. Then αi

is not part of a cycle.

Proof. proof by induction:
Case n=1: Let d(α0)=α0, we see that α0 is a guru and because Out(α0)=1 it

11

cannot delegate to anyone other that itself. If α1 exists such that d(α1) = α0,
then as Out(α1)=1 it can only form a cycle with α0. But we have Out(α0) = 1
and d(α0) = α0, thus α0 does not delegate back to α1 which means α1 and α0

are not in a cycle.

Case n + 1: Assume the theorem holds for n, then we have di(αi) = α0 for
i ∈ {1, ..., n} and none of the αi are in a cycle. Then dn+1(αn+1) = α0 and
dn+1(αn+1) = dn(d(αn+1)) = dn(αj) for an arbitrary αj on a path of length n
towards α0. Thus by the same argument as for the case n = 1, αn+1 and αj

cannot be in a cycle together as both have an outdegree of 1.

Using theorem 4.1 we know that if some voter i is a guru, then this voter
cannot be part of a cycle. But also that any j along a path that ends at a guru
cannot be part of a cycle. Using this we can state a corollary to the theorem.

Corollary 4.1.1. Let αi be a vertex on a graph of finite size and d be a dele-
gation function such that Out(αi) = 1 for all i. If d(αi) ̸= αi and dk(αi) ̸= αi

for all k ∈ Z>1, then αi is not in a cycle.

Proof. d(αi) ̸= αi means αi is not a guru. Let n be the number of verteces in
the graph. If for some k < n− 2 we have dk(αi) = dk+1(αi) then we can apply
theorem 4.1 and conclude that αi is not part of a cycle.
If there is no such a k then αi is not connected to a guru, thus it is connected
to a cycle instead. But dk(αi) ̸= αi for all k ∈ Z>1, thus αi is not within this
delegation cycle.

With corollary 4.1.1 we can show that a vertex is not part of a cycle. This
also means that if we adjust the cycle to no longer incorporate a certain vertex,
while keeping the vertex to which it delegates the same, that it will be impossible
for it to be in a delegation cycle.

Corollary 4.1.2. Let α be a delegation cycle of length n and have each αi ∈ α
also be attached to arbitrary paths β, e.g. In(αi) ≥ 1. If according to a uniform
distribution we randomly change a d(αi) = αj into d(αi) = αk for some αk ∈ α,
we can iteratively reduce the length of the cycle until some αi becomes a guru.

Proof. Case 1:
Because the uniform random variable X can be any X ∈ {0, ..., n} if d(αi) = αj

is changed into d(αi) = αX=i then αi has become a guru and using theorem 4.1
all other αj ∈ α can no longer be in a cycle.

Case 2:
Let X be a uniformly distributed random variable depending on n where n is
the length of the cycle α and let α be indexed such that d(αi) = αi+1. W.l.o.g,
we let α0 be the vertex we apply the delegation change to. If d(α0) = αX=0,
refer back to case 1. If d(α0) = αX=i for some 1 < i ≤ n then the verteces
α1, ..., αi−1 are no longer part of the cycle and instead are connected to a path
β connecting to αi. According to corollary 4.1.1 these verteces are no longer

12

part of a cycle. We now re-index our cycle α and repeat this process until n = 2,
in which case we pick one of the two remaining verteces to be the new guru.
Then we can apply theorem 4.1 and show that none of the αi are in a cycle
anymore.

Now we can construct an algorithm for finding cycles. For this, we use the
fact that on the delegation matrix, the only nonzero diagonal elements will be
gurus. Using theorem 4.1 we know that any path connected to a guru cannot be
part of a cycle. From corollary 4.1.1 we see that if a voter sends his vote into a
cycle, yet does not get it back again, the voter is not defined to be in the cycle.
And finally using corollary 4.1.2 we can create an algorithm that guarantees the
breakup of cycles.

To identify the cycles in a delegation matrix D we first take the transpose of D
to make the operations easier to work within our python environment. Starting
with the first entry of the set n̄ = {0, 1, ..., n−1} we find the only nonzero entry
in that column of DT , which we will label as column i and row j. We add the
column number to an ordered set η that gathers all the column indexes that are
examined. The next step is to check column j and find in which row its nonzero
value is located. Again we add the column number to η and repeat the entire
process until either we reach a nonzero entry on the diagonal of our matrix D (a
guru) or until we reach a column number which is in η. If we do get a repeating
column as in the latter case, then we have found a cycle. We will then remove
all entries of η from n̄. In case of a cycle we add the ordered values from η into
a master array η̄, which is where we will store our cycles. Remove all entries
within η. In the case that the first occurrence of the repeated value is not at the
first entry of η we only store the entries of η starting from the first occurrence
of the repeated number. For example if η = {1, 2, 3, 4, 5, 3} we will only add
{3, 4, 5, 3} to η̄. We keep repeating the algorithm until n̄ is empty.

η̄ now contains all cycles in the delegation graph, we just have to break these
cycles up. For this, we use a technique proposed by Campbell et al.[3] where
each member of a cycle randomly redistributes their vote to somebody within
their approval range. Repeat these redistributions until either the cycles dis-
appear or the cycle remains the same. In case the cycles remain stable, each
member abstains from voting. In contrast to this technique by Campbell et al.,
we let a randomly selected member of the cycle become a guru. We choose for
this option, because in our model each voter will always be in their approval
range.

13

5 The Model

5.1 Initial Data

Before we can create our model, we need to have data. We will be working
with 100 voters on an undirected random graph. This random graph will be our
contact graph, with each vertex representing a voter i. Each voter i will have
a probability associated with it which both represents the probability of voting
for the preferred option and represents how informed this voter is. Probabilities
lower than 0.5 mean that the voter is more misinformed than informed and vice
versa. These probabilities are generated from a truncated normal distribution
between 0 and 1 with a mean µ ∈ {0.5, 0.6, 0.7} and standard deviation σ = 0.25.
For each µ we generate the probability vector x 200 times and for each of the
200 x’s we also generate a new random undirected graph. As an additional
assumption, we assume that each voter accurately knows the probability of all
other voters they are in contact with, including themselves.

5.2 Delegation Mechanisms

Five delegation mechanisms will be looked at during our simulations. First
will be a direct democracy, where everybody votes for themselves and thus no
delegation will take place. Second, come three variants of an approval-based
delegation mechanism inspired by the paper by Markakis et al[6]. The final
delegation mechanism is inspired by Campbell et al[3], which is an expert-based
delegation mechanism.

The three delegation mechanisms inspired by Markakis et al will be markakisrndm,
markakisdetmax and markakisdetmin. These are approval-based delegation
mechanisms, which means that a voter i will only consider delegating to a voter
j whenever j is approved by i. We choose j being approved by i to mean that
the probability of j lies within the confidence interval around the probability of
i. This confidence interval is the same confidence interval that we use for opin-
ion diffusion to create our interval confidence sets. In other words, i approves
of j whenever xj ∈ [xi − ϵi, xi + ϵi] where ϵi is the confidence bound of voter i
as defined in section 4.2.

Now that we know what it means for a voter j to be approved by i we can
start defining all three Markakis-based delegation mechanisms. For all three of
them, we first need to create sets Iϵ(i,x, t) of voters who are in contact with-
and within the confidence bound of voter i. After we have these sets we can start
to differentiate between markakisrndm, markakisdetmin and markakisdetmax.
markakisdetmin and markakisdetmax act similarly but opposite. For markakisdetmin
we let voter i delegate to voter j where voter j is the voter which has the lowest
probability xj of all voters within Iϵ(i,x, t). Likewise, markakisdetmax will let
i delegate to j whenever j is accompanied by the largest probability of all voters
in Iϵ(i,x, t). The third delegation mechanism markakisrndm is one where voter

14

i picks a uniformly distributed random j from Iϵ(i,x, t) to delegate its vote to.

Both markakisdetmin and markakisdetmax represent edge-case scenarios that
might occur within this approval-based system. markakisdetmin represents
the worst-case scenario, while markakisdetmax represents the best-case sce-
nario for each simulation. markakisrndm is a more realistic representation of
how this kind of delegation mechanism would work, as it better reflects the un-
predictability of human behaviour. We choose to let the approval be based on
the confidence bound ϵ because it is a reasonable assumption that people are
only willing to delegate to people who they are willing to be influenced by.

The final delegation mechanism that we use is Campbell. This delegation mech-
anism is not necessarily approval based, as it is more rigid. The entire voter base
will first be split up into anti-experts, non-experts, and experts. An anti-expert
is a voter who has a probability of less than or equal to 0.25. A non-expert is
a voter who has a probability between but not including 0.25 and 0.75, and an
expert has an assigned probability of 0.75 or higher[3]. After these distinctions
have been made, the voter will uniformly randomly choose one of these groups
and after choosing the group they will uniformly randomly choose a voter to del-
egate to. The groups that a voter can choose from is dependent on which group
the voter belongs to. If i is a non-expert, then they can choose from all three
groups, yet if i is an (anti-)expert, then i can only pick between (anti-)experts
and non-experts.

5.3 Two stages

Our elections will be a two-step voting process. First, all delegations will hap-
pen including the breaking of delegation cycles, and if the resulting delegation
matrix D contains no more cycles, then the first phase of the voting process
has ended. The second phase is dedicated to the processing of delegations and
the counting of the votes. We apply two different methods to do this, firstly an
approval-based method and secondly we apply viscous democracy[2].

The approval-based method stems from the voluntary delegation principle that
our definition of liquid democracy relies upon. This is manifested by the idea
that a voter i can retract their delegation whenever their delegation gets passed
on, or voted with, by another voter j who they disapprove of. In our model,
voter i can only disapprove of voter j when i is in contact with j and xj does not
lie within the confidence interval around xi. The confidence interval is defined
the same way as it is when applying opinion diffusion. This does mean that if a
voter j is delegated i’s vote, but j is not in contact with voter i, then i cannot
disapprove of j even though xj may lie outside of the confidence interval of xi.
This is because we assume that a voter i cannot accurately know how informed
or misinformed a voter is without being able to communicate with them. If all
voters i have checked their delegations and retracted them if needed, then the
votes will be counted. This is done by multiplying the number of votes each

15

guru has obtained with their probability and then dividing this by the popula-
tion size to obtain a scalar probability.

Our alternative to the approval-based method is a method where no delega-
tions will be retracted, called viscous democracy. This method also relies on the
reluctance to delegate to people whom a voter may not approve of, but does
this in a different way. When votes within a viscous democracy get delegated,
the number of votes that are delegated will be multiplied by a scalar a between
0 and 1. One of the reasons this model came to be was because in our current
technological age being in contact with people solely through the internet has
become more common than it used to be. This means that people maintain-
ing so called ”weak connections” has also become more common. Opposed to
”strong connections” which can be family or close friends, these weak connec-
tions (distant friends, acquaintances or facebook friends) often outnumber the
strong connections as online social networks allow for more of these weak con-
nections to form. As a result, the average trust a voter has in their connections
decreases when they have a large online social network[2]. This lower average
trust in their connections means that there is a buildup of reluctance when it
comes to delegating.

To implement this kind of reluctance we first need a cyclefree delegation ma-
trix D. From this delegation matrix we can read of the gurus i.e. if Dii ̸= 0
then voter i is a guru. As D is just the adjacency matrix of the delegation
graph, we can read off the paths that end at each guru i. With this information
we can construct the following formula for the voting weight w(i) of each guru i:

w(i) =
∑

Gu(j)=i

a|p(i,j)|

Where Gu(j) = i means that the guru of voter j is voter i and |p(i, j)| is
the length of the path from voter j to voter i within the delegation graph. So
from this, we can already see that the further a voter is located from their guru,
the less of an impact their delegation will make on the final outcome. Now to
find the probability qviscous we take the weighted sum of all probabilities of the
gurus weighted by the gurus’ voting weights and divide them by the total weight
of all gurus:

qviscous =

∑
i xiw(i)∑
i w(i)

5.4 Implementation

Firstly we use the function KnowVar to generate a probability vector x as dis-
cussed in section 5.1 and have the function Adjacency generate a random matrix
A of zeroes and ones which we symmetrize and put all diagonals to be equal
to one. This A will be the adjacency matrix of our contact graph. Because

16

we use randomization, it is important that we fix a seed to guarantee reprod-
ucability. This fixed seed we call seeding which is just a scalar value, namely
seeding=834 which we increase by one each time we have to generate a new
probability vector x. The generation of this new x only occurs after all the
delegation mechanisms have been applied to it and we have found the outcome
probabilities q. KnowVar has n = 100, µ, σ and seeding as inputs and has as
output x. The function Adjacency has as inputs n = 100 and seeding and as
output the 100×100 matrix A.

Initial Data

µ = {0.5, 0.6, 0.7}
σ = 0.25

n = 100
seeding=834

KnowVar

Output= x

Adjacency

Output= A

Now we can start to implement the diffusion stages. For our results, we are
only interested in the (now time dependent) x(t) whenever t ∈ {0, 1, 5, 10, 20}.
First we create our confidence bound ϵ(t) as described in section 4.2 using the
function Confidence_bound which takes as input x(t). With this ϵ we can start
creating the confidence matrix C using the function Confidence_Matrix with
inputs A, x(t) and ϵ(t). Within this function first, the index set Iϵ gets created
for each i, and then each row Ci gets created as described in section 4.2. The
outputs of Confidence_Matrix will just be the created confidence matrix C.

Opinion Diffusion

x

A

Confidence_bound

Output= ϵ(t)

Confidence_Matrix

Output= C

Thirdly we implement the five delegation mechanisms from section 5.2: Direct,
Campbell, markakisrndm, markakisdetmin and markakisdetmax. Direct takes
as input x(t) and outputs the scalar probability qdirect by taking the mean of
all xi(t). The other four will function as described in section 5.2. Campbell

will take as inputs x(t), A and seeding and outputs the matrix Epsilon where

17

the only nonzero entries in the row Epsiloni are either all anti-experts, non-
experts or experts in contact with voter i depending on which group is chosen.
The other output of Campbell is Approv which is the delegation matrix D.
markakisrndm takes as inputs x(t), ϵ(t), A and seeding and returns as output
Epsilon which is different from the Epsilon outputed by Campbell in the sense
that now the only nonzero entries in Epsiloni are the Epsilonij where xj is
within the confidence interval around xi. Similarly to Campbell, Approv is the
delegation matrix D. Approv will always be the delegation matrix for the spec-
ified delegation mechanism. Next up markakisdetmin and markakisdetmax

both have x(t), ϵ(t) and A as input and output the exact same Epsilon as for
markakisrndm and output their respective Approv delegation matrices.

Delegation mechanisms

Direct

Output=qdirect

Campbell

Outputs= Epsilon, D

markakisrndm

Output= Epsilon, D

markakisdetmin

Output= Epsilon, D

markakisdetmax

Output= Epsilon, D

x(t)

x(t), A

x(t), A, ϵ(t)

Fourthly we have the cycle breaking function Buster and path identifying func-
tion Pathfinder. The first one will be used for the breaking up of cycles and the
second for outputting all unique paths leading to gurus. Starting with Buster

we use the same algorithm as defined at the end of section 4.3, where we first
identify all the cycles present in the delegation matrix D (Approv) and sec-
ondly we redistribute the delegation within each cycle. To be able to identify
the cycles we use the function CycleFinder which itself is reliant on the func-
tion Identifier. Cyclefinder only has D as input and creates from this the
set n̄ which is then used as an input for Identifier along with n and DT .
Identifier then outputs the ordered set η as described in section 4.3 which is
necessary for finding the ordered set of cycles η̄ which is output by Cyclefinder

as Array.
Now that we have found all the cycles and have stored them in Array, we can

use that as an input for Buster which takes the inputs Epsilon, D, seeding,
and a time variable τ . From the formatting of Array we know that each cycle
can be identified by their initial and final entry, which should be the same. Pick-

18

ing the first cycle α from Array we let each αi redelegate their votes among one
of all αj for which αj is represented by a nonzero entry in the row Epsilonαi

.
We repeat this for each cycle present in Array and update our delegation matrix
D to now represent these redelegations. Now Buster outputs the updated del-
egation matrix D∗. If we apply Buster only once to our matrix D then it may
not be cycle free yet, but from corollary 4.1.2 we know that if we keep applying
Buster to D then it will eventually become cyclefree. To make sure that this
happens in a timely fashion and to exclude edge cases such as cycles flipflopping,
we increase τ each time Buster is applied to D. When τ reaches a value of 20,
we force the cycles to break by having a member of each cycle become a guru.
This does not violate the voluntary principle for all three markakis functions,
as there a voter always approves of themselves. For the case of Campbell it
can violate the voluntary principle whenever a voter has chosen to delegate to
a group to whom they do not belong themselves. That is also why we only
apply this method of cycle breaking when the cycles are still present after lots
of iterations.

Cycle Breaking

Buster

Cyclefinder

Identifier

x(t)
D

Epsilon

τ

D̂

η̄

ηn̄

D̂T
Output=D∗

After we have obtained the cyclefree delegation matrix D∗ as output from
iteratively applying Buster, we use Pathfinder to find all unique paths ending
in a guru. It does this by first running Cyclefinder again just to make sure
D∗ is actually cyclefree. Then it employs the function IdentifierTwo which
similarly to Identifier takes as input n̄, n and D∗. IdentifierTwo then also
outputs η but instead of η containing cycles, it only contains paths because each
path will end in an entry on the diagonal of DT . In addition to η it also outputs
an augmented version of (D∗)T , where all DT

ij ̸= 0 in case i is a guru and j is
a voter on a path ending at i. Now back within Pathfinder, we add all paths
η to the set η̄ containing all paths. Finally within Pathfinder we check for all
paths in η̄i if any of them are such that η̄i ⊂ η̄j for any η̄j ∈ η̄. If this is the
case, then we remove η̄i from η̄. This way all our paths within η̄ will be unique.

19

Finally, Pathfinder outputs the augmented DT and η̄ as Array.

Pathfinder

D∗

Pathfinder

IdentifierTwo

ηn̄
D∗ D̂∗ Output= η̄, D̂∗

Now that we have all the paths, we can start applying the approval-based
method or viscous democracy and subsequently find the probabilities we are
looking for. First, for the approval-based method, we use a function called
Confcheck which takes as inputs η̄ (Array) containing all the unique paths,
Epsilon, D∗ and A. What this function does is that it generates n̄ from A,
from which it picks a number i starting at zero up to n − 1. It takes the first
path containing i and checks all entries along the part of the path between i and
the guru. If any of these j are in contact with i (i.e. Aij = 1) but Epsilonij = 0
with i not being a guru themselves, then we have voter i retract their vote and
become a guru. If this happens we also have to change D∗ such that D∗

ii = 1
and D∗

ij = 0 for all i ̸= j. But because i is a guru now, we also have to split all
the paths in Array in such a way that i now becomes a guru for all paths that
include i. After doing this for all i ∈ n̄, Confcheck outputs the new delegation
matrix D∗∗ and the new Array which we now will call Paths/η̄∗ as it contains
the final version of all paths. This final D∗∗ will still have multiple nonzero
entries on the rows corresponding with the gurus. This will be used for the
counting of the votes, which is done with the function counter. counter only
takes D∗ as input and sets all nonzero entries equal to one. Then it creates a
vector w containing all the weights of all the voters. It uses the following formula:

wi=

{
0 if D∗

ii = 0∑n−1
j=0 D∗

ij if D∗
ii = 1

counter then outputs this vector w and to find the probability we are looking
for we then take the dot product of w and x(t) and divide by n to find the
probability qapproval.

20

Approval based method

η̄
Epsilon

D∗

A

Confcheck

Output= η̄∗, D∗∗
counter

Output= w
w·x(t)

n = qapproval

The viscous case is implemented differently. It uses the function viscous

which takes as input D∗, η̄ (Array) containing all the paths and the reluctancy
constant a. It then finds the weight vector w for each guru i as described in
section 5.3 with all nonguru entries being equal to zero. It also calculates the
total voter weight w̄ which is just the sum of all wi’s. viscous then outputs w
and the weight w̄. From this we then find qviscous as the dot product of w and
x(t) and then divide by the weight w̄.

Viscous Democracy

η̄
D∗

a

viscous

Output= w, w̄
w·x(t)

w̄ = qviscous

Finally we can start putting all of these function into a general framework to
find the probability vector q containing the probabilities for 0, 1, 5, 10 and
20 diffusion steps. This general framework will be used by twelve different
delegation mechanisms (including the approval method and viscous democracy
with a=0.2 and a=0.8 as seperate delegation mechanisms) and are given by the
following aggregate functions:

• Aggregate_Camp

• Aggreg_markrnd

• Aggreg_markmax

• Aggreg_markmin

• Aggreg_markrnd_visc

• Aggreg_markmax_visc

• Aggreg_markmin_visc

• Aggreg_Camp_visc

Where the first four aggregate functions are for the approval method, and the
latter four are for viscous democracy. The approval-based aggregate functions
take as input x, A and seeding and the viscous democracy aggregate functions
take the same data as input but also have a = 0.2 or a = 0.8 as an additional

21

input. The structure of these functions is the same and use all of the other
functions that we have already described. First, we apply diffusion twenty times
and save the diffused x(t) for t ∈ {0, 1, 5, 10, 20} and save the corresponding ϵ(t)
as well. Then we apply the delegation functions, after which the cycle breaking
functions do their work and the path-finding algorithm finds the paths and
augmented delegation matrix for each of the specified diffusion stages. From
here it depends on if the aggregate function relies on the approval method
or viscous democracy, but in either case, we obtain a probability vector q =
(q0, q1, q5, q10, q20). A flowchart of how the aggregate functions, including the
direct democracy case, work can be seen below.

Flowchart for Aggreg_xxxx

Initial data:
x, A, seeding

Opinion diffusion
In: x, A
Out: x(t), ϵ(t)

Direct democracy
In: x(t)
Out: qdirect

Delegation functions
In: x(t), A, ϵ(t)
Out: D

Cycle Breaking:
In: D,x(t), A, ϵ(t)
Out: D∗

Approval based:
In: D∗,x(t), ϵ(t), A
Out: qapproval

Viscous:
In: D∗,x(t), a
Out: qviscous(a)

Ultimately we now have each of these aggregate functions (including both vis-
cous cases and direct democracy) run 200 times, each time with new initial data
generated by adding 1 to the seed seeding every run. This will give us thirteen
200 × 5 matrices, one for each aggregate function, where each row represents
one run. We do the same thing two more times, but this time we generate x
with a µ of 0.6 and 0.7 respectively.

22

6 Results

To analyze our results, we split it up into two cases, the case where µ = 0.5 and
where µ ̸= 0.5. We do this because the results from the latter case are broadly
similar and can be explained by the same arguments. All tables can be found
within Appendix A and all graphs can be found in Appendix B. The first
result we will be looking at is the case µ = 0.5 without diffusion. This case
represents a state where people have not yet had time to discuss before the vote
happens and the population is not skewed to be more informed or misinformed.

From the graph in figure 1 and table 1 we see that direct democracy has
a very narrow spread centered around 0.5 with a minimum of 0.443 and a
maximum of 0.549. This means if people will vote directly, without delegating
their vote, the probability of a preferred outcome is about 50% give or take
5%. This result is to be expected, given our chosen distribution is a normal
distribution centered at µ = 0.5. The minimal and maximal Markakis delegation
mechanisms also act as expected. Both show a very low and very high chance to
vote for a preferred outcome respectively. For these two delegation mechanisms,
we can also see that when we let the viscosity constant be a = 0.2, then they
have a respectively higher and lower chance to vote for a preferred outcome. In
the maximal case, this is because each voter i delegates to the voter j who has
the highest probability to vote for a preferred outcome, while also being in the
confidence interval of voter i. So the voters with the highest probabilities will
have a much larger voting weight than voters with probabilities not as high.
But if a = 0.2 then the weight of the voters with the highest probabilities will
be lessened, which leads to a worse result. The opposite argument happens for
the minimal case.

23

Figure 1: No diffusion

24

When we look at the random markakis delegation mechanism we see that the
median is very close to the direct case, with the direct median being 0.497 and
the random median being 0.492 for the non-viscous case. But from the graph we
see that this delegation mechanism has a much larger spread compared to direct
democracy. Due to this spread this delegation mechanism is not preferable over
direct democracy, as it can result in a much worse result if implemented. To drive
this point home, we see that for random markakis Q2=0.369 and Q3=0.596,
while the low and high whiskers of direct democracy are at 0.443 and 0.549
respectively. Campbell is not a preferred delegation mechanism either in this
case as from the graph and table we can see that the high whisker of Campbell
never exceeds Q2 of direct democracy.

Table 1: Results for all delegation mechanisms without diffusion and µ=0.5

Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.443 0.483 0.497 0.519 0.549
Markmin 0.004 0.034 0.052 0.074 0.125
Markmin Viscous a=0.2 0.006 0.071 0.107 0.157 0.275
Markmin Viscous a=0.8 0.004 0.037 0.056 0.079 0.141
Markrnd 0.149 0.369 0.492 0.596 0.901
Markrnd Viscous a=0.2 0.245 0.433 0.503 0.572 0.741
Markrnd Viscous a=0.8 0.174 0.379 0.488 0.589 0.888
Markmax 0.868 0.918 0.943 0.962 0.996
Markmax Viscous a=0.2 0.714 0.833 0.879 0.913 0.996
Markmax Viscous a=0.8 0.857 0.914 0.938 0.957 0.996
Campbell 0.223 0.307 0.34 0.379 0.478
Campbell Viscous a=0.2 0.304 0.372 0.393 0.418 0.483
Campbell Viscous a=0.8 0.234 0.318 0.349 0.383 0.473

Now if we look at the graphs in figure 3,4,5 and 6 in Appendix B and tables
3,4,5 and 6 in Appendix A we can see that after all diffusion steps, the medians
remain roughly the same value except for the minimal and maximal markakis
delegations whose medians both move closer to 0.5. Something that does hap-
pen regardless of the delegation mechanism chosen, is that opinion diffusion
causes the spread to increase as the probability vector gets more diffused. The
only delegation mechanism that has a higher chance of resulting in a better re-
sult than direct democracy, with and without opinion diffusion, is the maximal
delegation mechanism. But this is not a realistic mechanism, so in the case
that voter probabilities are normally distributed with µ = 0.5 then no realistic
mechanism that we have tested is preferable to direct democracy.

The second case we consider is when µ = 0.6 and µ = 0.7. When no diffusion
has taken place we can see that both markakis random and markakis maximal
have better chances to pick a preferred outcome when comparing them to direct
democracy. Only the low whisker of markakis random is lower than that of

25

direct democracy, with the low whisker of markakis random having a value of
0.408 and 0.5 and the low whisker of direct democracy having a value of 0.521
and 0.596 for µ = 0.6 and µ = 0.7 respectively. This means that there is only
a slim chance that markakis random will result in a worse result than direct
democracy. Campbell and markakis minimal both have a worse chance to vote
for the preferred outcome than direct democracy. This changes when we apply
the opinion diffusion. After only 5 stages of diffusion we see in figure 9 and table
9 that the medians of markakis minimal (0.639) are nearly identical to the me-
dian of direct democracy (0.672). A possible explanation for this is that because
of opinion diffusion and our definition of ϵ that the probabilities xi ∈ x(t) of
voters get ”pulled” towards the mean µ. Because opinion diffusion transforms a
probability xi into the average of all voter probabilities xj where j is in contact
with i and with xj within the confidence interval around xi; And because all xi

are chosen from a normal distribution, there are more voters with probabilities
around 0.6 and 0.7 compared to 0.5 or 0.4. Thus the averages are more likely to
be skewed towards 0.6 and 0.7. Another factor that helps explain this increase
for markakis minimal is that we define ϵi as ϵi = 0.5− |0.5− xi| and this value
decreases as xi moves away from 0.5. Combine these two observations together
and we have a reasonable explanation on why the minimal markakis mechanism
starts to compete with direct democracy when opinion diffusion takes place.
The same can’t be said for Campbell. This delegation mechanism keeps un-
derperforming, which is most likely because voters with probabilities between
0.75 and 0.25 have a 1

3 probability of delegating their vote to a voter with a
probability lower than 0.25 if they are in contact with at least one such voter.

Then if we look at figure 11, which shows the boxplot for µ = 0.6 and 20
diffusion stages, and table 11, we see that all delegation mechanisms lie very
close together. Nearly all of them have a median probability higher than 0.8
which is 0.2 higher than the mean of our original probability vector. This means
that none of them have any significant advantage over direct democracy, and
in some cases, it would seem that direct democracy might be the better choice,
albeit slightly. The most likely explanation for this is the convergence of the
probability vector due to diffusion. Because each new diffused probability vector
is just a vector of averages, we can expect that the rate of change between xi(t)
and xi(t + 1) decreases each time the vector is diffused. This is in line with
what is discussed in the paper by Lorenz[5] who describes bifurcations of the
HK model. In this paper it is touched upon that opinion diffusion using the HK
model with heterogeneous bounds have bifurcations that converge. Although
no formal proof of this is known, it is safe to assume that something similar is
happening in our model too. Using figure 17 we may also assume that the choice
of µ also influences the speed at which x(t) will converge. For µ = 0.5 we see
that after each diffusion step the median is slowly increasing. We assume that
this median will keep increasing up to 0.5 as long as it keeps getting diffused, but
as our simulation only went up to twenty diffusion steps, this is just speculation.
When we compare the case of µ = 0.6 and µ = 0.7 from the same figure we
see that the medians for µ = 0.7 increase much more quickly than for µ = 0.6.
This speed of convergence is most likely caused by the size of the confidence

26

interval, and the distribution of voter probabilities. As a voter i with a high
probability can still influence a voter j with lower probability as xi can still be
within the confidence interval for voter j. But the opposite might not be the
case, as the further removed from 0.5 a voter is, the smaller their confidence
interval is. This may lead to a positive feedback loop, where such voters j can
only increase their probabilities.

7 Conclusion

From our results we see that not all delegation mechanisms for liquid democracy
can outperform a direct democracy. The Campbell and Markakis minimal del-
egation mechanisms always seem to have lesser results, although this was to be
expected for the Markakis minimal delegation mechanism as it was a worst case
scenario for the Markakis variants. Something to take note of for the Markakis
minimal mechanism is that given a normal distribution with a mean µ = 0.6 or
higher we see that after 20 diffusion steps, this mechanism is nearly on par with
direct democracy. The Markakis maximal delegation mechanism always outper-
formed a direct democracy, but this was the best case scenario mechanism and
thus not very realistic. The Markakis random delegation mechanism is the most
promising of the four liquid democracy delegation mechanisms. This delegation
mechanism was able to show us better results compared to a direct democracy
whenever µ = 0.6 and µ = 0.7 and diffusion was limited to at most 10 stages,
with the best result occurring when diffusion had not taken place. From this,
we can conclude that, if our model is a realistic enough representation of the
real world, liquid democracy can give better results than a direct democracy can
in cases where minimal contact is had before people delegate their votes. As
an additional assumption, the voter population must be positively skewed and
normally distributed and randomly delegate their votes to other voters within
their confidence interval.

27

8 Discussion

It would be interesting to see further research done on this subject. Because
we have chosen to only simulate the populations on random graphs, seeing how
the results could change if they were applied to other kinds of graphs that
are designed to be closer to real-world population networks as was done in the
paper by Becker et al[1] would be an intriguing study. Also, it would be very
interesting to see what would change if other confidence bounds were chosen for
the HK model and how the results would change in comparison to homogeneous
bounds.

Because we have limited ourselves to just considering a voter population of
100 voters, increasing or decreasing the number of voters might also change the
results’ behaviour. Yet for the smaller sizes to give any meaningful results, the
chosen distribution for the probability vector x would need some more careful
consideration.

Another assumption that we made in our model is that voters know the exact
probabilities of other voters they are in contact with. This may not always be
realistic, so a model where this is not the case might give us even more insight
into how liquid democracy behaves in the real world. The uncertainty of voter’s
probabilities might then also start affecting the diffusion process, which could
then lead to a different convergence pattern, and subsequently to different voting
results.

28

References

[1] Ruben Becker, Gianlorenzo D’Angelo, Esmaeil Delfaraz, and Hugo Gilbert.
Unveiling the truth in liquid democracy with misinformed voters. Algorith-
mic Decision Theory, 7:132–146, 2021.

[2] Paolo Boldi, Francesco Bonchi, Carlos Castillo, and Sebastiano Vigna. Vis-
cous democracy for social networks. Communications of the ACM, pages
129–137, 2011.

[3] Joseph Campbell, Alessandra Casella, Lucas de Lara, Victoria R. Mooers,
and Dilip Ravindran. Liquid democracy. two experiments on delegation in
voting. NBER WORKING PAPER SERIES, 2022.

[4] Anson Kahng, Simon Mackenzie, and Ariel D. Procaccia. Liquid democ-
racy: An algorithmic perpective. Journal of Artificial Intelligence Research,
70:1223–1252, 2021.

[5] Jan Lorenz. Continuous opinion dynamics under bounded confidence: A
survey. International Journal of Modern Physics C, 18(12):1819–1838,
2007.

[6] Evangelos Markakis and Georgios Papasotiropoulos. An approval-based
model for single-step liquid democracy. Algorithmic Game Theory, pages
360–375, 2021.

[7] Bjorn Swierczek. 5 years of liquid democracy in germany. The Liquid
Democracy journal, pages 8–20, 2014.

[8] Sadiq Muhammed T and Saji K. Matthew. The disaster of misinformation:
a review of research in social media. International Journal of Data Science
and Analytics, 2022.

[9] V-Dem. V-dem (2024) – processed by our world in data, 2024.
https://ourworldindata.org/democracy.

[10] Chiara Valsangiacomo. Clarifying and defining the concept of liquid democ-
racy. Swiss Political Science Review, 28(1):61–80, 2022.

[11] Partij van de Vrijheid. Pvv-verkiezingsprogramma, 2023.

[12] Forum van Democratie. Verkiezingsprogramma-fvd, 2021.

29

9 Appendix

9.1 A: Tables

Table 2: Results for all delegation mechanisms without diffusion and µ=0.5

Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.443 0.483 0.497 0.519 0.549
Markmin 0.004 0.034 0.052 0.074 0.125
Markmin Viscous a=0.2 0.006 0.071 0.107 0.157 0.275
Markmin Viscous a=0.8 0.004 0.037 0.056 0.079 0.141
Markrnd 0.149 0.369 0.492 0.596 0.901
Markrnd Viscous a=0.2 0.245 0.433 0.503 0.572 0.741
Markrnd Viscous a=0.8 0.174 0.379 0.488 0.589 0.888
Markmax 0.868 0.918 0.943 0.962 0.996
Markmax Viscous a=0.2 0.714 0.833 0.879 0.913 0.996
Markmax Viscous a=0.8 0.857 0.914 0.938 0.957 0.996
Campbell 0.223 0.307 0.34 0.379 0.478
Campbell Viscous a=0.2 0.304 0.372 0.393 0.418 0.483
Campbell Viscous a=0.8 0.234 0.318 0.349 0.383 0.473

Table 3: All delegation mechanisms after 1 step of diffusion and µ=0.5
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.414 0.474 0.496 0.526 0.574
Markmin 0.002 0.041 0.067 0.099 0.176
Markmin Viscous a=0.2 0.005 0.071 0.113 0.162 0.291
Markmin Viscous a=0.8 0.005 0.038 0.059 0.089 0.159
Markrnd 0.052 0.372 0.488 0.592 0.912
Markrnd Viscous a=0.2 0.238 0.428 0.494 0.561 0.751
Markrnd Viscous a=0.8 0.102 0.385 0.489 0.579 0.844
Markmax 0.823 0.905 0.935 0.963 0.999
Markmax Viscous a=0.2 0.695 0.82 0.864 0.913 0.999
Markmax Viscous a=0.8 0.82 0.897 0.931 0.959 0.999
Campbell 0.211 0.312 0.349 0.381 0.482
Campbell Viscous a=0.2 0.297 0.382 0.411 0.442 0.519
Campbell Viscous a=0.8 0.243 0.325 0.362 0.39 0.48

30

Table 4: All delegation mechanisms after 5 steps of diffusion for mu=0.5
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.307 0.44 0.494 0.543 0.683
Markmin 0.006 0.075 0.105 0.155 0.248
Markmin Viscous a=0.2 0.002 0.111 0.173 0.281 0.535
Markmin Viscous a=0.8 0.002 0.065 0.102 0.192 0.355
Markrnd 0.057 0.306 0.492 0.662 0.957
Markrnd Viscous a=0.2 0.142 0.383 0.491 0.591 0.844
Markrnd Viscous a=0.8 0.077 0.312 0.494 0.647 0.938
Markmax 0.656 0.819 0.891 0.929 0.993
Markmax Viscous a=0.2 0.367 0.669 0.81 0.874 0.994
Markmax Viscous a=0.8 0.077 0.312 0.494 0.647 0.938
Campbell 0.157 0.283 0.331 0.414 0.596
Campbell Viscous a=0.2 0.266 0.365 0.423 0.489 0.672
Campbell Viscous a=0.8 0.175 0.299 0.347 0.428 0.596

Table 5: All delegation mechanisms after 10 steps of diffusion for mu=0.5
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.188 0.34 0.496 0.628 0.838
Markmin 0.002 0.081 0.132 0.604 0.823
Markmin Viscous a=0.2 0.002 0.123 0.193 0.591 0.801
Markmin Viscous a=0.8 0.002 0.073 0.134 0.61 0.822
Markrnd 0.046 0.251 0.503 0.731 0.965
Markrnd Viscous a=0.2 0.109 0.337 0.488 0.651 0.866
Markrnd Viscous a=0.8 0.06 0.251 0.494 0.721 0.949
Markmax 0.197 0.357 0.856 0.919 0.99
Markmax Viscous a=0.2 0.215 0.37 0.786 0.867 0.994
Markmax Viscous a=0.8 0.198 0.367 0.834 0.924 0.994
Campbell 0.123 0.235 0.343 0.457 0.779
Campbell Viscous a=0.2 0.179 0.291 0.439 0.536 0.815
Campbell Viscous a=0.8 0.137 0.242 0.362 0.471 0.776

31

Table 6: All delegation mechanisms after 20 steps of diffusion for mu=0.5
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.097 0.223 0.506 0.745 0.92
Markmin 0.008 0.094 0.206 0.738 0.92
Markmin Viscous a=0.2 0.002 0.127 0.268 0.711 0.88
Markmin Viscous a=0.8 0.002 0.082 0.216 0.737 0.915
Markrnd 0.022 0.168 0.465 0.797 0.978
Markrnd Viscous a=0.2 0.1 0.273 0.489 0.708 0.91
Markrnd Viscous a=0.8 0.031 0.185 0.464 0.792 0.964
Markmax 0.101 0.228 0.688 0.907 0.989
Markmax Viscous a=0.2 0.102 0.259 0.655 0.868 0.99
Markmax Viscous a=0.8 0.082 0.24 0.69 0.916 0.99
Campbell 0.076 0.207 0.361 0.74 0.919
Campbell Viscous a=0.2 0.076 0.219 0.427 0.722 0.908
Campbell Viscous a=0.8 0.076 0.208 0.377 0.737 0.917

Table 7: All delegation mechanisms after 0 steps of diffusion for mu=0.6
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.521 0.559 0.574 0.595 0.624
Markmin 0.008 0.061 0.086 0.12 0.2
Markmin Viscous a=0.2 0.012 0.11 0.164 0.219 0.377
Markmin Viscous a=0.8 0.008 0.065 0.093 0.129 0.212
Markrnd 0.408 0.603 0.698 0.783 0.96
Markrnd Viscous a=0.2 0.403 0.576 0.639 0.71 0.901
Markrnd Viscous a=0.8 0.354 0.601 0.694 0.771 0.957
Markmax 0.919 0.951 0.969 0.981 0.999
Markmax Viscous a=0.2 0.777 0.888 0.925 0.972 0.999
Markmax Viscous a=0.8 0.91 0.947 0.966 0.979 0.999
Campbell 0.261 0.338 0.374 0.413 0.521
Campbell Viscous a=0.2 0.364 0.415 0.442 0.465 0.536
Campbell Viscous a=0.8 0.284 0.349 0.386 0.421 0.529

32

Table 8: All delegation mechanisms after 1 step of diffusion for mu=0.6
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.521 0.582 0.605 0.629 0.681
Markmin 0.004 0.07 0.129 0.203 0.381
Markmin Viscous a=0.2 0.018 0.115 0.177 0.248 0.44
Markmin Viscous a=0.8 0.009 0.068 0.108 0.154 0.273
Markrnd 0.38 0.625 0.726 0.813 0.967
Markrnd Viscous a=0.2 0.397 0.583 0.656 0.726 0.924
Markrnd Viscous a=0.8 0.397 0.629 0.72 0.798 0.96
Markmax 0.902 0.944 0.964 0.979 0.999
Markmax Viscous a=0.2 0.773 0.882 0.924 0.961 0.999
Markmax Viscous a=0.8 0.897 0.939 0.962 0.977 0.999
Campbell 0.234 0.358 0.402 0.457 0.601
Campbell Viscous a=0.2 0.375 0.458 0.489 0.526 0.61
Campbell Viscous a=0.8 0.263 0.372 0.415 0.467 0.597

Table 9: All delegation mechanisms after 5 steps of diffusion for mu=0.6
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.533 0.635 0.672 0.704 0.804
Markmin 0.035 0.419 0.639 0.681 0.757
Markmin Viscous a=0.2 0.524 0.614 0.653 0.691 0.776
Markmin Viscous a=0.8 0.503 0.613 0.658 0.695 0.795
Markrnd 0.459 0.687 0.788 0.866 0.979
Markrnd Viscous a=0.2 0.433 0.641 0.703 0.783 0.941
Markrnd Viscous a=0.8 0.444 0.686 0.78 0.851 0.974
Markmax 0.858 0.917 0.938 0.96 0.997
Markmax Viscous a=0.2 0.724 0.847 0.896 0.93 1.0
Markmax Viscous a=0.8 0.865 0.917 0.943 0.967 1.0
Campbell 0.264 0.427 0.498 0.633 0.823
Campbell Viscous a=0.2 0.426 0.55 0.604 0.655 0.805
Campbell Viscous a=0.8 0.303 0.445 0.518 0.634 0.822

33

Table 10: All delegation mechanisms after 10 steps of diffusion for mu=0.6
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.57 0.706 0.756 0.803 0.903
Markmin 0.569 0.694 0.744 0.792 0.896
Markmin Viscous a=0.2 0.524 0.614 0.653 0.691 0.776
Markmin Viscous a=0.8 0.554 0.686 0.739 0.788 0.908
Markrnd 0.512 0.735 0.832 0.892 0.979
Markrnd Viscous a=0.2 0.464 0.677 0.735 0.821 0.965
Markrnd Viscous a=0.8 0.542 0.733 0.82 0.886 0.978
Markmax 0.827 0.905 0.931 0.96 0.997
Markmax Viscous a=0.2 0.766 0.851 0.898 0.933 1.0
Markmax Viscous a=0.8 0.832 0.909 0.939 0.967 1.0
Campbell 0.238 0.517 0.724 0.795 0.915
Campbell Viscous a=0.2 0.393 0.623 0.718 0.786 0.901
Campbell Viscous a=0.8 0.26 0.531 0.724 0.793 0.913

Table 11: All delegation mechanisms after 20 steps of diffusion for mu=0.6
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.661 0.79 0.842 0.882 0.967
Markmin 0.642 0.783 0.836 0.878 0.965
Markmin Viscous a=0.2 0.586 0.744 0.794 0.856 0.942
Markmin Viscous a=0.8 0.606 0.765 0.823 0.879 0.965
Markrnd 0.621 0.792 0.864 0.92 0.985
Markrnd Viscous a=0.2 0.495 0.697 0.771 0.852 0.979
Markrnd Viscous a=0.8 0.581 0.779 0.857 0.913 0.985
Markmax 0.762 0.876 0.928 0.957 0.996
Markmax Viscous a=0.2 0.721 0.838 0.899 0.928 1.0
Markmax Viscous a=0.8 0.812 0.901 0.936 0.962 1.0
Campbell 0.519 0.736 0.822 0.881 0.955
Campbell Viscous a=0.2 0.543 0.733 0.809 0.866 0.945
Campbell Viscous a=0.8 0.533 0.735 0.82 0.878 0.953

34

Table 12: All delegation mechanisms after 0 steps of diffusion for mu=0.7
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.596 0.631 0.645 0.664 0.692
Markmin 0.017 0.11 0.147 0.185 0.293
Markmin Viscous a=0.2 0.026 0.169 0.234 0.291 0.465
Markmin Viscous a=0.8 0.018 0.115 0.154 0.192 0.303
Markrnd 0.5 0.7 0.824 0.872 0.929
Markrnd Viscous a=0.2 0.537 0.687 0.752 0.799 0.95
Markrnd Viscous a=0.8 0.567 0.749 0.817 0.882 0.983
Markmax 0.941 0.97 0.982 0.99 1.0
Markmax Viscous a=0.2 0.854 0.926 0.952 0.987 1.0
Markmax Viscous a=0.8 0.941 0.967 0.98 0.988 1.0
Campbell 0.27 0.376 0.423 0.472 0.593
Campbell Viscous a=0.2 0.377 0.46 0.489 0.525 0.62
Campbell Viscous a=0.8 0.291 0.389 0.433 0.475 0.59

Table 13: All delegation mechanisms after 1 step of diffusion for mu=0.7
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.615 0.675 0.693 0.715 0.762
Markmin 0.026 0.163 0.246 0.387 0.639
Markmin Viscous a=0.2 0.032 0.203 0.279 0.366 0.57
Markmin Viscous a=0.8 0.021 0.13 0.19 0.265 0.459
Markrnd 0.669 0.724 0.79 0.854 0.917
Markrnd Viscous a=0.2 0.588 0.729 0.772 0.824 0.963
Markrnd Viscous a=0.8 0.626 0.779 0.846 0.891 0.978
Markmax 0.938 0.967 0.981 0.99 1.0
Markmax Viscous a=0.2 0.84 0.925 0.953 0.988 1.0
Markmax Viscous a=0.8 0.933 0.965 0.979 0.989 1.0
Campbell 0.266 0.442 0.504 0.599 0.697
Campbell Viscous a=0.2 0.438 0.539 0.578 0.618 0.679
Campbell Viscous a=0.8 0.29 0.458 0.517 0.603 0.693

35

Table 14: All delegation mechanisms after 5 steps of diffusion for mu=0.7
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.668 0.745 0.772 0.798 0.86
Markmin 0.65 0.723 0.751 0.781 0.846
Markmin Viscous a=0.2 0.656 0.735 0.767 0.796 0.876
Markmin Viscous a=0.8 0.66 0.744 0.774 0.8 0.872
Markrnd 0.718 0.801 0.854 0.889 0.961
Markrnd Viscous a=0.2 0.634 0.771 0.816 0.866 0.986
Markrnd Viscous a=0.8 0.713 0.831 0.88 0.92 0.988
Markmax 0.902 0.948 0.966 0.98 1.0
Markmax Viscous a=0.2 0.795 0.891 0.935 0.958 1.0
Markmax Viscous a=0.8 0.896 0.948 0.969 0.983 1.0
Campbell 0.302 0.579 0.758 0.809 0.902
Campbell Viscous a=0.2 0.516 0.68 0.756 0.803 0.896
Campbell Viscous a=0.8 0.308 0.595 0.759 0.808 0.901

Table 15: All delegation mechanisms after 10 steps of diffusion for mu=0.7
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.721 0.812 0.848 0.877 0.958
Markmin 0.714 0.801 0.838 0.869 0.952
Markmin Viscous a=0.2 0.682 0.786 0.822 0.856 0.958
Markmin Viscous a=0.8 0.696 0.8 0.838 0.873 0.955
Markrnd 0.745 0.839 0.878 0.91 0.969
Markrnd Viscous a=0.2 0.635 0.789 0.841 0.893 0.994
Markrnd Viscous a=0.8 0.749 0.855 0.902 0.938 0.994
Markmax 0.895 0.942 0.962 0.979 1.0
Markmax Viscous a=0.2 0.785 0.887 0.932 0.957 1.0
Markmax Viscous a=0.8 0.898 0.946 0.966 0.981 1.0
Campbell 0.608 0.766 0.832 0.873 0.963
Campbell Viscous a=0.2 0.618 0.766 0.823 0.869 0.96
Campbell Viscous a=0.8 0.609 0.762 0.83 0.872 0.962

36

Table 16: All delegation mechanisms after 20 steps of diffusion for mu=0.7
Delegation Mechanism Low whisker Q2 Median Q3 High whisker
Direct Democracy 0.773 0.869 0.907 0.932 0.991
Markmin 0.768 0.864 0.903 0.93 0.991
Markmin Viscous a=0.2 0.721 0.832 0.876 0.911 0.991
Markmin Viscous a=0.8 0.737 0.852 0.904 0.933 0.991
Markrnd 0.767 0.852 0.918 0.944 0.974
Markrnd Viscous a=0.2 0.659 0.805 0.859 0.909 0.997
Markrnd Viscous a=0.8 0.782 0.879 0.922 0.951 0.997
Markmax 0.848 0.925 0.956 0.977 1.0
Markmax Viscous a=0.2 0.782 0.884 0.925 0.953 1.0
Markmax Viscous a=0.8 0.879 0.937 0.962 0.978 1.0
Campbell 0.59 0.796 0.889 0.933 0.992
Campbell Viscous a=0.2 0.617 0.8 0.878 0.925 0.992
Campbell Viscous a=0.8 0.592 0.794 0.888 0.931 0.992

Table 17: Comparison Markmin and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmin mu=0.5
0 0.004 0.034 0.052 0.074 0.125
1 0.002 0.041 0.067 0.099 0.176
5 0.006 0.075 0.105 0.155 0.248
10 0.002 0.081 0.132 0.604 0.823
20 0.008 0.094 0.206 0.738 0.92

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

37

Table 18: Comparison Markmin and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmin mu=0.5
0 0.004 0.034 0.052 0.074 0.125
1 0.002 0.041 0.067 0.099 0.176
5 0.006 0.075 0.105 0.155 0.248
10 0.002 0.081 0.132 0.604 0.823
20 0.008 0.094 0.206 0.738 0.92

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

Table 19: Comparison Markminvisc a=0.2 and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markminvisc a=0.2 and mu=0.5
0 0.006 0.071 0.107 0.157 0.275
1 0.005 0.071 0.113 0.162 0.291
5 0.002 0.111 0.173 0.281 0.535
10 0.002 0.123 0.193 0.591 0.801
20 0.002 0.127 0.268 0.711 0.88

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

38

Table 20: Comparison Markrnd and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markrnd mu=0.5
0 0.149 0.369 0.492 0.596 0.901
1 0.052 0.372 0.488 0.592 0.912
5 0.057 0.306 0.492 0.662 0.957
10 0.046 0.251 0.503 0.731 0.965
20 0.022 0.168 0.465 0.797 0.978

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

Table 21: Comparison Markrndvisc a=0.2 and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markrndvisc a=0.2 and mu=0.5
0 0.245 0.433 0.503 0.572 0.741
1 0.238 0.428 0.494 0.561 0.751
5 0.142 0.383 0.491 0.591 0.844
10 0.109 0.337 0.488 0.651 0.866
20 0.1 0.273 0.489 0.708 0.91

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

39

Table 22: Comparison Markrndvisc a=0.8 and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markrndvisc a=0.8 and mu=0.5
0 0.174 0.379 0.488 0.589 0.888
1 0.102 0.385 0.489 0.579 0.844
5 0.077 0.312 0.494 0.647 0.938
10 0.06 0.251 0.494 0.721 0.949
20 0.031 0.185 0.464 0.792 0.964

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

Table 23: Comparison Markmax and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmax mu=0.5
0 0.868 0.918 0.943 0.962 0.996
1 0.823 0.905 0.935 0.963 0.999
5 0.656 0.819 0.891 0.929 0.993
10 0.197 0.357 0.856 0.919 0.99
20 0.101 0.228 0.688 0.907 0.989

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

40

Table 24: Comparison Markmaxvisc a=0.2 and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmaxvisc a=0.2 and mu=0.5
0 0.714 0.833 0.879 0.913 0.996
1 0.695 0.82 0.864 0.913 0.999
5 0.367 0.669 0.81 0.874 0.994
10 0.215 0.37 0.786 0.867 0.994
20 0.102 0.259 0.655 0.868 0.99

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

Table 25: Comparison Markmaxvisc a=0.8 and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmaxvisc a=0.8 and mu=0.5
0 0.857 0.914 0.938 0.957 0.996
1 0.82 0.897 0.931 0.959 0.999
5 0.506 0.76 0.886 0.933 0.994
10 0.198 0.367 0.834 0.924 0.994
20 0.082 0.24 0.69 0.916 0.99

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

41

Table 26: Comparison Campbell and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbell mu=0.5
0 0.223 0.307 0.34 0.379 0.478
1 0.211 0.312 0.349 0.381 0.482
5 0.157 0.283 0.331 0.414 0.596
10 0.123 0.235 0.343 0.457 0.779
20 0.076 0.207 0.361 0.74 0.919

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

Table 27: Comparison Campbellvisc a=0.2 and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbellvisc a=0.2 and mu=0.5
0 0.304 0.372 0.393 0.418 0.483
1 0.297 0.382 0.411 0.442 0.519
5 0.266 0.365 0.423 0.489 0.672
10 0.179 0.291 0.439 0.536 0.815
20 0.076 0.219 0.427 0.722 0.908

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

42

Table 28: Comparison Campbellvisc a=0.8 and Direct Democracy for mu=0.5
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbellvisc a=0.8 and mu=0.5
0 0.234 0.318 0.349 0.383 0.473
1 0.243 0.325 0.362 0.39 0.48
5 0.175 0.299 0.347 0.428 0.596
10 0.137 0.242 0.362 0.471 0.776
20 0.076 0.208 0.377 0.737 0.917

Direct Democracy mu=0.5
0 0.443 0.483 0.497 0.519 0.549
1 0.414 0.474 0.496 0.526 0.574
5 0.307 0.44 0.494 0.543 0.683
10 0.188 0.34 0.496 0.628 0.838
20 0.097 0.223 0.506 0.745 0.92

Table 29: Comparison Markmin and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmin mu=0.6
0 0.004 0.034 0.052 0.074 0.125
1 0.002 0.041 0.067 0.099 0.176
5 0.006 0.075 0.105 0.155 0.248
10 0.002 0.081 0.132 0.604 0.823
20 0.008 0.094 0.206 0.738 0.92

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

43

Table 30: Comparison Markrnd and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markrnd mu=0.6
0 0.408 0.603 0.698 0.783 0.96
1 0.38 0.625 0.726 0.813 0.967
5 0.459 0.687 0.788 0.866 0.979
10 0.512 0.735 0.832 0.892 0.979
20 0.621 0.792 0.864 0.92 0.985

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

Table 31: Comparison Markmax and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmax mu=0.6
0 0.919 0.951 0.969 0.981 0.999
1 0.902 0.944 0.964 0.979 0.999
5 0.858 0.917 0.938 0.96 0.997
10 0.827 0.905 0.931 0.96 0.997
20 0.762 0.876 0.928 0.957 0.996

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

44

Table 32: Comparison Campbell and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbell mu=0.6
0 0.261 0.338 0.374 0.413 0.521
1 0.234 0.358 0.402 0.457 0.601
5 0.264 0.427 0.498 0.633 0.823
10 0.238 0.517 0.724 0.795 0.915
20 0.519 0.736 0.822 0.881 0.955

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

Table 33: Comparison Markminvisc a=0.2 and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markminvisc a=0.2 and mu=0.6
0 0.012 0.11 0.164 0.219 0.377
1 0.018 0.115 0.177 0.248 0.44
5 0.524 0.614 0.653 0.691 0.776
10 0.547 0.68 0.726 0.777 0.881
20 0.586 0.744 0.794 0.856 0.942

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

45

Table 34: Comparison Markrndvisc a=0.2 and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markrndvisc a=0.2 and mu=0.6
0 0.403 0.576 0.639 0.71 0.901
1 0.397 0.583 0.656 0.726 0.924
5 0.433 0.641 0.703 0.783 0.941
10 0.464 0.677 0.735 0.821 0.965
20 0.495 0.697 0.771 0.852 0.979

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

Table 35: Comparison Markmaxvisc a=0.2 and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmaxvisc a=0.2 and mu=0.6
0 0.777 0.888 0.925 0.972 0.999
1 0.773 0.882 0.924 0.961 0.999
5 0.724 0.847 0.896 0.93 1.0
10 0.766 0.851 0.898 0.933 1.0
20 0.721 0.838 0.899 0.928 1.0

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

46

Table 36: Comparison Campbell a=0.2 and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbell a=0.2 and mu=0.6
0 0.364 0.415 0.442 0.465 0.536
1 0.375 0.458 0.489 0.526 0.61
5 0.426 0.55 0.604 0.655 0.805
10 0.393 0.623 0.718 0.786 0.901
20 0.543 0.733 0.809 0.866 0.945

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

Table 37: Comparison Markminvisc a=0.8 and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markminvisc a=0.8 and mu=0.6
0 0.008 0.065 0.093 0.129 0.212
1 0.009 0.068 0.108 0.154 0.273
5 0.503 0.613 0.658 0.695 0.795
10 0.554 0.686 0.739 0.788 0.908
20 0.606 0.765 0.823 0.879 0.965

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

47

Table 38: Comparison Markminvisc a=0.8 and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markminvisc a=0.8 and mu=0.6
0 0.008 0.065 0.093 0.129 0.212
1 0.009 0.068 0.108 0.154 0.273
5 0.503 0.613 0.658 0.695 0.795
10 0.554 0.686 0.739 0.788 0.908
20 0.606 0.765 0.823 0.879 0.965

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

Table 39: Comparison Markmaxvisc a=0.8 and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmaxvisc a=0.8 and mu=0.6
0 0.91 0.947 0.966 0.979 0.999
1 0.897 0.939 0.962 0.977 0.999
5 0.865 0.917 0.943 0.967 1.0
10 0.832 0.909 0.939 0.967 1.0
20 0.812 0.901 0.936 0.962 1.0

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

48

Table 40: Comparison Campbellvisc a=0.8 and Direct Democracy for mu=0.6
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbellvisc a=0.8 and mu=0.6
0 0.284 0.349 0.386 0.421 0.529
1 0.263 0.372 0.415 0.467 0.597
5 0.303 0.445 0.518 0.634 0.822
10 0.26 0.531 0.724 0.793 0.913
20 0.533 0.735 0.82 0.878 0.953

Direct Democracy mu=0.6
0 0.521 0.559 0.574 0.595 0.624
1 0.521 0.582 0.605 0.629 0.681
5 0.533 0.635 0.672 0.704 0.804
10 0.57 0.706 0.756 0.803 0.903
20 0.661 0.79 0.842 0.882 0.967

Table 41: Comparison Markmin and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmin mu=0.7
0 0.017 0.11 0.147 0.185 0.293
1 0.026 0.163 0.246 0.387 0.639
5 0.65 0.723 0.751 0.781 0.846
10 0.714 0.801 0.838 0.869 0.952
20 0.768 0.864 0.903 0.93 0.991

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

49

Table 42: Comparison Markrnd and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markrnd mu=0.7
0 0.5 0.7 0.824 0.872 0.929
1 0.669 0.724 0.79 0.854 0.917
5 0.718 0.801 0.854 0.889 0.961
10 0.745 0.839 0.878 0.91 0.969
20 0.767 0.852 0.918 0.944 0.974

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

Table 43: Comparison Markmax and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmax mu=0.7
0 0.941 0.97 0.982 0.99 1.0
1 0.938 0.967 0.981 0.99 1.0
5 0.902 0.948 0.966 0.98 1.0
10 0.895 0.942 0.962 0.979 1.0
20 0.848 0.925 0.956 0.977 1.0

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

50

Table 44: Comparison Campbell and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbell mu=0.7
0 0.27 0.376 0.423 0.472 0.593
1 0.266 0.442 0.504 0.599 0.697
5 0.302 0.579 0.758 0.809 0.902
10 0.608 0.766 0.832 0.873 0.963
20 0.59 0.796 0.889 0.933 0.992

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

Table 45: Comparison Markminvisc a=0.2 and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markminvisc a=0.2 and mu=0.7
0 0.026 0.169 0.234 0.291 0.465
1 0.032 0.203 0.279 0.366 0.57
5 0.656 0.735 0.767 0.796 0.876
10 0.682 0.786 0.822 0.856 0.958
20 0.721 0.832 0.876 0.911 0.991

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

51

Table 46: Comparison Markrndvisc a=0.2 and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markrndvisc a=0.2 and mu=0.7
0 0.537 0.687 0.752 0.799 0.95
1 0.588 0.729 0.772 0.824 0.963
5 0.634 0.771 0.816 0.866 0.986
10 0.635 0.789 0.841 0.893 0.994
20 0.659 0.805 0.859 0.909 0.997

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

Table 47: Comparison Markmaxvisc a=0.2 and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmaxvisc a=0.2 and mu=0.7
0 0.845 0.926 0.952 0.987 1.0
1 0.84 0.925 0.953 0.988 1.0
5 0.795 0.891 0.935 0.958 1.0
10 0.785 0.887 0.932 0.957 1.0
20 0.782 0.884 0.925 0.953 1.0

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

52

Table 48: Comparison Campbellvisc a=0.2 and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbellvisc a=0.2 and mu=0.7
0 0.377 0.46 0.489 0.525 0.62
1 0.438 0.539 0.578 0.618 0.679
5 0.516 0.68 0.756 0.803 0.896
10 0.618 0.766 0.823 0.869 0.96
20 0.617 0.8 0.878 0.925 0.992

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

Table 49: Comparison Markminvisc a=0.8 and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markminvisc a=0.8 and mu=0.7
0 0.018 0.115 0.154 0.192 0.303
1 0.021 0.13 0.19 0.265 0.459
5 0.66 0.744 0.774 0.8 0.872
10 0.696 0.8 0.838 0.873 0.955
20 0.737 0.852 0.904 0.933 0.991

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

53

Table 50: Comparison Markrndvisc a=0.8 and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markrndvisc a=0.8 and mu=0.7
0 0.567 0.749 0.817 0.882 0.983
1 0.626 0.779 0.846 0.891 0.978
5 0.713 0.831 0.88 0.92 0.988
10 0.749 0.855 0.902 0.938 0.994
20 0.782 0.879 0.922 0.951 0.997

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

Table 51: Comparison Markmaxvisc a=0.8 and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Markmaxvisc a=0.8 and mu=0.7
0 0.941 0.967 0.98 0.988 1.0
1 0.933 0.965 0.979 0.989 1.0
5 0.896 0.948 0.969 0.983 1.0
10 0.898 0.946 0.966 0.981 1.0
20 0.879 0.937 0.962 0.978 1.0

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

54

Table 52: Comparison Campbellvisc a=0.8 and Direct Democracy for mu=0.7
Diffusion stage Low whisker Q2 Median Q3 High whisker

Campbellvisc a=0.8 and mu=0.7
0 0.291 0.389 0.433 0.475 0.59
1 0.29 0.458 0.517 0.603 0.693
5 0.308 0.595 0.759 0.808 0.901
10 0.609 0.762 0.83 0.872 0.962
20 0.592 0.794 0.888 0.931 0.992

Direct Democracy mu=0.7
0 0.596 0.631 0.645 0.664 0.692
1 0.615 0.675 0.693 0.715 0.762
5 0.668 0.745 0.772 0.798 0.86
10 0.721 0.812 0.848 0.887 0.958
20 0.773 0.869 0.907 0.932 0.991

55

9.2 B: Graphs

Figure 2:

56

Figure 3:

57

Figure 4:

58

Figure 5:

59

Figure 6:

60

Figure 7:

61

Figure 8:

62

Figure 9:

63

Figure 10:

64

Figure 11:

65

Figure 12:

66

Figure 13:

67

Figure 14:

68

Figure 15:

69

Figure 16:

70

Figure 17:

71

Figure 18:

72

Figure 19:

73

Figure 20:

74

Figure 21:

75

Figure 22:

76

Figure 23:

77

Figure 24:

78

Figure 25:

79

Figure 26:

80

Figure 27:

81

Figure 28:

82

9.3 C: Code

Only the code for the relevant functions and one version of the aggregate frame-
work are shared here.

• KnowVar:

def KnowVar(n,mu,sigma,seed): #The initial knowledge states of voters

lower =0 #picking normally distributed values between 0 and 1

upper =1

Knowledge = sp.stats.truncnorm.rvs(

(lower-mu)/sigma,(upper-mu)/sigma,mu,sigma,n,random_state=seed)

return Knowledge

• Adjacency:

def Adjacency(n,seed): #Adjacency Matrix to describe graph structure

rng=np.random.default_rng(seed) #For reproducability

A=rng.integers(0,2,(n,n)) #Creating a random nxn matrix consisting of 0 and 1

for i in range(0,n): #Making it symmetric

for j in range(i,n):

A[i][j]=A[j][i]

A[i][i]=1 #Diagonal can't have a 0

return A

• Confidence_bound

def Confidence_bound(Knowledge_array): #finding the confidence bounds

#print("Confidence Bound Start")

length=len(Knowledge_array)

bound=np.array([])

for i in range(0,length):

bound=np.append(bound,0.5-abs(0.5-Knowledge_array[i]))

#print("Confidence Bound Done")

return bound

83

• Confidence_Matrix

def Confidence_Matrix(Adjacency,Knowledge,Bound):

#print("Confidence Matrix Start")

n=len(Knowledge)

A=np.zeros((n,n))

for i in range(0,n):

Influence=np.array([])

for j in range(0,n):

if Adjacency[i][j]==1 and abs(Knowledge[i]-Knowledge[j])<=Bound[i]:

Influence=np.append(Influence,j)

Size=len(Influence)

for j in range(0,n):

if j in Influence:

A[i][j]=1/Size

#print("Confidence Matrix Done")

return A

• direct

#DIRECT DEMOCRACY

def Direct(Knowledge): #Takes knowledge state of voters

EDir=np.sum(Knowledge) #Expectation

PDir=EDir/len(Knowledge) #Probability

return PDir

84

• Identifier

#PATH IDENTIFIER FOR CYCLES

def Identifier(Size, nbar, Dnew): #Takes the transpose of the delegation graph Dnew.

z=0

i=nbar[z]

j=0

Parr=np.array([i],dtype=int)

Length=len(Parr)

while Dnew[i][i]==0 and j<=Size: #First time round we do not

if Length==0:

for j in range(0,Size):

if Dnew[j][i]!=0:

p=i

Parr=np.append(Parr,p)

Length=len(Parr)

if Length>=8:

break

if Length>=8:

break

else:

while j <=Size:

if Dnew[j][i]!=0:

p=j

i=p

j=0

Parr=np.append(Parr,p)

Dnew[p]=Dnew[p]+Dnew[Parr[z]]

z=len(Parr)-1

if Dnew[i][i]!=0:

j=Size+1

if z!=0:

#Extra condition in case of a jellyfish cycle.

for l in range(0,z):

if Parr[z]==Parr[l]:

j=Size+1

else:

j+=1

if z!=0 and Parr[z-1]==Parr[0]:

j=Size+1

return Dnew, Parr

85

• IdentifierTwo

#PATH IDENTIFIER FOR CYCLELESS DELEGATION GRAPHS

def IdentifierTwo(Size, nbar, Dnew):

z=0

i=nbar[z]

j=0

Parr=np.array([i],dtype=int)

Length=len(Parr)

while Dnew[i][i]==0 and j<=Size:

if Length==0:

for j in range(0,Size):

if Dnew[j][i]!=0:

p=i

Parr=np.append(Parr,p)

Length=len(Parr)

if Length>=8:

break

if Length>=8:

break

else:

while j <=Size:

if Dnew[j][i]!=0:

p=j

i=p

j=0

Parr=np.append(Parr,p)

Dnew[p]=Dnew[p]+Dnew[Parr[z]]

z=len(Parr)-1

if Dnew[i][i]!=0:

j=Size+1

if z!=0 and Parr[z]==Parr[0]:

j=Size+1

else:

j+=1

if z!=0 and Parr[z-1]==Parr[0]:

j=Size+1

return Dnew, Parr

86

• Cyclefinder

def Cyclefinder(D):

Dnew=np.transpose(D)

Size=len(D[0])

nbar=np.arange(Size,dtype=int)

Array=[]

while len(nbar)!=0:

Dnew, Arr=Identifier(Size,nbar,Dnew)

length=len(Arr)

if len(Arr)>=2:

#Extra condition in case of jellyfish cycles.

for l in range(0,length-1):

if Arr[l]==Arr[len(Arr)-1]:

Array=[*Array, *Arr[l:]]

i=0

for i in range(0,len(Arr)):

nbar=np.delete(nbar,np.argwhere(nbar==Arr[i]))

return Array

• Pathfinder

def Pathfinder(D,Epsilon): #Only if Cyclefinder gives an empty list.

Check=Cyclefinder(D)

if len(Check)!=0: #Check if there are still cycles in the delegation matrix

return print("The graph contains cycles")

else:

#Finding all paths to gurus and the corresponding weighted delegation matrix

Dnew=np.transpose(D)

Size=len(D[0])

nbar=np.arange(Size,dtype=int)

Array=[]

while len(nbar)!=0:

Dnew, Arr=IdentifierTwo(Size,nbar,Dnew)

Array=Array+[Arr.tolist()]

i=0

for i in range(0,len(Arr)):

nbar=np.delete(nbar,np.argwhere(nbar==Arr[i]))

for i in range(len(Array)-1,-1,-1): #Deleting subpaths of longer paths.

for j in range(len(Array)-1,-1,-1):

if i!=j and set(Array[i])<=set(Array[j]):

del Array[i:i+1]

return Array, Dnew

87

• Buster

def Buster(D,Epsilon,cycles,seed,t): #Inputs: Delegation matrix, Confidence matrix

,cycles, seed, time

Copycycle=copy.deepcopy(cycles)

rng=np.random.default_rng(seed)

Entries=cycles

Epsilon=Epsilon

Length=len(Epsilon[0])

corrected=np.array(())

k=0

z=0

i=0

m=0

numbers=[]

Numbers=[]

for i in Entries:

for j in range(0, len(Epsilon[i])):

if Epsilon[i][j]!=0:

numbers+=[j]

Numbers+=[numbers]

numbers=[]

i=0

j=0

while i <len(Entries):

p=Entries[i]

if Entries[i] in corrected:

i+=1

else:

if Entries[i]==p and m!=0:

for l in range(z,i):

k+=len(Numbers[l])

if t>=20:

D[Entries[i]]=np.zeros((Length))

D[Entries[i]][Entries[i]]=1

if k==i-z and t!=20:

A=rng.integers(0,k)

D[Entries[A+z]]=np.zeros((Length))

D[Entries[A+z]][Entries[A+z]]=1

else:

for l in range(z,i):

A=rng.integers(0,len(Numbers[l]))

D[Entries[l]]=np.zeros((Length))

D[Entries[l]][Numbers[l][A]]=1

z+=i

corrected=np.append(corrected,Entries[i])

88

i+=1

else:

i+=1

m+=1

return D

• Campbell

def Campbell(D,knowledge,seed):

rng=np.random.default_rng(seed)

n=len(knowledge)

Approv=np.zeros((n,n))

for i in range(0,n): #creating a matrix of confidence values for connected voters

for j in range(0,n):

if D[i][j] != 0:

Approv[i][j]=knowledge[j]

for i in range(0,n): #Creating approval matrix of only approved connected voters.

if knowledge[i]<=0.25:

A=rng.integers(0,2)

if A==0: #case vote for antiexpert

for j in range(0,n):

if Approv[i][j]>0.25:

Approv[i][j]=0

if max(Approv[i])==0: #case if there are no approved delegates.

Approv[i][i]=knowledge[i]

else: #case vote for nonexpert

for j in range(0,n):

if Approv[i][j]<=0.25 or Approv[i][j]>=0.75:

Approv[i][j]=0

if max(Approv[i])==0: #case if there are no approved delegates.

Approv[i][i]=knowledge[i]

if knowledge[i]>=0.75:

A=rng.integers(0,2)

if A==0: #case vote for expert

for j in range(0,n):

if Approv[i][j]<0.75:

Approv[i][j]=0

if max(Approv[i])==0: #case if there are no approved delegates.

Approv[i][i]=knowledge[i]

else: #case vote for nonexpert

for j in range(0,n):

if Approv[i][j]<=0.25 or Approv[i][j]>=0.75:

Approv[i][j]=0

if max(Approv[i])==0: #case if there are no approved delegates.

Approv[i][i]=knowledge[i]

else:

89

A=rng.integers(0,3)

if A==0: #case vote for expert

for j in range(0,n):

if Approv[i][j]<0.75:

Approv[i][j]=0

if max(Approv[i])==0: #case if there are no approved delegates.

Approv[i][i]=knowledge[i]

if A==1: #case vote for nonexpert

for j in range(0,n):

if Approv[i][j]<=0.25 or Approv[i][j]>=0.75:

Approv[i][j]=0

if max(Approv[i])==0: #case if there are no approved delegates.

Approv[i][i]=knowledge[i]

else: #case vote for antiexpert

for j in range(0,n):

if Approv[i][j]>0.25:

Approv[i][j]=0

if max(Approv[i])==0: #case if there are no approved delegates.

Approv[i][i]=knowledge[i]

Epsilon=copy.deepcopy(Approv)

for i in range(0,n):

cols=np.array((),dtype=int)

for j in range(0,n):

if Approv[i][j]!=0:

cols=np.append(cols,j)

A=rng.integers(0,len(cols))

for j in cols:

if j!=cols[A]:

Approv[i][j]=0

else:

Approv[i][j]=1

return Epsilon, Approv

90

• confcheck

def confcheck(Paths,Epsilon,Dnew,A):

i=0

while i <len(Paths) and i<=20000:

j=1

while j <len(Paths[i]):

k=0

while k <len(Paths[i]):

if Epsilon[Paths[i][j]][Paths[i][k]]==0 and A[Paths[i][j]][Paths[i][k]]!=0

and j!=k and len(Paths[i])>1:

placeholder=Paths[i][j::]

Paths[i]=Paths[i][0:j]

Paths[i+1:i+1]=[placeholder]

Dnew[Paths[i][len(Paths[i])-1]][Paths[i+1][len(Paths[i+1])-1]]=0

j=1

k+=1

else:

k+=1

j+=1

i+=1

return Paths, Dnew

• counter

def counter(Dnew):

length=len(Dnew[0])

Array=np.zeros((length))

for i in range(0,length):

for j in range(0,length):

if Dnew[i][j]>1:

Dnew[i][j]=1

for i in range(0,length):

if Dnew[i][i]!=0:

Array[i]=sum(Dnew[i])

return Array

91

• Markakisrndm

#Markakis

def markakisrndm(A,xini,conf,seed): #Adjacancy matrix, initial knowledge

, confidence bound, random seed

Length=len(xini)

rng=np.random.default_rng(seed)

Epsilon=np.zeros((Length,Length))

for i in range(0,n):

for j in range(0,n):

if A[i][j]==1 and abs(xini[i]-xini[j])<=conf[i]:

Epsilon[i][j]=xini[j]

Approv=np.zeros((Length,Length))

Numbro=np.array((),dtype=int)

for i in range(0,Length):

for j in range(0,Length):

if Epsilon[i][j]!=0:

Numbro=np.append(Numbro,j)

rndm=rng.integers(0,len(Numbro),dtype=int)

Approv[i][Numbro[rndm]]=1

Numbro=np.array((),dtype=int)

return Epsilon, Approv

92

• markakisdetmax

def markakisdetmax(A,xini,conf,seed): #Adjacancy matrix, initial knowledge

, confidence bound, random seed

Length=len(xini)

Epsilon=np.zeros((Length,Length))

for i in range(0,n):

for j in range(0,n):

if A[i][j]==1 and abs(xini[i]-xini[j])<=conf[i]:

Epsilon[i][j]=xini[j]

if max(Epsilon[i])==0:

Epsilon[i][i]=xini[i]

Approv=np.zeros((Length,Length))

for i in range(0,Length):

j=0

k=0

while j<Length:

if j==0:

k=j

j+=1

else:

if Epsilon[i][j]>Epsilon[i][k]:

k=j

j+=1

Approv[i][k]=1

return Epsilon, Approv

93

• markakisdetmin

def markakisdetmin(A,xini,conf,seed): #Adjacancy matrix, initial knowledge

, confidence bound, random seed

Length=len(xini)

Epsilon=np.zeros((Length,Length))

for i in range(0,n):

for j in range(0,n):

if A[i][j]==1 and abs(xini[i]-xini[j])<=conf[i]:

Epsilon[i][j]=xini[j]

if max(Epsilon[i])==0:

Epsilon[i][i]=xini[i]

Approv=np.zeros((Length,Length))

for i in range(0,Length):

j=0

k=0

while j<Length:

#print("j=",j)

if Epsilon[i][k]==0 and Epsilon[i][j]==0:

j+=1

if Epsilon[i][k]==0 and Epsilon[i][j]!=0:

k=j

j+=1

else:

if Epsilon[i][j]!=0 and Epsilon[i][j]<Epsilon[i][k]:

k=j

j+=1

Approv[i][k]=1

return Epsilon, Approv

94

• viscous

#Viscous Democracy

def viscous(Dnew,Paths,alpha):

Length=len(Dnew[0])

nbar=np.arange(0,Length)

Array=np.zeros(Length).tolist()

while len(nbar)>0:

zeroth=nbar[0]

j=0

while j < len(Paths):

plen=len(Paths[j])

guru=Paths[j][len(Paths[j])-1]

k=0

while k < plen:

if Paths[j][k]==zeroth:

Array[guru]+=alpha**(plen-k-1)

nbar=np.delete(nbar,0)

k=plen

j+=len(Paths)

else:

k+=1

j+=1

Weigth=sum(Array)

return Array, Weigth

95

• Aggreg_xxxx

• This code block summarizes all the aggregate functions for all delegation
mechanisms. The only difference will be the delegation function chosen,
and if it uses either the approval method or viscous democracy. In case of
viscous democracy the lines:

PathsY, DnewY=confcheck(Paths,EpsilonY,DnewY,Ab)

and

CountY=counter(DnewY)

ProbabilityY=np.dot(CountY,xini)/XLength

get replaced by:

ArrayY, WeigthY=viscous(DnewY,Paths,alpha)

and

ProbabilityY=np.dot(ArrayY,xini)/WeigthY

where Y represents the diffusion stage.

96

def Aggreg_xxxx(A,xini,seeding):

Ab=copy.deepcopy(A)

xini=copy.deepcopy(xini)

t=0

while t<20:

if t==0:

bound=Confidence_bound(xini)

conf0=copy.deepcopy(bound)

A=Confidence_Matrix(Ab,xini,bound)

xnew=np.matmul(A,xini)

x1ni=copy.deepcopy(xnew)

t+=1

if t==1:

bound=Confidence_bound(xnew)

conf1=copy.deepcopy(bound)

A=Confidence_Matrix(Ab,xnew,bound)

xnew=np.matmul(A,xini)

x1ni=copy.deepcopy(xnew)

t+=1

if t==4:

bound=Confidence_bound(xnew)

conf5=copy.deepcopy(bound)

A=Confidence_Matrix(Ab,xnew,bound)

xnew=np.matmul(A,xnew)

x5ni=copy.deepcopy(xnew)

t+=1

if t==9:

bound=Confidence_bound(xnew)

conf10=copy.deepcopy(bound)

A=Confidence_Matrix(Ab,xnew,bound)

xnew=np.matmul(A,xnew)

x10ni=copy.deepcopy(xnew)

t+=1

if t==19:

bound=Confidence_bound(xnew)

conf20=copy.deepcopy(bound)

A=Confidence_Matrix(Ab,xnew,bound)

xnew=np.matmul(A,xnew)

x20ni=copy.deepcopy(xnew)

t+=1

else:

bound=Confidence_bound(xnew)

A=Confidence_Matrix(Ab,xnew,bound)

xnew=np.matmul(A,xnew)

t+=1

Epsilon0,Approv0=xxxx(Ab,xini,conf0,seeding)

97

#inputs depend on delegation mechanism xxxx

Epsilon1,Approv1=xxx(Ab,x1ni,conf1,seeding)

Epsilon5,Approv5=xxxx(Ab,x5ni,conf5,seeding)

Epsilon10,Approv10=xxxx(Ab,x10ni,conf10,seeding)

Epsilon20,Approv20=xxxx(Ab,x20ni,conf20,seeding)

Cycles=Cyclefinder(Approv0)

t=0

while len(Cycles)!=0 or t<=20:

Matrix=Buster(Approv0,Epsilon0,Cycles,seeding,t)

Cycles=Cyclefinder(Matrix)

if np.all(Matrix-Approv0==0):

t+=1

Paths, Dnew0=Pathfinder(Approv0,Epsilon0)

Paths0, Dnew0=confcheck(Paths,Epsilon0,Dnew0,Ab)

Cycles=Cyclefinder(Approv1)

t=0

while len(Cycles)!=0 or t<=20:

Matrix=Buster(Approv1,Epsilon1,Cycles,seeding,t)

if np.all(Matrix-Approv1==0):

t+=1

Cycles=Cyclefinder(Matrix)

Paths, Dnew1=Pathfinder(Approv1,Epsilon1)

Paths1, Dnew1=confcheck(Paths,Epsilon1,Dnew1,Ab)

Cycles=Cyclefinder(Approv5)

t=0

while len(Cycles)!=0 or t<=20:

Matrix=Buster(Approv5,Epsilon5,Cycles,seeding,t)

if np.all(Matrix-Approv5==0):

t+=1

Cycles=Cyclefinder(Matrix)

Paths, Dnew5=Pathfinder(Approv5,Epsilon5)

Paths5, Dnew5=confcheck(Paths,Epsilon5,Dnew5,Ab)

Cycles=Cyclefinder(Approv10)

t=0

while len(Cycles)!=0 or t<=20:

Matrix=Buster(Approv10,Epsilon10,Cycles,seeding,t)

if np.all(Matrix-Approv10==0):

t+=1

Cycles=Cyclefinder(Matrix)

Paths, Dnew10=Pathfinder(Approv10,Epsilon10)

Paths10, Dnew10=confcheck(Paths,Epsilon10,Dnew10,Ab)

Cycles=Cyclefinder(Approv20)

98

t=0

while len(Cycles)!=0 or t<=20:

Matrix=Buster(Approv20,Epsilon20,Cycles,seeding,t)

if np.all(Matrix-Approv20==0):

t+=1

Cycles=Cyclefinder(Matrix)

Paths, Dnew20=Pathfinder(Approv20,Epsilon20)

Paths20, Dnew20=confcheck(Paths,Epsilon20,Dnew20,Ab)

XLength=len(xini)

Count0=counter(Dnew0)

Probability0=np.dot(Count0,xini)/XLength

Count1=counter(Dnew1)

Probability1=np.dot(Count1,x1ni)/XLength

Count5=counter(Dnew5)

Probability5=np.dot(Count5,x5ni)/XLength

Count10=counter(Dnew10)

Probability10=np.dot(Count10,x10ni)/XLength

Count20=counter(Dnew20)

Probability20=np.dot(Count20,x20ni)/XLength

PArr=np.array([Probability0,Probability1,Probability5

,Probability10,Probability20]).tolist()

return PArr

99

