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Abstract

Bayesian networks are a widely-used probabilistic graphical model in which random variables,
and the conditional dependencies between these variables, are represented using a directed acyclic
graph (DAG). Bayesian network structure learning refers to the highly sought-after, yet challenging,
task of inferring Bayesian networks from data. In this paper, we formally introduce the task of
structure learning and focus on structure learning in networks with background information and
networks with incomplete information. First, we provide a formal definition of networks with
background information through the treatment of maximally oriented partially directed acyclic
graphs (MPDAGs). Moreover, we study the differences between regular networks and networks with
background information, and develop theory regarding dependencies in MPDAGs as a starting point
for performing structure learning in networks with background information. Second, we introduce
networks with incomplete information, and provide a detailed exposition of the belief propagation
algorithm as an efficient approach for calculating marginal distributions of unobserved variables.
Moreover, we provide an adaptation of the belief propagation algorithm to Bayesian networks,
discuss the exactness of the algorithm, and propose an approach for using the algorithm to sample
missing data in discrete Bayesian networks. Finally, we offer a comprehensive implementation of
the algorithm in the programming language R.

Keywords: Bayesian Network, Structure Learning, Background Information, CPDAG, MPDAG,
Incomplete Information, Propagation

2



Acknowledgements

I would like to thank everyone who has directly or indirectly assisted me in the writing of this
thesis. First, I would like to thank my first supervisor, Prof. Dr. Marco A. Grzegorczyk, without
whose support the successful completion of my thesis would not have been possible. His kindness,
dedication, research ideas and knowledge, and genuine interest in my topic have been instrumental
throughout the entire writing process, and I am eternally thankful to him for that. I would also like
to thank my second assessor, Dr. Alef E. Sterk, who has showed tremendous understanding and
support regarding the completion of my thesis. Finally, I would like to thank my family, partner and
friends for supporting me emotionally and encouraging me throughout my entire formal education,
and especially during the last few months. Their love towards me and willingness to help me have
been nothing short of extraordinary.

3



Contents

Contents

1 Introduction 5

2 Theoretical Background 9
2.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Bayesian Network Structure Learning 29
3.1 The Space of DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Equivalence Classes of DAGs . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Structure Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Bayesian Networks with Background Information 44
4.1 Maximally Oriented PDAGs . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Differences between CPDAGs and MPDAGs . . . . . . . . . . . . . . . . . 50
4.3 Dependence Relations in MPDAGs . . . . . . . . . . . . . . . . . . . . . . 56

5 Bayesian Networks with Incomplete Information 60
5.1 The Belief Propagation Algorithm . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Belief Propagation for Bayesian Networks . . . . . . . . . . . . . . . . . . 66
5.3 Convergence, Implementation and Proposed Approach for Sampling Miss-

ing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion and Discussion 76
6.1 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Personal Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 References 78

8 Appendix 81
8.1 Implementation of Belief Propagation in R . . . . . . . . . . . . . . . . . . 81

4



1 Introduction

1 Introduction

In many natural and social processes, in which there are interacting variables (e.g. fac-
tors, agents, objects) involved, one is often interested in exploring the different influence
and causal relationships that exist in the given processes. Discovering causal relations
is extremely desirable from a practical perspective, whether that is the stock market,
for which we are interested in learning how the price fluctuations in certain financial
instruments (e.g. stocks, bonds or market indices) influence the price of other financial
instruments, or an entire ecosystem, for which we want to know how the changes in
predator and prey populations influence each other. However, in practice this is often
not possible due to the many possible explanatory factors for an identified correlation
[28]. To that end, one might colloquially state that the “next best thing” is to discover
dependence relations in a given process. For instance, when studying predator-prey
relations, we might observe that a decline in the predator population correlates with
the increase in the prey population size. We most likely are not able to attribute this
observation to direct causality due to the many environmental factors involved, such as
grazing opportunities and climate change, but we are far more likely to deliberate that
given a decrease in the predator population size, the prey population size is more likely
to increase, thus establishing a dependence relation.

The formal study and modelling of such relations can be done in a multitude of ways,
ranging from the use of neural networks to the application of classical rule-based systems
founded upon first-order logic principles [21]. Currently, a popular approach for study-
ing dependence relations, which garnered a considerable surge in interest in the late 20th

century, is the use of probabilistic graphical models (PGMs) [21]. Namely, if we intro-
duce uncertainty and some form of logical structure to a process involving interacting
variables, we are able to assume the interacting variables to be random variables and the
dependence relations between them to be given as conditional probabilities. In particu-
lar, PGMs are graphical models, meaning that they are represented by graphs, in which
the nodes of the graph are represented by random variables and the edges of the graph
encode the dependence relations between the variables and the associated conditional
probabilities [17]. For instance, our predator-prey example from the first paragraph
could be rather simply represented as a PGM (see figure 1.1), and we could interpret
it as the event of the random variable “predator population” being low increases the
probability of the event of the random variable “prey population” being high.

There are two main types of probabilistic graphical models, Bayesian networks, based
on directed acyclic graphs (also known as belief networks), and Markov networks, based
on undirected graphs (also known as Markov random fields (MRFs)) [17].
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1 Introduction

Predator Prey

Figure 1.1: Predator Prey PGM.

There exist also PGMs in which a mixture of directed and undirected representation is
used such as chain graphs (see [2]). The focus of our research is on Bayesian networks.

Bayesian networks are a type of PGM, typically represented through a directed acyclic
graph (DAG) (e.g. the graph in figure 1.1 is a DAG) [21]. DAGs visually depict the
different dependencies among variables. As mentioned, in a DAG nodes represent ran-
dom variables, while directed edges indicate probabilistic dependencies between them.
Crucially, the acyclic property ensures that no cycles exist in the graph, preventing feed-
back loops and maintaining a clear directionality in the dependence relationships [21].
Bayesian networks offer an intuitive framework for representing and reasoning under
uncertainty, finding applications across diverse domains including artificial intelligence,
machine learning and genetics [27].

On the one hand, from the description of Bayesian networks, it is rather natural and
obvious to use them to describe dependence relations among interacting variables. How-
ever, from a practical perspective, a much more beneficial use of Bayesian networks
would be to infer a network from collected data. This is commonly known as Bayesian
network structure learning, and in essence it represents the task of developing statistical
approaches with which we can analyze collected data regarding some interacting vari-
ables and infer the underlying network structure that these variables are a part of [28].
Uncovering the underlying network structure of a process involving interacting variables
by simply analyzing collected data allows us to better understand how the dependence
relations among these variables look like, which is an extremely powerful result given
the required input. For instance, in the field of biology, studying gene expression to
understand how certain genes act as regulators for other genes in different human cells
is of paramount importance for drug development, therapy development and targeted
medical care [12]. One way to study and understand how genes regulate and influence
each other is through the use of structure learning approaches for gene expression data
[27].

There exist two main types of structure learning approaches: constraint-based and score-
based approaches [13]. Constraint-based Bayesian network structure learning identifies
the network structure by leveraging conditional independence tests on the data [5]. These
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1 Introduction

tests determine whether two variables are independent given a set of other variables. The
process begins with constructing an undirected graph where nodes are connected if they
fail the independence tests. Edges are then oriented to satisfy the identified conditional
independencies, adhering to the rules of directed acyclic graphs (DAGs). Algorithms like
the PC algorithm and the GS algorithm are commonly used, iterating over increasing
conditioning sets to refine the graph [20]. On the other hand, score-based approaches
involve identifying the optimal network structure by evaluating different structures using
a scoring metric [5, 13]. This metric measures how well a given structure fits the data,
typically balancing model complexity and data fit. Common scores include the Gaussian
BGe score from Geiger and Heckerman [11] and the discrete BDe score from Madigan
and York [23]. These approaches often employ search algorithms, such as the hill climb-
ing algorithm [10], to explore the space of possible network structures, aiming to find the
structure that best represents the underlying probabilistic relationships among variables.

The main assumption of the majority of classical constraint-based and score-based struc-
ture learning approaches is that the data they are taking as input is complete [13]. How-
ever, from a practical perspective, having complete data is not always the case. For
instance, we could have missing data in our dataset due to technical errors, equipment
malfunction or documentation oversight [5]. Alternatively, we could also have additional
information that extends our collected data due to past observations, expert knowledge
or model constraints [5]. Therefore, we would like to be able to perform structure learn-
ing on datasets with background information and incomplete information.

It is important to note that there exist structure learning approaches for Bayesian net-
works with background information and incomplete information. However, in the case
of networks with background information, these approaches aim to circumvent the back-
ground information and use classical approaches, thus they are typically either very
restrictive or computationally inefficient [35, 18]. On the other hand, in the case of
networks with incomplete information, the majority of approaches typically aim to find
one “best” network fitting the data [20]. A recent paper promotes a different route by
developing a so-called Bayesian model averaging (BMA) approach for inferring Gaussian
Bayesian networks from incomplete data by simultaneously sampling DAGs and missing
data values from a posterior distribution [13]. This approach turns out to be highly com-
petitive in terms of network reconstruction accuracy compared to classical approaches
such as the structural EM algorithm and the NAL approach [13, 1, 6]. Nevertheless, one
potential limitation of this approach is that it is currently tailored to Gaussian networks
with no established adaptation for discrete Bayesian networks [13].

Therefore this paper has three main objectives. First, we formally introduce Bayesian
networks and the task of Bayesian network structure learning. Second, we introduce
Bayesian networks with background information, explore differences to regular networks,
and develop new theory on dependence relations with the aim of performing structure
learning directly on these networks without having to avoid incorporating the back-
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ground information at hand. Third, we formally introduce networks with incomplete
information and adapt the so-called belief propagation algorithm to Bayesian networks
to propose an approach for sampling missing values with the aim of developing an adap-
tation of the introduced BMA approach to discrete Bayesian networks. Additionally, we
explore the convergence of this algorithm and provide an implementation of the algo-
rithm in the programming language R.

The remainder of this thesis is structured as follows. Section 2 provides a comprehensive
theoretical background from the fields of graph theory, measure theory and probability
theory (sections 2.1, 2.2 and 2.3). Moreover, section 2.4 is devoted to the formal in-
troduction of Bayesian networks, alongside key results related to the study and use of
Bayesian networks. In section 3 we introduce the task of Bayesian network structure
learning, and discuss the difficulty of conducting structure learning by looking at the
space of possible DAGs on n ∈ N nodes (section 3.1), as well as how we can define an
equivalence relation on DAGs to simplify structure learning (section 3.2). We conclude
section 3 by providing a concise overview of structure learning approaches, with more
attention devoted to the so-called score-based approaches (section 3.3). Section 4 intro-
duces Bayesian networks with background information in the form of maximally oriented
partially directed acyclic graphs (MPDAGs) (section 4.1), presents key differences with
respect to regular networks (section 4.2), and adapts dependence relations to networks
with background information (section 4.3). Section 5 introduces Bayesian networks with
incomplete information, provides an overview of the belief propagation algorithm and an
adaption of the algorithm to Bayesian networks (sections 5.1 and 5.2), discusses conver-
gence results, proposes an approach for sampling the missing values in a network, and
concludes with an implementation of belief propagation in Bayesian networks (section
5.3). Finally, section 6 concludes the thesis, discusses venues for future research, and
provides a personal reflection on the writing experience of the author.
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2 Theoretical Background

2 Theoretical Background

In order to provide a detailed discussion of the theoretical results presented in this paper,
we first must present some preliminary results related to Bayesian networks. Bayesian
networks are a type of probabilistic model, belonging to the class of probabilistic graphical
models, which focus on modelling the dependence and independence relationships among
random variables in a graph-theoretic manner [21]. In particular, to formalize concepts
related to independence relationships in a probabilistic sense, theoretical background is
needed from the fields of graph theory, measure theory and probability theory. As a
remark, please note that the proofs of all statements in this section are self-developed,
except where stated otherwise.

2.1 Graph Theory

Given that Bayesian networks are at core models which rely upon graphical represen-
tation, we present several important results and concepts from graph theory, some of
which are very general and broad in their applicability, while other results are specific
to the study of Bayesian networks. The terminology, notation and results presented in
this section closely follow [21] and [7].

Definition 1 (Graph and Directed Graph).
A graph is a pair G = (V (G), E(G)), where V (G) is a set of vertices (nodes) and
E(G) = {{u, v}|u ̸= v, u, v ∈ V } is a set of pairs of vertices, called edges, with an
edge typically denoted in a shorthand way as e = uv. A directed graph is a graph in
which the edges have a direction, i.e. if v, w ∈ V (G), an undirected edge is an unordered
pair e = {v, w}, while a directed edge is an ordered pair (v, w) or (w, v), indicating the
direction of the edge.

To introduce further terminology, we say that v ∈ V (G) is incident to e ∈ E(G) if v is
on the edge e. Moreover, if two vertices in a graph are connected by an edge, we say the
vertices are adjacent. If we have two graphs G1 and G2 such that G1 ⊆ G2, then we say
that G1 is a subgraph of G2, i.e. V (G1) ⊆ V (G2) and E(G1) ⊆ E(G2). Moreover, a walk
w is a possibly infinite sequence of vertices w = ⟨v1, v2, . . .⟩ with vi ∈ V (G) such that the
edges ei = vivi+1 ∈ E(G) for all i ∈ N. Note that the same vertex can occur several times
in a walk. In particular, a path p is a walk in which all vertices are distinct. The length
of a walk/path is n ∈ N, the number of edges traversed by it. Finally, a cycle c is a walk
which starts and ends at the same vertex and all the other vertices are distinct. It is
conventional, through abuse of notation, to also let the edges between subsequent nodes
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2 Theoretical Background

be part of the path/walk/cycle, typically to indicate if we have undirected or directed
edges. For instance, if we formally have an edge ei = vivi+1 ∈ E(G), one would typically
write ei = vi − vi+1 in case the edge is undirected, and ei = vi → vi+1 or ei = vi ← vi+1

to indicate that the edge is directed.

In our treatment of Bayesian networks, the notion of a directed acyclic graph has a key
role. In particular, when treating networks with background information in section 4,
we make use of directed walks (also known as causal paths), which are walks in which
the involved edges are directed, and of directed paths (also known as possibly causal
paths), which are paths in which the involved edges are directed [21], [29]. Formally, let
p = ⟨v1, . . . , vn⟩ be a path in a graph G (n > 1), then we say that p is a directed path
if no edge vi ← vj with 1 ≤ i < j ≤ n is in G. Moreover, in the discussion of Bayesian
networks with incomplete information in section 5, the concepts of tree and polytree are
important.

Definition 2 (Directed Acyclic Graph).
A directed acyclic graph (DAG) is a graph G in which there are no cycles (acyclic) and
all edges are directed.

We remark that it is conventional to use the term “node” instead of “vertex” when
discussing DAGs, in particular Bayesian networks, as this reflects the fact that we are
dealing with networks. Moreover, we adopt the convention to denote the nodes of DAGs
with capital letters, as is customary in literature.

Definition 3 (Trees and Polytrees).
A tree is a connected acyclic graph, typically denoted by T . Namely, there are no cycles
in T (acyclic) and there is a path between any two vertices in T (connected). A polytree
is a DAG whose underlying undirected graph is a tree.

We remark that the underlying undirected graph of a DAG G is also called the skeleton
of G, obtained by removing the direction of directed edges. An important aspect of
DAGs, which is necessary for the study of dependencies and independencies of random
variables, is the notion of ancestor-descendant relationships. Given a directed edge be-
tween two nodes Vi → Vj , we say that the node Vi is a parent of Vj and Vj is a child of Vi.
The set of all parent nodes of a node Vi, which could be empty, is called the parent nodes
set of Vi and we denote it by Pa(Vi). The corresponding set of all child nodes of Vi,
which could be also empty, is called the child nodes set of Vi and we denote it by Ch(Vi).
In terms of paths in DAGs, a directed path is a path in which every subsequent node in
the path sequence is a child of the previous node in the path sequence, thus respecting
the ancestor-descendant relationships in the DAG. Moreover, If there is a directed path
of parent-child relations from Vi to Vj , then we call Vi an ancestor of Vj and we call
Vj a descendant of Vi. Therefore, we observe that given a DAG G and any two nodes
Vi and Vj in G, there is a directed path from Vi to Vj if and only if Vi is an ancestor of Vj .

Upon closer examination of a given node Vi in a DAG G and its ancestor-descendant
relationships with other nodes, by solely focusing on the “neighboring” nodes of Vi we
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2 Theoretical Background

obtain an important structure. The following definition formalizes what “neighboring”
means and which structure we have in mind.

Definition 4 (Markov Blanket).
Consider a DAG G with nodes V1, . . . , Vn. The Markov Blanket of node Vi, i ∈ {1, . . . , n},
denoted by MB(Vi) is a set consisting of:

1. the parent nodes of Vi,

2. the children nodes of Vi,

3. the nodes that share a child with Vi.

Example 1. Consider the following DAG G consisting of 7 nodes.

V2

V4V3

V1

V6 V7

V5

Figure 2.1: DAG G.

V2

V4V3

V1

V6 V7

V5

Figure 2.2: Markov Blanket of node V4.

Following definition 4, we obtain that the nodes encircled in red (without V4) form the
Markov blanket of node V4, and thus MB(V4) = {V2, V5, V6, V7}.

As the reader might recognize, we implicitly gave a form of numbering (ordering) of the
nodes in example 1. While typically, the way in which we order nodes in a given graph
G is not an essential property of the graph itself, when it comes to DAGs, we would
like to have the nodes ordered in such a way that we respect the ancestor-descendant
relationships in the DAG.
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Definition 5 (Topological Ordering).
A topological ordering of a DAG G is an ordering of all the nodes in the graph such that
each node has a position behind all of its parents, and therefore also behind all of its
ancestors.

In example 1, for instance, two possible topological orderings are (V1, V2, V3, V4, V5, V6, V7),
which is the one we used implicitly in our discussion of MB(V4), or (V2, V1, V4, V3, V6, V5, V7).
In case of non-uniqueness of the topological ordering, as in example 1, one is allowed to
choose a valid topological ordering freely.

In our treatment of (in-)dependencies in Bayesian networks, the ability to infer these
dependence relations from the DAG is of crucial importance. In particular, we aim to
discover how paths between nodes might imply independence and how conditioning on
some nodes in the DAG might create or remove independence relations, in the proba-
bilistic sense. Therefore, we introduce the concepts of a v−structure and d−separation.

Definition 6 (V-Structure).
In a given DAG G, a v-structure, also known as an immorality or as an unshielded
collider, is a set of three nodes, of which one node is the child of the other two nodes,
with the two parent nodes having no directed edge between them.

For instance, in example 1, we have two v-structures: V1 → V3 ← V2 and V4 → V7 ← V5.
Note that if there were a directed edge between V1 and V2, then V1 → V3 ← V2 would
no longer be a v-structure.

In an arbitrary DAG G, consider a path ⟨V1, . . . , Vn⟩ in the underlying undirected graph
of G. A node Vi in the given path is a called a collider if Vi−1 → Vi ← Vi+1 is in G.
Note that a collider is not necessarily a v-structure, as there might be an edge between
Vi+1 and Vi−1 in the DAG G, but this edge is not considered in the path ⟨V1, . . . , Vn⟩.
Moreover, given a path ⟨V1, . . . , Vn⟩ in the underlying undirected graph of G, let Z be
a subset of V (G), which might overlap with the chosen path, but crucially it must not
contain V1 and Vn. We say that the path ⟨V1, . . . , Vn⟩ is blocked conditional on Z if:

1. There is a node Vj in {V2, . . . , Vn−1} which is not a collider in the path and Vj ∈ Z.

2. There is a node Vj in {V2, . . . , Vn−1} which is a collider in the path, but Vj ̸∈ Z
nor any of its descendants are in Z.

In example 1, for instance, we notice that the path ⟨V2, V4, V7⟩ is blocked conditional on
Z = {V4, V6} since V4 ∈ Z and V4 is not a collider.

Definition 7 (d-separation).
Given a DAG G, two nodes Vi and Vj in G, and a subset Z of nodes in G such that
Vi ̸∈ Z, Vj ̸∈ Z, we say Vi and Vj are d-separated with respect to Z if every path between
Vi and Vj is blocked conditional on Z.
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One can extend this definition to say that two subsets of nodes X and Y are d-separated
with respect to a subset of nodes Z, if for any node in X and any node in Y , every
path between these nodes is blocked conditional on Z. Fundamentally, if Vi and Vj

are d-separated with respect to Z, then it turns out that Vi and Vj are independent
conditional on Z in the probabilistic sense. This is further explored in section 2.3.

2.2 Measure Theory

The formal introduction of key probability concepts relies upon definitions and results
from measure theory. For our purposes, a less formal treatment of probability theory will
suffice, so to that end, we limit the discussion of measure theory to the very fundamentals
needed for rigorous treatment of Bayesian networks. The terminology, notation and
results in this section closely follow [34].

Definition 8 (σ-algebra).
A collection A of subsets of a set Ω is called a σ-algebra if:

1. Ω ∈ A

2. A ∈ A =⇒ Ac ∈ A

3. An ∈ A, n ∈ N =⇒
⋃

n∈NAn ∈ A

The pair (Ω,A) is referred to as a measurable space, and the sets in A are called mea-
surable sets.

Definition 9 (Measure).
A measure µ on a σ-algebra A is an extended real-valued function µ : A → [0,∞] such
that:

1. µ(∅) = 0

2. An ∈ A, n ∈ N, pairwise disjoint =⇒ µ(
⋃

n∈NAn) =
∑∞

n=1 µ(An)

Definition 10 (Measure and Probability Space).
A measure space is a triple (Ω,A, µ) such that Ω is a set, A is a σ-algebra on Ω and
µ : A → [0,∞] is a well-defined measure on (Ω,A). In particular, a measure space for
which µ(Ω) = 1 is called a probability space.

Moreover, to introduce further terminology from probability theory, if we are given
a probability space (Ω,A, µ), the set Ω is called the sample space, the measurable sets
A ∈ A are called events, and the elements ω ∈ Ω are called outcomes. When dealing with
probability spaces, one typically denotes the probability measure by P. Additionally,
when discussing probability spaces, one has to provide a formal definition of random
variables and probability distributions.
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Definition 11 (Measurable Function).
Given two pairs of sets with their respective σ-algebras, (Ω,A) and (Ω

′
,A′

), a function
f : Ω → Ω

′
is called a measurable function (more precisely (A,A′

)-measurable) if for
every set A

′ ∈ A′
, the preimage f−1(A

′
) ∈ A.

A random variable X : Ω→ E is a measurable function from a sample space Ω to a mea-
surable space (E,F), where (Ω,A,P) is a probability space. Moreover, the probability
that X “takes on” a measurable subset S ⊂ E is given as:

P({ω ∈ Ω|X(ω) ∈ S})

For our purposes, we will only consider E = R and E = R, where R = [−∞,∞], which
is obtained by extending the real line by adjoining the two symbols −∞ and ∞ with
the obvious ordering. Typically, we equip R with the Borel σ-algebra, denoted by B
which is the σ-algebra generated by all open sets in R. For clarity, we also state that
by a “generated σ-algebra” for a given collection of subsets E of a set Ω (e.g. collection
of open sets in R or R), we mean the smallest σ-algebra containing E . For an arbitrary
collection of subsets E of a set Ω, we typically denote this σ-algebra by σ(E). A standard
result in measure theory guarantees the existence of this generated σ-algebra [34]. Note
that, if we have R, then the σ-algebra generated by the open sets of R is the Borel
σ-algebra on R, denoted by B.

Furthermore, we distinguish between discrete random variables and (absolutely) contin-
uous random variables. A random variable is discrete if it only attains countably many
values. Let X ⊂ R be the set of values attained by X. We define the probability mass
function fX : X → [0, 1] of X as:

fX(x) = P(X−1({x}) = P(X = x) (2.1)

with
∑

x∈X fX(x) = 1. On the other hand, a random variable is (absolutely) continuous
if there exists a function fX : R→ [0,∞) such that:

P(X ∈ A) = P(X−1(A)) =

∫
A
fX(x) dx ∀A ∈ B (2.2)

Such a function fX is called a probability density function of X.

Proposition 1. Given a probability space (Ω,A,P) and a random variable X : Ω →
R, the composition PX = P ◦ X−1 defines a measure on (R,B), called the probability
distribution of X.

Proof. We need to check the two defining properties of measures:

1. PX(∅) = P(X−1(∅)) = P(∅) = 0

14
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2. An ∈ A, n ∈ N, pairwise disjoint =⇒ PX(
⋃

n∈NAn) = P(X−1(
⋃

n∈NAn)) =
P((
⋃

n∈NX−1(An)) =
∑∞

n=1 P(X−1(An)) =
∑∞

n=1 PX(An)

Finally, PX(R) = P(X−1(R)) = P(Ω) = 1, which indeed concludes that PX defines a
probability measure on (R,B). The claim also holds for (R,B).

Proposition 2. Given a probability space (Ω,A,P) and n ∈ N random variables Xi :
Ω → R for i = 1, . . . , n, the map XXX := (X1, . . . , Xn) : Ω → Rn, defines a measurable
function, which is called a random vector. The probability distribution PXXX of a random
vector defines a measure, called the joint (probability) distribution of XXX = (X1, . . . , Xn).
Moreover, the probability distribution PXi of the random variables Xi is called the i-th
marginal distribution of XXX.

For conciseness purposes and due to the fact that the proof is similar to the one in the
previous proposition, we offer no proof of the given proposition, and a detailed proof can
be found in [34].

In the study of Bayesian networks, joint probability distributions and marginal distribu-
tions play an important role, in particular, there is an intricate relationship between the
two distributions that we would like to utilize. Consider a probability space (Ω,A,P)
and n ∈ N discrete random variables Xi : Ω → R for i ∈ {1, . . . , n}, where Xi ⊂ R is
the set of values attained by Xi. Then, for any random variable Xi, consider the set
X−1

i ({xi}) for xi ∈ Xi. Notice that:

X−1
i ({xi}) =

⋃
(x1,...,xi−1,xi+1,...,xn):xi∈Xi

(X−1
1 ({x1}) ∩ . . . ∩X−1

n ({xn})) (2.3)

which is a disjoint union since X−1
i ({xi}) are disjoint for all xi ∈ Xi. Therefore, we can

apply the countable additivity property of the probability measure to (2.3) and obtain:

PXi(xi) = P(Xi = xi)

= P(X−1
i ({xi}))

= P
( ⋃

(x1,...,xi−1,xi+1,...,xn):xi∈Xi

(X−1
1 ({x1}) ∩ . . . ∩X−1

n ({xn}))
)

=
∑

(x1,...,xi−1,xi+1,...,xn):xi∈Xi

P
(
X−1

1 ({x1}) ∩ . . . ∩X−1
n ({xn})

)
=
∑

x1∈X1

. . .
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

. . .
∑

xn∈Xn

P
(
X−1

1 ({x1}) ∩ . . . ∩X−1
n ({xn})

)
=
∑

x1∈X1

. . .
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

. . .
∑

xn∈Xn

P
(
(X1, . . . , Xn) = (x1, . . . , xn)

)
=
∑

x1∈X1

. . .
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

. . .
∑

xn∈Xn

PXXX((x1, . . . , xn)).

(2.4)
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Thus, from (2.4) we have obtained the marginal distribution PXi of Xi as an iterative
sum of the joint distribution PXXX . This is also known as marginalizing. A very similar
derivation follows for joint distributions and marginal distributions of absolutely contin-
uous variables, except that the summations are exchanged with iterative integration.

2.3 Probability Theory

One of the central themes in the study of Bayesian networks, in particular structure
learning, is the notion of conditional independence [21]. To better understand the no-
tion of conditional independence and its usefulness, we provide a motivating example.

Consider the following oversimplified scenario. Two neighbors, Jack and John live in
the same building, but different apartments. Their building possesses a shared alarm.
In the case of a burglary or a fire in their building, the chance of the alarm turning on
is very high. Note that we say “the chance . . .” to account for situation of a technical
defect when the alarm does not turn on, regardless of how unrealistic such a situation
is. In turn, if the alarm turns on, if either Jack or John are at home, it increases the
chance that they call the emergency services. Given the presented scenario, we can
model this situation by considering “Burglary”, “Fire”, “Alarm”, “Jack” and “John”
as binary random variables, meaning that they take on two values only, i.e. either
there is a burglary or not, either there is a fire or not, either the alarm rings or not,
either Jack calls the emergency services or not, and either John calls the emergency
services or not. Graphically, one can represent the given scenario as in figure 2.3, with
the nodes representing the five random variables we consider, and each directed edge
representing the relationship between the two random variables, with the direction of
the edge indicating the direction of influence.

Burglary

Alarm

Fire

Jack John

Figure 2.3: Graphical Representation of “Alarm” Example.

To illustrate the idea of conditional independence, we consider three different relation-
ships among the random variables, presented in figure 2.4.
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Burglary

Alarm

John

Burglary

Alarm

Fire Alarm

Jack John

Figure 2.4: Three different relationships in “Alarm” Example.

Burglary

Alarm

John

Burglary

Alarm

Fire Alarm

Jack John

Figure 2.5: Conditioning on the variable “Alarm” in “Alarm” Example.

In the first case of figure 2.4, we see that “Burglary” influences “Alarm”, which in turn
influences “John”, which means that in the event of a burglary, there is a higher probabil-
ity that the alarm turns on, and thus a higher probability that John calls the emergency
services. Thus, one is able to state that the random variables “Burglary” and “John”
are dependent as “John” is indirectly influenced by “Burglary”. In the second case, we
see that “Burglary” influences “Alarm” and “Fire” influences “Alarm”. However, there
seems to be no apparent connection between the event of a burglary and the event of
a fire. Therefore, one is able to state that “Burglary” and “Fire” are independent of
each other. Finally, in the third case, we observe that “Alarm” influences both “John”
and “Jack”, as the event of there being an alarm increases the chance of both John and
Jack calling the emergency services. Therefore, we are able to state that “Jack” and
“John” are dependent as they are both influenced by the same cause, and thus indirectly
correlated.

However, if we condition on the variable “Alarm”, meaning that we assume that the
alarm turns on (or not), the dependencies in each situation change (see figure 2.5). In the
first case, conditioning on alarm “Alarm” makes “Burglary” and “John” independent.
If we know that the alarm turns on, the event of a burglary does not have any effect on
John calling the emergency services, and vice versa, if John calls, that does not influence
the event of a burglary. In the second situation, conditioning on alarm “Alarm” makes
“Burglary” and “Fire” dependent. Namely, if we know that the alarm turns on, then
there being no fire increases the probability of there being a burglary, and if there is no
burglary, the chances of a fire increase, thus these variables become dependent. Finally,
conditioning on alarm “Alarm” makes “Jack” and “John” independent, since if we know
that the alarm has turned on, then John calling for emergency has no influence on
whether Jack calls the services.
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While highly oversimplified and likely not very realistic, the provided example and its
relatively lengthy discussion provide us with intuition and clear understanding of the
idea behind conditional independencies, and moreover, it gives us an initial idea of how
powerful such conditional independencies can be in much more complicated real-world
scenarios, such as stock trading on international financial markets and gene expression in
human cells. With the aid of measure theory, we are able to also succinctly formalize the
concepts of independence and conditional independence in a probabilistic sense. This
section closely follows the notation, terminology and results presented in [34].

Lemma 1. Let (Ω,A,P) be a probability space and A,B ∈ A be events such that P(B) >
0. We define the conditional probability of A given B as:

P(A|B) =
P(A ∩B)

P(B)
. (2.5)

Define PB : A → [0, 1] by PB(A) = P(A|B). PB is a probability measure on (Ω,A).

Proof. We need to check the two defining properties of measures:

1. PB(∅) = P(∅∩B)
P(B) = P(∅)

P(B) = 0

2. An ∈ A, n ∈ N, pairwise disjoint =⇒ PB(
⋃

n∈NAn) =
P
((⋃

n∈N An

)
∩B
)

P(B) =
P(

⋃
n∈N(An∩B))

P(B) =
∑∞

n=1 P(An∩B)
P(B) =

∑∞
n=1

P(An∩B)
P(B) =

∑∞
n=1 PB(An)

Finally, PB(Ω) = P(Ω∩B)
P(B) = P(B)

P(B) = 1, which indeed concludes that PB defines a proba-

bility measure on (Ω,A) as given in (2.5).

The conditional probability measure is instrumental in the notion of conditional inde-
pendence. We distinguish independence concepts between events and random variables.

Definition 12 (Independence of Events and Collection of Events).
Given a probability space (Ω,A,P) and a collection of events {Aλ}λ∈Λ in A for some
indexing set Λ, the events Aλ are called independent if for any finite subset of indices
λ1, . . . , λn ∈ Λ we have:

P(∩ni=1Aλi
) =

n∏
i=1

P(Aλi
).

Moreover, given a sequence of collection of events F1,F2, . . . ⊂ A, we say F1,F2, . . . are
independent if for any i1, . . . , in with 1 ≤ i1 < i2 < . . . < in, and any A1 ∈ Fi1 , A2 ∈
Fi2 , . . . , An ∈ Fin, we have:

P(∩ni=1Ai) =
n∏

i=1

P(Ai).
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This definition allows us to extend to the conditional probability measure, with which we
are able to define conditional independence of events and collection of events. Namely,
the events {Aλ}λ∈Λ in A for some indexing set Λ are called conditionally independent
given an event B ∈ A with P(B) > 0 if they are independent with respect to the condi-
tional probability measure PB, i.e. PB(∩ni=1Aλi

) =
∏n

i=1 PB(Aλi
) ⇐⇒ P(∩ni=1Aλi

|B) =∏n
i=1 P(Aλi

|B).

In similar fashion, a sequence of collection of events F1,F2, . . . ⊂ A are called con-
ditionally independent given an event B ∈ A with P(B) > 0 if they are indepen-
dent with respect to the conditional probability measure PB, i.e. if for any i1, . . . , in
with 1 ≤ i1 < i2 < . . . < in, and any A1 ∈ Fi1 , A2 ∈ Fi2 , . . . , An ∈ Fin , we have
PB(∩ni=1Ai) =

∏n
i=1 PB(Ai) ⇐⇒ P(∩ni=1Ai|B) =

∏n
i=1 P(Ai|B).

We shift our attention to random variables and aim to emulate the same idea in order
to consider independence of random variables.

Definition 13 (The σ-algebra σ(X)).
Given a probability space (Ω,A,P) and the measurable space (R,B), for a random variable
X : Ω→ R, we define the σ-algebra:

σ(X) = σ({X−1(A)|A ∈ B})

A simple observation relying upon the properties of preimages yields that {X−1(A)|A ∈
B} is a σ-algebra, which in turn shows that σ(X) = {X−1(A)|A ∈ B}.

Definition 14 (Independence of Random Variables).
Given a probability space (Ω,A,P), the measurable space (R,B) and a sequence of random
variables X1, X2, . . . with Xi : Ω→ R, we say that the random variables are independent
if the corresponding σ - algebras σ(X1), σ(X2), . . . are independent.

Using our previous observation and a few additional details, one is able to give an
equivalent characterization of this definition, which states that two random variables X1

and X2 with Xi : Ω→ R are independent if :

P(X−1
1 (A1) ∩X−1

2 (A2)) = P(X−1
1 (A1)) · P(X−1

2 (A2)) ∀A1, A2 ∈ B. (2.6)

For conciseness we omit the details of the proof, and refer the reader to [34]. The char-
acterization of independence of random variables in (2.6) is the one commonly used in
probability theory, and will be the one that we rely upon in our further discussion. One
can inductively extend the definition to the case of independence of more than two ran-
dom variables.

As in the case for independence of events, the presented definition together with the
conditional probability measure allow us to define the notion of conditional independence
of random variables.
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Definition 15 (Conditional Independence of Random Variables).
Given a probability space (Ω,A,P), the measurable space (R,B), and the random variables
X1, X2 and X3 with Xi : Ω→ R, we say that X1 and X2 are conditionally independent
given X3 if:

PX−1
3 (A3)

(X−1
1 (A1) ∩X−1

2 (A2)) = PX−1
3 (A3)

(X−1
1 (A1)) · PX−1

3 (A3)
(X−1

2 (A2))

⇐⇒ P(X−1
1 (A1) ∩X−1

2 (A2)|X−1
3 (A3)) = P(X−1

1 (A1)|X−1
3 (A3)) · P(X−1

2 (A2)|X−1
3 (A3))

for all A1, A2, A3 ∈ B, with P(X−1
3 (A3)) > 0.

We note that one can inductively extend this definition to the case of conditional inde-
pendence of more than two random variables.

Notation: With abuse of notation, one can use a shorthand way to write the set
X−1(A) = {ω ∈ Ω|X(w) ∈ A} simply as X ∈ A. This allows us to simplify our
expressions from before, and thus two random variables X1 and X2 are independent if:

P(X1 ∈ A1, X2 ∈ A2) = P(X1 ∈ A1) · P(X2 ∈ A2) ∀A1, A2 ∈ B.

Furthermore, we say that X1 and X2 are conditionally independent given X3 if:

P(X1 ∈ A1, X2 ∈ A2|X3 ∈ A3) = P(X1 ∈ A1|X3 ∈ A3) · P(X2 ∈ A2|X3 ∈ A3)

for all A1, A2, A3 ∈ B with P(X3 ∈ A3) > 0. In fact, one could go even further, and with
the fine understanding of the delicate formalities behind the definitions of independence
and conditional independence, we can use further abuse of notation and state that X1

and X2 are independent if:

P(X1, X2) = P(X1) · P(X2),

and X1 and X2 are conditionally independent given X3 if:

P(X1, X2|X3) = P(X1|X3) · P(X2|X3)

with P(X3) > 0. Moreover, a shorthand notation to indicate that X1 and X2 are con-
ditionally independent given X3 is to write X1 ⊥⊥ X2|X3. Finally, we refer to the
definition of a joint probability distribution, and remark that with the same shorthand
notation, one typically writes P(X1, . . . , Xn) for the joint distribution of the random
vector XXX = (X1, . . . , Xn), and moreover, for the marginal distribution of Xi, we write
P(Xi) =

∑
X1

. . .
∑

Xn
P(XXX) =

∑
X1

. . .
∑

Xn
P
(
X1, . . . , Xn

)
, in case we have discrete

random variables, where in the iterative summation we do not sum over the values of
Xi. A similar expression follows for absolutely continuous random variables with the
summation symbols replaced by integration symbols.
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Using this notation is standard in literature on Bayesian networks, and prevents cluttered
text. Nevertheless, it is the author’s personal conviction, that one must understand what
one is doing when using such shorthand notation. To that end, the presented formal
treatment of independence and conditional independence justifies our use of shorthand
notation.

We introduce one final result from probability theory needed in section 2.4.

Lemma 2. Consider the probability space (Ω,A,P), the measurable space (R,B), and
the random variables X1, X2 and X3 with Xi : Ω → R. X1 and X2 are conditionally
independent given X3 if and only if there exist (set) functions f and g such that P(X1 ∈
A1, X2 ∈ A2|X3 ∈ A3) = f(X1 ∈ A1, X3 ∈ A3)g(X2 ∈ A2, X3 ∈ A3) for all A1, A2, A3 ∈
B with P(X3 ∈ A3) > 0.

Proof. (⇒) This follows by the definition of conditional independence by taking f and
g to be the conditional probability measure.
(⇐) Suppose there exist (set) functions f and g such that P(X1 ∈ A1, X2 ∈ A2|X3 ∈
A3) = f(X1 ∈ A1, X3 ∈ A3)g(X2 ∈ A2, X3 ∈ A3) for all A1, A2, A3 ∈ B with P(X3 ∈
A3) > 0.

Note that P(X1 ∈ R, X2 ∈ R|X3 ∈ A3) = 1 for any A3 with P(X3 ∈ A3) > 0,
since P is a probability measure. On the other hand, by assumption, P(X1 ∈ R, X2 ∈
R|X3 ∈ A3) = f(X1 ∈ R, X3 ∈ A3)g(X2 ∈ R, X3 ∈ A3). Therefore, we conclude that
f(X1 ∈ R, X3 ∈ A3)g(X2 ∈ R, X3 ∈ A3) = 1.

Furthermore, note that since P is a probability measure, we obtain:

P(X1 ∈ A1|X3 ∈ A3) = P(X1 ∈ A1, X2 ∈ R|X3 ∈ A3)

= f(X1 ∈ A1, X3 ∈ A3)g(X2 ∈ R, X3 ∈ A3) (2.7)

P(X2 ∈ A2|X3 ∈ A3) = P(X1 ∈ R, X2 ∈ A2|X3 ∈ A3)

= f(X1 ∈ R, X3 ∈ A3)g(X2 ∈ A2, X3 ∈ A3) (2.8)

for all A1, A2, A3 ∈ B with P(X3 ∈ A3) > 0. By combining our initial remark with (2.7)
and (2.8), we obtain:

P(X1 ∈ A1|X3 ∈ A3)P(X2 ∈ A2|X3 ∈ A3)

= f(X1 ∈ A1, X3 ∈ A3)g(X2 ∈ R, X3 ∈ A3)f(X1 ∈ R, X3 ∈ A3)g(X2 ∈ A2, X3 ∈ A3)

= f(X1 ∈ A1, X3 ∈ A3)g(X2 ∈ A2, X3 ∈ A3)

= P(X1 ∈ A1, X2 ∈ A2|X3 ∈ A3)

for all A1, A2, A3 ∈ B with P(X3 ∈ A3) > 0. The second equality follows from the
observation that f(X1 ∈ R, X3 ∈ A3)g(X2 ∈ R, X3 ∈ A3) = 1 and the final equality
follows by assumption.
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This shows that X1 and X2 are conditionally independent given X3. This proves the
lemma as we have shown both directions of the claim.

With our introduced shorthand notation, through abuse of notation, one can formulate
the claim succinctly by stating that X1 ⊥⊥ X2|X3 ⇐⇒ ∃ f, g such that P(X1, X2|X3) =
f(X1, X3)g(X2, X3) with P(X3) > 0.

2.4 Bayesian Networks

Having formally defined the notion of conditional independence, the concepts of a Markov
blanket and a parent set for a node in a graph, we take one additional step and introduce
the local Markov property and the probability chain rule. With these we formally define
Bayesian networks, and state and prove results related to conditional independence of
random variables in a DAG G. These results take a central role in the study of Bayesian
networks, Bayesian network structure learning, and in our treatment of Bayesian net-
works with background information and incomplete information.

Definition 16 (Local Markov Property).
Consider a DAG G with n nodes represented and given by the random variables X1, . . . , Xn.
We say that G satisfies the local Markov property if for i ∈ {1, . . . , n}, Xi is conditionally
independent of its non-descendants given Pa(Xi).

If we consider example 1 and focus on the node V4, then pa(V4) = {V2}, and by the local
Markov property, V4 ⊥⊥ {V1, V3, V5}|V2.

Note that in section 2.1 we used the capital letter V to indicate a node in a graph,
whereas in section 2.3, we used the capital letter X to indicate a random variable. In
the study of Bayesian networks, the nodes of a DAG are random variables, so through-
out the remainder of this paper, we denote both graph nodes in a DAG and random
variables with the capital letter X, except where appropriate to do otherwise.

With the statement of the local Markov property, we are able to provide a formal defi-
nition of a Bayesian network.

Definition 17 (Bayesian Network).
A Bayesian network is a DAG G with n nodes represented and given by the random
variables X1, . . . , Xn that satisfies the local Markov property.

While this definition is rather simple to understand, we are able to go one step further
and provide equivalent characterizations of the local Markov property in a directed acylic
graph. These characterizations are typically of great aid when one engages in the task
of learning the structure of a Bayesian network from a given dataset.
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Proposition 3 (Probability Chain Rule).
Given a probability space (Ω,A,P) and n ∈ N random variables X1, . . . , Xn, the joint
probability distribution of XXX = (X1, . . . , Xn) satisfies:

P(X1, . . . , Xn) =
n∏

i=1

P(Xi|X1, . . . , Xi−1) (2.9)

Proof. The proof of (2.9) follows by induction on n for n ≥ 2.

1. n = 2: For two random variables X1, X2 using the conditional probability measure,
we simply obtain:

P(X1, X2) = P(X1)P(X2|X1)

as desired.

2. n = k: Assume that the statement holds for some k ∈ N with k > 2, i.e. for any k
random variables X1, . . . , Xk:

P(X1, . . . , Xk) =
k∏

i=1

P(Xi|X1, . . . , Xi−1) (2.10)

3. n = k + 1: For any k + 1 random variables, we make use of the conditional
probability measure to obtain:

P(X1, . . . , Xk+1) = P(X1, . . . , Xk)P(Xk+1|X1, . . . , Xk)

=
k∏

i=1

P(Xi|X1, . . . , Xi−1)P(Xk+1|X1, . . . , Xk)

=
k+1∏
i=1

P(Xi|X1, . . . , Xi−1)

(2.11)

where in the second equality of (2.11) we made use of the induction hypothesis in
(2.10). Therefore, the result follows by induction.

We state and prove two further results regarding conditional independence, already
hinted upon in section 2.3.

Lemma 3. Given a Bayesian network represented by a DAG G with n ∈ N random
variables X1, . . . , Xn as nodes, the joint distribution of X1, . . . , Xn factorizes as:

P(X1, . . . , Xn) =

n∏
i=1

P(Xi|Pa(Xi)) (2.12)
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Proof. According to the probability chain rule, it holds that P(X1, . . . , Xn) =∏n
i=1 P(Xi|X1, . . . , Xi−1). In particular this holds for a given topological ordering of

G, which then implies that for a node Xi, the non-descendants of Xi are a subset of
X1, . . . , Xi−1. Therefore, using the local Markov property, we obtain:

P(Xi|X1, . . . , Xi−1) =
P(X1, . . . , Xi)

P(X1, . . . , Xi−1)

=
P({X1, . . . , Xi} \ Pa(Xi), Pa(Xi))

P({X1, . . . , Xi−1} \ Pa(Xi), Pa(Xi))

=
P({X1, . . . , Xi} \ Pa(Xi)|Pa(Xi))

P({X1, . . . , Xi−1} \ Pa(Xi)|Pa(Xi))

=
P(Xi|Pa(Xi)) · P({X1, . . . , Xi−1} \ Pa(Xi)|Pa(Xi))

P({X1, . . . , Xi−1} \ Pa(Xi)|Pa(Xi))

= P(Xi|Pa(Xi))

(2.13)

which yields the desired result in (2.12). Note that in the second equality of (2.13), we
used that {X1, . . . , Xi} = {X1, . . . , Xi−1} \ Pa(Xi) ∪ Pa(Xi), in the third equality we
used the definition of conditional probability, and in the fourth equality we used the
local Markov property.

Note that in lemma 4, we use bold notation for the subsets of nodes to clearly distinguish
them from the single nodes involved in the result.

Lemma 4. Consider a probability space (Ω,A,P) and a Bayesian network G with n ∈ N
random variables {X1, . . . , Xn} as nodes. If S1S1S1S1S1S1S1S1S1, S2S2S2S2S2S2S2S2S2 and ZZZ are subsets of nodes in G such
that S1S1S1 and S2S2S2 are d-separated with respect to ZZZ, then S1S1S1 ⊥⊥ S2S2S2|ZZZ.

Proof. We distinguish two cases.

1. S1S1S1 ∪S2S2S2 ∪ZZZ = {X1, . . . , Xn}
Let ZZZ = Z1Z1Z1 ∪Z2Z2Z2 such that Z1Z1Z1 is the set of nodes in ZZZ with parent nodes in S1S1S1 and
Z2Z2Z2 = ZZZ \Z1Z1Z1. Since ZZZ d-separates S1S1S1 and S2S2S2, then we observe that:

∀X ∈ S1S1S1 ∪Z1Z1Z1 =⇒ Pa(X) ⊆ S1S1S1 ∪ZZZ (2.14)

∀X ∈ S2S2S2 ∪Z2Z2Z2 =⇒ Pa(X) ⊆ S2S2S2 ∪ZZZ (2.15)

Since G is a Bayesian network, it satisfies the local Markov property, so using
lemma 3 together with our previous observation in (2.14) and (2.15) allows us to
factorize the joint probability distribution as follows:

P(X1, . . . , Xn) = P(S1S1S1,S2S2S2,ZZZ)

=
∏

X∈S1S1S1∪S2S2S2∪ZZZ
P(X|Pa(X))

=
∏

X∈S1S1S1∪Z1Z1Z1

P(X|Pa(X))
∏

X∈S2S2S2∪Z2Z2Z2

P(X|Pa(X))

= f(S1S1S1,ZZZ)g(S2S2S2,ZZZ)

(2.16)

24



2 Theoretical Background

where f(S1S1S1,ZZZ) =
∏

X∈S1S1S1∪Z1Z1Z1
P(X|Pa(X)) and g(S2S2S2,ZZZ) =

∏
X∈S2S2S2∪Z2Z2Z2

P(X|Pa(X))
in (2.16). Moreover, from this we obtain that for P(ZZZ) > 0:

P(S1S1S1,S2S2S2|ZZZ) =
P(S1S1S1,S2S2S2,ZZZ)

P(ZZZ)

=
f(S1S1S1,ZZZ)g(S2S2S2,ZZZ)

P(ZZZ)

=
f(S1S1S1,ZZZ)

P(ZZZ)
g(S2S2S2,ZZZ)

= h(S1S1S1,ZZZ)g(S2S2S2,ZZZ)

(2.17)

where in (2.17) we set h(S1S1S1,ZZZ) = f(S1S1S1,ZZZ)
P(ZZZ) . By lemma 2, this implies that S1S1S1 ⊥⊥

S2S2S2|ZZZ, as desired.

2. S1S1S1 ∪S2S2S2 ∪ZZZ ⊂ {X1, . . . , Xn}
Let MMM = S1S1S1 ∪ S2S2S2 ∪ ZZZ and M̃̃M̃M = MMM ∪ An(MMM), where An(MMM) denotes the set of
ancestor nodes of MMM . We denote the subgraph of G formed by the nodes in M̃̃M̃M as
G̃. Furthermore, we make the claim that the joint distribution of MMM is equal in
both G and G̃, i.e. symbolically PG(MMM) = PG̃(MMM), where the subscript indicates
the graph over which we consider the joint distribution of MMM .

To see this, we first prove the following intermediate result. Given a leaf node (a
node with no children) L in G, let G∗ be the subgraph of G obtained by removing
L. Let KKK be a subset of nodes in G∗. Then, the joint distribution of KKK is equal
in G and G∗, i.e. symbolically as before, PG(KKK) = PG∗(KKK). Indeed, using the
marginalization of K, we obtain:

PG(KKK) =
∑
L

PG(KKK,L)

=
∑
L

( ∏
W∈KKK

PG(W |Pa(W ))

)
PG(L|Pa(L))

=
∏

W∈KKK
PG(W |Pa(W ))

∑
L

PG(L|Pa(L))

=
∏

W∈KKK
PG(W |Pa(W ))

= PG∗(KKK)

(2.18)

where in the second equality of (2.18) we used the fact that G is a Bayesian network
and satisfies the local Markov property (lemma 3), and in the fourth equality we
use the fact that

∑
L PG(L|Pa(L)) = 1. Note that we assumed G to be a discrete

network for simplicity. The claim follows analogously for continuous Bayesian net-
works.
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Returning back to our original problem, we again consider the sets MMM = S1S1S1∪S2S2S2∪ZZZ
and M̃̃M̃M = MMM∪An(MMM). Namely, using our previous claim, we can take the following
procedure to obtain that PG(MMM) = PG̃(MMM):

a) Find a leaf in G and remove it.

b) Repeat until there are nodes outside of M̃̃M̃M .

This procedure results in M̃̃M̃M , and according to our intermediate result, the joint
probability of M remains the same throughout the procedure, thus it follows that
PG(MMM) = PG̃(MMM).

We proceed with a similar approach as in the first case, since now M̃̃M̃M is a complete
set of nodes in G̃. To that end, let S1S1S1

∗ be the set of nodes in M̃̃M̃M that are not
d-separated from S1S1S1 by ZZZ, and let S2S2S2

∗ = M̃̃M̃M \ (S1S1S1
∗∪ZZZ). By doing so, we have split

M̃̃M̃M as M̃̃M̃M = S1S1S1
∗ ∪ S2S2S2

∗ ∪ ZZZ, such that S1S1S1
∗ and S2S2S2

∗ are d-separated given ZZZ. This
is the exact situation that we had in case 1. Therefore, we know that there exist
functions f, g such that:

PG̃(M̃̃M̃M) = PG̃(S1S1S1
∗,S2S2S2

∗,ZZZ)

= f(S1S1S1
∗,ZZZ)g(S2S2S2

∗,ZZZ)

Moreover, by noticing that S1S1S1 ⊂ S1S1S1
∗ and S2S2S2 ⊂ S2S2S2

∗, we set S̃1S1S1 = S1S1S1
∗ \ S1S1S1 and

S̃2S2S2 = S2S2S2
∗ \S2S2S2 to obtain using marginalization of S1S1S1 and S2S2S2:

PG̃(MMM) = PG̃(S1S1S1
,S2S2S2

,ZZZ)

=
∑
S̃1S1S1, S̃2S2S2

PG̃(S1S1S1, S̃1S1S1,S2S2S2, S̃2S2S2,ZZZ)

=
∑
S̃1S1S1, S̃2S2S2

PG̃(S1S1S1
∗,S2S2S2

∗,ZZZ)

=
∑
S̃1S1S1, S̃2S2S2

f(S1S1S1
∗,ZZZ)g(S2S2S2

∗,ZZZ)

=
∑
S̃1S1S1, S̃2S2S2

f(S1S1S1, S̃1S1S1,ZZZ)g(S2S2S2, S̃2S2S2,ZZZ)

=
∑
S̃1S1S1

f(S1S1S1, S̃1S1S1,ZZZ)
∑
S̃2S2S2

g(S2S2S2, S̃2S2S2,ZZZ)

= h(S1S1S1,ZZZ)m(S2S2S2,ZZZ)

(2.19)

where in (2.19) we define the set functions h,m as h(S1S1S1,ZZZ) =
∑

S̃1S1S1
f(S1S1S1, S̃1S1S1,ZZZ) and

m(S2S2S2,ZZZ) =
∑

S̃2S2S2
g(S2S2S2, S̃2S2S2,ZZZ). Since we have shown that PG(MMM) = PG̃(MMM), this

implies that there exist functions h,m such that P(S1S1S1,S2S2S2,ZZZ) = h(S1S1S1,ZZZ)m(S2S2S2,ZZZ).
The rest follows analogously as case 1 through the utilization of lemma 2.
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2 Theoretical Background

Since we proved both cases, this concludes the proof of the lemma.

Combined together, these two results lead to the main theorem related to conditional
independence in a Bayesian network.

Theorem 1. Consider a probability space (Ω,A,P) and a DAG G with n ∈ N random
variables X1, . . . , Xn as nodes. The following statements are equivalent:

1. P(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn) = P(Xi|MB(Xi)) ∀i ∈ {1, . . . , n}

2. P(X1, . . . , Xn) =
∏n

i=1 P(Xi|Pa(Xi))

3. G satisfies the local Markov property.

Proof of Theorem 1.
((1)⇒ (2)) This implication follows by induction on the number of nodes in G.

1. n = 2
We have a DAG with 2 nodes, denoted by X1, X2. Regardless of what the de-
pendence relation between these two nodes is, we have that MB(X1) = {X2} and
MB(X2) = {X1}, which proves the result immediately, using the definition of con-
ditional probability. In case the nodes are not connected, then the claim follows
immediately by definition of independence.

2. n = k for k ≥ 3
Assume the claim holds for any DAG with k ≥ 3 nodes, i.e. P(X1, . . . , Xk) =∏k

i=1 P(Xi|Pa(Xi)). In particular, notice that this holds for any DAG with an
imposed topological ordering.

3. n = k + 1
We need to prove the claim for a DAG with k+1 nodes. By our previous remark, we
impose a topological ordering on the DAG, such that each node Xi is preceded by
its ancestors in the ordering, and moreover the last node in the topological ordering
has no children. If we denote this topological ordering as (X1, . . . , Xk+1), then by
the last remark, MB(Xk+1) = Pa(Xk+1). Using the definition of conditional
probability, we obtain:
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2 Theoretical Background

P(X1, . . . , Xk+1) = P(Xk+1|X1, . . . , Xk)P(X1, . . . , Xk)

= P(Xk+1|X1, . . . , Xk)

k∏
i=1

P(Xi|Pa(Xi))

= P(Xk+1|MB(Xk+1))

k∏
i=1

P(Xi|Pa(Xi))

= P(Xk+1|Pa(Xk+1))
k∏

i=1

P(Xi|Pa(Xi))

=
k+1∏
i=1

P(Xi|Pa(Xi))

(2.20)

where in the second equality of (2.20) we used the induction hypothesis, and in
the third equality we used the given assumption.

This proves (1)⇒ (2) by induction.

((2) ⇒ (3)) On the one hand, by assumption P(X1, . . . , Xn) =
∏n

i=1 P(Xi|Pa(Xi)). On
the other hand, noting that Pa(Xi) d-separates Xi from its non-descendants, together
with lemma 4 proves the claim. To see this consider a path between Xi and a non-
descendant node Z, with a node Y being adjacent to Xi on the path to Z. We have
two possibilities. If Y ∈ Pa(Xi), then Y is not a collider on the path, and the path
is block conditional on Pa(Xi). If Y /∈ Pa(Xi), then moving along the path we reach
a v-structure, since this is a path from Xi to a non-descendant, but the node forming
this v-structure alongside its descendants are not elements of Pa(Xi), thus the path is
block conditional on Pa(Xi). In both cases, we see that Pa(Xi) d-separates Xi from its
non-descendants, and thus G satisfies the local Markov property, as desired.

((3)⇒ (1)) Since G satisfies the local Markov property, it is a Bayesian network, so by
lemma 4, if we are able to show that any node Xi in G is d-separated from all other
nodes in the network given its Markov blanket MB(Xi), we are done. Indeed, this is
true. Observe that any path between X and a node outside of MB(Xi) passes either
through a child node or a parent node or a parent of a child node, and each one of these
nodes is not a collider in the path and it is a part of the Markov blanket of Xi. Therefore,
each path from Xi to a node outside of MB(Xi) is block conditional given MB(Xi), thus
by definition of d-separation, this implies that Xi is d-separated from all other nodes
in the network given its Markov blanket MB(Xi). This completes the proof of (3)⇒ (1).

By showing (1)⇒ (2)⇒ (3)⇒ (1), the proof of the theorem is complete.
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3 Bayesian Network Structure Learning

A common goal in the study of Bayesian networks is to infer the structure of the under-
lying Bayesian network given a dataset. This is commonly known as Bayesian network
(BN) structure learning [12]. Namely, if we have measured or collected data about a
natural or social process in which different variables (factors or actors) interact among
each other, we are interested in learning which variables are connected to each other, i.e.
we want to identify the (in-)dependencies between variables. This helps in understand-
ing the underlying probabilistic relationships within the data, which in turn allows us to
factorize the joint distribution of all the involved variables in a convenient way, leading
to more efficient computation and inference.

3.1 The Space of DAGs

While structure learning is a task of great interest, it is often a challenging task to
complete due to the fact that the number of possible DAGs, denoted by Dn, grows
super-exponentially in the number of labelled nodes n ∈ N.

Theorem 2. For D0 = 1, Dn (n ≥ 1) satisfies the recurrence relation

Dn =

n∑
k=1

(−1)k+1

(
n

k

)
2k(n−k)Dn−k. (3.1)

A simple iteration of (3.1) reveals that already in the case when we have n = 6, D6 =
3781503 ≈ 4 × 106. Given that most processes, which are of real-world interest and
applicability, typically involve hundreds or even thousands of interacting variables, the
already large number of possible DAGs for a single-digit number of variables indicates
that estimating a fitting Bayesian network for a given dataset is a computationally heavy
task. The result in theorem 2 was first proved by Robinson in 1973 [30]. The proof by
Robinson is rather involved and beyond the scope of this thesis as it heavily relies upon
notions from group theory. To that end, we offer a different proof, building on the
combinatorial ideas in [30] and ordinary generating functions (OGFs) from the field of
discrete mathematics [33]. To the best of our knowledge and conducted literature review,
this is also a new proof of the result in theorem 2 (see [30, 25, 15]).

Definition 18 (Ordinary Generating Function).
Given a sequence of complex numbers (an)∞n=0, the ordinary generating function (OGF )
associated with this sequence is:

A(x) =
∞∑
n=0

anx
n.
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For our purposes, we limit the discussion to sequences of real numbers, in particular
positive integers, as we are interested in the number of directed acyclic graphs G on
n ∈ N nodes. One might recognize that the expression provided for an OGF is the same
as the one for a power series. A crucial analytic aspect of studying power series, from an
analysis point of view, is the notion of convergence. In particular, we aim at finding the
radius of convergence R. However, when discussing OGFs we are mainly interested in
the algebraic manipulation of the series with little consideration for convergence proper-
ties. This is because the main goal of generating functions is that they allow us to turn
counting problems and recurrence relations, or more generally questions about sequences
of numbers, into questions about certain functions to which we can apply the powerful
tools one learns in calculus [7, 33].

To equip this idea with mathematical rigour, one introduces the formal theory of power
series, as opposed to the well-known analytic theory of power series. In particular, we
introduce an algebraic structure called the ring of formal power series [33]. In the
context of generating functions as an algebraic object, the terms “formal power series”
and “ordinary generating function” are used interchangeably.

Definition 19 (Formal Power Series).
A formal power series is an expression of the form:

a0 + a1x + a2x
2 + . . .

where the sequence (an)∞n=0 is called the sequence of coefficients. On the collection of
formal power series, we define an additive and a multiplicative operation:

∞∑
n=0

anx
n ±

∞∑
n=0

bnx
n =

∞∑
n=0

(an ± bn)xn

∞∑
n=0

anx
n ·

∞∑
n=0

bnx
n =

∞∑
n=0

cnx
n (cn =

∑
k

akbn−k)

Proposition 4. A formal power series f =
∑∞

n=0 anx
n is invertible if and only if a0 ̸= 0.

Proof. (⇒) Suppose f is invertible, and thus an inverse element 1
f =

∑∞
n=0 bnx

n exists

such that f · 1f = 1. Following the product operation we defined on the collection of
formal power series, we obtain c0 = a0b0 and moreover c0 = 1. Therefore, it follows that
a0 ̸= 0. A simple observation using the multiplicative operation yields for n ≥ 1:

bn = (− 1

a0
)
∑
k=1

anbn−k

which determines 1
f uniquely as desired.

(⇐) Suppose a0 ̸= 0. In that case, we can use the previously derived expression for bn
to obtain the inverse element 1

f of f, which shows that f is invertible.
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With the provided additive and multiplicative operations, with the common additive
inverse 0 and multiplicative inverse 1 on the one hand, and the invertible elements given
as per proposition 4, one obtains a ring structure, commonly known as the ring of for-
mal power series. To that end, one can make an analogy with the formal, algebraic
definition of a polynomial. In that sense, a formal power series is a potentially infinite
ordered list of coefficients. Consequently, this also justifies the algebraic manipulation of
formal power series, in particular OGFs, without considering aspects of convergence [33].

With the formal consideration of generating functions, we are able to use them in the
proof of theorem 2. Note that to avoid cluttered notation in the proof of theorem 2, we
divert from our convention of denoting vertices with the capital letter X, and instead
use the lowercase letter v with an appropriate subscript to denote vertices.

Proof of Theorem 2.
Given n ∈ N nodes, we observe that the number of directed acyclic graphs on these n
nodes can also be written as a sum of the number of directed acyclic graphs on n nodes
with r edges, denoted by Dn,r. Namely, Dn =

∑
r=0Dn,r. Given the sequence (Dn,r)

∞
r=0,

we define the ordinary generating function:

An(x) =
∞∑
r=0

Dn,rx
r.

The treatment of generating functions as formal power series allows us to observe that
Dn = An(1). Note that terms of the sequence (Dn,r)

∞
r=0, for which r exceeds the number

of possible number of edges in the directed acyclic graph, are set to 0 which confirms
our previous observation.

Therefore, to prove that Dn satisfies the recurrence relation in theorem 2, we are required
to prove that:

An(x) =

n∑
k=1

(−1)k+1

(
n

k

)
(1 + x)k(n−k)An−k(x)

since an evaluation for x = 1 yields the desired result. To that end, let n ∈ N and define
the set N = {1, . . . , n}. Given an arbitrary subset ∅ ≠ S ⊆ N , let DS

n,r denote the set of
directed acylic graphs on n nodes, with r edges and with all nodes vj with j ∈ S having
no edges coming into them, i.e. the number of incoming edges into the node vj is 0.

If we have another subset S̃ ̸= ∅ such that S̃ ⊆ S, then for an arbitrary graph in DS̃
n,r,

the same graph is also in DS
n,r, as the graph has n nodes, r edges and the nodes with

0 incoming edges belong to the edges with 0 incoming edges in DS
n,r. This gives the

inclusion DS̃
n,r ⊆ DS

n,r. In fact, this inclusion allows us to use the inclusion-exclusion
principle, which we assume to be known and do not explicitly state for conciseness. For
more details on the inclusion-exclusion principle, we refer the reader to [7].
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Namely, we observe that the set of directed acylic graphs with n nodes and r edges can
be written as the union of subsets of directed acylic graphs with n nodes, r edges and
a subset of nodes with 0 incoming edges. Using the inclusion-exclusion principle, this
yields:

Dn,r =
∑

∅≠S⊆N

(−1)|S|+1|DS
n,r| (3.2)

=

n∑
|S|=1,S⊆N

(−1)|S|+1

(
n

|S|

)
|DS

n,r| (3.3)

where we recall that for the set N of n elements, the binomial coefficient
(
n
|S|
)

is the

number of |S|-element subsets of N , with | · | indicating the cardinality of a set. For
simplicity, let us denote |S| = k ∈ N for a subset S ⊆ N . We make two final claims for
S ⊆ N, S̃ ⊆ N, |S̃| = |S| = k:

|DS
n,r| = |DS̃

n,r| (3.4)

|DS
n,r| =

r∑
m=0

(
k(n− k)

r −m

)
Dn−k,m. (3.5)

The first claim follows by the fact that both subsets S and S̃ have the same cardinality,
so in that sense, they just provide a different labelling for the same number of nodes

with 0 incoming edges, which indeed shows that |DS
n,r| = |DS̃

n,r|, given that both S and

S̃ are subsets with the same cardinality.

Regarding the second claim, for any graph G ∈ DS
n,r, we can divide the edges in G in

two different sets. Namely, one is the set of edges which are incident to nodes vi and vj
such that i, j /∈ S, i.e. the nodes vi and vj have incoming edges. The second is the set of
edges incident to vi and vj with i ∈ S and j /∈ S, which also indicates that the edge is
directed from vi to vj as vi has 0 incoming edges. Consequently, if there are m edges in
the first set, then there are r−m edges in the second set. Consequently, for each graph
G ∈ DS

n,r, if we have m edges in the first set, then these m edges belong to a subgraph
of G with n−k nodes, since these edges are incident to the nodes vi with i ∈ N \S with
|N \ S| = n− k as |S| = k. If we consider all possible subgraphs of G with n− k nodes
and m edges, and the fact that there are r − m edges in the other set, on subgraphs
of m nodes, then given the definition of the binomial coefficient, we obtain the desired
identity in (3.5).
Plugging in (3.5) in (3.2) yields:

Dn,r =
n∑

k=1

(−1)k+1

(
n

k

) r∑
m=0

(
k(n− k)

r −m

)
Dn−k,m (3.6)
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and plugging in the obtained expression for Dn,r from (3.6) in the ordinary generating
function An(x) yields:

An(x) =
∞∑
r=0

n∑
k=1

(−1)k+1

(
n

k

) r∑
m=0

(
k(n− k)

r −m

)
Dn−k,mxr

=
n∑

k=1

(−1)k+1

(
n

k

) ∞∑
r=0

r∑
m=0

(
k(n− k)

r −m

)
Dn−k,mxr

=
n∑

k=1

(−1)k+1

(
n

k

) ∞∑
m=0

( ∞∑
r=m

(
k(n− k)

r −m

)
xr−m

)
Dn−k,mxm

=
n∑

k=1

(−1)k+1

(
n

k

) ∞∑
m=0

(1 + x)k(n−k)Dn−k,mxm

=
n∑

k=1

(−1)k+1

(
n

k

)
(1 + x)k(n−k)

∞∑
m=0

Dn−k,mxm

=
n∑

k=1

(−1)k+1

(
n

k

)
(1 + x)k(n−k)An−k(x)

(3.7)

which proves the required claim. We remark that in the fourth equality of (3.7) we use
the binomial expansion of (1 + x)k(n−k) and in the last equality we use the definition of
the generating function An(x). This completes the proof.

The recurrence relation in (3.1) hints upon the difficulty of structure learning. To that
end, one might be naturally inclined to devise ways of simplifying the task, which is
in fact the main purpose of doing research in structure learning. As such, we pinpoint
two main aspects of simplifying this task. First, in section 3.2 we explore structural
similarities between different DAGs and introduce an equivalence relation on the set of
DAGs. In section 3.3 we provide an overview of different structure learning approaches,
and in particular, we provide a comprehensive exposition of the so-called “score-based”
approaches, in particular the BDe score for discrete networks, where we build upon the
introduced DAG equivalence classes to simplify the task of structure learning.

3.2 Equivalence Classes of DAGs

We recall that an equivalence relation on a set S is a binary relation which satisfies
the reflexive, symmetric and transitive property of a binary relation [21]. We typically
use the “∼” symbol to denote that two elements of S are equivalent with respect to an
equivalence relation. Moreover, for a given element s ∈ S we define the equivalence class
of s as the set {x ∈ S|x ∼ s} and denote it by [s]. A simple, yet important, observation
is the fact that for a given equivalence relation on a set S, every element in S belongs
to one and only one equivalence class.

33



3 Bayesian Network Structure Learning

When it comes to Bayesian network structure learning, our goal is to define an equiva-
lence relation on the set of DAGs, and develop algorithms for structure learning which
require us to only look at a representative of an equivalence class, and thus reduce the
number of graphs we need to study in order to find the underlying Bayesian network
given a dataset [21]. we provide a motivating example for how to define an equivalence
relation.

Example 2. Consider a probability space (Ω,A,P), the following 4 DAGs consist-
ing of 3 nodes X1, X2, X3 and the factorization they impose on the joint distribution
P(X1, X2, X3). We assume that P(X1) > 0, P(X2) > 0 and P(X3) > 0 for simplicity.

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

Figure 3.1: 4 DAGs with 3 nodes.

The leftmost DAG imposes the factorization:

P(X1, X2, X3) = P(X1)P(X2|X1)P(X3|X1) =
P(X1, X2)P(X1, X3)

P(X1)
. (3.8)

The second DAG imposes the factorization:

P(X1, X2, X3) = P(X3)P(X2|X1)P(X1|X3) =
P(X1, X2)P(X1, X3)

P(X1)
. (3.9)

The third DAG as one might already suspect yields the same factorization as the first
two:

P(X1, X2, X3) = P(X2)P(X1|X2)P(X3|X1) =
P(X1, X2)P(X1, X3)

P(X1)
. (3.10)

However, the rightmost DAG produces a different factorization:

P(X1, X2, X3) = P(X2)P(X3)P(X1|X2, X3), (3.11)

which in no way simplifies to the factorization obtained in (3.8), (3.9) and (3.10).

Intuitively, we observe that “having the same joint distribution factorization” is indeed a
relation which is reflexive, symmetric and transitive. To that end, we formally introduce
an equivalence relation on the set of DAGs on n ∈ N nodes.
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Definition 20 (Equivalence Relation on DAGs).
Given a probability space (Ω,A,P), we say that two DAGs G1 and G2 on n ∈ N nodes
are equivalent if:

P(X1, . . . , Xn) =

n∏
i=1

P(Xi|PaG1(Xi)) =

n∏
i=1

P(Xi|PaG2(Xi)) (3.12)

where in (3.12), PaG1(Xi) denotes the parent set of Xi in the DAG G1 and PaG2(Xi)
denotes the parent set of Xi in the DAG G2.

To denote that G1 and G2 are equivalent, we write G1 ∼ G2. In the literature, this
equivalence is also known as a Markov equivalence [21]. As discussed before, this defines
a valid equivalence relation on the set of DAGs on n nodes.

Considering example 2 again, if one focuses on the graph structure of each DAG, we
make another interesting observation. First, all four DAGs have the same skeleton X2−
X1 −X3. However, besides the first three DAGs imposing a different joint distribution
factorization compared to the last DAG, we also notice that the last DAG has the
v-structure X2 → X1 ← X3, whereas the other three do not have this particular v-
structure, and in general, they contain no v-structures. We state the following key
theorem, first proved by Verma and Pearl [32].

Theorem 3. Two DAGs G1 and G2 on n ∈ N nodes, represented by random variables
X1, . . . , Xn, are Markov equivalent if and only if they have the same skeleton and share
the same v-structures.

In their original paper, Verma and Pearl provide a constructive approach to the proof of
this theorem, and thus, we refer the reader to [32] for the details of the proof. Despite
the author’s personal preference for constructive proofs, we opt not to provide the full
details of this constructive approach as it is beyond the scope of this paper. Nevertheless,
to provide a clear understanding of why this theorem holds, we offer a slightly informal
argument by contradiction.

Proof of Theorem 3.
(⇒) First, suppose that two equivalent DAGs G1 and G2 do not have the same skeleton.
In simplest terms, without loss of generality, assume that a particular edge Xi − Xj

is present in the skeleton of G1 and not a part of G2. This in turn implies either
PaG1(Xi) ̸= PaG2(Xi) or PaG1(Xj) ̸= PaG2(Xj). Matching all the other common
factors in (3.12) shows that G1 and G2 do not factorize P(X1, . . . , Xn) the same way,
which is a contradiction. Therefore, two equivalent DAGs G1 and G2 must have the
same skeleton. Second, suppose that two equivalent DAGs G1 and G2 do not share
the same v-structures. Without loss of generality, assume that Xi → Xj ← Xk is a
v-structure in G1 and not a v-structure in G2. Therefore, we have one of the three
following connections in G2: Xi ← Xj ← Xk, Xi → Xj → Xk or Xi ← Xj → Xk.
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In either case, if we consider Xj not to be observed, meaning we do not condition on
Xj , by our initial discussion of the “Alarm” example in section 2.3, we observe that
Xi and Xk are dependent in G2 regardless of which other nodes we condition on. In
G1 on the other hand, Xi and Xk are either dependent or independent given the struc-
ture of G1. If we condition on a set of nodes M which includes MB(Xi) \ {Xj} and
MB(Xk) \ {Xj}, then it follows that Xi ⊥⊥ Xk|M in G1, but Xi ⊥⊥ Xk|M does not hold
in G2, which gives a contradiction. Therefore, this proves the first direction of theorem 3.

(⇐) Aiming for contradiction once more, suppose that G1 and G2 are two DAGs on
n nodes that share the same skeleton and the same v-structures, but are not Markov
equivalent. This implies that there exist nodes Xi, Xj and Xk such that Xi ⊥⊥ Xj |Xk

in G1 and not in G2. One can show that this in turn implies that Xi and Xj are not
d-separated given Xk in G2 [5], thus there exists at least one path between Xi and Xj

in G2 which is not block conditional given Xk. Consider the shortest such path and
denote it by p. Given that both graphs share the same skeleton, this implies that the
only difference in terms of p is in the orientation of the edges in each graph. To that end,
we can try to re-orient each edge that is part of p in G2 to obtain the same orientations
that the edges of p have in G1. Such re-orientations will not make the path block con-
ditional on Xk unless one of them results in the removal of a v-structure. However, if a
v-structure is removed, then this would imply that G1 and G2 no longer share the same
v-structures. This leads to a contradiction. On the other hand, if we re-orient the edges
of p such that they have the same orientations as the edges in G1 without making p block
conditional given Xk in G2, this implies that p is also not block conditional given Xk in
G1 which leads to a contradiction, as we assumed that Xi ⊥⊥ Xj |Xk in G1. Therefore,
in both cases we get a contradiction, and thus the second direction of theorem 3 is proved.

This also concludes the proof of theorem 3 in its entirety.

In order to reach our mentioned goal related to structure learning, we would like to
utilize theorem 3 in order to determine the equivalence class of a DAG G. To do this,
we provide a graphical representation of the equivalence class of a DAG G. First, we
state some needed terminology and concepts.

Definition 21 (Compelled and Reversible Edges).
A directed edge is called compelled if all G

′ ∈ [G], for some DAG G, contain the directed
edge with the same direction as in G. If an edge is not compelled, then it is called
reversible.

Definition 22 (Partially Directed Acyclic Graph).
A partially directed acyclic graph (PDAG) G̃ is a partially directed graph without directed
cycles, i.e. it contains both directed and undirected edges, but it does not contain directed
cycles, akin to a DAG.

One observes that a DAG is a PDAG with no directed edges. Moreover, we note that
PDAGs are typically denoted by cursive letters to distinguish them from DAGs.
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Definition 23 (Completed Partially Directed Acyclic Graph).
A completed partially directed acyclic graph (CPDAG), typically denoted by C, for the
equivalence class [G] of a DAG G is a PDAG such that the directed edges are precisely
the compelled edges of G and the undirected edges replace the reversible edges of G.

Proposition 5. Two DAGs G1 and G2 on n ∈ N nodes are equivalent if and only if
they have the same CPDAG C.

Proof. By theorem 3, we know that G1 ∼ G2 if and only if G1 and G2 have the same
skeleton and share the same v-structures. By the definition of reversible and compelled
edges, we observe that G1 and G2 have the same skeleton and share the same v-structures
if and only if the edges forming the v-structures are compelled, and all the other edges
are either reversible or compelled depending on the equivalence class G1 and G2 belong
to. Following the definition of a CPDAG, we observe that the last claim implies that
the two DAGs share the same CPDAG C. Moreover, if the two DAGs share the same
CPDAG C, then by definition they share the same skeleton and the same v-structures.
Therefore, we obtain one final equivalence, which proves the claim, as desired.

The result of proposition 5 allows us to represent the equivalence class of a DAG G using
its corresponding CPDAG C [3]. This also establishes a bijection between the equiva-
lence classes [G] of all DAGs on n nodes and the collection of all CPDAGs. Therefore,
for a given equivalence class [G], each G

′ ∈ [G] corresponds to one and only one CPDAG
C.

Given our ability to represent equivalence classes of DAGs using CPDAGs, we proceed
to develop an approach for determining a CPDAG from a DAG. Referring back to theo-
rem 3, we see that as an initial step we must have that a CPDAG has the same skeleton
and v-structures as the DAG in question. However, in order to precisely determine the
compelled and reversible edges for a given equivalence class, we define the so-called ori-
entation rules developed by Meek in 1995 [24].

The orientation rules for determining the direction of undirected edges in a CPDAG are
the four rules presented graphically in figure 3.2, denoted by R1, R2, R3 and R4, that
replace an existing subgraph configuration (on the left) with another subgraph config-
uration (on the right). Crucially, we make the assumption that the two nodes in the
subgraphs on the left that do not have an edge between them, also do not have a parent-
child relationship in the DAG.

One has to note that these orientation rules are by no means the only orientation rules
one can define for a CPDAG. For instance, a composition of these rules would also be
an orientation rule for a CPDAG. However, what is important is that any introduced
orientation rule respects the structure of all DAGs in a given equivalence class. To that
end, we say that an orientation rule is valid if the produced orientation by the rule in
question does not introduce a new v-structure nor a directed cycle in the CPDAG.
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R1
=⇒ R2

=⇒

R3
=⇒ R4

=⇒

Figure 3.2: Orientation Rules for CPDAGs.

Theorem 4. The four orientation rules provided in figure 3.2 are valid orientation rules.

Proof of theorem 4.
We treat the rules on a case-by-case basis:

1. Rule R1: If the blue directed edge in the right subgraph configuration were ori-
ented in the opposite direction there would be a new v-structure in the CPDAG.

2. Rule R2: If the blue directed edge in the right subgraph configuration were ori-
ented in the opposite direction there would be a directed cycle in the CPDAG.

3. If the blue directed edge in the right subgraph configuration were oriented in the
opposite direction then by two subsequent applications of rule R2 there would be
a new v-structure in the CPDAG (see figure 3.3).

4. If the blue directed edge in the right subgraph configuration were oriented in the
opposite direction then by two subsequent applications of rule R2 there would be
a new v-structure in the CPDAG (see figure 3.4).

Equipped with the results from theorems 3 and theorem 4, we provide a comprehensive
algorithmic procedure for determining the CPDAG of a given DAG G. The algorithm
runs as follows for a given DAG G:

1. Replace all directed edges in G with undirected edges. This yields the skeleton GS .

2. Identify the v-structures of G and for all edges participating in a v-structure in G,
replace the corresponding undirected edge in GS by the directed edge from G. We
denote this graph by G0.
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invalid R3
=⇒ R2

=⇒

Figure 3.3: Validity of Orientation Rule R3.

invalid R4
=⇒ R2

=⇒

Figure 3.4: Validity of Orientation Rule R4.

3. G0 is a PDAG. At each step t ∈ N identify all subgraph configurations as in figure
3.2 and apply the corresponding orientation rule to obtain a new subgraph config-
uration.

4. Repeat step 3 until the graph is closed under the orientation rules in figure 3.2,
which means that there are no remaining subgraph configurations as in figure 3.2.

It is noteworthy to say that this algorithm is not the most efficient algorithm for identi-
fying the CPDAG for a given DAG. More efficient algorithms can be found in [4, 21]. For
our purposes, the efficiency of such an algorithm does not play an important role, as in
section 4 the main focus is on exploring Bayesian networks with background information
and studying what differences there are between such networks and regular networks in
terms of the presented orientation rules and structural properties for CPDAGs.

In section 3.3 we provide an overview of structure learning approaches and in particular,
focus on the BDe score for discrete Bayesian networks as a scoring metric that takes into
account Markov equivalent DAGs that we introduced to simplify the task of Bayesian
network structure learning.

3.3 Structure Learning Approaches

The goal of BN structure learning is to infer DAGs from data. As discussed in the
introduction, there exist two main types of structure learning approaches: constraint-
based and score-based approaches [20]. Constraint-based approaches utilize conditional
independence tests to determine the dependence relations between variables. By con-
structing an undirected graph based on these tests and then orienting edges to form a
directed acyclic graph (DAG), these methods capture the underlying dependencies that
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are consistent with observed data. On the other hand, score-based approaches evaluate
different network structures using a scoring metric that balances data fit and model
complexity. A popular way to assign scores to DAGs is using the so-called Bayesian
paradigm:

P(G|D) =
P(D|G)P(G)

P(D)

∝ P(D|G)P(G)

(3.13)

where D denotes the observed dataset, P(D|G) denotes the so-called marginal likelihood
of D that is graph-specific, P(G) denotes the so-called prior distribution of a specific
DAG G, which represents the initial “belief” about G before observing any data, and
P(G|D) denotes the so-called posterior distribution of a graph G, which represents our
updated “belief” about G after observing the data D [21]. Typically, we assume that
each DAG is equally likely, thus we set the prior distribution to be a uniform distribu-
tion. Nevertheless, for specific applications, one can also use different priors that fit the
given scenario more appropriately [20]. Finally, P(D) is considered to be a normalization
constant, thus leading to the proportionality in (3.13). Prominent scores that achieve
score equivalence among Markov equivalent DAGs include the Gaussian BGe score from
Geiger and Heckerman [11] and the discrete BDe score from Madigan and York [23].

It is important to note, that there are also hybrid approaches for structure learning which
combine score-based and constraint-based methods, leveraging the strengths of both [5].
They typically use constraint-based techniques to identify a skeleton and some initial
orientations, and then apply score-based methods to refine and optimize the network
structure [20]. Moreover, there are also the so-called Bayesian model averaging (BMA)
approaches which consider multiple possible network structures, weighting them by their
posterior probabilities to account for model uncertainty [5, 20]. These approaches inte-
grate over all potential DAGs rather than selecting a single best one, aimed at providing
more reliable inferences. One such recently developed BMA approach, building upon
the BGe score, for inferring Gaussian (continuous) DAGs from datasets with incomplete
data is one of the central aspects of section 5 [13]. Since one of the objectives of this
paper is to provide an approach for sampling missing data in discrete networks with
incomplete data, with the aim of leading to an adaptation of the mentioned novel BMA
approach to discrete networks, the rest of this section provides a detailed exposition of
the BDe score, which would be a central component of the said adaptation of the novel
BMA approach. The presented terminology, notation and results closely follow [21, 13].

To that end, we return to the expression in (3.13). Given a DAG G with nodes repre-
sented as random variables, each random variables is distributed in a certain way, and
this distribution is typically characterized by parameters. For instance, if a random vari-
able is normally distributed, then the parameters of this distribution are the mean and
variance. Therefore, let q denote the vector of all parameters for the random variables
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in a DAG G, which are also considered to be random variables. Using marginalization
and conditional probability, we are able to write the marginal likelihood of D as:

P(D|G) =

∫
P(D, q|G)dq =

∫
P(D| q,G)P(q|G)dq. (3.14)

Our goal is to determine exact expressions for P(D| q,G) and P(q|G), as this will lead to
the BDe score. Therefore, let D be an n×m real dataset matrix, where n indicates the
number of variables in a single observation and m indicates the number of observations.
In terms of notation, let Dij be the j-th realization of the random variable Xi, qi be
the parameters of Xi, and let DPa(Xi),j denote the j-th realization of Pa(Xi). Given
that G is supposed to represent a Bayesian network, using the local Markov property,
we obtain:

P(D| q,G) =

m∏
j=1

P(X1 = D1j , . . . , Xn = Dnj | q,G)

=
m∏
j=1

n∏
i=1

P(Xi = Dij |Pa(Xi) = DPa(Xi),j , q)

=
m∏
j=1

n∏
i=1

P(Xi = Dij |Pa(Xi) = DPa(Xi),j , qi)

=

n∏
i=1

m∏
j=1

P(Xi = Dij |Pa(Xi) = DPa(Xi),j , qi).

(3.15)

where in the second equality of (3.15) we used theorem 1, and in the third equality we
utilized the introduced notation in the preceding paragraph.

When it comes to P(q|G), we make two important assumptions. First, we assume that
P(q|G) =

∏n
i=1 P(qi|G), which means that the parameters associated with different

nodes in G are conditionally independent given G. Second, we assume that P(qi|G) =
P(qi|Pa(Xi)), which means that the distribution of qi solely depends on the parent
nodes of Xi. One typically refers to these assumptions as the parameter independence
assumption, and the parameter modularity assumption, respectively. Combining these
two assumptions leads to:

P(q|G) =

n∏
i=1

P(qi|Pa(Xi)). (3.16)

Finally, plugging in the expressions from (3.15) and (3.16) in (3.14) yields the explicit
expression:
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P(D|G) =

∫
P(D| q,G)P(q|G)dq

=

∫ ( n∏
i=1

m∏
j=1

P(Xi = Dij |Pa(Xi) = DPa(Xi),j , qi)

n∏
i=1

P(qi|Pa(Xi))

)
dq

=

∫
. . .

∫ n∏
i=1

(
P(qi|Pa(Xi))

m∏
j=1

P(Xi = Dij |Pa(Xi) = DPa(Xi),j , qi)

)
dq1 . . . dqn

=
n∏

i=1

∫ (
P(qi|Pa(Xi))

m∏
j=1

P(Xi = Dij |Pa(Xi) = DPa(Xi),j , qi)

)
dqi (3.17)

where in the last equality of (3.17) we used the fact that each factor in the integrand
product is a function of qi only. The expression in (3.17) plays a key role in the deriva-
tion of the BDe score, as we can use it in the proportionality in (3.13), from which the
posterior distribution P(G|D) serves as an indicator of how well a given DAG describes
the dataset D.

Since the BDe score is used as a metric for discrete Bayesian networks, we proceed to
describe a typical model representing a discrete network. Given our assumptions, we
will obtain an explicit expression for (3.17), which in the end will be our BDe score for
the given DAG G.

To that end, let G be a DAG with n nodes given as discrete random variables X1, . . . , Xn.
We assume that Xi can take ri ∈ N values and the total number of different realiza-
tions of Pa(Xi) can take si ∈ N values. Furthermore, we assume that there are a
total of m independent observations of G, out of which mij have the j-th realization of
Pa(Xi). Given these assumptions, we say that Xi has a multinomial distribution with
mij trial parameters and probability parameters, denoted by θijk, with i ∈ {1, . . . , n},
j ∈ {1, . . . , si} and k ∈ {1, . . . , ri}, such that

∑ri
k=1 θijk = 1 for all i and all j. Finally,

if through abuse of notation, mijk denotes the number of realizations in which Pa(Xi)
obtains the j-th realization (from si) and Xi obtains the k-th realization (from ri), then:

P(mij1, . . . ,mijk|mij , θij1, . . . , θijri) =
mij !∏ri

k=1mijk!

ri∏
k=1

(θijk)mijk . (3.18)

To fully specify the model, we also need to set how the parameters θijk are distributed. In
particular, we need to explain how the parameter vectors (θij1, . . . , θijri) are distributed.
In the formulation of the BDe score, we assume that (θij1, . . . , θijri) are Dirichlet dis-
tributed with parameters (αij1, . . . , αijri). In total, given our assumption regarding Xi

from the preceding paragraph, we have
∏n

i=1 risi such parameters αijk. Without delv-
ing into the specifics of a Dirichlet distribution, we state that this assumption yields the
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following distribution of (θij1, . . . , θijri):

P(θij1, . . . , θijri) =
Γ(
∑ri

k=1 αijk)∏ri
k=1 Γ(αijk)

ri∏
k=1

θ
αijk−1
ijk . (3.19)

For the sake of conciseness, by omitting the intermediate derivations and technical de-
tails, and plugging in the expressions from (3.18) and (3.19) into (3.17), we state that
for mij =

∑ri
k̃=1

mijk̃ and αij =
∑ri

k̃=1
αijk̃, we obtain the BDe score for G:

P(D|G) =

n∏
i=1

si∏
j=1

(
Γ(αij)

Γ(αij + mij)

) ri∏
k=1

(
Γ(αijk + mijk)

Γ(αijk)

)
. (3.20)

where to ensure score equivalence among Markov equivalent networks, we also require
that αijk = α

si·ri , where α is some to-be-determined constant, commonly referred to as
total precision. We refer the reader to [23] for a detailed derivation of the intermediate
steps leading to (3.20).

As a concluding remark to section 3, we note that the discussion in section 3.3 serves a
relevant role in section 5, whereas section 4 refers back to the results discussed in section
3.2.
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4 Bayesian Networks with Background
Information

In many natural and social processes, one might encounter the situation in which two
or more interacting variables have a causal relationship that is well understood, yet we
are still interested in what kind of relationships and dependencies they might have with
other variables involved in the process.

For instance, consider the example of gene expression in biology. Gene expression, in
particular, the collection of genes, transcription factors and the regulatory interactions
among them, responsible for controlling the gene expression levels of mRNA and pro-
teins, are a key application area of Bayesian networks [12]. The study of gene regula-
tory networks with the use of Bayesian networks is instrumental in drug development.
For our purposes, we are interested in the causal relationship between two particu-
lar transcription factors, the p53 transcription factor and the p21 protein [9]. It is a
scientifically-confirmed fact that in a regular human cell, the p53 protein binds to DNA,
which activates another gene to produce a protein called p21. This protein interacts
with cdk2, a cell division-stimulating protein. When p21 forms a complex with cdk2,
the cell is unable to proceed to the next stage of division. However, the presented causal
relationship between the proteins p53 and p21 is not the only one of relevant interest.
For instance, in the study of tumor repressors, the p53-p21-RB signaling pathway (see
figure 4.1) with the retinoblastoma protein RB is also of great interest [9]. This signals
that in the case of structure learning for gene regulatory networks, one would like to
incorporate the known causal relationship p53-p21, and then be able to study further
any other conditional dependencies.

While the presented example is a very specific, real-world scenario, it opens the way for
a purely formal and mathematical study of scenarios when one possesses background
information about specific dependence relationships in the network of interest. This
section develops a theoretical understanding of such Bayesian networks with background
information, ensures consistency with the developed theory on regular Bayesian networks
and discerns the relevant differences with regular Bayesian networks. It is important to
remark, that besides the common, real-world occurrence of social and natural processes
with background information, having such networks also simplifies the task of structure
learning, since knowing surely about the existence of a conditional dependency between
two random variables already reduces the number of possible DAGs one has to study.
This in turn reduces computational efforts and potentially reduces computational time
of well-established approaches for Bayesian network structure learning.
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Figure 4.1: The p53-p21-RB signaling pathway.

4.1 Maximally Oriented PDAGs

The described Bayesian networks with background information have already appeared
in literature, albeit under various names. For instance, they are referred to as “maxi-
mally oriented graphs” in [24], as “interventional essential graphs” in [16] or “aggregated
PDAGs (APDAGs)” in [8]. A recent trend in literature shows that the name “maximally
oriented PDAG” is being used on a wider scale [19, 29]. To that end, for consistency
and currency purposes, we adopt the name “maximally oriented PDAG” and refer to
such networks simply as MPDAGs. In [24], the author explores background information
about edge orientations. This complements the idea we convey in our example from
gene regulatory networks. For completeness, in [16], the authors explore background in-
formation in the sense of observational data, and in [8], the authors explore background
knowledge by imposing parameter restrictions on the models under elucidation. Addi-
tionally, one also encounters background information in the sense of interventional data
[22], which typically occurs when we regulate one of the variables in some realizations
of the variables represented in a DAG. In such cases, we typically assume that different
realizations are still independent, but the probability distribution of the random vectors
with regulated variables are not the same as those for the realizations without regulated
variables. The prescribed impact interventional data has on DAGs and CPDAGs is typ-
ically handled with the introduction of so-called dummy variables to the regulated nodes
to form v-structures and then apply an algorithm that creates a CPDAG from a DAG,
such as the one we introduce in section 3.2.

Since our understanding of background information is closest to the one in [24], our dis-
cussion of fundamental definitions related to MPDAGs follows the treatment of Bayesian
networks with background information in [24]. Namely, we study MPDAGs that arise
as a result of adding background information to an existing CPDAG, by orienting an
undirected edge in the CPDAG. For alternative cases, such as MPDAGs arising as a
result of adding background information before structure learning, setting parameters
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constraints or introducing interventional data, we refer the reader to [16, 8, 29].

On a different note, one has to recognize, that the terminology, notation and formula-
tion of results used in [24] are not an integral part of modern-day research literature on
Bayesian networks. To that end, in our treatment of MPDAGs we incorporate current
scientific standards, notation and terminology with already established theory. Despite
being relatively minor in significance, this contributes to the current body of knowledge
by providing the reader with a formal treatment of MPDAGs consistent with current
standards, thus preventing the need for additional effort spent on reconciling mismatch-
ing terminology, notation and statement of results.

To motivate the study of networks with background information we consider an intro-
ductory example.

Example 3. Suppose we have 4 random variables denoted by X1, X2, X3 and X4 for
which we have collected some observations. Through the use of a structure learning al-
gorithm (e.g. PC algorithm) we are able to estimate the CPDAG C for the network, as
given in figure 4.2. Consequently, by applying the orientation rules provided in 3, we
identify all 10 DAGs represented by C (right-hand side of figure 4.2). A typical sce-
nario would be to proceed with a certain score-based approach and check all the DAGs to
determine the best-fitting one. One has to admit that in this case, that is not a compu-
tationally heavy task, so it can be done with ease.

However, if for example we had a CPDAG on many more nodes, representing many
more DAGs, then naturally this becomes a much more demanding problem. Now suppose
either through previous experimentation or expert knowledge, we are certain that there is
a conditional dependence relation between X1 and X3 given by the directed edge X1 → X3

as seen on the left-hand side of figure 4.3. By just adding this one edge, the number of
DAGs represented by this new PDAG M reduces to 5. Again, this is an oversimplified
example, so the benefit might not seem extraordinary, but for CPDAGs that represent
more than a million DAGs for instance, reducing the problem in this way could be quite
beneficial in terms of computational effort.

We remark that one must remain cautious when taking a deeper look at the presented
example. Namely, the reader might be inclined to mistakenly attribute the added edge as
nothing else but an “added edge”, and thus try to use established results and approaches
for CPDAGs. However, in this case, the PDAGM is not even a CPDAG. To simply see
this, in case M were a CPDAG, notice that the DAGs represented by M, given on the
right-hand side of figure 4.3 would belong to two distinct equivalence classes, which is
impossible. To that end, we devote the remainder of this section to provide a sound defi-
nition of a PDAG with background information, and in sections 4.2 and 4.3 we elaborate
on the difference with respect to regular CPDAGs and develop elementary approaches
for establishing dependence relations in PDAGs with background information.
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X1 X2

X3X4

Figure 4.2: CPDAG C (left) and DAGs represented by C (right).

X1 X2

X3X4

Figure 4.3: PDAG M (left) and DAGs represent by M (right).
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Definition 24 (Extension of a DAG and a PDAG).
A DAG G extends a DAG H if G and H share the same skeleton and moreover, for
every directed edge X → Y in E(H), we have that X → Y is in E(G). Applying the
same rule to a PDAG defines an extension for a PDAG. Moreover, we say that G is a
consistent extension of H, if it extends H and they belong to the same equivalence class.

In order to formally define a MPDAG, we concretize the notion of background infor-
mation. Since we adopt the convention of using the term “background information” to
refer to known edge orientations, we define background information as a set of oriented
edges consistent with the v-structures in the CPDAG of G, and we denote it by K. By
consistent, we mean that in case we introduce an edge from K into the corresponding
CPDAG, then that must not produce a new v-structure.

Definition 25 (Maximally Oriented PDAG).
A maximally oriented PDAG (MPDAG), denoted byM, is a PDAG such that for each
unoriented edge X − Y in M, there exist two distinct DAGs G1 and G2 which extend
M, belong to the same CPDAG C, and such that X → Y ∈ E(G1), X ← Y ∈ E(G2).

A straightforward observation is that every CPDAG is a MPDAG, but not vice versa.
To see that the inclusion is strict, consider the following example.

Example 4. Consider the following PDAG M consisting of 3 nodes and one directed
edge X3 ← X2.

X1

X2X3

Figure 4.4: A MPDAG which is not a CPDAG.

By the definition of a MPDAG, we observe that the PDAGM in the example is indeed
an MPDAG. For the undirected edge X1 − X2 consider the two DAGs in figure 4.5.
These two DAGs precisely satisfy the requirements in the definition of a MPDAG. For
the undirected edge X1 −X2, X1 → X2 is in the DAG on the right and X1 ← X2 is in
the DAG on the left. Both DAGs extend M and belong to the CPDAG given in figure
4.6. A similar observation follows for the undirected edge X1 − X3 in M. However,
we notice that the PDAG M is not a CPDAG as a CPDAG cannot contain partially
oriented cycles. A formal treatment of this observation is covered in section 4.2. More
simply, if M were a CPDAG, then the DAGs in figure 4.5 would belong to it, but we
also saw that they belong to the CPDAG C in figure 4.6, which yields a contradiction.
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X1

X2X3

X1

X2X3

Figure 4.5: M is a MPDAG.

X1

X2X3

Figure 4.6: The CPDAG for the two DAGs in example 4.

Definition 26 (MPDAG with respect to Background Information K).
A maximally oriented PDAG (MPDAG) with respect to background information K, de-
noted byM, is a PDAG such that for each unoriented edge X−Y inM, there exist two
distinct DAGs G1 and G2 which extend M, belong to the same CPDAG C, and such
that X → Y ∈ E(G1), X ← Y ∈ E(G2). Moreover, each directed edge from K needs to
be oriented the same way inM.

The provided definitions, while being clear, are relatively cumbersome to work with, as
one would have to check the existence of such DAGs G1 and G2, which could be quite
inefficient for DAGs with many nodes. However, we state the following claim, which
allows us to obtain a simple equivalent characterization for a MPDAG.

Proposition 6. For a given PDAG G, applying the orientation rules presented in section
3.2 to G results in a MPDAG M .

We omit the proof of proposition 6, as the main argument relies upon the application
of theorems 5 and 6 to PDAGs. We state and prove these theorems in section 4.2. The
technical details of the proof can also be found in [24]. Most importantly, this statement
allows us to characterize MPDAGs as PDAGs which are closed under the orientation
rules from section 3.2. Moreover, this characterization also offers a structured way of
determining whether a PDAG is a MPDAG, as one could check if any of the 4 subgraph
configurations presented in section 3.2 are present in a given PDAG, and check if they
are closed under their respective orientation rule. For instance, one could check that
the PDAGs in figures 4.3 and 4.4 are closed under the 4 orientation rules introduced in
section 3.2, and thus they are MPDAGs.
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4.2 Differences between CPDAGs and MPDAGs

A rather naive approach to structure learning for networks with background information
would be to use developed theory for CPDAGs and just apply it to MPDAGs. However,
using our observation that not every MPDAG is a CPDAG, and by proving structural
properties for CPDAGs which are not shared by MPDAGs in general, we examine 3 key
differences between a MPDAG and a CPDAG, which in turn require us to develop new
theory needed for structure learning in the case of networks with background information.

To that end, we first prove the following result for CPDAGs.

Theorem 5. Let C be an arbitrary CPDAG. If for any three nodes X1, X2 and X3 in C,
the directed edge X1 → X2 and the undirected edge X2 −X3 are in C, then the directed
edge X1 → X3 is also in C.

Proof of Theorem 5.
Without loss of generality, according to definition 5, the 4 orientation rules for CPDAGs
provide a topological ordering in which every node has a position behind all of its an-
cestors. Furthermore, this introduces a partial order on the set of nodes in a CPDAG.
Namely, for any two nodes X and Y in C, X < Y if X is an ancestor of Y . As a small
remark, we note that we have a strict partial order since there may be pairs of nodes for
which neither element precedes the other, and we cannot pairs of nodes such that they
are each other’s ancestors due to the acyclicity constraint for DAGs and CPDAGs.

We aim for a proof by contradiction. Thus, let X2 be a node in C such that X1 → X2

and the undirected edge X2 −X3 are in C, but assume that the directed edge X1 → X3

is not in C. Moreover, we choose X2 to be the minimal such node with respect to the
introduced partial order on the set of nodes, meaning that if there is another node X̃2

such that X̃1 → X̃2 and the undirected edge X̃2 − X̃3 are in C, but the directed edge
X̃1 → X̃3 is not in C, then we must have X2 < X̃2. Note that the existence of such a
minimal node X2 is guaranteed by the existence of a node that satisfies the assumptions
in theorem 5.

First, note that X1 and X3 must be adjacent in C, otherwise we would have the first
subgraph configuration from figure 3.2, and thus we would orient X2 − X3 using rule
R1. Moreover, we must have the undirected edge X1 −X3, as having the directed edge
X1 → X3 immediately yield a contradiction, whereas X1 ← X3 yields the second sub-
graph configuration from figure 3.2 and thus we would orient X2 − X3 using rule R2.
To summarize, given the assumption we made in the preceding paragraph, we currently
have the subgraph configuration as presented in figure 4.7.

We complete the proof by case distinction regarding the orientation of X1 → X2.

1. X1 → X2 is oriented using rule R1.
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X1 X2

X3

Figure 4.7: Subgraph configuration according to assumption.

This means that there exists a node Y such that there is a directed edge Y → X1,
such that Y is not adjacent to X2. Notice that Y and X3 must be adjacent,
otherwise, by applying rule R1 to the subgraph configuration Y → X1 − X3, we
would obtain the directed edge X1 → X3, which yields a contradiction. Moreover,
we cannot have Y → X3, as by applying rule R1 to the subgraph configuration
Y → X3−X2, we would obtain the directed edge X3 → X2, which yields a contra-
diction once again. However, then X1 is a node such that Y → X1 and X1−X3 are
in C, but the directed edge Y → X3 is not in C. However, since X1 is an ancestor
of X2, we have X1 < X2, which yields a contradiction as X2 is assumed to be the
minimal such node in C (see figure 4.8).

X1 X2

X3

Y

Figure 4.8: Case 1: X1 → X2 oriented using rule R1.

2. X1 → X2 is oriented using rule R2.

This means there exists a node Y such that there is a directed edge X1 → Y and
a directed edge Y → X2. Moreover, Y and X3 must be adjacent, otherwise we
would have the directed edge X2 → X3 by orienting X2 −X3 using rule R1 in the
subgraph configuration Y → X2−X3. Regarding the edge Y −X3, if we have the
direction Y → X3, then we must have X1 → X3 according to rule R2 applied to
the subgraph configuration X1 → Y → X3 −X1, which yields a contradiction, as
X1 → X3 is assumed not to be in C. On the other hand, if we have the direction
Y ← X3, then we must have X3 → X2 by applying rule R2 to the subgraph config-
uration X3 → Y → X2 −X3, which yields a contradiction, as X2 −X3 is assumed
to be undirected (see figure 4.9).
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X1 X2

X3

Y

Figure 4.9: Case 2: X1 → X2 oriented using rule R2.

3. X1 → X2 is oriented using rule R3.

This means that there exist nodes Y and Z such that we have the undirected edges
X1 − Y , X1 − Z and the directed edges Y → X2, Z → X2 in C. Moreover, Y and
Z must be adjacent to X3, as otherwise, by applying rule R1 to the subgraph
configurations Y → X2 −X3 and Z → X2 −X3, we would get the directed edge
X2 → X3, which yields a contradiction. Furthermore, if we have the unoriented
edges Y −X3 and Z−X3, then by applying rule R3 to the subgraph configuration
X3− Y → X2 ← Z −X3−X2 we obtain the directed edge X3 → X2, which yields
a contradiction, as X2 − X3 is assumed to be undirected. Therefore, if we have
the orientation Y → X3, then by rule R1 applied to the subgraph configuration
Y → X3 − Z, we must have the directed edge X3 → Z, which in turn yields the
directed edge X3 → X2 to preserve acyclicity, which yields a contradiction in turn.
On the other hand, if we have the orientation Y ← X3, to preserve acyclicity we
again must have X3 → X2, which yields a contradiction. An analogous treatment
of the edge Z − X3 shows that regardless of how we orient the edge, we get a
contradiction (see figure 4.10).

X1 X2

X3Y

Z

Figure 4.10: Case 3: X1 → X2 oriented using rule R3.
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4. X1 → X2 is oriented using rule R4.

This means that there exists a node Y such that the undirected edge Y −X1 and
the directed edges Y → X3 and X3 → X2 are in C. This yields an immediate
contradiction, as X2 −X3 is assumed to be undirected (see figure 4.11).

X1 X2

X3Y

Figure 4.11: Case 4: X1 → X2 oriented using rule R4.

5. X1 → X2 is oriented as part of a v-structure.

This means there is a node Y such that X1, X2 and Y form a v-structure, meaning
that the directed edge Y → X2 is in C, and X1 and Y are not adjacent. Notice that,
Y and X3 must be adjacent, as otherwise, by applying rule R1 to the subgraph
configuration Y → X2 − X3, we would have the directed edge X2 → X3, which
yields a contradiction. Moreover, the edge between X3 and Y must be oriented,
as otherwise, by applying rule R3 to the subgraph configuration X3−X1 → X2 ←
Y − X3 − X2, we would have the directed edge X3 → X2, which again yields a
contradiction. The rest of the argument is completely analogous to case 3 (see
figure 4.12).

X1 X2

X3

Y

Figure 4.12: Case 5: X1 → X2 oriented as part of a v-structure.

As we have exhausted all possible orientation cases for how one could have obtained the
directed edge X1 → X2 in C following the given assumptions, and obtained a contra-
diction in each one of them, we conclude that in a CPDAG C, if there are three nodes
X1, X2 and X3 such that the directed edge X1 → X2 and the undirected edge X2 −X3

are in C, then the directed edge X1 → X3 is also in C, as desired.

As a result of this theorem, we observe that a paramount difference between MPDAGs
and CPDAGs, is that MPDAGs are allowed to contain partially directed cycles, whereas
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CPDAGs cannot. To observe this, consider the CPDAG and MPDAG given in example
3. Indeed, we observe that the MPDAG in figure 4.3 contains the partially directed
cycles X3 → X1 −X2 −X3 and X3 → X1 −X4 −X3. However, this is not possible in
the CPDAG in figure 4.2, as it would contradict the result of theorem 5.

To introduce another interesting and important difference we define the concept of a
triangulated graph.

Definition 27 (Triangulated Graph).
An undirected graph H is called triangulated if every cycle in H with length greater than
or equal to 4 has an edge between two nonconsecutive nodes on the cycle.

Theorem 6. Consider a CPDAG C. The undirected subgraph C̃ of C, obtained by re-
moving the directed edges in C, is triangulated.

Proof of Theorem 6.
We proceed with a proof by contradiction. Assume that C̃ is not triangulated, meaning
there is a cycle of length greater than or equal to 4 in which there are no non-adjacent
nodes with an edge between them. Formally, there is a cycle c = ⟨X1, . . . , Xn⟩ in C̃ with
n ≥ 4 such that for any pair of non-adjacent nodes Xi and Xj , Xi −Xj is not in C̃.

Since c is an undirected cycle, if one would like to orient the edges, then to preserve
acyclicity, there must be a node Xi in c such that Xi−1 → Xi ← Xi+1. Note that if
i = n, then i+ 1 = 1 and if i = 1, then i− 1 = n. Importantly, this creates a v-structure
in C̃. By theorem 5, we also obtain a v-structure in C, which yields a contradiction, and
proves the claim.

To see this, suppose that Xi−1 → Xi ← Xi+1 is not a v-structure in C, thus we have
Xi−1−Xi−Xi+1 and there is an edge between Xi−1 and Xi+1. If this edge is undirected,
then C̃ is triangulated, which is a contradiction. If this edge is directed and we have
the edge Xi−1 → Xi+1, then by theorem 5 we would have the directed edge Xi−1 → Xi

in C, which yields a contradiction. Similarly, if we have the edge Xi−1 ← Xi+1, then
by theorem 5 we would have the directed edge Xi+1 → Xi in C, which again yields a
contradiction. This shows that if we have a v-structure in C̃, then we have the same
v-structure in C, as desired.

As a result of this theorem, we observe that another key difference between MPDAGs
and CPDAGs, is that the undirected subgraph of a CPDAG C must be triangulated,
whereas this is not the case for MPDAGs. To observe this, consider the CPDAG and
MPDAG given in example 3. Indeed, we observe that for the MPDAG M, the undi-
rected subgraph M̃ forms a cycle, which is not triangulated (see figure 4.13).

We observe one additional difference, again related to the undirected subgraph C̃ of a
CPDAG C. This difference between CPDAGs and MPDAGs is the result of applying a
theorem in [24] to MPDAGs. For clarity, we state this theorem. Moreover, we call a
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X1 X2

X3X4

Figure 4.13: The undirected subgraph M̃ of the MPDAG M from example 3.

X1 X2

X3X4

X1 X2

X3X4

X1 X2

X3X4

Figure 4.14: No independent orientation M̃.

subgraph of an undirected graph G connected if there is a path between any two nodes
in the subgraph [7].

Theorem 7. Given a CPDAG C and its underlying undirected subgraph C̃, the connected
subgraphs of C̃ can be oriented independently into DAGs without any v-structures, to form
all DAGs represented by C.

A detailed proof of this claim can be found in [24]. We omit the proof and its technical-
ities as our main concern is what this theorem implies for MPDAGs. It is important to
note that “oriented independently” in theorem 7 refers to being able to orient the edges
in each connected subgraph of C̃ independently of the other connected subgraphs and
independently of the orientations of the directed edges in C.

Therefore, as a result of this theorem, we observe one additional difference between
MPDAGs and CPDAGs, best illustrated by considering the CPDAG and MPDAG given
in example 3. Namely, from theorem 7 we know that for a CPDAG C, the connected
subgraphs of C̃ can be oriented independently into DAGs without any v-structures, as
one can observe in figure 4.2, whereas this is not true for MPDAGs, as one can observe
from the undirected subgraph of the MPDAG M from figures 4.3 and 4.13. Namely, to
preserve acyclicity, according to theorem 6, any possible orientation of the edges in M̃
will result in at least one v-structure in M̃. To avoid forming a v-structure inM, in every
DAG G represented by M, we must have the subgraph configuration X1 → X2 ← X3

or the subgraph configuration X1 → X4 ← X3, which comes from the directed edge
X1 ← X3, thus prohibiting independent orientation of edges. This is illustrated in fig-
ure 4.14 where the edges of M̃ are coloured in red to indicate that we must consider
X1 ← X3 when orienting the edges in a DAG represented by M.
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In summary, we have identified three key differences between a MPDAG and a CPDAG.
Namely, a MPDAG can have partially directed cycles, whereas a CPDAG cannot (the-
orem 5). Moreover, the underlying subgraph M̃ of a MPDAG M does not have to be
triangulated, where for a CPDAG C, C̃ must be triangulated (theorem 6). Finally, for
a CPDAG C, we can independently orient the edges in C̃ to obtain all the DAGs repre-
sented by C (theorem 7), which is not necessarily true for MPDAGs.

To circumvent these differences and be able to apply established structure learning ap-
proaches for CPDAGs and DAGs (such as the PC algorithm), one could think of several
simple solutions. First, one could list all the DAGs represented by a MPDAG. Second,
one could exclude MPDAGs with partially directed cycles. While these solutions are
rather simple to implement, one must recognize that the first solution is extremely in-
efficient in cases of MPDAGs with a lot of nodes, whereas the second solution is simply
too restrictive [29]. To that end, we devote the next section to develop specific theory
related to dependence relations in MPDAGs.

4.3 Dependence Relations in MPDAGs

By our observation that every CPDAG is a MPDAG, we are able to modify existing
theory on dependence relations in CPDAGs and adapt it to MPDAGs. In particular,
we focus on defining what directed paths, ancestors and descendants are in a MPDAG.
It turns out that the definitions of these notions are rather similar to their counterparts
for CPDAGs, but more complex [29]. Moreover, their formulation allows us to state and
prove useful results regarding dependence relations in MPDAGs.

Definition 28 (Possibly Directed Path).
A path p = ⟨X1, . . . , Xn⟩ (n ∈ N) in a MPDAG M is called a possibly directed path in
M if for any pair of nodes Xi and Xj in p for 1 ≤ i < j ≤ n, there is no directed edge
Xi ← Xj.

Notice that this definition has the same formulation as the definition of a directed path
in a DAG G given in section 2.1. However, this definition also considers edges which
are not part of the path p and in the case of MPDAGs, this adds an additional layer
of complexity due to the presence of both directed and undirected edges. Consider the
CPDAG C from figure 4.2, the MPDAG M from figure 4.3, and the undirected path
X1−X2−X3. In C, according to definition 28, this is a possibly directed path. However,
in M, X1 −X2 −X3 is not a possibly directed path as X1 ← X3 is a directed edge in
M. We observe a similar situation when it comes to defining ancestors and descendants
in MPDAGs (see figure 4.15).

Definition 29 (Possible Ancestors and Descendants).
For a given node Y in a MPDAGM, a node X is called a possible ancestor of Y inM
if there is a possibly directed path from X to Y . Similarly, a node Z is called a possible
descendant of Y inM if there is a possibly directed path from Y to Z.
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X1 X2

X3X4

X1 X2

X3X4

Figure 4.15: A possibly directed path from X1 to X3 in the CPDAG C (left) and not a
possibly directed path from X1 to X3 in the CPDAG M (right).

X1 X2

X3X4

X1 X2

X3X4

Figure 4.16: X3 is a possible descendant of X1 in the CPDAG C (left) and not a possible
descendant of X1 in the MPDAG M (right).

We again observe that this definition is similar to the definition of a descendant and an
ancestor in a DAG G given in section 2.1. However, considering the CPDAG C from
figure 4.2, and the MPDAG M from figure 4.3, we observe that X3 is a possible de-
scendant of X1 in C since X1 − X2 − X3 is a possibly directed path from X1 to X3 in
C. Analogously, X1 is a possible ancestor of X3 in C. However, when it comes to the
MPDAGM, X3 is not a possible descendant of X1 inM since the only paths from X1 to
X3 are X1−X2−X3 and X1−X4−X3, and these paths are not possibly directed paths
from X1 to X3 inM. Similarly, X1 is not a possible ancestor of X3 inM (see figure 4.16).

Following the definition of a possibly directed path, we present the first interesting result
regarding dependence relations in MPDAGs. In particular we show how possibly directed
paths in a MPDAG affect directed paths in the DAGs represented by the same MPDAG.

Proposition 7. For a given path p in a MPDAGM which is not possibly directed, the
corresponding path in each DAG G represented by M is not a directed path.

Proof. Let p = ⟨X1, . . . , Xn⟩ be a path in M which is not possibly directed. Therefore,
there exist two nodes Xi and Xj in p with i < j such that Xi ← Xj is in M. Then, for
every DAG G represented by M, by definition 26, the corresponding path p̃ in G also
contains the directed edge Xi ← Xj . Hence, p̃ = ⟨X1, . . . , Xn⟩ in G is not a directed
path, as there exist two nodes Xi and Xj in p̃ with i < j such that Xi ← Xj is in G.

Additionally, the contrapositive statement of proposition 7 shows that if p̃ is a directed
path in any DAG G represented byM, then the corresponding path p inM is a possibly
directed path.
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The following two results rely upon the notions of a fully determined node and a fully
determined path [29]. We say that a node Xi on an undirected path p = ⟨X1, . . . , Xn⟩
(1 ≤ i ≤ n, n ∈ N) in a DAG G is a fully determined node if satisfies one of the following:

1. Xi is a collider in p.

2. Xi is an end-point of p.

3. Xi has an outgoing edge in p

4. Xk −Xi −Xj is part of p, and Xk and Xj are not adjacent.

Furthermore, we say that an undirected path p = ⟨X1, . . . , Xn⟩ (1 ≤ i ≤ n, n ∈ N) in
DAG G is a fully determined path if every node Xi on p is a fully determined node.

Proposition 8. Given a fully determined path p = ⟨X1, . . . , Xn⟩ (1 ≤ i ≤ n, n ∈ N) in
a MPDAG M, p is a possibly directed path if and only if there is no edge Xi ← Xi+1

for i ∈ {1, . . . , n− 1} inM.

Proof. (⇒) This direction follows by the definition of a possibly directed path in a
MPDAG M.
(⇐) We proceed by contradiction. Assume that p is not possibly directed path in M,
and thus there exists a directed edge Xk ← Xt such that 1 ≤ k < t ≤ n and k + 1 < t.
By assumption, the MPDAGM contains either the edge Xi−Xi+1 or the directed edge
Xi → Xi+1 for all i ∈ {1, . . . , n− 1}. Since p is a fully determined path, all the nodes on
p are fully determined, and given that no edge Xi ← Xi+1 for i ∈ {1, . . . , n−1} is inM,
all nodes on p either have an outgoing edge in p or they are part of a triple where the
other two nodes are not adjacent. In particular, consider a DAG G represented by M
that contains the directed edge X1 → X2. Therefore, due to p being fully determined, it
means that p̃ contains all the directed edges Xi → Xi+1 for i ∈ {1, . . . , n− 1}. However,
this produces the directed cycle Xk → . . .→ Xt → Xk in G, which yields a contradiction.

This proves the proposition, as we have proved both directions of the claim.

Proposition 9. Given a possibly directed path p = ⟨X1, . . . , Xn⟩ (1 ≤ i ≤ n, n ∈ N)
in a MPDAG M, there exists a subset of the nodes {X1, . . . , Xn} which forms a fully
determined, possibly directed path in which every node is not a collider.

Proof. The last sentence of the claim means that every node in the mentioned subset
satisfies either condition 2, 3 or condition 4 of the definition of a fully determined node.
We prove the claim by induction on the number of nodes in p.

1. n = 3
In this case, p = ⟨X1, X2, X3⟩. Since p is possibly directed, the edge X1 ← X3 is
not inM, so either X1 and X3 are not adjacent, thus X2 satisfying condition 4 of
the definition of a fully determined node, or we have either X1 −X3 or X1 → X3
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in M, in which the path p̃ = ⟨X1, X3⟩ satisfies the claim.

2. n = k − 1 for k > 4
Assume that the claim holds for all paths p of length n = k − 1 for k > 4.

3. n = k for k > 4
If all nodes in a path p = ⟨X1, . . . , Xk+1⟩ of length k satisfy condition 4 of the
definition of a fully determined node, then we are done. To that end, suppose
there is a triple Xi−1−Xi−Xi+1 in p (2 ≤ i ≤ k− 1) such that we either have the
edge Xi−1 −Xi+1 or the edge Xi−1 → Xi+1 in M. Note that since p is possibly
directed, we cannot have the edge Xi−1 ← Xi+1 inM. Then, in a sense we “skip”
the node Xi, and thus the concatenation (adjoining) of the paths ⟨X1, . . . , Xi−1⟩,
⟨Xi−1, Xi+1⟩ and ⟨Xi+1, . . . , Xk+1⟩ is a possibly directed path in M of length
(k+ 1)− (i+ 1) + 1 + (i−1)−1 = k−1, which by the induction hypothesis implies
that there exists a subset of the nodes {X1, . . . , Xi−1, Xi+1, . . . , Xk+1}, and thus a
subset of {X1, . . . , Xk+1}, which forms a fully determined, possibly directed path
in which every node is not a collider, as desired.

Therefore, by induction, the claim is proved.

We observe that by properly modifying the existing theory on directed paths and ancestor-
descendant relationships in regular DAGs, we are able to provide sound definitions of the
same concepts in terms of MPDAGs. This further allows us to prove important claims
related to determining dependence relations in MPDAGs, which is an important and
necessary precursor for developing structure learning approaches tailored to Bayesian
networks with background information.
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5 Bayesian Networks with Incomplete
Information

In this section we explore Bayesian networks with incomplete information, to which
one might refer to as the opposite of Bayesian networks with background information.
Namely, as discussed in section 4, in cases of established dependence relations, previous
observations or model restrictions, one modifies the structure of a given CPDAG by
adding an oriented edge from the set of background information, denoted by K, thus
obtaining a so-called MPDAG. However, in many practical applications, especially appli-
cations involving scientific or corporate measurement, one often encounters the situation
of having incomplete observations, i.e. a dataset in which certain values are missing [13].

Due to the fact that incomplete observations are prevalent in many real-world situations,
one would like to be able to successfully perform the task of structure learning even when
data is incomplete. However, the approaches discussed in section 3.3 assume data to be
complete. As such, a naive attempt to try to somehow incorporate these approaches for
networks with incomplete data would not yield an actual outcome. Therefore, structure
learning of Bayesian networks from incomplete data is an even more challenging task
as one has to infer both the missing data values and the network structure from the
observed data [13].

Bayesian network structure learning from incomplete data is an active line of research
in the field of structure learning. One renowned approach for handling networks with
missing data is data imputation, which refers to filling in missing values with statistical
measures from the observed data such as the mean of the observed data [31]. This ap-
proach is straightforward but may introduce bias. Another widely used approach is the
so-called EM algorithm and its extension, the structural EM algorithm [6, 20]. These
algorithms typically iterate between two steps, the E-step, during which the missing val-
ues are sampled, and the M-step, during which the model parameters are updated based
on the estimated complete data. In particular, the structural EM-algorithm searches for
a fitting DAG by considering a penalized likelihood in an expectation-minimization al-
gorithm [6]. Furthermore, a more recent approach is the so-called NAL approach which
relies upon penalized node-average log-likelihoods (NALs), which one can compute from
locally complete data [1]. Further approaches include the use of partial data, imple-
menting data augmentation, as well as model averaging [20].
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In this section, we focus on a recent paper from 2023 [13], which provides a novel ap-
proach for handling the task of structure learning with incomplete data. Namely, the
author develops a so-called Bayesian model averaging (BMA) approach for Gaussian
Bayesian networks, which are Bayesian networks in which the variables in the network
are continuous and follow a multivariate Gaussian distribution [21]. Given the graph
structure of the network, the joint probability distribution of all variables in the network
can be factorized into conditional Gaussian distributions. The proposed BMA approach
builds upon the BGe score developed by Geiger and Heckerman [11] as a metric for
score-based approaches aimed at structure learning for Gaussian Bayesian networks.
Fundamentally, it proposes a so-called Markov Chain Monte Carlo (MCMC) sampling
algorithm for sampling DAGs and missing data values from posterior distributions [13].
Crucially, this approach achieved higher network reconstruction accuracy compared to
two of the most prominent approaches for handling missing data in Bayesian networks,
the structural EM algorithm and the NAL approach [13]. Nevertheless, the proposed
approach is predominantly tailored to Gaussian Bayesian networks as it relies upon the
fact that one is able to sample missing values from a multivariate conditional Gaussian
distribution. This is not possible in discrete Bayesian networks, as the conditional dis-
tributions required for the proposed BMA approach are not of a well-known form in
discrete networks. Nevertheless, from a conceptual standpoint, one can adapt the pro-
posed BMA approach to discrete networks, if one were able to find a suitable approach
for sampling the missing values in the dataset.

In this section, we provide an initial discussion of how one can tackle this issue in discrete
networks. To that end, we introduce the concept of belief propagation, first developed as
the “sum-product” algorithm for factor graphs by Pearl [26]. To the best of our knowl-
edge, we contribute to this research field by providing a detailed adaptation of belief
propagation to Bayesian networks and proposing an approach for efficient use of belief
propagation in Bayesian networks relying upon the local Markov property of Bayesian
networks. Additionally, we discuss the convergence of the belief propagation algorithm
in different graphs, and provide a comprehensive implementation of belief propagation
in Bayesian networks.

5.1 The Belief Propagation Algorithm

In this section we introduce the belief propagation algorithm in its original formulation.
We first present an intuitive idea of what the goal of the belief propagation algorithm
is, and how the algorithm aims to achieve this goal. Fundamentally, for a given net-
work with both unobserved (missing) and observed random variables, the purpose of
the belief propagation algorithm is to calculate the marginal distribution for each un-
observed node, conditional on any observed nodes. To introduce needed terminology,
an unobserved variable is one type of missing data, referring to a variable that we do
not observe, but whose position in the network is known [31]. Other types of missing
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data include latent variables, which represent variables that we know nothing about, and
partially observed variables, for which we have some observations, but not all [21]. Fur-
thermore, we distinguish between three classes of missing data: data missing completely
at random (MCAR), data missing at random (MAR), and data missing not at random
(MNAR) [31]. In this section, we focus on random variables with the incomplete data
being MCAR, meaning that the missing data points are a random subset of the dataset.
This is in accordance with the made assumptions in the mentioned BMA approach [13].

The way these marginal distributions are calculated using the belief propagation algo-
rithm relies upon the idea of iterative message passing in a network [26]. We formalize
what message-passing means in the context of random variables and conditional proba-
bilities in subsequent paragraphs. From an intuitive point of view, message-passing in a
factor graph (network) refers to viewing the graph as a dynamic processing unit, rather
than our usual understanding of a static representation of the dependence relations be-
tween random variables [26]. This means that the edges between nodes are viewed as
links through which information flows between the nodes. In that sense, message-passing
refers to iteratively sending and receiving information between adjacent nodes in a net-
work. More concretely, in a Bayesian network, the mentioned messages will simply be
defined to be the conditional probabilities imposed by the network structure.

In its original formulation, the belief propagation algorithm was tailored to factor graphs.
To that end, we introduce bipartite graphs.

Definition 30 (Bipartite Graph).
A bipartite graph G is a graph whose set of vertices V (G) can be divided into two disjoint
and independent sets V (G) = U(G) ∪W (G), and whose edges connect a node in U(G)
to a node in W (G).

Definition 31 (Factor Graph).
A factor graph G is an undirected bipartite graph which represents the factorization of
a real multivariate function g(X1, . . . , Xn) for n ∈ N as a product of real multivariate
functions fj:

g(X1, . . . , Xn) =
m∏
j=1

fj(Nj) (5.1)

where Nj ⊆ {X1, . . . , Xn}.

More concretely, being a bipartite graph, the nodes of a factor graph G are given
as a disjoint union of the set of variable nodes U(G) = {X1, . . . , Xn} and the set
of function nodes W (G) = {f1, . . . , fm}. Moreover, there is an undirected edge be-
tween a variable node Xi and a function variable fj if Xi ∈ Nj . An example is
given in figure 5.1, which represents the factorization of a function g(X1, X2, X3) as
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X1 f1 X2

f2 X3

Figure 5.1: A factor graph G.

g(X1, X2, X3) = f1(X1, X2)f2(X2, X3).

Moreover, similar to probability distributions, we define the marginal of a variable Xi as
g(Xi) =

∑
Xĩ

g(X1, . . . , Xn), where Xĩ indicates that we sum over all variables except Xi

[28]. Notice that the notions we defined are incredibly similar, almost identical, to our
treatment of Bayesian networks if one consider the function g to be a joint distribution,
the variables Xi to be random variables, and the function variables to be conditional
probabilities.

These concepts are sufficient for us to formulate the belief propagation algorithm for
factor graphs. We do this constructively by considering the factor graph in figure 5.1.
First, we assume that the variables Xi take on finitely many values from a finite set X ,

akin to discrete random variables. Moreover, let λ
(t)
i→fj

(xi) denote a message sent from a
variable node Xi to a function node fj at time step t ∈ N, evaluated at the value point

xi ∈ X . Similarly, let π
(t)
fj→i(xi) denote the message sent from a function node fj to a

variable node Xi at time step t ∈ N, evaluated at the value point xi ∈ X . The belief
propagation has three main steps:

1. Initialization step: In this step we initialize the messages at t = 0 for the leaf nodes
of the factor graph G, in this case X1 and X3, as:

λ
(0)
i→fj

(xi) =
1

|X |
π
(0)
fj→i(xi) = fj(xi)

(5.2)

which in our case are the two variable to function messages λ
(0)
1→f1

(x1) and λ
(0)
3→f2

(x3),

both set to 1
|X | . Setting the initial value to 1 over the cardinality of the set of val-

ues the variables Xi take, comes from probability theory and having uniformly
distributed variables. Note that, in alternative formulations of the algorithm it is
also typical to set these initial messages to 1, and have them normalized in subse-
quent steps. Step 1 is illustrated in figure 5.2.

2. Message Passing: In this step we compute outgoing messages when incoming mes-
sages are available. In particular, a message from a variable node to a function
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X1 f1 X2

f2 X3

λ
(0)
1→f1

λ
(0)
3→f2

Figure 5.2: Step 1 of Belief Propagation in G at t = 0.

node is the product of the incoming messages, and a message from a function node
to a variable node is the sum over the previous variables of the product of incoming
messages and the function variable evaluated at its adjacent variables nodes. More
precisely, at time step t > 0 and t + 1, these messages are given as:

λ
(t+1)
i→fj

(xi) =
∏

fk∈adj(Xi)\{fj}

π
(t)
fk→i(xi) (5.3)

π
(t)
fj→i(xi) =

∑
Sj\{Xi}

fj(Sj)
∏

Xk∈adj(fj)\{Xi}

λ
(t−1)
k→fj

(xk) (5.4)

where in (5.3) adj(Xi)\{fj} denotes the adjacent function nodes to the variable Xi

except the function node fj to which the outgoing message is passed to. Similarly,
in (5.4) adj(fj) \ {Xi} denotes the adjacent variable nodes of the function variable
fj except Xi to which the outgoing message is passed on. Note that in (5.3)
the time step is set to t + 1 to distinguish that these messages are not computed
simultaneously for a given edge. It is important to state, that the expressions in
(5.3) and (5.4) are the so-called fundamental belief propagation equations, which
govern the entire iterative procedure. In the factor graph from figure 5.1, the
different time steps are illustrated in figure 5.3 and the obtained messages are
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given as:

π
(1)
f2→2(x2) =

∑
X3

f2(X2, X3)λ
(0)
3→f2

(x3)

=
∑
X3

f2(X2, X3)

π
(1)
f1→2(x2) =

∑
X1

f1(X1, X2)λ
(0)
1→f1

(x1)

=
∑
X1

f1(X1, X2)

λ
(2)
2→f2

(x2) = π
(1)
f1→2(x2)

=
∑
X1

f1(X1, X2)

λ
(2)
2→f1

(x1) = π
(1)
f2→2(x2)

=
∑
X3

f2(X2, X3)

π
(3)
f2→3(x3) =

∑
X2

f2(X2, X3)λ
(2)
2→f2

(x2)

=
∑
X2

∑
X1

f2(X2, X3)f1(X1, X2)

π
(3)
f1→1(x1) =

∑
X2

f1(X1, X2)λ
(2)
2→f1

(x1)

=
∑
X2

∑
X3

f1(X1, X2)f2(X2, X3)

(5.5)

where we set the initialized values discussed in step 1 to 1 for simplicity and to
avoid cluttered notation.

3. Termination: In this step we estimate the marginals of each variable g(Xi) =∑
Xĩ

g(X1, . . . , Xn), where Xĩ indicates that we sum over all variables except Xi.
According to the algorithm, each marginal at time step t+1 is equal to the product
of all of its incoming messages:

g(Xi) =
∏

fj∈adj(Xi)

π
(t)
fj→i(xi) (5.6)

So, in our example, at t = 4, we have g(X1) =
∑

X2

∑
X3

f1(X1, X2)f2(X2, X3),
g(X2) =

∑
X1

∑
X3

f1(X1, X2)f2(X2, X3) and g(X3) =
∑

X1

∑
X2

f1(X1, X2)f2(X2, X3).
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f2 X3
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Figure 5.3: Steps 2 of Belief Propagation in G at t = 1 (top left), at t = 2 (top right),
at t = 3 (bottom left) and Step 3 of Belief Propagation in G (bottom right).

In section 5.3, in the case of a factor graph representing a joint distribution, we observe
that the estimate in (5.6) and the fundamental belief propagation equations in (5.3)
and (5.4) are exact on polytrees and produce the exact marginal distributions. It is
important to state that according to the Hammersley-Clifford fundamental theorem of
Markov fields, any positive joint distribution P(XXX) can be represented via factor graphs,
thus making equations (5.3) and (5.4) immediately applicable to Bayesian networks
[14]. In section 5.2 we take a different route, and we provide an adaptation of the
belief propagation algorithm to Bayesian networks without resorting to the Hammersley-
Clifford theorem.

5.2 Belief Propagation for Bayesian Networks

In this section we provide a detailed account of how we can adapt the described belief
propagation algorithm for factor graphs to the case of directed acyclic graphs, in par-
ticular Bayesian networks. This adaptation in turn serves as the base for our proposal
for sampling missing values in discrete Bayesian networks with incomplete data, which
is explored in section 5.3. We make the remark, that the presented algorithm is tailored
to Bayesian networks represented by polytrees, meaning that the network is represented
by a DAG whose underlying undirected graph does not possess any cycles (see section
2.1 for more details). We take this approach due to the fact that the belief propaga-
tion algorithm is exact on polytrees, which we discuss in section 5.3, and because belief
propagation on polytrees fits our proposal for sampling missing values which we discuss
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in section 5.3 as well. Moreover, in our adaptation of the belief propagation algorithm
to Bayesian networks, we assume all the random variables to be discrete, as we want
to tailor our findings to discrete Bayesian networks as per our discussion of the results
obtained in [13]. Nevertheless, the belief propagation algorithm can also be adapted for
absolutely continuous variables in a very similar manner [26].

To avoid cluttered notation, in the derivation of the equations for belief propagation in
Bayesian networks we do not add the superscript t to indicate the specific time step.
Therefore, we remark that all the presented equations refer to a specific node in the
network at an arbitrary time step. To that end, consider a network with r ∈ N ran-
dom variables as nodes, out of which there is a subset of so-called observed nodes, for
which we have complete data, and a subset of unobserved nodes. As a starting point,
we state the problem we want to solve. Namely, we consider an unobserved (also known
as latent or query) node, denoted by X, and the subset of observed (also known as
evidence) nodes, denoted by E. Moreover, we denote the parent set of X by Pa(X)
and assume X to have k < r parent nodes, thus Pa(X) = {Z1, . . . , Zk}. Similarly, we
denote the child set of X by Ch(X) and assume X to have n < r children nodes, thus
Ch(X) = {Y1, . . . , Yn}. Moreover, to avoid cumbersome notation, we treat the evidence
nodes as virtual, meaning obtained from dummy children of variables whose values are
known. Furthermore, the set of evidence nodes E can be written as a disjoint union
E = AX ∪DX , where AX denotes the subset of evidence nodes which has a path to X
through the parent nodes of X, and DX denotes the subset of evidence nodes which has a
path to X through the children nodes of X. Note that both AX and DX could be empty.

As in the standard premise of belief propagation, we treat X as a processing node which
receives and sends “messages” through its parents (top-down propagation) and through
its children (bottom-up propagation). We denote a message from a parent node Zi

(i ∈ {1, . . . , k}) to X by m+
X(Zi), and a message from X to Zi by m−

X(Zi). Similarly, we
denote a message from a child node Yj (j ∈ {1, . . . , n}) to X by m−

Yj
(X), and a message

from X to Yj by m+
Yj

(X). In both cases, the “+” symbol denotes a top-down message
and the “−” symbol denotes a bottom-up message. When it comes to the parent nodes
of X, we have in total 2k messages (top-down and bottom-up messages), and similarly,
considering the children nodes of X, we have in total 2n messages. Visually, one can
represent the given process using figure 5.4.

Now, since we assume E = AX ∪DX to be the evidence nodes, let DX take on a value
and AX take on a value, i.e. AX = aX and DX = dX , where we note that these values
are vectors, as both AX and DX denote subsets of nodes. Therefore, to find the marginal
distribution of X given the evidence nodes E, we want to solve:

P(X|E) = P(X|DX , AX) (5.7)

where we again rely onto the abuse of notation introduced in section 2.3. Now, since we
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Figure 5.4: A visual representation of Belief Propagation in Bayesian networks.

know that each node d-separates its parents from its children, we have that DX and AX

are d-separated with respect to X, so by lemma 4, we have that AX ⊥⊥ DX |X, thus:

P(X|E) = P(X|DX , AX)

=
P(DX , AX |X)P(X)

P(DX , AX)

=
P(AX |X)P(DX |X)P(X)

P(DX , AX)

=
P(X|AX)P(AX)P(DX |X)P(X)

P(DX , AX)P(X)

=
P(X|AX)P(AX)P(DX |X)

P(DX , AX)

= κP(X|AX)P(DX |X)

= κm+(X)m−(X)

(5.8)

where κ = P(AX)
P(DX ,AX) is a normalizing constant, and we denote m+(X) = P(X|AX),
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m−(X) = P(DX |X), to be the messages that are propagated to X from its parents and
then passed onto its children (m+(X)), and the messages that are propagated from its
children and then onto its parents (m−(X)). The core of the belief propagation algo-
rithm for Bayesian networks is summarized in (5.8). The remainder of this section is
devoted to evaluating m+(X) and m−(X).

To that end, we write DX =
⋃n

j=1DX,Yj where DX,Yj is a subset of DX that represents
the evidence contained in the subgraph on the bottom (head) side of X → Yj , meaning

it contains nodes which are also descendants of Yj . Similarly, we write AX =
⋃k

i=1AX,Zi

where AX,Zi is a subset of AX that represents the evidence contained in the subgraph
on the upper (tail) side of Zi → X, meaning it contains also ancestors of Zi. This also
prompts us to define the messages sent to X from a specific parent and child, and the
messages from X sent to a specific parent and child:

m+
X(Zi) = P(Zi|AX,Zi)

m−
X(Zi) = P(DX,Zi |Zi)

m+
Yj

(X) = P(X|AX,Yj )

m−
Yj

(X) = P(DX,Yj |X)

(5.9)

where in the second line of (5.9), DX,Zi represents the entire evidence E, excluding the
evidence propagated through AX,Zi , and in the third line of (5.9), AX,Yj represents the
entire evidence E, excluding the evidence propagated through DX,Yj . This leads to:

m−(X) = P(DX |X)

= P(DX,Y1 , . . . , DX,Yn |X)

=
n∏

j=1

P(DX,Yj |X)

=
n∏

j=1

m−
Yj

(X)

(5.10)

where in the third equality of (5.10) we make use of the fact that our DAG is a polytree
and thus X d-separates Y1, . . . , Yn, and consequently, it d-separates DX,Y1 , . . . , DX,Yn .
We observe the similarity between the expression in (5.10) and the expression in (5.3).

On the other hand, for the message received from X by its parents and passed onto its
children we obtain:

69



5 Bayesian Networks with Incomplete Information

m+(X) = P(X|AX)

= P(X|AX,Z1 , . . . , AX,Zk
)

=
∑
Z1

. . .
∑
Zk

P(X,Z1, . . . , Zk|AX,Z1 , . . . , AX,Zk
)

=
∑
Z1

. . .
∑
Zk

P(X|Z1, . . . , Zk, AX,Z1 , . . . , AX,Zk
)P(Z1, . . . , Zk|AX,Z1 , . . . , AX,Zk

)

=
∑
Z1

. . .
∑
Zk

P(X|Z1, . . . , Zk)P(Z1, . . . , Zk|AX,Z1 , . . . , AX,Zk
)

=
∑
Z1

. . .
∑
Zk

P(X|Z1, . . . , Zk)
k∏

i=1

P(Zi|AX,Zi)

=
∑
Z1

. . .
∑
Zk

P(X|Z1, . . . , Zk)

k∏
i=1

m+
X(Zi)

(5.11)

where in the third equality of (5.20) we marginalized the distribution over (Z1, . . . , Zn),
in the fourth equality we used the definition of conditional probability to re-write the ex-
pression from before, in the fifth equality we used the fact that (Z1, . . . , Zn) d-separates
X and AX,Zi for i = 1, . . . , k, and finally in sixth equality we used the fact that
{Zi, AX,Zi} are independent for i = 1, . . . , k. We again notice the similarity between
the expression in (5.20) and the expression in (5.4). Finally, this yields an elegant ex-
pression for P(X|E):

P(X|E) = κm+(X)m−(X) (5.12)

= κ

(∑
ZZZ

P(X|ZZZ)
k∏

i=1

m+
X(Zi)

) n∏
j=1

m−
Yj

(X) (5.13)

which shows that we can obtain the marginal distribution for X given the set of ob-
served variables E by receiving messages from its child nodes and parent nodes, which
are defined to be conditional probabilities. An important aspect is that to use (5.13),
we must know P(X|ZZZ) either through assumption or estimation [28].

The remaining question is to determine how will X compute its outgoing messages
m−

X(Zi) and m+
Yj

(X) from the incoming messages m+
X(Zi) and m−

Yj
(X), i.e. we have to

determine the next iterative step once X has received its messages from its parents and
children. We show this for the variable X as per the DAG presented in figure 5.4.

We first derive an expression for m+
Yj

(X), where we remind ourselves of the definition

of AX,Yj , which we can also write as AX,Yj = E \ DX,Yj = AX ∪ {DX \ DX,Yj}. For
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conciseness, we define a normalization constant β beforehand as β = 1
P(DX\DX,Yj

|AX) .

This leads to:

m+
Yj

(X) = P(X|AX,Yj )

= P(X|AX , {DX \DX,Yj})

=
P(DX \DX,Yj |AX , X)P(X|AX)

P(DX \DX,Yj |AX)

= β · P(DX \DX,Yj |AX , X)m+(X)

= β
∏
l ̸=j

P(DX,Yl
|X)m+(X)

= β
∏
l ̸=j

m−
Yl

(X)m+(X)

(5.14)

where in the third equality of (5.14) we used the definition of conditional probability
and in the fifth equality we used the fact that X d-separates its children.

To derive an expression of m−
X(Zi), we remind ourselves of the definition of DX,Zi , which

we can write as DX,Zi = E \ AX,Zi = DX ∪ {AX \ AX,Zi}. Again, for conciseness, we
define a normalization constant γ beforehand as γ = P(AX \AX,Zi). This leads to:

m−
X(Zi) = P(DX,Zi |Zi)

=
∑
X

∑
Zl: l ̸=i

P(DX,Zi , X, Zl|Zi)

=
∑
X

∑
Zl: l ̸=i

P(DX , AX \AX,Zi , X, Zl|Zi)

=
∑
X

∑
Zl: l ̸=i

P(DX , AX \AX,Zi |X,Zl, Zi)P(X,Zl|Zi)

=
∑
X

∑
Zl: l ̸=i

P(AX \AX,Zi |Zl)P(DX |X)P(X,Zl|Zi)

=
∑
X

∑
Zl: l ̸=i

γP(Zl|AX \AX,Zi)

P(Zl)
P(DX |X)P(X,Zl|Zi)

= γ
∑
X

∑
Zl: l ̸=i

P(Zl|AX \AX,Zi)P(DX |X)P(X|Zl, Zi)

= γ
∑
X

∑
Zl: l ̸=i

(∏
l ̸=i

m+
X(Zl)

)
m−(X)P(X|Z1, . . . , Zk)

= γ
∑
X

m−(X)
∑

Zl: l ̸=i

P(X|ZZZ)
∏
l ̸=i

m+
X(Zl)

(5.15)
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where in the second equality of (5.15) we used marginalization over X and {Zl : l ̸= i},
in the fourth, fifth and sixth equalities we used the definition of conditional probability
multiple times, and we also utilized the fact that X d-separates DX and AX \ AX,Zi ,
and {Zl : l ̸= i} d-separates AX \AX,Zi and Zi. Finally, in the seventh equality we used
the fact that Zi and {Zl : l ̸= i} are independent.

Therefore, we have obtained comprehensive expressions for all the messages sent to and
from a random variable X, thus formalizing the iterative step of the belief propagation
algorithm for a given node in a Bayesian network. As a concluding remark, we also
specify how the messages coming from leaf nodes are initialized, so that the iterative
procedure can commence. If X is a root node, meaning it has no parent nodes, with
children Y1, . . . , Yn, then we initialize m+

Yj
(X) = P(X), which we assume to be a known

prior probability. If on the other hand, X is a leaf node, meaning it has no child nodes,
with parents Z1, . . . , Zk, then we initialize m−

X(Zi) = 1. If X is an evidence node,
meaning we have observed X = x̃, then we initialize all incoming and outgoing messages
for x̃ to be 1, and for the other values, the messages are set to 0. This concludes
the adaptation of the belief propagation algorithm to Bayesian networks, whose graph
structure is a polytree.

5.3 Convergence, Implementation and Proposed Approach for
Sampling Missing Data

When discussing the belief propagation algorithm for Bayesian networks as a desired
approach for calculating marginal distributions of unobserved variables, one must un-
derstand what are the advantages of using this algorithm. One important aspect that
highlights the strength of the belief propagation algorithm is computational complexity.
To that end, consider a discrete Bayesian network represented by a DAG G with n ∈ N
random variables as nodes, where each random variable Xi attains values from a set
X ⊂ R with cardinality |X |. We recall that if we wish to compute the marginal distri-
bution of an arbitrary node Xi using the joint distribution of the n random variables,
we have the expression:

P(Xi) =
∑
X1

. . .
∑
Xn

P(XXX) =
∑
X1

. . .
∑
Xn

P
(
X1, . . . , Xn

)
(5.16)

where in (5.16) we sum over all variables except Xi. In order to calculate P(Xi) for
a value Xi attains from C, using (5.16) we would need to sum over |X |n−1 values. In
order to calculate P(Xi) for all values Xi attains from C, we would need to perform
|X |n calculations, which leads to O(|X |n) complexity. On the other hand, when using
the belief propagation algorithm to calculate the marginal distribution of an unobserved
node, by observing the expression in (5.13), we see that we have n− 1 summations over
one variable, and with |X | values that Xi can attain, we obtain O(n · |X |2) complexity.
To get an impression of how drastic this difference is, it is enough to consider 100 bi-
nary random variables, meaning n = 100 and |X | = 2, which gives |X |n = 2100 ≈ 1030,
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whereas n · |X |2 = 400. Therefore, using the belief propagation makes a lot of difference
in terms of computational effort.

In terms of exactness, we state the following result concerning factor graphs with a
tree structure and the fundamental belief propagation equations in (5.3) and (5.4), first
proved by Pearl [28].

Theorem 8. Consider a tree factor graph G with a maximum distance d∗ ∈ N between
any two nodes, meaning that the longest walk in G is of length d∗. Moreover, let the
factor graph represent a joint distribution of n random variables. Then,

1. For any initial condition set in (5.2), the iterative equations in (5.3) and (5.4)

converge after at most d∗ iterations, i.e. for t > d∗, λ
(t)
i→fj

(xi) = λ
(d∗)
i→fj

(xi) and

π
(t)
fj→i(xi) = π

(d∗)
fj→i(xi).

2. The estimated marginal equation in (5.6) computes the exact marginal, i.e. g(Xi) =
P(Xi).

The technical details of the proof of this result are beyond the scope of this paper, and
we refer the reader to [28] for details. Nevertheless, for clarity, we provide a brief, slightly
informal, argument by induction on d∗. Given an arbitrary edge U − V in G, let the
edge be directed, i.e. U → V , without loss of generality. Consider the tree subgraph T
of G rooted at this edge, which we denote by TU→V , and which represents the subgraph
containing all nodes which are connected to V via a directed path with the last edge
being U → V . If we only consider TU→V , with V removed if it is a factor node, and
retained if it is a variable node, using induction on d∗, the maximum distance between
any two nodes in TU→V , one is able to prove both claims in theorem 8. First assume
d∗ = 1, with U being a variable node and V a factor node. In this case TU→V is just
the node U . Convergence in this case is clear. Following the assumption, regarding
the initialization of variable nodes made in section 5.1, that for Xi taking finitely many
values from a set X with cardinality |X |, we initialize the outgoing message of U to be
1
|X | at t = 0. Given the structure of TU→V , the message of U stays 1

|X | for all t > 0,
which in turn coincides with the marginal distribution of a node Xi which is uniformly
distributed. Second, assume the claim holds for d∗ ≤ τ ∈ N. We need to show that
the claim holds for t = τ + 1. Therefore, assume again U to be a variable node and
V to be a factor node. For any t > τ + 1, we can use the equations in (5.3) and (5.4)

to compute λ
(t+1)
U→V (U) in terms of iterates/messages from time step t, which in turn,

with a few additional steps proves convergences. Following the induction hypothesis, by
combining the equations in (5.3) and (5.4), and noting that d∗ is at most τ for each tree
subgraph from the t-th iterate, one is able to show that the marginal estimate yields the
true marginal distribution, thus proving the claim.

It is important to note that due to the Hammersley-Clifford theorem, the statements
in theorem 8 show that also for Bayesian networks whose DAG is a polytree, the belief
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propagation algorithm would converge in finitely many steps to the exact marginals.
However, in networks with undirected cycles in their underlying undirected graph, the
belief propagation algorithm provides only approximate inference [26]. This stems from
the fact that when cycles exist, a node X is no longer guaranteed to d-separate its ances-
tors and descendants. Therefore, this creates ambiguity in the iterative message-passing,
which means that messages can be propagated through multiple paths. One common
way of handling such networks is by converting them to polytrees through edge deletions
and edge additions [20]. Moreover, there is an extension of the classical belief propaga-
tion algorithm, called loopy belief propagation, which handles networks with cycles, but
typically provides only approximate inference [28].

For our purposes, the provided adaptation of the belief propagation algorithm will suffice
for sampling missing data values in networks with incomplete data. Namely, with ref-
erence to the BMA approach for inferring Gaussian Bayesian networks [13], we propose
the following approach for sampling the missing values, thus leading to a proposed strat-
egy of how one can adapt the approach to discrete networks. First, given an incomplete
dataset, we initialize the parameters of the random variables involved in the network. By
parameters, we mean the local distribution of the root/leaf nodes and the conditional
probabilities for the other nodes. For discrete networks, conditional probabilities are
typically represented using so-called conditional probability tables (CPTs) which specify
the probability distribution of a variable for each possible combination of its parents’
states [21] via tables. Each row in the table corresponds to a unique combination of the
states of the parent variables and each column represents a possible state of the variable
for which the CPT is defined. For instance, consider two binary random variables with
the dependence relation given as X → Y . We make 10 observations, some of which are
missing, completely at random (see table 5.1).

Observation Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5 Obs. 6 Obs. 7 Obs. 8 Obs. 9 Obs. 10

X 0 0 0 NA NA NA 1 1 1 1

Y 0 1 1 1 0 0 0 0 1 NA

Table 5.1: 10 observations of two binary variables X and Y .

We use only the complete observations, and thus discard observations 4, 5, 6 and 10.
From the complete observations, we estimate P(X = 0) = 1

2 and P(X = 1) = 1
2 . On the

other hand, given X → Y , for Y we obtain the CPT given in table 5.2.

Y = 0 Y = 1

X = 0 P(Y = 0|X = 0) = 1
3 P(Y = 1|X = 0) = 2

3

X = 1 P(Y = 0|X = 1) = 2
3 P(Y = 1|X = 1) = 1

3

Table 5.2: The CPT of Y given the complete observations.

Having initialized the needed parameters via CPTs, the next step is to perform the belief
propagation algorithm. For any variable Xi in the network, to avoid convergence issues
due to potential undirected cycles, identify MB(Xi), extract the subgraph containing
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Xi and MB(Xi), and perform the message-passing on Xi using only the extracted sub-
graph. This utilizes the fact that Xi is a node in a Bayesian network, thus satisfying
the local Markov property, which, using theorem 1, means that all the information we
need to perform inference on Xi is contained in MB(Xi). This approach reduces com-
putational complexity and avoids convergence issues related to undirected cycles. This
finalizes the proposed approach.

We refer the reader to the appendix section, in which one can find the code for an imple-
mentation of the belief propagation algorithm for Bayesian networks in the programming
language R. Note that the implementation in R relies upon the gRain and gRbase R
packages, thus requiring the user to only specify the DAG structure, and the initial local
and conditional probabilities in order to be able to run the code. Additionally, code for
example usage is also provided.
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6 Conclusion and Discussion

This thesis provides a formal introduction to the task of Bayesian network structure
learning. In particular it demonstrates why structure learning is a challenging task,
provides a comprehensive treatment of equivalence classes of directed acyclic graphs as
a way of simplifying this task, and details different structure learning approaches with a
detailed overview of the BDe score used in score-based approaches for discrete Bayesian
networks. The main focus of this paper is on networks with background information and
networks with incomplete information.

In terms of networks with background information, we formalize the idea of having
a dataset with background information through the introduction of MPDAGs. As a
starting point to the development of structure learning for networks with background
information, this paper carefully discerns three important differences between MPDAGs
and CPDAGs, and builds upon existing theory on CPDAGs to develop new theory on
dependence relations in MPDAGs.

Regarding networks with incomplete information, this thesis provides an adaptation
of the well-known belief propagation algorithm to Bayesian networks with the aim of
utilizing this algorithm to sample missing values in an adaptation to discrete Bayesian
networks of a newly-developed Bayesian model averaging approach for inferring Gaussian
Bayesian networks from incomplete data. Moreover, it discusses convergence aspects of
the algorithm, proposes an approach for sampling missing values based on the Markov
blanket of a network node, and provides an implementation of the algorithm in the
programming language R.

6.1 Further Research

The present paper and its results offer several possibilities for further research.

First, the work done on networks with background information serves as a theoretical
starting point to developing structure learning algorithms for MPDAGs. Namely, by
considering the differences between MPDAGs and CPDAGs, one could try to modify
existing constraint-based approaches such as the PC algorithm to be able to apply it to
MPDAGs. This is partially done in [29], where an algorithmic approach is developed for
identifying causal relations in a MPDAG. Additionally, one could also attempt to study
further potential differences between MPDAGs and CPDAGs, as the three observed
differences in this paper are not guaranteed to be the only ones which are significant.
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Moreover, inspired from the developed theory on CPDAGs, further research could also
focus on continuing to develop theory related to dependence relations in MPDAGs. For
instance, given the structural similarities between DAGs that lead to equivalence classes
of DAGs, one could try to explore potential structural similarities between MPDAGs or
a specific kind of MPDAGs. Something similar to this is done in [16], in the context of
interventional essential graphs.

Second, when it comes to discrete networks with background information, one logically
natural venue for further research is to implement the developed exposition of the belief
propagation algorithm in Bayesian networks to the Bayesian model averaging (BMA)
approach presented in [13]. In particular, one could inspect if the proposed approach for
sampling missing values results in an adaptation for discrete networks that is as compet-
itive as the original approach for Gaussian networks in terms of network reconstruction
accuracy. Additionally, one could compare the performance of the BMA approach when
using the belief propagation algorithm to sample missing values and when using data
imputation to fill in the missing values. This comparison has already been considered
for the EM algorithm [31].

6.2 Personal Reflection

Reflecting on the completed thesis work, the author is satisfied with the produced out-
come. Namely, the author is under the impression that by delving deep into a topic not
known to him beforehand, he was able to learn a lot, but more importantly, to have the
chance to experience what professional mathematical research looks like. In particular,
the author was able to experience the associated upturns and downturns when doing
research.

One particular downturn came as a result of the author not being able to develop quality
work regarding his initial project idea to work on establishing bijections between directed
acyclic graphs. Additionally, when working on networks with background information,
the author was under the initial impression that he stumbled upon an almost completely
new line of research, only to discover later in his literature review, that such networks
have already been researched to a certain extent, albeit under a different name than the
one the author formulated.

On a positive note, the author successfully managed to cover two different and difficult
topics from the field of Bayesian network structure learning. This is in turn due to the
fact that the author did not allow for any last-moment obstacles, thus allowing himself
to invest substantial effort and develop the two topics to a high enough level. Therefore,
this achievement instills a strong feeling of accomplishment in the author, and motivates
him to further develop himself with the goal of becoming a researcher in mathematics.
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8 Appendix

Section 8.1 provides sample code for the implementation of the belief propagation algo-
rithm for Bayesian networks in the programming language R.

8.1 Implementation of Belief Propagation in R

# Load necessary l i b r a r i e s

in s ta l l . packages ( ”gRbase” )
l ibrary ( gRbase )
in s ta l l . packages ( ”gRain” )
l ibrary ( gRain )

# Function to c r ea t e a Bayesian network from a g iven DAG and CPTs
create bayes ian network <− function ( dag formula , cpt l i s t ) {

# Define the network s t r u c t u r e
dag <− dag ( dag formula )

# Compile the CPTs in to a p r o b a b i l i t y t a b l e
p l i s t <− compileCPT ( cpt l i s t )

# Create a gra in o b j e c t ( g r aph i c a l independence network )
network <− gra in ( p l i s t )

return ( network )
}

# Function to perform b e l i e f propagat ion and update b e l i e f s
perform b e l i e f propagat ion <− function ( network ) {
# Propagate the b e l i e f s
network <− propagate ( network )

# Update the b e l i e f s f o r a l l nodes
b e l i e f s <− querygra in ( network )

return ( b e l i e f s )
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}

# Function to p r i n t the b e l i e f propagat ion r e s u l t s
print b e l i e f s <− function ( b e l i e f s ) {

for ( node in names( b e l i e f s ) ) {
cat ( ” B e l i e f s  f o r ” , node , ” :\n” )
print ( b e l i e f s [ [ node ] ] )
cat ( ”\n” )

}
}

# Example usage :

# Define the network s t r u c t u r e us ing a formula
# Example : A −> B, A −> C
dag formula <− ˜A + D + A:B + A:C

# Define the c ond i t i ona l p r o b a b i l i t y t a b l e s (CPTs)
cpt A <− cptab l e (˜A, va lue s = c ( 0 . 7 , 0 . 3 ) , levels = c ( ”True” , ” Fa l se ” ) )
cpt B A <− cptab l e (˜B | A, va lue s = c ( 0 . 8 , 0 . 2 , 0 . 1 , 0 . 9 ) ,
levels = c ( ”True” , ” Fa l se ” ) )
cpt C A <− cptab l e (˜C | A, va lue s = c ( 0 . 6 , 0 . 4 , 0 . 3 , 0 . 7 ) ,
levels = c ( ”True” , ” Fa l se ” ) )

# Combine the CPTs in to a l i s t
cpt l i s t <− l i s t ( cpt A, cpt B A, cpt C A)

# Create the Bayesian network
net <− create bayes ian network ( dag formula , cpt l i s t )

# Perform b e l i e f propagat ion
b e l i e f s <− perform b e l i e f propagat ion ( net )

# Print the b e l i e f s f o r a l l nodes
print b e l i e f s ( b e l i e f s )
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