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ABSTRACT

In multi-agent systems, effective interaction, from coordination and negotiation to outright competition,
is especially crucial for high-stake applications. For example, consider rescue missions, where robots
evaluate and maneuver risky operations while humans rescue the victims: In such situations, there is
simply no time for humans to explicitly instruct the robots; instead the robots need to anticipate and
understand the needs of the human rescuers and of the human victims. To this end, it is often helpful to
specify agents in terms of their mental states, such as knowledge, beliefs, plans and intentions, as well
as to recursively specify the mental states of others in relation to oneself. But before we can implement
such a comprehensive reasoning theory, we must first understand it within humans.
Theory of mind (ToM) is defined as the ability to reason about the behaviour of others and oneself

by attributing mental states, such as beliefs, desires and knowledge. While humans are able to apply
ToM recursively (e.g., “I know that you believe that they think...”), past research has shown that human
recursive ToM use is limited in strategic games and that it often does not exceed second-order ToM.
One possible explanation for this limitation of recursive ToM use is that embedded beliefs are processed
serially through intermediate reasoning steps that are eventually sent to the long-term memory for later
retrieval and retrieval from the long-term memory has been shown to take long and to be prone to errors
- this is also known as the serial processing bottleneck hypothesis.

Dynamic epistemic logic has been historically used to formalize ToM concepts because it allows one
to model how (recursive) reasoning about knowledge changes in response to new information. However,
classical approaches to modeling ToM in dynamic epistemic logic do not account for the upper limit
to recursive ToM use, as revealed through behavioural research. At the same time, most behavioural
research does not test assumptions about recursive ToM use on tasks that can easily be modeled in
dynamic epistemic logic. The present study aimed to address this gap in the literature by: i) proposing
and conducting a novel experiment on an epistemic puzzle and ii) proposing a novel modeling paradigm
in public announcement logic (a variant of dynamic epistemic logic), whereby parts of complex ToM
statements are sequentially removed until the new statement can be processed by the agent.
The first goal of the study was achieved by conducting an experiment where participants were asked

to solve a series of Cheryl’s Birthday epistemic puzzles that were set in different contexts (hereon,
referred to as “scenarios”) and required different orders of ToM reasoning (specifically, first-order through
fourth-order ToM reasoning) as the only viable strategy to reach the correct solution. I showed that:
i) the time to solve a puzzle differed significantly across every two ToM orders, except for third-order
and fourth-order puzzles (first-order: M=130.91 seconds; second-order: M=194.01 seconds; third-order:
M=258.02 seconds; fourth-order: M=261.69 seconds) and ii) accuracy was significantly different across
ToM orders (first-order: 82.1% correct answers; second-order: 51.2% correct answers; third-order: 34.5%
correct answers; fourth-order: 2.4% correct answers). In other words, lower orders of ToM were associated
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with lower solving time and higher accuracy (and vice-versa for higher order of ToM). Additionally, I
showed that there was no effect of scenario on solving time and accuracy, respectively.
The second goal of the study was achieved by proposing a novel modeling paradigm and implementing

it in public announcement logic: When participants encounter a high-order ToM statement that they
cannot process, they sequentially remove knowledge operators, either from the front or from the back of
the statement, until the ToM order is low enough to process the statement. I showed that a model that
reduces higher-order ToM statements to second-order ToM statements captures systematic patterns in
the behaviour of human participants that deviate from a model of perfect recursive ToM reasoning and
a model of informed random behaviour. Additionally, I showed that removing operators from the front
(left side) of a statement matches the behaviour of participants better than removing operators from the
back (right side) of the statement.
Overall, the proposed experimental design allows one to distinguish theory of mind recursive reasoning

at different recursive orders from other strategies in the epistemic puzzle of Cheryl’s Birthday and I
showed that differences in performance across different ToM orders are most likely due to limitations
in recursive reasoning rather than the contextual information of the puzzles. Additionally, I showed
that the epistemic puzzles can be modeled in public announcement logic and the proposed modeling
paradigm sheds a critical light on alternative explanations of reasoning about complex ToM statements
(such as ignoring those statements or probabilistic guessing). Two potential avenues for future research
include investigating whether higher-order ToM reasoning abilities on the Cheryl’s Birthday puzzle can
be enhanced through training and considering ways how to formalize the cutting operation within public
announcement logic.
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CHAPTER 1

INTRODUCTION

Imagine you want to send an email to your
coworkers concerning a complaint raised by a cus-
tomer. You just finished writing the body of the
email detailing the situation and now you are about
to insert the email addresses of the recipients. You
are now faced with one important decision: whether
to use CC or BCC - like CC, BCC sends copies of
the email to additional recipients but, unlike CC,
these recipients are not visible to each other. Your
decision depends on whether you want certain re-
cipients to know that other recipients know the
content of the message - perhaps your coworkers
are part of different departments and you do not
wish to create unnecessary conflict. Therefore, you
have to understand, from their perspective, how
this knowledge could potentially affect their be-
haviour. This ability to reason about the behaviour
of others and oneself by attributing internal mental
states, such as knowledge, desires and intentions, is
known as theory of mind (ToM) [Dennett, 1971,
Premack and Woodruff, 1978].

In this chapter, I introduce the research context
and the background, as well as discuss the focus of
the current study: quantifying and modeling lim-
its to the recursive use of ToM in an (epistemic)
puzzle. In Section 1.1, I present past research that
suggests that ToM can be applied recursively up
to a certain limit and introduce a possible expla-
nation for the existence of this cognitive limit. In
Section 1.2, I introduce epistemic logic as the logic
historically used to formalize knowledge. Lastly, in
Section 1.3, I introduce the main focus points of
the current study.

In Chapter 2, I present and justify the exper-

imental design of the (epistemic) puzzles used to
measure ToM abilities. In Chapter 3, I present
some interesting effects found in the dataset, which
can motivate further research. In Chapter 4, I pro-
pose a novel strategy modeled in epistemic logic
that may explain why participants give incorrect
answers when faced with higher-order theory of
mind. In Chapter 5, I discuss the quality of fit of
the aforementioned model on the participants’ data
and compare this fit against two other alternative
explanations. Lastly, in Chapter 6, I summarize the
findings of the study, I discuss points of improve-
ment for both the experimental design, the model-
ing approach, and the statistical methodologies and
I suggest potential avenues for future research.

1.1 Limits of ToM Reasoning

Theory of mind, the ability to reason about the
mental states of others and oneself, can be applied
recursively (see Verbrugge [2009] for an overview).
Zero-order ToM describes world facts, such as “The
sky is red” (note that the truth value of the state-
ment is irrelevant here), while (x+1)-order reason-
ing attributes x-order reasoning to the other agent
or oneself. For example, in the sentence “Albert
knows that Bernard thinks that the sky is red”, Al-
bert uses first-order ToM to reason about another
agent using zero-order ToM, namely Bernard, to
reason about a world fact. It is then said that we,
the readers, make a second-order attribution to Al-
bert and a first-order attribution to Bernard.

Past research suggests that there is a limit to
the number of times humans can apply ToM recur-
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sively, as they tend to mostly use second-order ToM
in strategic games [de Weerd et al., 2018, Devaine
et al., 2014, Nagel, 1995]. However, higher orders
of recursive ToM use have been experimentally ob-
served - for example, evidence of fourth-order ToM
use has been found in story comprehension tasks
[Stiller and Dunbar, 2007, Kinderman et al., 1998]
and in the Mod game (through a training regime)
[Veltman et al., 2019].
Children begin to distinguish their own beliefs

from those of others between three and five years of
age and only later, between six and nine years old,
do they begin making correct second-order attri-
butions [Perner, 1988 as cited by Verbrugge, 2009].
Arslan et al. [2017b] investigated whether children
that cannot apply second-order ToM may favour
zero-order or first-order ToM strategies in a false
belief task. To this end, the authors built two cog-
nitive models (an instance-based model in ACT-
R [Anderson, 2007] and a reinforcement learning
model) that reasoned about another agent as if
that agent was reasoning using the same strategy
as the model itself but at one ToM order lower
(and this way of reasoning about other agents was
applied recursively). The children’s data confirmed
the predictions of the instance-based model: When
children failed to use second-order ToM, they used
first-order ToM strategies significantly more often
than zero-order ToM.
Unfortunately, assessing ToM abilities seems to

be highly dependent on the task domain. In Flobbe
et al. [2008], the authors investigated the late devel-
opment of second-order ToM in children between 8
and 10 years old in three different task domains:
a strategic game, a grammatical task and a false
belief task. While almost all children succeeded in
the false belief tasks, their performance dropped
noticeably for the other two tasks, even though all
three tasks required the same order of ToM rea-
soning. This suggests that there is a gap between
a child’s intentional understanding of second-order
reasoning and their ability to exert it in an applied
setting.
The task-dependent nature of the successful ap-

plication of higher-order theory of mind lends it-
self to several explanations. One highly likely pos-
sibility is that there is a higher processing cost as-
sociated with higher-order cognition and, as a re-
sult, the already high demands of certain tasks may
interfere with the successful application of the re-

quired order of theory of mind [Verbrugge, 2009].

To this end, Arslan et al. [2017a] investigated
the role of working memory in the development
of second-order false belief tasks. The authors
brought forth the serial processing bottleneck hy-
pothesis [see e.g., Verbrugge, 2009]. Processing se-
rially embedded beliefs requires intermediate rea-
soning steps that are temporarily kept in the work-
ing memory. For example, processing the sentence
“Albert knows that Bernard thinks that the sky is
red” involves understanding that i) “the sky is red”
is a world fact, ii) Bernard believes in that world
fact and iii) Albert is aware of Bernard’s belief.
Since the working memory is limited with regard to
the amount of information that can be stored and
processed at a time [Miller, 1956], these intermedi-
ate processing steps would need to be sent to the
long-term memory for later retrieval, if necessary.
However, retrieving information from the long-term
memory often takes longer and is prone to errors
[Anderson and Schooler, 2000 as cited by Arslan
et al., 2017a].

In support for the serial processing bottleneck
hypothesis, Arslan et al. [2017a] showed that the
children’s scores in a complex working memory task
were highly correlated with the accuracy of their
answers in the false belief task: Children with high
scores in the working memory task also performed
better in the second-order belief task. Moreover,
when children failed the second-order false belief
task, they most often provided first-order answers,
as opposed to zero-order answers. More generally,
this suggests that failures at a certain ToM order
are typically one order below the target order of
(false belief) reasoning.

1.2 ToM and Formalism

Epistemic logic has been historically used to for-
malize ToM concepts because it allows one to model
reasoning about knowledge, through statements of
the form “I know that you know...”. Generally,
models of epistemic logic encode two aspects re-
lated to an agent: i) facts it considers true about the
state of the world and ii) its knowledge about other
agents’ knowledge (and about the other agents’
knowledge about other agents’ knowledge, etc).
Since knowledge is often not stationary, dynamic
epistemic logic (DEL) [van Ditmarsch et al., 2007]
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provides a way to model how knowledge changes in
response to new information. This new information
is modeled through a variant of DEL called public
announcement logic (PAL) [Plaza, 1989, 2007]: If
a public announcement φ occurs, everything that
contradicts φ is not considered possible anymore.
For example, if Amy is told that in a drawer there
is either one banana or one apple, then she ini-
tially considers it possible that either fruit is in the
drawer. However, if Ben later tells her that there are
no bananas in the house, then Amy’s knowledge is
accordingly updated: She now no longer considers
it possible that a banana is in the drawer.
Two important assumptions of classic DEL are

that: i) all agents are perfect reasoners, meaning
that they always reason correctly given a set of rules
and they know everything about every known as-
pect of the world and ii) everybody knows (a.k.a.,
it is common knowledge) that all agents are per-
fect reasoners. However, behavioural research has
shown that there is a cognitive limit to human re-
cursive reasoning [de Weerd et al., 2018, Devaine
et al., 2014, Nagel, 1995]. While formal DEL re-
search does not account for the upper-bound limit
in ToM, behavioural research does not test its
predictions on tasks that can be easily modeled
in epistemic logic, namely epistemic puzzles [Top
et al., 2023]. Therefore, further research is neces-
sary to bridge the gap between DEL formalism and
bounded cognition.
A first attempt to model upper-bounded ToM

reasoning in DEL was conducted in Kaneko and
Suzuki [2002] [as cited by Top et al., 2023], where
the authors define the epistemic depth of a for-
mula based on the nesting of its knowledge op-
erators. Arthaud and Rinard [2023] built upon
this framework in their purely theoretical study
by defining several logics of public announcements
where agents could understand a limited number of
nested knowledge operators. Importantly, the au-
thors assumed that any nested knowledge operator
increases a formula’s epistemic depth.
Contrary to the Arthaud and Rinard [2023] ap-

proach, Cedegao et al. [2021] and Top et al. [2023]
assumed that a formula’s epistemic depth is in-
creased only by switching between knowledge oper-
ators for different agents - that is, there is a qualita-
tive difference between reasoning about one’s own
knowledge and reasoning about the knowledge of
others. In essence, Cedegao et al. [2021] proposed

an upper-bounded simulated agent that has access
to only a subset of the entire epistemic logic model
associated with the logical puzzle. The size of the
subset is proportional to its epistemic order: The
higher the epistemic order, the more information
the agent can access. A public announcement has
the expected effect: Any information in the subset
that contradicts the public announcement is sim-
ply removed. The agent is said to have solved the
epistemic puzzle when only one option remains in
the subset because all other options have been re-
moved through public announcements. Addition-
ally, Cedegao et al. introduced levels of stochas-
ticity to the upper-bounded agent, in order to ac-
count for human participants’ guessing behaviour:
For example, the subset is updated after a public
announcement given a certain probability.

Top et al. [2023] built upon the Cedegao et al.
[2021] approach by proposing a different way of rea-
soning about other agents’ knowledge. Top et al.
claimed that the Cedegao et al. [2021] approach
allows for an infinite number of switches of per-
spectives∗ between different agents, and that this
contradicts theories of recursive ToM limitations.
Instead, Top et al. explicitly modeled a perspective
switch event from agent1 to agent2 in the follow-
ing way: agent1 associates with agent2 an epistemic
order smaller by one than its own; then agent1
reasons for agent2 using its own knowledge base
and the lower epistemic order. Crucially, since an
agent cannot allocate to another anything lower
than zero-order ToM, the number of perspective
switches is then finite.

The Cedegao et al. [2021] and Top et al. [2023]
approaches were both validated on human data, on
the same “Aces and Eights” dataset using differ-
ent statistical methods: Maximum Likelihood Esti-
mation [Cedegao et al., 2021] and Random-Effects
Bayesian Model Selection [Top et al., 2023]. Sev-
eral issues are worth mentioning with regards to
these two approaches. Firstly, Top et al. [2023]
have identified fundamental issues with the “Aces
and Eights” experimental design: An agent could
solve games that require higher-order epistemic rea-
soning by always claiming that they do not know
the cards. Therefore, many participants who truth-

∗A switch of perspective can be understood as “placing
oneself in somebody’s else shoes” and reasoning from their
perspective. Both agents are assumed to be using the same
reasoning strategy, which is not always true in practice.
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fully reported not knowing the answer could have
been misclassified as being high-order ToM rea-
soners in Cedegao et al. [2021]. Moreover, in the
game of “Aces and Eights” there is a consider-
ably high chance of probabilistic guessing (i.e., 50%
for guessing that the cards are not known) - this
makes it difficult to differentiate those participants
who are capable of using higher-order reasoning
from participants that use other strategies, such
as guessing. Secondly, one aspect of the Top et al.
[2023] modeling approach seems rather counter-
intuitive: Zero-order ToM agents assume that other
agents do not consider anything to be possible and,
therefore, that other agents vacuously consider ev-
erything to be possible, including contradictions.
Thirdly, the game of “Aces and Eights” is only
set within the “playing cards” context and, as dis-
cussed above, ToM abilities are task-domain depen-
dent [e.g., Flobbe et al., 2008]; therefore, one must
be cautious of drawing general conclusions about
ToM strategies used by humans. Lastly, both stud-
ies only model truthful and public announcements
and, therefore, do not account for the possibility
that the participants may be lying or for private
announcements.
Unfortunately, there are only a few behavioural

experiments on classic epistemic puzzles [Cedegao
et al., 2021, Jonker and Treur, 2003, Hayashi, 2002]
and, for those that do exist, it is often the case that
the reliability of the dataset is called into question.
Therefore, the aim of the current study is to tackle
the aforementioned issues of the Cedegao et al.
[2021] and Top et al. [2023] approaches by propos-
ing a novel experimental design, in which different
orders of ToM reasoning in epistemic puzzles can be
properly distinguished from other strategies. Addi-
tionally, as an alternative to Top et al. [2023], I
propose a novel way of modeling statements that
go beyond certain ToM limits: Instead of simply
ignoring such statements (as done in Top et al.,
2023), I propose a model that removes parts of the
complex ToM statement until it can be processed.

1.3 Current Study

The present study aims to achieve two goals:

1. Propose a novel experimental design and gen-
erate a dataset that will become a benchmark
for future ToM studies.
To this end, an experimental setup was de-
signed such that ToM reasoning was the only
viable strategy to reach the correct answer
- please refer to Chapter 2 for a more de-
tailed description of the experimental design.
As part of the experiment, participants were
asked to solve a series of eight puzzles inspired
by “Cheryl’s Birthday” [e.g., van Ditmarsch
et al., 2017]. In the “Cheryl’s Birthday” puz-
zle, the participant has to determine Cheryl’s
birthday from a list of possible dates, based on
conversational clues provided by Cheryl’s two
friends, Albert and Bernard. Since the conver-
sation between Albert and Bernard pertains to
their own limited knowledge of Cheryl’s birth-
day, only by reasoning about the boys’ knowl-
edge (i.e. applying ToM reasoning) can a par-
ticipant reach the correct answer.

Overall, the aim of the experiment was to en-
sure that the potential upper bound of recur-
sive ToM use can be measured: One should ex-
pect that puzzles requiring ToM orders higher
than the bound would not be solvable by
the majority of participants. All participants
solved the eight puzzles requiring varying or-
ders of ToM reasoning and set in different con-
texts in a randomized order, in order to ac-
count for potential learning effects.

2. Investigate whether participants’ behaviour
(and, specifically, mistakes) can be explained
by a model that removes parts of complex ToM
statements.

Suppose that a model can process only up to x-
order ToM statements. Now suppose that the
same model encounters an (x+2)-order state-
ment. In Top et al. [2023], the latter statement
would simply be ignored since it cannot be
processed by the model. I propose an alter-
native strategy: Knowledge operators are se-
quentially removed (along with their preceding
negations, if applicable), either from the left
side or from the right side of the statement,
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such that the initial statement becomes an x -
order statement and, therefore can now be pro-
cessed by the model - please refer to Chapter 4
for a more detailed description. This design
choice is supported by the findings in Arslan
et al. [2017b] and Arslan et al. [2017a], where it
is suggested that failures at a certain order of
ToM typically lead to answers at a lower ToM
order, as opposed to a different strategy.

This model was compared against a per-
fect reasoning model and a random model
and the best fit was assessed using group-
level random-effects Bayesian model compari-
son (RFX-BMS), as proposed by Stephan et al.
[2009] - please refer to Chapter 5 for a more
detailed description. This would reveal the ex-
istence of a second-order ToM cognitive limit,
as suggested by the literature: If a model that
cuts statements down to second-order is found
to explain most of the data, this would suggest
that participants (perhaps unconsciously) use
a similar strategy.
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CHAPTER 2

EXPERIMENTAL METHODS

In this chapter, I present and justify the experi-
mental design. In Section 2.1, I discuss the demo-
graphic data of the participants involved in the ex-
periment. In Section 2.2, I present the solutions of
the four unique “Cheryl’s Birthday” puzzles used in
the study and explain how to generate sixty vari-
ations based on these four original puzzles. Lastly,
in Section 2.3, I discuss in detail the setup of the
experiment.

The code can be found at https://github

.com/AndreeaMinculescu/Cheryl-Puzzle. For a
detailed explanation of the experimental procedure,
see Section 2.3.

2.1 Participants

Forty-nine Bachelor’s students (32 female; mean
age 20.18, ranging from 18 to 24) at the University
of Groningen participated in exchange for mone-
tary compensation. Initially, one additional Mas-
ter’s student participated in the experiment, pre-
sumably without carefully reading the participa-
tion requirements mentioned in the advertisement.
This participant was later excluded from any fur-
ther analyses.
The participants had reported to have no formal

training in modal/epistemic logic and had taken
no Game Theory courses at the time of the ex-
periment. It was not stated explicitly as a require-
ment that participants may not have solved the
“Cheryl’s Birthday” puzzle before, out of concern
that they might look it up online. In spite of this,
most participants reported not having heard about
the “Cheryl’s Birthday” puzzle prior to the exper-

iment (45 participants) or any similar puzzle (43
participants). On a scale from 1 to 10, 10 being
equivalent to “I feel very happy”, participants re-
ported a mean mood score of 6.94.

2.2 Puzzles

Four unique “Cheryl’s Birthday” puzzle texts, one
for each order of theory of mind (ToM) from one to
four, were adapted from van Ditmarsch et al. [2017].
All puzzle texts and their respective solutions are
discussed below. In Section 2.2.5, it is discussed how
variations of the four unique puzzle types shown
during the experiment were obtained.

For the discussion of the solutions below, con-
sider the following notations: Let Albert be A,
Bernard be B and Cheryl be C. Additionally, let
“days” refer to the numbers on C’s list (14-18), let
“months” refer to the calendaristic months on C’s
list (May-September) and let “birthday” refer to a
⟨month, day⟩ combination on C’s list (e.g., May,
15). Let a unique element of a set be defined as an
element that occurs no more than once in that set -
for example, in the set {a, b, a, c, b, a}, c is a unique
element.
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2.2.1 “Cheryl’s Birthday” First-
Order ToM

The text of the puzzle is presented below:

Albert and Bernard just became friends with
Cheryl, and they want to know when her birth-
day is. Cheryl writes down a list of 10 possible
dates and tells them that one of them is her
birthday:

• May: 15,16

• June: 17,18

• July: 14,16

• August: 14,17

• September: 16,18

Cheryl then tells only to Albert the month of
her birthday, and tells only to Bernard the day
of her birthday. (And Albert and Bernard are
aware that she did so.) Everybody knows that
Albert, Bernard and Cheryl don’t make any
reasoning mistakes and never lie.

Albert and Bernard now have the following
conversation:
Bernard: “I know when Cheryl’s birthday is.”

When is Cheryl’s birthday?

The solution to the puzzle above can be formulated
as follows:

B claims that he knows the birthday. Since B
knows only the day and nothing else, it must be the
case that the birthday is associated with a unique
day (i.e., a day that occurs only once in the list of
options given by Cheryl). Consider the alternative:
if C’s birthday was on a day that is not unique
on the list (e.g., 18), then B would not be able
to differentiate between multiple months associated
with that date (i.e., June and September) without
more information. Since 15 is the only unique day,
the solution to the puzzle must be May, 15.
This puzzle requires first-order ToM because the

participant must perform one perspective switch to
find the solution: reasoning from B’s perspective.

2.2.2 “Cheryl’s Birthday” Second-
Order ToM

The text of the puzzle is presented below:

Albert and Bernard just became friends with
Cheryl, and they want to know when her birth-
day is. Cheryl writes down a list of 10 possible
dates and tells them that one of them is her
birthday:

• May: 17,18

• June: 14

• July: 16,18

• August: 15,16,17

• September: 14,15

Cheryl then tells only to Albert the month of
her birthday, and tells only to Bernard the day
of her birthday. (And Albert and Bernard are
aware that she did so.) Everybody knows that
Albert, Bernard and Cheryl don’t make any
reasoning mistakes and never lie.

Albert and Bernard now have the following
conversation:
Albert: “I don’t know when Cheryl’s birthday
is.”
Bernard: “I didn’t know at first, but now I
know.”

When is Cheryl’s birthday?

The solution to the puzzle above can be formulated
as follows:

A claims that he does not know C’s birthday and,
therefore, it must mean that C’s birthday is not in
a month associated with only one day. Consider the
following line of reasoning: if C’s birthday was in a
month with multiple days associated (e.g., Septem-
ber), then A would not be able to differentiate be-
tween the multiple days associated with that month
(i.e., 14 and 15) without more information. There-
fore, C’s birthday cannot be on June, 14 (June is
the only month associated with only one day).
Next, B claims that A’s statement helped him

find C’s birthday. As a perfect reasoner, B must
have completed the step described above correctly
and have as leftover options:

May: 17, 18;
July: 16, 18;
August: 15, 16, 17;
September: 14, 15.
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For B to now know the solution, C’s birthday must
be associated with a unique day. Therefore, the day
must be 14 and C’s birthday must be September,
14 (as June, 14 has already been eliminated as an
option).

This puzzle requires second-order ToM because
the participant must reason from B’s perspective
about A’s perspective: without A’s statement, B
would not have been able to find the solution be-
cause initially there are no unique days.

2.2.3 “Cheryl’s Birthday” Third-
Order ToM

The text of the puzzle is presented below:

Albert and Bernard just became friends with
Cheryl, and they want to know when her birth-
day is. Cheryl writes down a list of 10 possible
dates and tells them that one of them is her
birthday:

• May: 15,18

• June: 15,17

• July: 14,16

• August: 14,16

• September: 15,16

Cheryl then tells only to Albert the month of
her birthday, and tells only to Bernard the day
of her birthday. (And Albert and Bernard are
aware that she did so.) Everybody knows that
Albert, Bernard and Cheryl don’t make any
reasoning mistakes and never lie.

Albert and Bernard now have the following
conversation:
Albert: “I know that you don’t know when
Cheryl’s birthday is.”
Bernard: “I didn’t know at first, but now I
know.”

When is Cheryl’s birthday?

The solution to the puzzle above can be formulated
as follows:

A claims that he knows that B does not know.
For A to know that, it means that the month he
was told is not associated with a unique day. Con-
sider the alternative: if C’s birthday was in a month

associated with a unique day (e.g., May, where 18
is a unique day), then A would not be able to differ-
entiate between the two days (15 and 18) and, by
extension, would not be able to confidently claim
that B does not know the birthday (B could poten-
tially have been told 18 and, in that case, B would
have known the birthday) without further informa-
tion. Since both 17 and 18 are unique days, C’s
birthday cannot be in May or June.

Next, B claims that A’s statement helped him
find C’s birthday. As a perfect reasoner, B must
have completed the steps described above correctly
and have as leftover options:

July: 14, 16;
August: 14, 16;
September: 15, 16.

For B to now know the solution, C’s birthday
must be associated with a unique day. Therefore,
the day must be 15 and C’s birthday must be
September, 15.

This puzzle requires third-order ToM because the
participant must reason from B’s perspective about
A’s reasoning about B’s perspective: without A’s
statement, B would not have been able to differen-
tiate between May, June, and September, which all
have 15 as an option.

2.2.4 “Cheryl’s Birthday” Fourth-
Order ToM

The text of the puzzle is presented below:

Albert and Bernard just became friends with
Cheryl, and they want to know when her birth-
day is. Cheryl writes down a list of 10 possible
dates and tells them that one of them is her
birthday:

• May: 15,18

• June: 14,15

• July: 17,18

• August: 16,17

• September: 16,17

Cheryl then tells only to Albert the month of
her birthday, and tells only to Bernard the day
of her birthday. (And Albert and Bernard are
aware that she did so.) Everybody knows that
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Albert, Bernard and Cheryl don’t make any
reasoning mistakes and never lie.

Albert and Bernard now have the following
conversation:
Benard: “I know that you know that I don’t
know when Cheryl’s birthday is.”
Albert: “I didn’t know at first but now I
know.”

When is Cheryl’s birthday?

The solution to the puzzle above can be formulated
as follows:

B claims that he knows that A knows that B does
not know. Similarly to Section 2.2.3, A knows that
B does not know if A was told a month that is not
associated with a unique day. Since 14 is unique,
it means that C’s birthday is not in June. After
all, if C’s birthday had been in June, A would not
have been able to exclude June, 14 as a possibility,
in which case, B would have known the birthday.
Since B knows all of this, it means that B was not
told one of the days in June. Consider the alter-
native: if the day was 14, then B would know the
birthday from the beginning (it is a unique day)
and that contradicts the first statement in the di-
alogue. If the day was 15, then B would consider
it possible for June, 15 to be the answer. If June
were the correct month, then A would consider it
possible for June, 14 to be C’s birthday and, by ex-
tension, A would consider it possible for B to know
the answer from the beginning. This, again, contra-
dicts the first statement in the dialogue. Therefore,
May, 15 is also not possible.
Next, A claims that B’s statement helped him

find C’s birthday. As a perfect reasoner, A must
have completed the steps described above correctly
and have as leftover options:

May: 18;
July: 17, 18;
August: 16, 17;
September: 16, 17.

For A to now know the solution, C’s birthday must
be in a month associated with only one day. There-
fore, the month must be May and C’s birthday must
be May, 18.
This puzzle requires fourth-order ToM because

the participant must reason from A’s perspective

about B’s reasoning about A’s reasoning about B’s
perspective: without B’s statement, A would not
have been able to differentiate between May, 15 and
May, 18.

2.2.5 All Puzzle Variations

A puzzle was designed following a 4x4x4 design:

1. ToM order : The ToM order required to solve
a puzzle is modeled based on the number of
perspective switches a participant would need
to perform to process the dialogue between Al-
bert and Bernard. Take the following dialogue
example:

Albert: “I don’t know when Cheryl’s
birthday is.”
Bernard: “I didn’t know at first, but now
I know.”

This is an example of a second-order ToM puz-
zle. The participant would need to perform
two perspective switches to understand the di-
alogue: Bernard can use Albert’s perspective
to find the answer. Interestingly, it has been
shown that ignorance (i.e., statements of the
form “I don’t know”) can also provide use-
ful information about the state of a game (see
[van der Hoek and Verbrugge, 2002] for exam-
ples in Game Theory). This is the case here
as well: the fact that Albert does not initially
know the answer helps Bernard solve the puz-
zle.

The puzzles range from first to fourth-order
ToM. Since the focus of the study was to inves-
tigate the manner in which participants pro-
cess perspective switches while reasoning from
other people’s perspective, zero-order ToM,
which would require zero perspective switches,
was excluded due to its mostly trivial nature.

2. Scenario: The puzzle examples discussed so
far have been showcasing one so-called “sce-
nario”: finding Cheryl’s birthday. It is impor-
tant to keep ToM reasoning as the main focus
of the study and to isolate the ToM perfor-
mance from other potential confounding fac-
tors: Their familiarity with the intuitive rela-
tion between, on one hand, days and months
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and, on the other hand, birthdays, could en-
hance the participants’ performance. Addi-
tionally, past research has shown that ToM
reasoning is task-dependent [Flobbe et al.,
2008] and, therefore, alternating scenarios is
a first step towards accounting for this con-
straint and supporting more general conclu-
sions about ToM underlying mechanisms.

To this end, three other scenarios were intro-
duced, where only the target properties (i.e.,
month and day) were changed. In the drink
scenario, Albert and Bernard are challenged
to find out how Cheryl likes to have her cof-
fee: she tells Albert the size of the coffee
(e.g., large, small) and Bernard the temper-
ature (e.g., iced, lukewarm). In the toy sce-
nario, Albert and Bernard are challenged to
find Cheryl’s favourite childhood toy in her
room: she tells Albert the location of the toy
(e.g., on the armchair, on the windowsill) and
Bernard the type of toy (e.g., doll, clown). Fi-
nally, in the hair scenario, Albert and Bernard
are challenged to locate Cheryl’s friend, Diane,
in a busy train station and Cheryl describes
her hair: she tells Albert the hair style (e.g.,
curly, straight) and Bernard the hair color
(e.g., orange, blue). The three scenarios were
generated based on the birthday scenario by
creating a one-to-one correspondence between
the days and months on one hand and the cor-
responding scenario’s target properties on the
other hand. Specifically:

⟨May, June, July, August, September⟩
and
⟨14, 15, 16, 17, 18 ⟩

are replaced with, in this exact order:

⟨Extra small, Small, Regular, Large, Ex-
tra large⟩
and
⟨hot, lukewarm, room temperature, cold,
iced⟩,

for the drink scenario;

⟨On the table, On the bed, On the floor,
On the armchair, On the windowsill⟩
and
⟨doll, bunny, clown, cat, train⟩,

for the toy scenario; and

⟨Curly, Spiky, Straight, Pixie, With
bangs⟩
and
⟨green, blue, purple, pink, orange⟩,

for the hair scenario.

For example, ⟨June, 17 ⟩ becomes ⟨Small, cold⟩
in the drink scenario, ⟨On the bed, cat⟩ in the
toy scenario and ⟨Spiky, pink⟩ in the hair sce-
nario.

For examples of the exact rephrasing of the
puzzle texts for the other three scenarios,
please refer to Appendix A.

3. Configuration: Additional puzzles can be gen-
erated by mirroring properties while keeping
the remainder of the puzzle text unchanged:
for example, when mirroring (only) the month
property:

⟨May, June, July, August, September⟩
becomes
⟨September, August, July, June, May⟩,

while keeping the day property constant. Thus,
for each ⟨scenario × ToM order⟩ combination,
four configurations were generated: i) the orig-
inal configuration, ii) mirroring of only the
first property, iii) mirroring of only the second
property, and iv) mirroring of both properties.
This was done to increase the drawing pool of
available puzzles (see Section 2.3.2).

2.3 Procedure

Participants were instructed that the entire exper-
imental procedure would last 45 to 60 minutes.
Upon arrival, participants were seated at a desk
in front of a computer in a quiet lab room at the
University of Groningen. The code was written in
Python 3.10 and run on HP Z2 Mini G3 Worksta-
tions.

The experiment was run in six different rooms,
but in the same quiet environment. In one case,
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the code was run on a different machine. namely
an Alienware m15 R7 AMD∗. Otherwise, the ex-
perimental procedure was followed faithfully.

Four objects had been placed on the desk prior to
the arrival of the participants: an informed consent
form, a pile of eight A4 papers numbered from one
to eight respectively (referred to hereon as “puz-
zle notes”), an empty A4 envelope and a pen. Af-
ter preliminary introductions, each participant was
asked to read and sign the informed consent form,
explaining the purpose of the experiment and data
processing regulations. Afterward, the participants
were instructed to start the experiment on the com-
puter. Figure 2.3.1 shows the workflow of the ex-
periment. The participants were under continuous
supervision throughout the entirety of the experi-
mental procedure and were encouraged to ask ques-
tions for clarification of instructions at any point.

The participants were first asked to enter their
allocated ID, which was written on the envelope
before their arrival. This was done to ensure repro-
ducibility: Eight puzzles were randomly allocated
per participant prior to the start of the trial and
each allocation was stored in a database, with a
unique ID.

Next, they were shown a welcome message and
were given additional instructions pertaining to the
materials on the table and the payment method.
Participants were strongly encouraged (but not
forced) to use the materials on the table, consisting
of the puzzle notes, the envelope, and the pen, for
note-taking while solving the puzzles. The puzzle
notes consisted of eight blank A4 pieces of paper
which were numbered on both sides from one to
eight. The participants were instructed to use one
piece of paper per puzzle (hence, eight double-sided
A4 pieces of paper for eight puzzles) and to place
in the envelope all written pieces of paper before
moving to the next puzzle. This setup achieved two
purposes: i) it reduced the working memory load
for intermediate steps, which has been shown to
influence performance [Arslan et al., 2017a], and ii)
it discouraged participants from looking at previ-
ous answers (which they were also explicitly warned
against doing), such that they would not find pat-
terns amongst the puzzles generated based on the
four original Cheryl’s birthday puzzles discussed in

∗However, note that the code complexity is low and, in
principle, the code can be run on any functional device.

Section 2.2.

Figure 2.3.1: Workflow of the experiment. The
main stages are marked with pink squares. De-
cision points are marked with blue diamonds.

Prior to the experiment, the participants were
informed that they would earn 7.5e for their par-
ticipation. Additionally, they could earn a bonus
monetary reward of 2.5e (so, in total, 10e). The
bonus monetary reward was allocated according to
the following rule: The bonus was applied if the
answer to one randomly selected puzzle from the
puzzles solved by the participant within the time
limit was correct. This was done in order to incen-
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tivize participants to solve correctly as many puz-
zles as possible: the more puzzles solved correctly,
the higher the chance of selecting a correct puzzle.

The three main stages of the experiment (marked
with pink squares in Figure 2.3.1) are discussed in
the remainder of this section.

2.3.1 Comprehension Questions

The participants were shown the following text:

You will be asked to solve a series of unre-
lated puzzles revolving around three friends: Al-
bert, Bernard and Cheryl. Albert, Bernard and
Cheryl are all in the same room. Albert and
Bernard just met Cheryl and they want to get
to know her better - for the sake of this ex-
ample, suppose they want to know when her
birthday is. Cheryl has a very playful person-
ality and hates giving answers outright so, in-
stead, she says:
“I will not tell you but I will give you some
hints.” She writes down a list of four dates and
shows the list to Bernard and Albert:
January 11 - January 12
February 11 - February 12

“My birthday is one of these dates.” Cheryl
says.
Then Cheryl says that she will whisper in Al-
bert’s ear the month of her birthday, and noth-
ing else. To Bernard, she will whisper the
day of her birthday, and nothing else. She
does as she said. Albert sees her whisper in
Bernard’s ear but cannot hear what was said
(the same is the case for Bernard). However, it
is well known by anybody that Albert, Bernard
and Cheryl have perfect reasoning abilities and
never lie or purposefully deceive each other, so
both boys are convinced Cheryl did as she said.

“Can you figure out my birthday”? Cheryl asks
them. Now, the following dialogue ensues.
Albert: “Bernard, I don’t know when Cheryl’s
birthday is.”
Bernard: “I don’t know when Cheryl’s birth-
day is either.”

This practice text is more detailed than the stan-
dard puzzle texts (see Section 2.2). This is meant
to introduce concepts of perfect logicians (e.g., “no
reasoning mistakes”) and common knowledge (“it

is well known by anybody...”) in an intuitive way.
This, together with the detailed description of the
setting, serves to suggest that there are no “tricks”
hidden within the puzzles and that they are meant
to be solvable through logical inferences. Addi-
tionally, note that the question “When is Cheryl’s
birthday?” is missing. This is purposefully done in
order to avoid priming the participants for ways
to solve the puzzle before the start of the actual
experiment.

Instead, the participants’ attention was redi-
rected toward text comprehension, through tar-
geted questions. Participants were tested on their
reading comprehension (“What does Albert know
about Cheryl’s birthday right before his dialogue
with Bernard?”, “Can Cheryl’s birthday be on the
15th of May?”), understanding of epistemic con-
cepts (perfect logicians: “Can Bernard make false
claims?”; common knowledge: “Does Albert know
that Cheryl only speaks the truth?”) and dialogue
comprehension (“Who knows the birthday after the
whispering and before the dialogue between Albert
and Bernard?”, “Who knows the birthday after the
dialogue between Albert and Bernard?”). Partici-
pants were allowed at most one mistake before the
experiment was prematurely ended. In that case,
the experimenter would explain the instruction text
again and answer the participant’s questions. Then,
the participant would be allowed one last attempt
before being excluded from the experiment. All par-
ticipants passed the comprehension stage within
the two attempts.

2.3.2 Cheryl’s Puzzles

Next, the participants were asked to solve eight
puzzles ranging in difficulty. As explained before,
they were encouraged to use the puzzle notes to
write down intermediate steps. The puzzles were
presented in two blocks of four puzzles each.

In total, sixty-four puzzles had been generated
(see Section 2.2 for a detailed description). For all
puzzles, there was always a unique solution (i.e.,
one of the options on Cheryl’s list) and the di-
alogue between Albert and Bernard contained no
more and no less than the information necessary to
reach the solution. It should be clear that theory
of mind is the only strategy appropriate for solv-
ing the puzzles, because only the dialogue between
Albert and Bernard, which is epistemic in nature,
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conveys any relevant clues and the chance of sim-
ply guessing the correct answer is low (7.7% or 1 in
13 possible answers). Therefore, the puzzles are ap-
propriate for investigating recursive theory of mind
limitations.
The puzzles were allocated such that each partic-

ipant would encounter each order of ToM and each
scenario exactly twice overall but not necessarily in
the same pairing - the toy scenario could, in princi-
ple, be paired with any of the four ToM orders, so
one participant could see a second-order puzzle of
the toy scenario while another participant could see
a fourth-order puzzle of the toy scenario. Once the
ToM order and scenario had been selected, a ran-
dom puzzle was selected amongst the four possible
types of mirroring configurations (see Section 2.2.5
for more information).
In each block, each scenario and each ToM order

were shown exactly once. Consider the following
⟨scenario × ToM order⟩ series examples:

• ⟨toy × 4, hair × 1, birthday × 2, hair × 3⟩ -
this is not a valid configuration for a block, be-
cause the hair scenario occurs more than once.

• ⟨toy × 4, hair × 1, birthday × 2, drink × 1⟩ -
this is not a valid configuration for a block, be-
cause first-order ToM occurs more than once.

• ⟨toy × 4, hair × 1, birthday × 2, drink × 3⟩
- this is a valid configuration for a block, be-
cause each scenario and ToM order occurs ex-
actly once. Note that the order in which the
scenarios and the ToM order occur is random-
ized.

Additionally, if one ⟨scenario × ToM order⟩ con-
figuration occurs in the first block, then it is not
allowed to also occur in the second block. This was
done in order to ensure that no two puzzles looked
too similar to each other: If two puzzles only dif-
fer by configuration, there is a higher risk that the
participants might realize that there is a connection
between these puzzles and, as a result, they might
develop different strategies for solving the puzzles.
Take the following example:

Suppose that the following configuration oc-
curs in the first block:
⟨toy × 4, hair × 1, birthday × 2, drink × 3⟩
Consider the following configurations for the
second block:

• ⟨birthday × 2, toy × 3, drink × 1, hair × 4⟩ -
this is not a valid configuration for the second
block because ⟨birthday × 2⟩ also occurs in the
fist block.

• ⟨birthday × 4, toy × 3, drink × 1, hair × 2⟩
- this is a valid configuration for the second
block because no ⟨scenario × ToM order⟩ con-
figuration occurs in both blocks.

In the end, due to a bug in the code that was not
noticed in time, in the first block, each scenario
was instead associated with one unique ToM order.
Thus, in the first block, each participant would en-
counter one first-order toy puzzle, one second-order
drink puzzle, one third-order birthday puzzle, and
one fourth-order hair puzzle, with only the mirror-
ing configurations varying. The second block was
processed correctly, as explained above. However,
due to the constraint that the same ⟨scenario ×
ToM order⟩ may not occur in both blocks, each
scenario could only be associated with three ToM
order in the second block (for example, the toy sce-
nario could only be associated with second, third
and fourth-order ToM because, in the first block,
it was always associated with first-order ToM).
Nonetheless, it is important to note that each par-
ticipant was shown each ToM order and scenario
exactly twice in total and exactly once in each
block, as originally intended.

The participants were instructed to read the puz-
zle text carefully and to select the solution from a
list of thirteen options: the ten options on Cheryl’s
list, “I don’t know”, “No solution” and “Multiple
solutions”. “I don’t know” was set as the default
option for the drop-down menu and was recorded
as the answer when no option in the drop-down
menu had been selected.

The participants had 45 minutes to solve as many
of the eight puzzles as possible. If the time limit
had passed before they finished solving all eight
puzzles, they were automatically redirected to the
Background Form (see Section 2.3.3), and the re-
mainder of the unsolved puzzles were skipped. Sim-
ilarly, if they finished solving all eight puzzles before
the time limit had passed, they were also redirected
to the Background Form.

A “p-Beauty Contest” [Nagel, 1995] was pre-
sented after the first block and before the sec-
ond block. In a p-Beauty Contest, participants are
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asked to pick a number between 1 and 100 that
they think might be closest to p (here, p = 2

3 )
times the average of all participants’ choices. The
p-Beauty Contest was meant to prevent boredom
and to disrupt any learning effects that may have
begun forming after solving the first four puzzles:
Since the aim was to measure inherent ToM cog-
nitive abilities, it is important to account for tem-
porary performance enhancements due to practice.
Participants were told that the “winner” of the con-
test would receive a chocolate bar as a prize.
The data collected at this stage was later used

to answer the main research questions of the study.
The following information was recorded:

• The ID associated with a puzzle series in the
database.

• A unique ID per participant, generated us-
ing the uuid Python package. This is different
from the ID associated with the puzzle series.
Its purpose is to act as a fail-safe in case mul-
tiple participants are given the same puzzle se-
ries due to human error: There would always
be a unique identifier for each participant. In
the end, the fail-safe proved to be unnecessary
as each participant received a unique puzzle
series ID.

• The index of the current puzzle and the associ-
ated answer chosen from the drop-down menu.
If no answer was selected, then “I don’t know”
was the default recorded answer.

• The time spent on a puzzle, from the moment
the puzzle was first shown on the screen until
the press of the “Submit” button. Note that
this includes the time to read the puzzle text
and, with the current experimental setup, it
would be impossible to separate the reading
time from the puzzle-solving time.

• The p-Beauty Contest value.

2.3.3 Background Form

Finally, the participants were asked to report their
contact information (name, email address), demo-
graphic data (age, gender), educational background
(study program, formal training in logic), and over-
all experience with the experimental procedure (see
Chapter 3 for an analysis of the answers). Note

that the contact information was stored separately
from everything else and was only used to contact
the participants about the monetary compensation.
The answers to the puzzles were processed under
anonymity regulations.

All answers except for the contact information
were stored together with the puzzle answers, as
described in Section 2.3.2. The contact information
was stored in a separate dataframe, together with:
i) the unique participant ID (see Section 2.3.2), ii)
the monetary reward sum and iii) the index of the
puzzle randomly selected to determine whether the
bonus monetary sum should be awarded.
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CHAPTER 3

RESULTS OF THE EMPIRICAL EVIDENCE

In this chapter, I present some interesting ef-
fects found in the “Cheryl’s Puzzle” dataset. In Sec-
tion 3.1, I present the findings for the main effects:
whether time to reach an answer and accuracy vary
across orders of theory of mind (ToM) and scenar-
ios. In Section 3.2, I discuss external factors asso-
ciated with the sample of participants that might
have an effect on accuracy. In Section 3.3, I present
the results of the p-Beauty contest. In Section 3.4,
I summarize all results.

The code for the analysis can be found at
https://github.com/AndreeaMinculescu/

Cheryl-Puzzle and was written in Python 3.10
and R 4.2.2.

3.1 Main Effects

The statistical analyses discussed in this section
were conducted only on the data pertaining to par-
ticipants who finished all eight trials within the
allocated forty-five minutes (42 out of 49 partici-
pants). This was done to ensure an equal distribu-
tion over all orders of ToM and all scenarios.
In the following sub-sections, I discuss the effects

that scenario and order of ToM have on the time
needed to solve a puzzle and accuracy, respectively.

3.1.1 Time to Reach Answers

As a reminder, the time to reach an answer was
measured from the moment the puzzle text was
first shown to the participant until the click of the
“Submit answer” button. Two questions of interest
arise:

1. Does the time to solve a puzzle differ signifi-
cantly across orders of ToM?
The initial assumption was that the higher the
order of ToM, the more difficult solving a puz-
zle should be and the more processing opera-
tions it should require. As a result, higher or-
ders of ToM should take longer to reach an
answer.

Figure 3.1.1: Violin plots of the time to solve
a puzzle across the four ToM orders for the
forty-two participants who completed all eight
trials. The upper and lower horizontal bars show
the two extremes and the middle bar shows the
mean. The x-axis shows the ToM order and the
y-axis shows the time in seconds.
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Figure 3.1.1 shows the distribution of
the solving time across the four orders
of ToM. Participants required the lowest
amount of time to solve first-order puzzles
(M=130.91, SD=60.05), followed by second-
order (M=194.01, SD=121.53), and lastly,
third-order (M=258.02, SD=154.13) and
fourth-order (M=261.69, SD=153.09) puzzles.
There does not seem to be a noticeable
difference between the distribution associated
with third-order and fourth-order puzzles.
Additionally, the distribution of the second-
order puzzles contains one distinctively low
value (namely, 3.01 seconds), which could
suggest the presence of an outlier. However,
upon closer inspection of the data point,
there was no suggestion of a time-recording
malfunction and there seems to be no research
to establish the minimum time required to
solve a “Cheryl’s Birthday” puzzle. Therefore,
I decided against removing the data point on
the grounds of it being a potential outlier.

A Shapiro-Wilk test on the within-group vari-
ability revealed that the (log-transformed)
time was not normally distributed (W=0.95,
p <0.001). Therefore, a Kruskal-Wallis test
was conducted on the solving time, which re-
vealed statistical significance (χ2(3) = 57.29,
p <0.001). A post-hoc Dunn test, adjusted for
multiple comparisons [Holm, 1979], revealed
that every two ToM orders, except for the third
and fourth orders, were significantly different
from each other in terms of solving time (see
Table 3.1.1).

Comparison Z p-value
First vs Second order -3.63 0.001*
First vs Third order -6.41 <0.001*
Second vs Third order -2.78 0.01*
First vs Fourth order -6.60 <0.001*
Second vs Fourth order -2.96 0.009*
Third vs Fourth order -0.18 0.8

Table 3.1.1: Results of the Dunn test for the
time to solve a puzzle across ToM orders. Ev-
ery two ToM orders were compared against each
other and the results were corrected for multi-
ple comparisons using Holm’s method [Holm,
1979]. Starred p-values are below the signifi-
cance threshold (α = 0.05).

Overall, the visualization of the data and the
associated statistical analysis support the hy-
pothesis: lower orders of ToM are associated
with decreased solving time and this result
is statistically significant. Interestingly, there
is virtually no difference between the solving
time associated with third-order and fourth-
order puzzles.

2. Does the time to solve a puzzle differ signifi-
cantly across scenarios?
The initial assumption was that any potential
difference in performance is only due to the or-
der of ToM associated with a puzzle and, there-
fore, varying other design aspects (scenario, in
this case) will not have a significant influence
on overall performance.

Figure 3.1.2: Violin plots of the time to solve a
puzzle across the four scenarios in the second
block for the forty-two participants who com-
pleted all eight trials. The upper and lower hor-
izontal bars show the two extremes and the mid-
dle bar shows the mean of each distribution. The
x-axis shows the scenario and the y-axis shows
the time in seconds.

The following analysis was conducted only on
the data from the second block due to the in-
consistent design of the two blocks: In the first
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block, each scenario was associated with ex-
actly one ToM order.

Figure 3.1.2 shows the distribution of the solv-
ing time across the four scenarios. Participants
seem to require a similar amount of time to
solve puzzles of each scenario type - birth-
day: M=128.76, SD=63.28; hair: M=143.08,
SD=72.89; toy: M=184.65, SD=123.40; drink:
M=192.85, SD=120.65. Additionally, the dis-
tribution of the hair puzzles contains a dis-
tinctively low value, which corresponds to the
same data point flagged as an outlier in Fig-
ure 3.1.1.

A Shapiro-Wilk test on the within-group vari-
ability revealed that the (log-transformed)
time was not normally distributed (W=0.94,
p <0.001). Therefore, a Kruskal-Wallis test
was conducted on the solving time, which did
not reveal statistical significance (χ2(3) = 7.38,
p =0.060).

Overall, the visualization of the data and the
associated statistical analysis support the hy-
pothesis: the scenario type does not signifi-
cantly influence the time interval required to
solve a puzzle. The lack of a significant effect
is evidence that the bug in the code (i.e., the
unbalanced design of the two blocks) had no
averse effect on the results of the study.

3.1.2 Accuracy of Answers

Let us define accuracy, as a percentage, as follows:

accuracy =
the number of correct answers

the total number of answers
× 100,

(3.1.1)
where the total number of answers is eight since

only participants who finished all eight trials are
considered.

Figure 3.1.3 shows the frequency distribution of
accuracy over the forty-two participants who fin-
ished all eight trials. Twenty-one participants an-
swered half or more puzzles correctly (or, equiva-
lently, had an accuracy of 50% or higher). Impor-
tantly, five participants failed to answer any puzzle
correctly, which resulted in an accuracy lower than
the probability of simply guessing the correct an-
swer (the gray dotted line in the figure). The chance
of guessing is computed as 1

13 ∗ 100 ≈ 7.7%, where

13 is the total number of possible answers for any
puzzle. This suggests that five participants were no-
tably unskilled with respect to solving any puzzle.

Figure 3.1.3: Distribution of accuracy over the
forty-two participants who completed all eight
trials. The y-axis shows the accuracy computed
according to Equation 3.1.1. The x-axis shows
the number of participants with the same ac-
curacy. The dashed line shows the chance level
(namely 1

13
∗ 100 ≈ 7.7).

In order to conduct the following statistical anal-
yses, I generated a binary variable is.correct that
takes the value 1 if the answer to a puzzle given by
a participant is the same as the correct answer and
0 otherwise. Two questions of interest arise:

1. Does accuracy differ significantly across orders
of ToM?
The initial assumption was that the higher the
order of ToM, the more difficult it is to solve
a puzzle and, as a result, the more likely a
participant is to make an error.

As shown in Figure 3.1.4, participants solved
first-order puzzles with an accuracy of 82.1%,
second-order puzzles with an accuracy of
51.2%, third-order puzzles with an accuracy
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of 34.5% and fourth-order puzzles with an ac-
curacy of 2.4%. Given the subset of forty-
two participants, the accuracy associated with
the fourth order is lower than the probabil-
ity of simply guessing the correct answer (the
gray line in the figure), which suggests that
these participants were notably unskilled with
respect to solving these puzzles. Again, the
chance of guessing is computed as 1

13 ∗ 100 ≈
7.7%, where 13 is the total number of possible
answers for any puzzle.

Figure 3.1.4: Bar chart of the accuracy associ-
ated with each ToM order for the forty-two par-
ticipants who completed all eight trials. The x-
axis shows the ToM order and the y-axis shows
the accuracy, as percentage. The dashed line
shows the chance level (namely 1

13
∗ 100 ≈ 7.7).

As expected, a Chi-square test revealed that
accuracy was significantly different between
orders of ToM (χ2(3) = 114.09, p < 0.001).

2. Does accuracy differ significantly across sce-
narios?
The initial assumption was that any potential
difference in performance is only due to the or-
der of ToM associated with a puzzle and, there-

fore, varying other design aspects (scenario, in
this case) will not have a significant influence
on overall performance.

The following analysis was conducted only on
the data from the second block due to the in-
consistent design of the two blocks: In the first
block, each scenario was associated with ex-
actly one ToM order.

As shown in Figure 3.1.5, participants solved
the birthday scenario with an accuracy of
40.4%, the hair scenario with an accuracy of
31%, the drink scenario with an accuracy of
39.3% and the toy scenario with an accuracy
of 59.5%. For all scenarios, the accuracy was
higher than the probability of simply guessing
the correct answer (the gray line in the figure).

Figure 3.1.5: Bar chart of the accuracy asso-
ciated with each scenario in the second block
for the forty-two participants who completed all
eight trials. The x-axis shows the scenario and
the y-axis shows the accuracy, as percentage.
The dashed line shows the chance level (namely
1
13

∗ 100 ≈ 7.7).

As expected, a Chi-square test revealed that
accuracy was not significantly different be-
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tween scenarios (χ2(3) = 6.34, p = 0.096).
Since the difference in accuracy between sce-
narios is not significant, it can likely be ex-
plained by the design of the second block: Each
scenario was associated with only three out of
four ToM orders, while the remaining ToM or-
der occurred only in the first block (see Chap-
ter 2 for more details). Therefore, in the second
block, the toy scenario was never associated
with fourth-order ToM, while the hair scenario
was never associated with first-order ToM. As
shown before, participants solved first-order
ToM puzzles correctly significantly more often
than fourth-order ToM puzzles, hence a pos-
sible explanation for the reason why the ac-
curacy of the toy scenario is higher than the
accuracy of the hair scenario.

Nonetheless, the lack of a significant effect is
evidence that the bug in the code (i.e., the
unbalanced design of the two blocks) had no
averse effect on the results of the study.

3.2 Background Form

Another point of interest is to understand whether
external factors, unrelated to the design of the ex-
periment, may influence the accuracy of the an-
swers. This may indicate whether the sample of
participants used for this experiment may have in-
troduced bias, for example, due to similar back-
ground knowledge, educational background and
socio-economical status. The following statistical
tests were conducted on all forty-nine participants
and the results are summarized in Table 3.2.1.
In the background form, participants were asked

to indicate whether, before the experiment, they
had encountered the “Cheryl’s Birthday” puzzle
or a similar puzzle. Five participants indicated
that they indeed had and, based on a proportion
test, these participants answered correctly signifi-
cantly more often than participants who had not
come in contact with “Cheryl’s Birthday” or any
similar puzzle before the experiment (χ2(1)=3.69,
p =0.027).
Participants were also asked to rate on a scale

from one to ten how difficult they found the in-
structions shown on the interface, where ten meant
that they easily understood all instructions. Thirty-
nine participants reported a score higher than five

(i.e the instructions were reasonably easy) but,
based on a proportion test, they did not answer
significantly better than participants who reported
a score lower than or equal to five (χ2(1)=1.13,
p =0.123).

In the same background form, participants were
asked to rate on a scale from one to ten how difficult
they found the puzzles, where ten meant that they
found the puzzles very difficult to solve. Thirty-five
participants reported a score higher than five (i.e.,
the puzzles were reasonably difficult) and, based on
a proportion test, these participants answered cor-
rectly significantly less often than the participants
who reported a score lower than or equal to five
(χ2(1)=12.128, p <0.001).
Lastly, participants were asked to rate on a scale

from one to ten how much they enjoyed solving
the puzzles, where ten meant that they greatly en-
joyed solving the puzzles. Forty-one participants re-
ported a score higher than five (i.e., they enjoyed
solving the puzzles) but, based on a proportion test,
these participants did not perform significantly bet-
ter than the participants who reported a score lower
than or equal to five (χ2(1)=0.02, p =0.439).

Variable χ2 Df p-value
Already knew puzzle
before experiment?

3.69 1 0.027*

Perceived difficulty
of instructions

2.35 1 0.062

Perceived difficulty
of puzzles

12.12 1 <0.001*

Perceived enjoyment
of puzzle solving

0.02 1 0.439

Table 3.2.1: Results of the Chi-square tests per-
formed on the accuracy of puzzle answers (N =
381) over various variables of interest collected
through the background forms. Starred p-values
are below the significance threshold (α = 0.05).

Overall, accuracy is significantly higher if partic-
ipants already knew “Cheryl’s Birthday” or a sim-
ilar puzzle, or if participants perceived the puzzles
as easy. Surprisingly, it seems that the perceived
difficulty of the instructions and the perceived en-
joyment of solving the puzzles do not have a sig-
nificant effect on accuracy - possibly because the
monetary compensation acted as a motivator. Note
that for the proportion tests involving a scale rat-
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ing, the threshold between the two categories was
always set to five, for consistency.

3.3 P-Beauty Contest

Figure 3.3.1 shows the distribution of the p-Beauty
answers across all forty-nine participants. The data
has been binned in order to improve readability.
The figure should be understood as follows: Eight
participants selected a value larger than 36 and
smaller or equal to 42.

Figure 3.3.1: The distribution of the binned p-
Beauty values chosen by all forty-nine partic-
ipants. The y-axis shows the binned p-Beauty
value. The x-axis shows the number of partici-
pants that chose a value in that specific interval.

The p-Beauty contest qualitatively shows the
level of iterated reasoning exhibited by the par-
ticipants. It is important to note here the sub-
tle difference between models of iterated reasoning
and dynamic models of theory of mind: In non-
repeated single-shot games (like the p-Beauty con-
test) agents typically assume that all other agents
use exactly one step of iterated reasoning less than
themselves, while in repeated game settings (like

the Cheryl’s Birthday puzzles), agents typically ad-
just their order of recursive reasoning in response
to the behaviour of others and consider it possible
that other agents use any number of iterated rea-
soning steps up to the number of steps they use
themselves [de Weerd et al., 2017]. Therefore, the
average number of iterated steps found in the p-
Beauty contest results is no more than an approx-
imation of the ToM order that participants may
have used while solving the epistemic puzzles pro-
posed in the current study. In the remainder of the
section, I will use “level” to describe iterated rea-
soning, as opposed to “order” for ToM reasoning.

As a reminder, in the p-Beauty contest, partici-
pants were instructed to select a number between
1 and 100 that they thought might be closest to
p (here, p = 2

3 ) times the average of all partici-
pants’ choices. A zero-level participant would not
consider the choices of other participants and would
therefore most likely select a random number. A
level-one participant would believe that all other
participants use level-zero reasoning, would con-
sider fifty to be the average of the other partici-
pants’ choices and would therefore most likely se-
lect a number close to 2

3 × 50 ≈ 33. Similarly, a
level-two participant would select a number close
to 2

3 × ( 23 × 50) ≈ 22 etc. More generally, a partici-
pant who can process up to level-n ToM statements
would select a number close to 2

3

n × 50.

In this case, the mean and the median of the
distribution were both 40, which suggests that most
participants most likely used level-zero and level-
one iterated reasoning.

3.4 Conclusion

In this chapter, I discussed some interesting effects
present in the “Cheryl’s Puzzles” dataset. Firstly,
I presented the effects of ToM orders and scenar-
ios on solving time and accuracy, respectively. Im-
portantly, the analyses were conducted on a subset
of the data pertaining to those participants who
finished all eight trials within the allocated time.
Additionally, for the analyses pertaining to scenar-
ios, the dataset was further restricted to only the
second block. For future research, it could be inter-
esting to further restrict the dataset to only cor-
rect answers for the analysis of solving time effects
- this was not possible here due to lack of data (for
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fourth-order ToM puzzles only two answers were
correct).

The results can be summarized as follows: lower
orders of ToM are associated with decreased solv-
ing time and higher accuracy (and vice-versa for
higher orders of ToM), while no effect of scenario
type was found. This latter finding is a strong in-
dication that, for further analysis, it is possible to
aggregate over scenarios with (almost) no loss of
information and it is possible to use both blocks,
despite the unbalanced distribution between these
two blocks.

Secondly, I discussed whether external factors
specific to the sample of participants may have
an effect on accuracy. A series of proportion tests
suggest that participants answer correctly signifi-
cantly more often if they had already heard of the
“Cheryl’s Birthday” puzzle (or a similar puzzle)
prior to the experiment and if they overall perceived
the puzzles as easy. Contrary to expectations, ac-
curacy was not improved if the puzzle instructions
were perceived as easy to understand or if the puz-
zles were perceived as enjoyable - it is possible that
the monetary compensation acted as a motivator
for high accuracy, which countered potential nega-
tive effects.

Lastly, the results of the p-Beauty contest were
analysed and discussed. On average, number 40
was selected, which suggests that most participants
used up to 1 step of iterated reasoning. Note that
this is subpar performance according to Camerer
et al. [2004], who claim that humans use an aver-
age of 1.5 iterative steps for many games.
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CHAPTER 4

MODELING

In this chapter, I present and justify the design
choices for the models used to explain the under-
lying theory of mind (ToM) mechanisms present in
the “Cheryl’s Puzzle” dataset. In Section 4.1, I in-
troduce Public Announcement Logic (PAL) as the
logic used to formalize knowledge. In Section 4.2,
I show how PAL can be applied to the second-
order puzzle (and, by extension, to all puzzles). In
Section 4.3, I present (variations of) two models:
i) one epistemic model that implements PAL to
always solve puzzles correctly and ii) one cutting
model that reduces the ToM order of a statement
down to a pre-determined lower (and, thus, eas-
ier to process) order. In Section 4.4, I introduce
group-level random-effects Bayesian model selec-
tion (RFX-BMS) as the statistical method used to
determine the goodness of fit of the aforementioned
models. Lastly, in Section 4.5, I present coherence
as an additional metric used to assess the goodness
of fit of the models.

4.1 Public Announcement
Logic

Public Announcement Logic (PAL) [Plaza, 1989,
2007] is an extension of epistemic logic that mod-
els how agents’ knowledge changes after a public
announcement has been made. Let us define A as
the finite set of agents and P as a countable set
of atoms. Following van Ditmarsch et al. [2007], let
us inductively define the language of PAL by the
following Backus–Naur form:

φ ::= p | ¬φ | (φ ∧ φ) | Kiφ | [φ]φ,

where p ∈ P and i ∈ A. Ki is a knowledge operator
and Kiφ is read as “agent i knows that φ”. Con-
structs of the form [φ]ψ are specific to PAL and
are read as “after every (public and truthful) an-
nouncement φ, it holds that ψ”. The effect of such a
public announcement is the restriction of the epis-
temic model to all the states (and all connections
between these states) where formula ψ holds. Note
that the operators ∨, → and ⊥ will also be used
throughout this chapter and have the usual inter-
pretation.

Now, let us introduce epistemic (Kripke) models
in the S5 system [see Priest, 2008 for an overview].
Given the same A and P , an epistemic model M
takes the form M = ⟨S,∼, V ⟩, where:

• S is a non-empty set of states or “worlds” (i.e.,
the domain)

• ∼: A → P(S × S) is the accessibility rela-
tion. For brevity, let us write ∼ (i) as ∼i for
i ∈ A. Given two worlds s1, s2 ∈ S and i ∈ A,
we say that s1 ∼i s2 if agent i considers the
two worlds equally possible, given the infor-
mation that i currently holds to be true (or
known). Note that as a consequence of placing
the model in the S5 system, the ∼ relation is
reflexive, symmetric and transitive.

• V : P → P(S) is the valuation function. For
brevity, let us write V (p) as Vp for p ∈ P . V
essentially associates to each atomic proposi-
tion p ∈ P the set of worlds in which p holds
true.
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Finally, let us define the semantics of the lan-
guage. Given M = ⟨S,∼, V ⟩ for agent i ∈ A, atom
p ∈ P and a world s ∈ S, the following hold:

M, s |= p iff s ∈ Vp

M, s |= ¬φ iff M, s ̸|= φ

M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M, s |= Kiφ iff for all t ∈ S

we have M, t |= φ

M, s |= [φ]ψ iff M, s |= φ implies M | φ, s |= ψ,

where M | φ = ⟨S′,∼′, V ′⟩ is defined as follows:

• S′ := JφKM := {s ∈ S | M, s |= φ} is the
subset of states where φ holds

• ∼′
i:=∼i ∩ (JφKM × JφKM) for all i ∈ A is the

subset of relations that connects only states in
S′.

• V ′
p := Vp ∩ JφKM for all p ∈ P is the subset of

valuations associated with the states in S′.

4.2 Cheryl’s Puzzle Formal-
ism

Let us now consider the “Cheryl’s Birthday” epis-
temic puzzles, as described in Section 2.2. Following
the formalism in van Ditmarsch et al. [2008], let us
define the following sets:

• set of possible months:
M = {May, June, July, August, September}

• set of possible days:
D = {14, 15, 16, 17, 18}

• set of agents:
A = {a, b}, where a stands for Albert and b
stands for Bernard. Note that Cheryl is not
considered an agent in this system, because
her role is rather to ensure that Albert and
Bernard have access to all the background in-
formation necessary to solve the puzzle. The
participant could be considered a third agent
in the system by attributing to them the uni-
versal relation. However, this is trivial and,
therefore, for simplicity, the participant was
excluded from the system.

Let us now only consider the second-order puzzle -
the formalism for the other three puzzles should be
easily inferred. We now define an additional set:

• set of birthday options on Cheryl’s list:
Sc = {(May, 17), (May, 18), (July, 16), ...
..., (September, 15)}.
Note that we have Sc ⊂M ×D

Based on the formulation of the puzzle, we need
to find (m, d) ∈ Sc, such that Cheryl’s birthday
is in month m and on day d. Consider the vari-
able m. If its value is May, then we can repre-
sent this as the truth value of the atomic propo-
sition “m = May”. Alternatively, let us define
this as the propositional letter mMay. More gener-
ally, let us define the following finite set of atoms:
{mi | (i, j) ∈ Sc} ∪ {dj | (i, j) ∈ Sc}.
The proposition “Albert knows that Cheryl’s

birthday is on September, 14” can be represented
as Ka(mSeptember∧d14). More generally, the propo-
sition “Albert knows Cheryl’s birthday”, abbrevi-
ated as Ka(m, d), can be represented as a disjunc-
tion over all possible birthday options on Cheryl’s
list, namely:

Ka(m, d) := Ka(mMay ∧ d17) ∨Ka(mMay ∧ d18)
∨ · · · ∨Ka(mSeptember ∧ d15)

=
∨

(i,j)∈Sc

Ka(mi ∧ dj),

because we know that Cheryl’s birthday is on at
least one (in reality, on exactly one) of these dates.
Note that, even though the participant could give
“No solution” as an answer to the puzzles, it does
not mean that Cheryl’s birthday cannot be on any
of those dates (in fact, it is explicitly mentioned
that the birthday is on the initial list of ten op-
tions) but rather that the information from the
dialogue between Albert and Bernard is inconsis-
tent with the setting in some way (which, by de-
sign of the puzzles, is never the case). Similarly,
“Bernard knows Cheryl’s birthday” can be repre-
sented as Kb(m, d) :=

∨
(i,j)∈Sc

Kb(mi ∧ dj).

The conversation between Albert and Bernard
can be modeled as a series of public announce-
ments, as follows:
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1. Albert: “I don’t know when Cheryl’s birthday
is.”: ¬Ka(m, d)

2. Bernard: “I didn’t know at first, but now I
know.”: ¬Kb(m, d) ∧ [¬Ka(m, d)]Kb(m, d)

Note that the “didn’t know” in announcement 2 by
Bernard refers to the initial epistemic model rather
than the epistemic state resulting from the an-
nouncement made by Albert. It can be verified eas-
ily that, given the initial epistemic state, Bernard
could not have known the birthday from the begin-
ning - this renders the first part of the announce-
ment obsolete. Therefore, as we are interested in
the resulting epistemic state and Bernard’s knowl-
edge changed in the meantime, we can simplify the
second to public announcement to Kb(m, d) with-
out any loss of information.
Now take a Kripke model MC = ⟨Sc,∼, V ⟩ con-

sisting of a domain of all pairs (m, d) with (m, d) ∈
Sc; with accessibility relations ∼a and ∼b such that
for a: (m, d) ∼a (m′, d′) iff m = m′ and for b:
(m, d) ∼a (m′, d′) iff d = d′; and with valuation
V such that Vmi = {(m, d) ∈ Sc | m = i} and
Vdj = {(m, d) ∈ Sc | d = j}. For the second-order
puzzle, the solution (namely, September 14) can be
modeled as follows in PAL:

MC |= [¬Ka(m, d)][Kb(m, d)](mSeptember ∧ d14)

In the formula above, the sequence of two
announcements can be truthful only in state
(September, 14). This is because applying the two
announcements consecutively results in a model
with only one epistemic state (MC, s), within which
mSeptember∧d14 holds. Clearly, this can only be the
case for s = (September, 14).
For all other states, at least one of the an-

nouncements becomes false. For example, take s′ =
(June, 14). Suppose that MC, s′ |= ¬Ka(mJune ∧
d14). By definition of the ̸|= operator, we have
MC, s′ ̸|= Ka(mJune ∧ d14). However, we have only
t = (June, 14) such that s′ ∼a t and we have
MC, t |= (June, 14). Therefore, we have MC, s′ |=
Ka(mJune ∧ d14). This leads to a contradiction or,
more formally, MC, (mJune∧d14) |= [¬Ka(m, d)]⊥.
Similarly, take s′′ = (September, 15). First,

let us show that MC, s′′ |= ¬Ka(mSeptember ∧
d15). By definition of the ̸|= operator, we have
MC, s′′ ̸|= Ka(mSeptember ∧ d15). Now take v =

(September, 14) with (September, 15) ∼ v. We then
have that MC, (September, 14) ̸|= mSeptember ∧ d15
(trivially, September 15th is not the birthday in
a world where September 14th is the birthday).
Then, by definition of the K operator, we in-
deed have that MC, s′′ |= ¬Ka(mSeptember ∧ d15).
Now suppose that MC, s′′ |= Kb(mSeptember ∧ d15).
By definition of the K operator, we then have
that for all w ∈ Sc such that (September, 15) ∼b

w, MC, w |= mSeptember ∧ d15. If we take
the case w = (August, 15), we then have
that MC, (August, 15) ̸|= mSeptember ∧ d15 (triv-
ially, September 15th is not the birthday in
a world where August 15th is the birthday).
This leads to a contradiction or, more formally,
MC, (September, 15) |= [¬Ka(m, d)][Kb(m, d)]⊥.

The above can similarly be shown for all states
s ∈ Sc \ (September, 14).

4.3 Models

In this section, I present (variations of) the two
models used in the analysis. These models will then
be fit on the participant data (see Chapter 5) us-
ing the RFX-BMS algorithm (see Section 4.4). I
first intuitively describe the strategy used by each
model and then I (formally) show how the models
process each puzzle until they reach an answer. For
an overview of the answers given by all (variations
of) models for each puzzle, the reader is advised to
skip ahead to Table 4.3.1.

4.3.1 Epistemic Model

The epistemic model processes each line of dialogue
between Albert and Bernard as a series of public
announcements. If multiple public announcements
exist, then they are processed sequentially: The sec-
ond public announcement is applied to the Kripke
model restricted to the states (and connections be-
tween states) where the formula associated with the
first public announcement holds. After all public
announcements have thus been applied to the ini-
tial Kripke model, the answer is extracted as fol-
lows: If only one state remains, then that is the
answer; otherwise, if no state remains, then the an-
swer is “No solution”; otherwise, if multiple states
remain, then the answer is “Multiple solutions”.

In the remainder of the section, I will show how
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the epistemic model reaches the answer for each
of the four puzzles discussed in Section 2.2, follow-
ing the formalism and notations described in Sec-
tion 4.2. Note that, by design, the epistemic model
always reaches the correct solution for all puzzles.

1. First-order puzzle
Figure 4.3.1 shows the initial Kripke model as-
sociated with the first-order puzzle, where the
states are the ten dates given as options for
Cheryl’s birthday and the arrows are the acces-
sibility relations corresponding to Albert and
Bernard, respectively. As a reminder, Albert
knows the month and Bernard knows the day
and this leads to the following conversation:

Bernard: “I know when Cheryl’s birth-
day is.”

Figure 4.3.1: The initial Kripke model for the
first-order puzzle. Transitive arrows are omit-
ted for readability. Red arrows labeled with “a”
mark the accessibility relation for Albert and
green labeled with “b” for Bernard. Black (re-
flexive) arrows with no label are accessibility re-
lations for both Albert and Bernard.

Only one public announcement occurs, which
can be modeled as Kb(m, d). This announce-
ment restricts the Kripke model in Figure 4.3.1
to only those states (and connections between
states) where the formula Kb(m, d) holds. As

can be seen in Figure 4.3.2, this formula only
holds in state (May, 15).

Let us show this fact, namelyMC, (May, 15) |=
Kb(m, d). By definition of the ∨ operator,
it is enough to show that MC, (May, 15) |=
Kb(mMay∧d15). From the definition of the K-
operator, we then have that for all t ∈ Sc such
that (May, 15) ∼b t, MC, t |= mMay ∧ d15. We
can only have t = (May, 15), where it does
follow that MC, (May, 15) |= mMay∧d15 (triv-
ially, May 15th is the birthday in a world where
May 15th is the birthday). Therefore, we have
MC, (May, 15) |= Kb(mMay∧d15) and, further,
we have MC, (May, 15) |= Kb(m, d).

Figure 4.3.2: The Kripke model for the first-
order puzzle after the first (and only) public
announcement. Black (reflexive) arrows with no
label are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.

For completion, let us show that no other
state s′ meets the constraint that MC, s′ |=
Kb(m, d). To show that MC, s′ ̸|= Kb(m, d),
we need to show that for all w ∈ Sc \
{(May, 15)}, MC, s′ ̸|= Kbw. Take s′ =
(May, 16) as an example and show that
MC, (May, 16) ̸|= Kb(mMay ∧ d16). Addition-
ally, take t = (July, 16) with (May, 16) ∼b t.
We then have that MC, (July, 16) ̸|= mMay ∧
d16 (trivially, May 16th is not the birthday in a
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world where July 16th is the birthday). Thus,
by definition of the K operator, we have that
MC, (May, 16) ̸|= Kb(mMay ∧ d16). The same
can be shown for all other states s′ [except
(May, 15)].

Since only one state remains after applying all
public announcements, May 15 is the answer
given by the epistemic model.

2. Second-order puzzle
Figure 4.3.3 shows the initial Kripke model as-
sociated with the second-order puzzle, where
the states are the ten dates given as options
for Cheryl’s birthday and the arrows are the
accessibility relations corresponding to Albert
and Bernard, respectively. As a reminder, Al-
bert knows the month and Bernard knows the
day and this leads to the following conversa-
tion:

Albert: “I don’t know when Cheryl’s
birthday is.”
Bernard: “I didn’t know at first, but now
I know.”

The first public announcement can be modeled
as ¬Ka(m, d). This announcement restricts the
Kripke model in Figure 4.3.3 to only those
states (and connections between states) where
the formula ¬Ka(m, d) holds. As can be seen
in Figure 4.3.4, this formula does not hold in
state (June, 14).

Let us show this fact, namely that
MC, (June, 14) ̸|= ¬Ka(m, d). By definition of
̸|= and ¬, we have MC, (June, 14) |= Ka(m, d).
By definition of the ∨ operator, it is enough to
show that MC, (June, 14) |= Ka(mJune ∧ d14).
By definition of the K operator, we then have
that for all t ∈ Sc such that (June, 14) ∼a t,
MC, t |= mJune ∧ d14. We only have
t = (June, 14), where it indeed follows
that MC, (June, 14) |= mJune ∧ d14 (trivially,
June 14th is the birthday in a world where
June 14th is the birthday). This concludes the
explanation.

Figure 4.3.3: The initial Kripke model for the
second-order puzzle. Red arrows labeled with
“a” mark the accessibility relation for Albert
and green labeled with “b” for Bernard. Black
(reflexive) arrows with no label are accessibility
relations for both Albert and Bernard.

Figure 4.3.4: The Kripke model for the second-
order puzzle after the first announcement. Red
arrows labeled with “a” mark the accessibility
relation for Albert and green labeled with “b”
for Bernard. Black (reflexive) arrows with no
label are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.
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The second public announcement can be mod-
eled as Kb(m, d). This announcement restricts
the Kripke model in Figure 4.3.4 to only those
states (and connections between states) where
the formula Kb(m, d) holds. As can be seen in
Figure 4.3.5, this formula holds only in state
(September, 14) - the explanation for this is
similar to the one presented for the first-order
puzzle. Since only one state remains after ap-
plying all announcements to the initial Kripke
model, September 14 is the answer given by
the epistemic model.

Figure 4.3.5: The Kripke model for the second-
order puzzle after the second announcement.
Black (reflexive) arrows with no label are acces-
sibility relations for both Albert and Bernard.
States marked with yellow are removed after ap-
plying the announcement.

3. Third-order puzzle

Figure 4.3.6 shows the initial Kripke model as-
sociated with the third-order puzzle, where the
states are the ten dates given as options for
Cheryl’s birthday and the arrows are the acces-
sibility relations corresponding to Albert and
Bernard, respectively. As a reminder, Albert
knows the month and Bernard knows the day
and this leads to the following conversation:

Albert: “I know that you don’t know
when Cheryl’s birthday is.”

Bernard: “I didn’t know at first, but now
I know.”

The first public announcement can be mod-
eled as Ka¬Kb(m, d). This announcement
restricts the Kripke model in Figure 4.3.6 to
only those states (and connections between
states) where the formula Ka¬Kb(m, d)
holds. As can be seen in Figure 4.3.7, this
formula does not hold in the following states:
(May, 15), (May, 18), (June, 15) and (June, 17).

Figure 4.3.6: The initial Kripke model for the
third-order puzzle. Transitive arrows are omit-
ted for readability. Red arrows labeled with “a”
mark the accessibility relation for Albert and
green labeled with “b” for Bernard. Black (re-
flexive) arrows with no label are accessibility re-
lations for both Albert and Bernard.

For s′ = (May, 15), let us show that indeed
MC, (May, 15) ̸|= Ka¬Kb(m, d). Suppose in-
stead thatMC, (May, 15) |= Ka¬Kb(m, d) and
try to reach a contradiction. Now by definition
of the K operator, we have that for all t ∈ Sc

such that (May, 15) ∼a t, MC, t |= ¬Kb(m, d).
We then have t = {(May, 15), (May, 18)}. Take
t = (May, 18) and reach a contradiction by
showing that MC, (May, 18) ̸|= ¬Kb(m, d). By
definition of the ̸|= and ¬ operators, we then
have that MC, (May, 18) |= Kb(m, d). By def-
inition of the ∨ operator, it is then enough
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to show that MC, (May, 18) |= Kb(mMay ∧
d18). By definition of the K operator, we
then have that for all w ∈ Sc such that
(May, 18) ∼b w, MC, w |= mMay ∧ d18. We
can only have w = (May, 18) and we indeed
have MC, (May, 18) |= mMay ∧ d18 (trivially,
May 18th is the birthday in a world where May
18th is the birthday). This concludes the ex-
planation.

It can similarly be shown that
MC, (June, 15) ̸|= Ka¬Kb(m, d). By the
veridicality axiom∗ of S5, ¬Kb(m, d)
is entailed from the first public an-
nouncement. It is then possible to show
that MC, (May, 18) ̸|= ¬Kb(m, d) and
MC, (June, 17) ̸|= ¬Kb(m, d) by using the
definition of ̸|= and following the explanation
for the first-order puzzle.

Figure 4.3.7: The Kripke model for the third-
order puzzle after the first announcement. Tran-
sitive arrows are omitted for readability. Red
arrows labeled with “a” mark the accessibility
relation for Albert and green labeled with “b”
for Bernard. Black (reflexive) arrows with no
label are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.

∗The veridicality axiom of S5 formally states that only
true formulae are known by agents or, more formally, that
Kiφ → φ, for all agents i ∈ A.

The second public announcement can be mod-
eled as Kb(m, d). This announcement restricts
the Kripke model in Figure 4.3.7 to only those
states (and connections between states) where
the formula Kb(m, d) holds. As can be seen in
Figure 4.3.8, this formula holds only in state
(September, 15) - the explanation for this is
similar to the one presented for the first-order
puzzle. Since only one state remains after ap-
plying all announcements to the initial Kripke
model, then September 15 is the answer given
by the epistemic model.

Figure 4.3.8: The Kripke model for the third-
order puzzle after the second announcement.
Black (reflexive) arrows with no label are acces-
sibility relations for both Albert and Bernard.
States marked with yellow are removed after ap-
plying the announcement.

4. Fourth-order puzzle

Figure 4.3.9 shows the initial Kripke model as-
sociated with the fourth-order puzzle, where
the states are the ten dates given as options
for Cheryl’s birthday and the arrows are the
accessibility relations corresponding to Albert
and Bernard, respectively. As a reminder, Al-
bert knows the month and Bernard knows the
day and this leads to the following conversa-
tion:
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Bernard: “I know that you know that I
don’t know when Cheryl’s birthday is.”
Albert: “I didn’t know at first but now
I know.”

The first public announcement can be mod-
eled as KbKa¬Kb(m, d). This announcement
restricts the Kripke model in Figure 4.3.9 to
only those states (and connections between
states) where the formula KbKa¬Kb(m, d)
holds. As can be seen in Figure 4.3.10, this
formula does not hold in the following states:
(May, 15), (June, 14) and (June, 15).

Figure 4.3.9: The initial Kripke model for the
fourth-order puzzle. Transitive arrows are omit-
ted for readability. Red arrows labeled with “a”
mark the accessibility relation for Albert and
green labeled with “b” for Bernard. Black (re-
flexive) arrows with no label are accessibility re-
lations for both Albert and Bernard.

For s′ = (May, 15), let us show that indeed
MC, (May, 15) ̸|= KbKa¬Kb(m, d). Suppose
that MC, (May, 15) |= KbKa¬Kb(m, d) and
try to reach a contradiction. By definition of
theK operator, we have that for all t ∈ Sc such
that (May, 15) ∼b t, MC, t |= Ka¬Kb(m, d).
We can only have t = {(May, 15), (June, 15)},
so let us take t1 = (June, 15). We now have
MC, (June, 15) |= Ka¬Kb(m, d). By defini-
tion of the K operator, we have that for

all w ∈ Sc such that (June, 15) ∼a w,
MC, w |= ¬Kb(m, d). We can only have
w = {(June, 15), (June, 14)}, so let us take
w1 = (June, 14). We reach a contradiction if
we show that MC, (June, 14) ̸|= ¬Kb(m, d).
By definition of ̸|= and ¬, we have that
MC, (June, 14) |= Kb(m, d). By definition of
the ∨ operator, it is then enough to show that
MC, (June, 14) |= Kb(mJune ∧ d14). By defini-
tion of the K operator, we then have that for
all v ∈ Sc such that (June, 14) ∼b v, MC, v |=
mJune ∧ d14. We can only have v = (June, 14)
and indeed we have MC, (June, 14) |= mJune∧
d14 (trivially, June 14th is the birthday in a
world where June 14th is the birthday). This
concludes the explanation.

Figure 4.3.10: The Kripke model for the fourth-
order puzzle after the first announcement. Tran-
sitive arrows are omitted for readability. Red
arrows labeled with “a” mark the accessibility
relation for Albert and green labeled with “b”
for Bernard. Black (reflexive) arrows with no
label are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.

By the veridicality axiom of S5, Ka¬Kb(m, d)
is entailed from the first public announce-
ment. It is then enough to show that
MC, (June, 15) ̸|= Ka¬Kb(m, d), which has
been shown as part of the explanation for
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s′ = (May, 15). Further, by the veridical-
ity axiom of S5, ¬Kb(m, d) follows from
Ka¬Kb(m, d). Thus, it is enough to show that
MC, (June, 14) ̸|= ¬Kb(m, d), which has also
been shown as part of the explanation for
s′ = (May, 15).

The second public announcement can be mod-
eled as Ka(m, d). This announcement restricts
the Kripke model in Figure 4.3.10 to only those
states (and connections between states) where
the formula Ka(m, d) holds. As can be seen in
Figure 4.3.11, this formula holds only in state
(May, 18) - the explanation for this is similar
to the one presented for the first-order puz-
zle. Since only one state remains after applying
all announcements to the initial Kripke model,
then May 18 is the answer given by the epis-
temic model.

Figure 4.3.11: The Kripke model for the fourth-
order puzzle after the second announcement.
Transitive arrows are omitted for readability.
Black (reflexive) arrows with no label are acces-
sibility relations for both Albert and Bernard.
States marked with yellow are removed after ap-
plying the announcement.

4.3.2 Cutting Model

The cutting model is constructed in such a way
that it is able to process statements up to a pre-
determined ToM order and all public announce-
ments exceeding this ToM order undergo certain
transformations. To this end, the cutting model re-
ceives two parameters that determine its behaviour:
a maximum ToM order and a cutting direction.
The ToM order determines the maximum order of
ToM that the model is capable of processing: For all
statements with a higher ToM order, K operators
are sequentially removed (along with the negation
preceding them, if applicable) until the new state-
ment is of the maximum ToM order; otherwise, the
statements remain unchanged. The cutting direc-
tion determines the order in which K operators
are removed. Once all public announcements have
been reduced to (at most) the required ToM order,
the puzzle is solved the same way as the epistemic
model (see Section 4.3.1). The four possible config-
urations are detailed below:

1. Cut model 2-lr:
This model cuts public announcements down
to (at most) second-order ToM statements and
operators are removed sequentially from the
left-most operator to the right-most (hence,
the “lr” parameter).

The public announcements associated with the
first, second and third-order puzzles remain
unchanged, as they already are at most second-
order ToM statements - this also implies that
the cut 2-lr and epistemic models provide the
same answers for these puzzles.

For the fourth-order puzzle, the first public an-
nouncement KbKa¬Kb(m, d) is first reduced
to Ka¬Kb(m, d) before being applied to the
initial Kripke model associated with the puz-
zle, while the second public announcement re-
mains unchanged. As a result, the cut 2-lr
model answers “No solution”, as shown in Fig-
ure 4.3.12.
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(a) Initial Kripke model for the fourth-order
puzzle.

Figure 4.3.12: The cut 2-lr model answers “No
solution” for the fourth-order puzzle. Transi-
tive arrows are omitted for readability. Red ar-
rows labeled with “a” mark the accessibility re-
lation for Albert and green labeled with “b”
for Bernard. Black (reflexive) arrows with no
label are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.

Briefly, it can be shown that MC |=
[Ka¬Kb(m, d)][Ka(m, d)]⊥ as follows:

After applying the first public an-
nouncement to the Kripke model, states
{(June, 14), (June, 15)} are removed.
State (June, 14) is removed because, in
this state, Bernard does not consider
another state possible (other than the
state itself) and, therefore, in this state,
he would know the birthday - this con-
tradicts the formula associated with the
public announcement (by the veridicality
axiom of S5). State (June, 15) is removed
because, from this state, Albert can
access state (June, 14) and in state
(June, 14) Bernard knows the birthday
- this contradicts the formula associated
with the public announcement.

After applying the second public an-

nouncement to the Kripke model, all re-
maining states are removed. This is be-
cause, in all of these states, Albert cannot
differentiate the state itself from (at least)
another adjacent one and, therefore, in
none of these states would he know the
birthday - this contradicts the formula as-
sociated with the public announcement.

(b) Kripke model after the first public an-
nouncement: Ka¬Kb(m, d).

(c) Kripke model after the second public an-
nouncement: Ka(m, d).
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2. Cut model 2-rl:
This model cuts public announcements down
to (at most) second-order ToM statements and
operators are removed sequentially from the
right-most operator to the left-most (hence,
the “rl” parameter).

The public announcements associated with the
first, second and third-order puzzles remain
unchanged, as they already are at most second-
order ToM statements - this also implies that
the cut 2-rl and epistemic models provide the
same answers for these puzzles.

For the fourth-order puzzle, the first public an-
nouncement KbKa¬Kb(m, d) is first reduced
to KbKa(m, d) before being applied to the ini-
tial Kripke model associated with the puzzle,
while the second public announcement remains
unchanged. As a result, the cut 2-rl model an-
swers “No solution”, as shown in Figure 4.3.13.

(a) Initial model for the fourth-order puzzle.

Figure 4.3.13: The cut 2-rl model answers “No
solution” for the fourth-order puzzle. Transi-
tive arrows are omitted for readability. Red ar-
rows labeled with “a” mark the accessibility re-
lation for Albert and green labeled with “b”
for Bernard. Black (reflexive) arrows with no
label are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.

(b) Kripke model after the first public an-
nouncement: KbKa(m, d).

(c) Kripke model after the second public an-
nouncement: Ka(m, d).

Briefly, it can be shown that MC |=
[KbKa(m, d)][Ka(m, d)]⊥ as follows:

After applying the first public announce-
ment to the Kripke model, all states
are removed. This is because, in all of
these states, Albert cannot differentiate
the state itself from (at least) another ad-
jacent one and, therefore, in none of these
states would he know the birthday - this
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contradicts the formula associated with
the public announcement (by the veridi-
cality axiom of S5).

The second public announcement is ap-
plied on an empty Kripke model and,
therefore, it has no effect.

3. Cut model 1-lr:
This model cuts public announcements down
to first-order ToM statements and operators
are removed sequentially from the left-most
operator to the right-most (hence, the “lr” pa-
rameter).

The public announcements associated with
the first and second-order puzzles remain un-
changed, as they already are first-order ToM
statements - this also implies that the cut 1-
lr and epistemic models provide the same an-
swers for these puzzles.

For the third-order puzzle, the first public an-
nouncement Ka¬Kb(m, d) is first reduced to
¬Kb(m, d) before being applied to the initial
Kripke model associated with the puzzle, while
the second public announcement remains un-
changed. As a result, the cut 1-lr model an-
swers “No solution”, as shown in Figure 4.3.14.

(a) Initial Kripke model for the third-order puz-
zle.

(b) Kripke model after the first public an-
nouncement: ¬Kb(m, d).

(c) Kripke model after the second public an-
nouncement: Kb(m, d).

Figure 4.3.14: The cut 1-lr model answers “No
solution” for the third-order puzzle. Transitive
arrows are omitted for readability. Red arrows
labeled with “a” mark the accessibility rela-
tion for Albert and green labeled with “b” for
Bernard. Black (reflexive) arrows with no la-
bel are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.
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Briefly, it can be shown that MC |=
[¬Kb(m, d)][Kb(m, d)]⊥ as follows:

After applying the first public an-
nouncement to the Kripke model, states
{(May, 18), (June, 17)} are removed. This
is because, in both of these states,
Bernard does not consider another state
possible (other than the state itself) and,
therefore, in both of these states, he
would know the birthday - this contra-
dicts the formula associated with the pub-
lic announcement.

After applying the second public an-
nouncement to the Kripke model, all re-
maining states are removed. This is be-
cause, in all of these states, Bernard can-
not differentiate the state itself from (at
least) another adjacent one and, there-
fore, in none of these states would he
know the birthday - this contradicts the
formula associated with the public an-
nouncement.

For the fourth-order puzzle, the first public an-
nouncement KbKa¬Kb(m, d) is first reduced
to ¬Kb(m, d) before being applied to the ini-
tial Kripke model associated with the puzzle,
while the second public announcement remains
unchanged. As a result, the cut 1-lr model an-
swers “June, 15”, as shown in Figure 4.3.15.

(a) Initial Kripke model for the fourth-order
puzzle.

(b) Kripke model after the first public an-
nouncement: ¬Kb(m, d).

Figure 4.3.15: The cut 1-lr model answers
“June, 15” for the fourth-order puzzle. Tran-
sitive arrows are omitted for readability. Red
arrows labeled with “a” mark the accessibility
relation for Albert and green labeled with “b”
for Bernard. Black (reflexive) arrows with no
label are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.
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(c) Kripke model after the first public announce-
ment: Ka(m, d).

Briefly, it can be shown that MC |=
[¬Kb(m, d)][Ka(m, d)](mJune ∧ d15) as follows:

After applying the first public announce-
ment to the Kripke model, state (June,
14) is removed. This is because, in this
state, Bernard does not consider another
state possible (other than the state itself)
and, therefore, in this state, he would
know the birthday - this contradicts the
formula associated with the public an-
nouncement.

After applying the second public an-
nouncement to the Kripke model, all
states except one are removed. This is be-
cause, in all of these states, Albert cannot
differentiate the state itself from (at least)
another adjacent one and, therefore, in
none of these states would he know the
birthday - this contradicts the formula as-
sociated with the public announcement.

4. Cut model 1-rl:
This model cuts public announcements down
to first-order ToM statements and operators
are removed sequentially from the right-most
operator to the left-most (hence, the “rl” pa-
rameter).

The public announcements associated with
the first and second-order puzzles remain un-

changed, as they already are first-order ToM
statements - this also implies that the cut 1-
rl and epistemic models provide the same an-
swers for these puzzles.

For the third-order puzzle, the first public an-
nouncement Ka¬Kb(m, d) is first reduced to
Ka(m, d) before being applied to the initial
Kripke model associated with the puzzle, while
the second public announcement remains un-
changed. As a result, the cut 1-rl model an-
swers “No solution”, as shown in Figure 4.3.16.

(a) Initial Kripke model for the third-order
puzzle.

(b) Kripke model after the second public an-
nouncement: Kb(m, d).
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(c) Kripke model after the first public announce-
ment: Ka(m, d).

Figure 4.3.16: The cut 1-rl model answers “No
solution” for the third-order puzzle. Transitive
arrows are omitted for readability. Red arrows
labeled with “a” mark the accessibility rela-
tion for Albert and green labeled with “b” for
Bernard. Black (reflexive) arrows with no la-
bel are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.

Briefly, it can be shown that MC |=
[Kb(m, d)][Ka(m, d)]⊥ as follows:

After applying the first public announce-
ment to the Kripke model, all states are
removed. This is because, in all states, Al-
bert cannot differentiate the state itself
from (at least) another adjacent one and,
therefore, in none of these states would
he know the birthday - this contradicts
the formula associated with the public an-
nouncement.

The second public announcement is ap-
plied on an empty Kripke model and,
therefore, it has no effect.

For the fourth-order puzzle, the first public an-
nouncement KbKa¬Kb(m, d) is first reduced
to Kb(m, d) before being applied to the ini-
tial Kripke model associated with the puzzle,

while the second public announcement remains
unchanged. As a result, the cut 1-rl model an-
swers “June, 14”, as show in Figure 4.3.17.

(a) Initial Kripke model for the fourth-order
puzzle.

(b) Kripke model after the first public an-
nouncement: Kb(m, d).
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(c) Kripke model after the first public announce-
ment: Ka(m, d)

Figure 4.3.17: The cut 1-rl model answers
“June, 14” for the fourth-order puzzle. Tran-
sitive arrows are omitted for readability. Red
arrows labeled with “a” mark the accessibility
relation for Albert and green labeled with “b”
for Bernard. Black (reflexive) arrows with no
label are accessibility relations for both Albert
and Bernard. States marked with yellow are re-
moved after applying the announcement.

Briefly, it can be shown that MC |=
[Kb(m, d)][Ka(m, d)](mJune ∧ d14) as follows:

After applying the first public announce-
ment to the Kripke model, all states ex-
cept one are removed. This is because, in
all of these states, Bernard cannot differ-
entiate the state itself from (at least) an-
other adjacent one and, therefore, in none
of these states would he know the birth-
day - this contradicts the formula associ-
ated with the public announcement.

After applying the second public an-
nouncement to the Kripke model, only
state (June, 14) remains because, in this
state, Albert does not consider another
state possible (other than the state itself)
and, therefore, he would know the birth-
day - this follows the formula associated
with the public announcement.

Table 4.3.1 shows an overview of the answers
given by all models for all four unique puzzles pre-
sented in Section 2.2. The puzzles were aggregated
over scenario and configuration. This was possible
because no effect was found on scenario with re-
gards to accuracy and solving time (see Chapter 3)
and configuration was not meant to be a condition
in this experiment in the first place, but rather a
way to generate a large variety of fundamentally
equivalent puzzles.

Model
Order
puzzle

Model
answer

Correct
answer

Epistemic

1 May 15 May 15
2 Sept. 14 Sept. 14
3 Sept. 15 Sept. 15
4 May 18 May 18

Cut 1-lr
3 No solution Sept. 15
4 June 15 May 18

Cut 1-rl
3 No solution Sept. 15
4 June 14 May 18

Cut 2-lr 4 No solution May 18
Cut 2-rl 4 No solution May 18

Table 4.3.1: The answers given by all models
for all four unique puzzles. For the Cut models,
puzzles were omitted from the table because the
answer given in those cases are identical to the
answers given by the epistemic model for the
same puzzle. “Sept” stands for “September”.

4.4 RFX-BMS

To estimate the ToM order of the population
participants were drawn from, I apply a statisti-
cal method known as group-level random-effects
Bayesian model selection (RFX-BMS), first pro-
posed by Stephan et al. [2009]. Unlike fixed-effects
Bayesian model selection, which assumes that one
single strategy fits all participants, RFX-BMS
treats strategies s as random effects that generate
pieces of evidence p(y | s), representing the proba-
bility that strategy s generated some observed data
y (see Equation 4.4.1). Under the assumption that
each participant is drawn from a fixed distribution
of pre-defined strategies (i.e., the strategies used by
the models described in Section 4.3), the aim is to
estimate the frequency of the different ToM strate-
gies within the population of participants. Unlike
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Maximum Likelihood Estimation, RFX-BMS al-
lows one to make more general claims about the dis-
tribution of strategies and is more sensitive to small
differences between model predictions and partici-
pant data [Stephan et al., 2009, de Weerd et al.,
2018, Veltman et al., 2019, Top et al., 2023].

The algorithm for RFX-BMS was implemented
according to the following steps:

1. The Models described in Section 4.3 generate
unique answers for each of the four unique puz-
zles (see Section 2.2).

2. Assume that participants follow one strategy
s associated with one of the models. Strategy
s should be “good enough” to explain most of
the data but allow for a certain rate p (see
Equation 4.4.1) of deviation from the predic-
tions.

3. Decide which strategy s best fits a participant
by following equation (14) in Stephan et al.
[2009], which maximizes the log-likelihood that
each participant uses each strategy by itera-
tively updating the strategy frequencies until
some convergence point. This log-likelihood is
computed as follows:

likelihood = ln(p(y | s)) =
= n(1− e) ln(1− e) + n · e ln(p · e),

(4.4.1)

where n is the total number of decision points
for a participant (i.e., the number of trials com-
pleted), p is the probability of choosing an in-
correct answer (here, p = 1

12 , because there
are 13 answers in total and, therefore, 12 in-
correct answers) and e is the error rate, which
is computed as follows:

e =
number of incoherent predictions

n
,

(4.4.2)
where a predicted answer is coherent if it
matches exactly the answer of the participant
and otherwise it is incoherent.

4. By design, RFX-BMS will always classify data
as belonging to one of the pre-defined strategy,
even if the fit is extremely poor. For this rea-
son, in addition to the models and associated

strategies described in Section 4.3, I also in-
cluded a random model in the analysis meant
to be chosen only when the other models (com-
pletely) fail to explain the answers given by
some participants. The random model is fit to
the entire population and follows the algorithm
below:

Figure 4.4.1: Frequency of answers aggregated
over all participants and all puzzles for the en-
tire dataset (i.e., both correct and incorrect an-
swers, N = 381). The puzzles and participant an-
swers were first translated to the original four
unique puzzles and then aggregated over. Note
that the frequency of answers is used in the com-
putation of the likelihood and coherence for the
random model.

(a) Compute the distribution of frequency of
answers for the population (i.e., aggre-
gated over all participants and all puz-
zles) - see Figure 4.4.1.

(b) For each participant, compute the log-
likelihood of the random model according
to the following formula:
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likelihood =

n∑
i=1

log(pianswer), (4.4.3)

where n is the total number of decision
points for a participant (i.e., the number
of trials completed) and pianswer is the
probability of encountering the partici-
pant’s i-th answer in the population. For
example, p(May,15) = 92

381 ≈ 0.24, where
381 is the total number of answers aggre-
gated over all participants and all puzzles.

4.5 Additional Metric

RFX-BMS estimates a distribution over a set of
pre-defined strategies. By design, the algorithm is
constrained to selecting one best fit amongst these
strategies for each participant and, as a direct con-
sequence, it may disregard how closely these strate-
gies actually fit the data. Therefore, it is impor-
tant to compute the coherence (a.k.a., correct rate
or error rate) of the seemingly best-fitting model,
namely the proportion of model predictions that
exactly match the participant’s data. For the mod-
els described in Section 4.3, the coherence is com-
puted as in Equation 4.4.2. For the random model,
the coherence is computed as follows:

coherence =

∑n
i=1 p

i
answer

n
, (4.5.1)

where n is the total number of decision points for
a participant (i.e., the number of trials completed)
and pianswer is the probability of encountering the
participant’s i-th answer in the population. As be-
fore, the computation of pianswer is based on the
distribution of frequency of answers for the entire
population of participants. Additionally, note that
the division by n essentially restricts the coherence
to the range [0, 1].
Intuitively, the larger the coherence, the better

the fit of the participant’s data to the strategy used
by a model - a coherence value of one means that
the model perfectly predicts all the answers of the
participant.

50



CHAPTER 5

RESULTS MODELING

In this chapter, I discuss the goodness of fit for
the computational models described in Chapter 4
on the data of the forty-nine participants that took
part in the experiment described in Chapter 2. In
Section 5.1, I remind the reader of the model config-
urations investigated in the current study. In Sec-
tion 5.2, I present the distribution of answers given
by the participants for the four puzzles and qualita-
tively compare these against the answers given by
the models. In Section 5.3, I explain how to quan-
titatively assess the fit of the models to the par-
ticipants’ answers through a group-level random-
effects Bayesian model selection (RFX-BMS) anal-
ysis, as proposed in Chapter 4. In Section 5.4, I
present the results of the RFX-BMS analysis and
distributions over coherence values for the proposed
models in specific settings. Lastly, in Section 5.5, I
summarize the findings and discuss implications.

5.1 Model Configurations

The following five model configurations, represent-
ing different possible reasoning strategies by adults
as outlined in Chapter 4, have been included in
the analysis. Note that the following model nam-
ing conventions will be adhered to throughout the
chapter:

1. Epistemic model: The conversation between
Albert and Bernard is modeled as a series
of public announcements and each public an-
nouncement restricts the (Kripke) model. This
model always finds the correct solution to all
puzzles.

2. Cut 1-lr model: Knowledge operators (along
with their preceding negations if applicable)
are sequentially removed from left to right,
until all public announcements are first-order
theory of mind (ToM) statements (i.e., con-
taining no chained knowledge operators re-
ferring to different agents). For example, the
statement KdKe¬Kfp becomes ¬Kfp, for
some agents d, e and f and propositional atom
p. Otherwise, the public announcements are
processed identically to the epistemic model.

3. Cut model 1-rl: Knowledge operators (along
with their preceding negations if applica-
ble) are sequentially removed from right to
left, until all public announcements are first-
order ToM statements (i.e., containing no
chained knowledge operators referring to dif-
ferent agents). For example, the statement
KdKe¬Kfp becomes Kdp, for some agents
d, e and f and propositional atom p. Other-
wise, the public announcements are processed
identically to the epistemic model.

4. Cut model 2-lr: Knowledge operators (along
with their preceding negations if applicable)
are sequentially removed from left to right,
until all public announcements are (at most)
second-order ToM statements (i.e., contain-
ing at most two chained knowledge operators
referring to different agents). For example, the
statement KdKe¬Kfp becomes Ke¬Kfp, for
some agents d, e and f and propositional atom
p. Otherwise, the public announcements are
processed identically to the epistemic model.
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5. Random model: It randomly selects an answer
from the list of possible answers, based on the
answers of the participant pool - the more com-
monly chosen answer x is by the sample of par-
ticipants, the more likely the random model is
to answer x (see Section 4.4 for more informa-
tion).

Importantly, the Cut 2 model always gives the
same answers to all puzzles whether the cutting is
done from the left to the right side or from the
right to the left side - see Cut 2-lr and Cut 2-rl
in Table 4.3.1. Therefore, as these two models are
indistinguishable from each other in terms of the
answers given to the puzzles in this study, only the
Cut 2-lr model is considered for the analysis.

5.2 Participant Answers

Let us now take a closer look at the distribu-
tion of answers selected by the forty-nine partici-
pants. Figure 5.2.1 shows the same information as
Figure 4.4.1 but separated over the four puzzles.
For example, “May, 15” was selected as an answer
92 times by the sample of participants and, more
specifically, 78 times as the answer to a first-order
puzzle (blue bar), 3 times as the answer to a third-
order puzzle (green bar) and 11 times as the an-
swer to a fourth-order puzzle (red bar). Note that,
for the purpose of this analysis, the puzzles were
aggregated over scenario and configuration. This
was possible because no effect was found on sce-
nario with regards to accuracy and solving time
(see Chapter 3) and configuration was not meant
to be a condition in this experiment in the first
place, but rather a way to generate a large variety
of fundamentally equivalent puzzles. The aggrega-
tion was done by “translating” back to the original
four ToM puzzles described in Section 2.2.

If we expect most participants to answer the puz-
zles correctly, then we would be able to notice peaks
associated with the correct answer for each puzzle.
This is indeed the case for some of the puzzles: The
correct answer for the first-order puzzle is “May,
15” and indeed we see a blue-bar peak at that value;
the correct answer for the second-order puzzle is
“September, 14” and indeed we see an orange-bar
peak at that value; the correct answer for the third-
order puzzle is “September, 15” and indeed we see

a green-bar peak at that value - although a notice-
able number of answers for the third-order puzzles
seems to be “Multiple solutions”. Interestingly, this
is not the case for the fourth-order puzzle: The cor-
rect answer for the fourth-order puzzle is “May, 18”
and there is no red-bar peak at that value - instead
the red-bar peak is at “June, 15”.

Epistemic
Cut
1-lr

Cut
1-rl

Cut
2-lr

1st-order 82.98 82.98 82.98 82.98
2nd-order 54.74 54.74 54.74 54.74
3rd-order 36.84 7.37 7.37 36.84
4th-order 2.06 25.78 13.4 7.22

Table 5.2.1: Percentage (%) of participant an-
swers that match the answers given by each
model for each puzzle. Columns show the mod-
els and rows show the puzzle types. Bolded val-
ues mark the models that match the highest per-
centage of participant answers for each puzzle.
As a reminder, Cut 1-lr and Cut 1-rl answer No
solution for the third-order puzzle; Cut 1-lr an-
swers June, 15 for the fourth-order puzzle; Cut
1-rl answers June, 14 for the fourth-order puz-
zle; Cut 2-lr answers No solution for the fourth-
order puzzle.

Table 5.2.1 shows the percentage of the partic-
ipant data that matches a model’s answers. For
example, the epistemic model answers “May, 15”
for the first-order puzzle, so the epistemic model
matches 78

94 × 100 ≈ 82.98, where 94 is the total
number of trials associated with first-order puzzles
(approximately 49 participants × 2 trials, as not all
participants finished all eight trials within the time
limit). Note that, if multiple models are associated
with the same percentage for a puzzle, it means
that they give the same answer (see Table 4.3.1).
As expected, the epistemic model matches a

large percentage of the answers for the first-order,
second-order and third-order puzzles, which is con-
sistent with the peaks observed in Figure 5.2.1.
Something interesting occurs for the fourth-order
puzzles: The epistemic model matches a low per-
centage of the participants’ answers (only 2.06%),
while the models using a cutting strategy match
46.4% of the answers and the cut 1-lr model
matches 25.78% of the answers. This is again con-
sistent with Figure 5.2.1, where red-bar peaks can
be noticed at “June, 14” and “June, 15”. In the
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Figure 5.2.1: Distribution of answers for all forty-nine participants for each puzzle (N = 381
trials). The puzzles were aggregated over scenario and configuration by “translating” back to the
original four ToM puzzles described in Section 2.2. The x-axis shows all answers selected by the
participants and the y-axis shows the number of times that answer has been selected throughout
all experiments. The bars indicate how many times a date was selected as an answer to a first-
order, second-order, third-order and fourth-order puzzle, in this order. As a reminder, the correct
answer for the first-order puzzle was May, 15 ; for the second-order puzzle September, 14 ; for the
third-order puzzle September, 15 ; and for the fourth-order puzzle May, 18.
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following sections, I analyze the models’ goodness
of fit for the four puzzles more formally.

Since the random model provides “random” an-
swers (fitted to all participants’ answers), comput-
ing the percentage of the random model’s answers
that match the participant data is equivalent to av-
eraging over a large number of runs. This approach
is qualitatively different from computing the exact
match percentage for the other models and, for this
reason, the random model was excluded from Ta-
ble 4.3.1. However, it is possible to approximate
this percentage of matching data by averaging over
the coherence values of the random model with re-
gards to all participants, for each subset of data as-
sociated with each puzzle type (and multiplied by
100 to get a percentage). Hence, the random model
matches, on average, 13.39% of the answers given
to the first-order puzzles; 13.34% of the answers
given to the second-order puzzles; 13.36% of the an-
swers given to the third-order puzzles; and 13.39%
of the answers given to the fourth-order puzzles.
Note that these values are not 1

13 · 100 ≈ 7.7% (as
would be the case for a truly random model), be-
cause there was not an equal distribution over all
thirteen possible answers within the sample of par-
ticipants.

5.3 Performance Metrics

RFX-BMS, first introduced by Stephan et al.
[2009], was used to estimate the frequency of the
different ToM strategies within the population that
participants were drawn from (see Chapter 4 for
more information on the performance metrics).
However, RFX-BMS does not quantify the good-
ness of fit of the strategies to the data. Take two
arbitrary reasoning strategies A and B and sup-
pose that strategy A explains more of the data
than strategy B: RFX-BMS says nothing about how
much of the data is explained by strategy A. There-
fore, in this section, I also analyze the distribution
of coherence between a strategy and the partici-
pant data, which is defined as the ratio of model
predictions that exactly match a participant’s an-
swers. Intuitively, the larger the coherence, the bet-
ter the fit of the strategy used by a model to the
participant’s data - a coherence value of one means
that the model perfectly predicts all the answers of
the participant. It is important to know that, for a

participant, it is possible to have multiple different
strategies with the same “best” coherence - in the
end, the coherence is computed based on at most
eight decision points (i.e., trials) per participant.
In the following section, I will show the following

plots:

a) Bar plot of proportion of model fit. The RFX-
BMS algorithm computes the relative fre-
quency of the strategies used by the models,
in the population that participants were drawn
from. One bar is then plotted per model.

b) The coherence distribution for all non-random
models. For each participant, the coherence
values for all models are computed as ex-
plained in Section 4.5. Then, for each par-
ticipant, I find the best coherence values. If
this “best” coherence value was generated by
at least one non-random model, then I store
the coherence value in a list. After iterat-
ing through all participants, I display this list
through a violin plot. Additionally, I plot the
coherence values for the participants whose
“best” coherence value was generated by the
random model (and no other model) as jittered
scatter points.

c) The coherence distribution for the best model.
For each participant, the coherence values for
all models are computed as explained in Sec-
tion 4.5. Then, for each participant, I find
the best coherence values. If this “best” co-
herence value was generated (among, possibly,
other models) by the model with the highest
frequency, as deemed by the RFX-BMS algo-
rithm, then I store the coherence value in a list.
After iterating through all participants, I dis-
play this list through a violin plot. If the model
with the highest frequency is not the random
model, then this coherence list is a subset of
the coherence list in (b); in this case, I also plot
the same jittered scatter points for the ran-
dom model. This plot will qualitatively show
whether the best non-random model is (much)
better at explaining the data, compared to the
other non-random models.
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5.4 Results

In this section, I investigate the following:

1. Which of the five models described in Sec-
tion 5.1 fits the highest proportion of the data?
This should provide a general intuition regard-
ing the viability of the cutting strategy: The
cutting strategy should fit more of the data
than the baseline models, namely the epistemic
and the random models. The results are dis-
cussed in Section 5.4.1.

2. Which of the five models described in Sec-
tion 5.1 fits the highest proportion of the cor-
rect answers? This analysis is run on a sub-
set of the data discussed in (1) and is used
as a validation method: Since the epistemic
model always answers correctly, then it should
fit 100% of the correct answers. However, note
that RFX-BMS will most likely allocate some
small proportions of the data to the other mod-
els that sometimes answer correctly. The re-
sults are discussed in Section 5.4.2.

3. Which of the five models described in Sec-
tion 5.1 fits the highest proportion of the wrong
answers? This analysis is run on a subset of
the data discussed in (1) and it should reveal
whether a cognitive limit to the recursive use
of ToM can be found in this dataset: If the cut-
ting strategy fits a high proportion of the data,
then this supports the hypothesis that partic-
ipants cannot process statements beyond that
ToM order (either first or second order). The
results are discussed in Section 5.4.3.

4. Which cutting direction fits the highest propor-
tion of the third-order and fourth-order puzzle
answers? It is interesting to consider whether
removing knowledge operators either from the
left side or from the right side of a statement
is more consistent with the participants’ be-
haviour. To this end, I compare the Cut 1-lr
and Cut 1-rl models against the baseline mod-
els (i.e., the epistemic and the random models)
for third and fourth-order puzzles; the first and
second-order puzzles were excluded from the
analysis because, in these cases, the Cut 1 and
epistemic models give the same answers. The
results are discussed in Section 5.4.4.

5. Which cutting direction fits the highest propor-
tion of the third-order puzzle answers? This is
a more in-depth analysis of the results shown
in (4): I use the same setup described in (4)
but I restrict the data to only third-order puz-
zle answers. The results are discussed in Sec-
tion 5.4.5.

6. Which cutting direction fits the highest propor-
tion of the fourth-order puzzle answers? This
is a more in-depth analysis of the results shown
in (4): I use the same setup described in (4) but
I restrict the data to only fourth-order puz-
zle answers. The results are discussed in Sec-
tion 5.4.6.

For all settings described above, I show (a selection
of) the plots described in Section 5.3.
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5.4.1 Which of the five models de-
scribed in Section 5.1 fits the
highest proportion of the data?

Figure 5.4.1: Results for all models over all the
participant data (N = 381): proportion of fit to
the participant population for each strategy, ac-
cording to the RFX-BMS algorithm. Each bar
corresponds to one model. The y-axis shows the
proportion of participants that was assigned to
the strategy associated with a model.

This section discusses the performance of the mod-
els on all the data (both correct and wrong answers)
for all forty-nine participants and for all puzzles.
Figure 5.4.1 shows that model Cut 2-lr performs
best, as it is assigned to almost 33% of the popula-
tion, followed closely by model Cut 1-lr. The ran-
dom and the Cut 1-rl models are assigned to a small
proportion of the data. This suggests that Cut 1-
lr and Cut 2-lr capture some systematic patterns
in the behaviour of the participants. Additionally,

since it is assigned to a higher proportion of the
population than the epistemic model, the Cut 2-lr
model seems to describe consistent deviations from
the epistemic strategy across participants.

Figure 5.4.2a shows a violin plot of the distribu-
tion of coherence values for the non-random mod-
els. The red crosses mark the coherence values asso-
ciated with those participants that match the strat-
egy of the random model the best. As can be seen,
only three participants were classified as exhibiting
behavior most similar to the random model and
the associated coherence values are not larger than
0.2; this means that, on average, the random model
correctly predicts no more than two out of eight an-
swers per participant assigned to this model. How-
ever, the non-random models are associated with
coherence values in the range [0.125, 0.875], with
mean = 0.567 and median = 0.625; this means
that, on average, the non-random models correctly
predict more than half the answers per participant
assigned to these models.

Figure 5.4.2b shows a violin plot of the distri-
bution of coherence values for the model that fits
the data best according to the RFX-BMS algorithm
(Cut 2-lr, in this case). As before, the red crosses
mark the coherence values associated with those
participants that match the strategy of the random
model the best. The Cut 2-lr model is associated
with coherence values in the range [0.25, 0.875],
with mean = 0.560 and median = 0.625; this means
that, on average, the Cut 2-lr model correctly pre-
dicts more than half the answers per participant
assigned to this model.
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(a) Violin plot of coherence distribution for
all non-random models.

(b) Violin plot of coherence distribution for
the best model (Cut 2-lr).

Figure 5.4.2: Results for all models over all the
participant data (N = 381): distributions of co-
herence. The left-most and right-most vertical
lines mark the extremes and the middle vertical
lines mark the mean and median, respectively.
The red crosses, marking the participants found
to best fit the strategy of the random model,
were jittered over the y-axis for readability -
thus, the y-axis has no meaning here.

5.4.2 Which of the five models de-
scribed in Section 5.1 fits the
highest proportion of the cor-
rect answers?

Figure 5.4.3: Results for all models over the cor-
rect answers (N = 167): proportion of fit to the
participant population for each strategy, accord-
ing to the RFX-BMS algorithm. Each bar cor-
responds to one model. The y-axis shows the
proportion of participants that was assigned to
a strategy associated with a model.

This section discusses the performance of the mod-
els on the correct answers for all forty-nine partic-
ipants and for all puzzles. Figure 5.4.3 shows that
the epistemic model performs best, as it is assigned
to around 76% of the population - this can easily be
explained, as the epistemic model always answers
all puzzles correctly. All other models explain a neg-
ligibly small proportion of the data, except model
Cut 2-lr. This latter model always answers correctly

57



all first, second and third-order puzzles - note that,
since there are only two correct answers to the
fourth-order puzzles, the Cut 2-lr model matches
the vast majority of the correct answers. Trivially,
the coherence values associated with the epistemic
model are always one.

5.4.3 Which of the five models de-
scribed in Section 5.1 fits
the highest proportion of the
wrong answers?

Figure 5.4.4: Results for all models over the
wrong answers (N = 214): proportion of fit to
the participant population for each strategy, ac-
cording to the RFX-BMS algorithm. Each bar
corresponds to one model. The y-axis shows the
proportion of participants that was assigned to
the strategy associated with a model.

This section discusses the performance of the
models on the wrong answers for all forty-nine par-
ticipants and for all puzzles. Figure 5.4.4 shows that
the random model performs best, as it is assigned
to almost 43% of the population, followed closely
by the Cut 1-lr model. All other models are as-
signed to a small proportion of the data. Overall,
this suggests that the cutting strategy may account
for systematic errors made by part of the popula-
tion.

Figure 5.4.5a shows a violin plot of the distribu-
tion of coherence values for the non-random mod-
els. The red crosses mark the coherence values asso-
ciated with those participants that match the strat-
egy of the random model the best. As can be seen,
twenty-two out of forty-nine participants were clas-
sified as exhibiting behavior most similar to the
random model and the associated coherence values
are in the range [0.019, 0.303], with mean = 0.149
and median = 0.188 (see also Figure 5.4.5b); this
means that, on average, the random model cor-
rectly predicts no more than two out of eight an-
swers per participant assigned to this model. How-
ever, the non-random models are associated with
coherence values in the range [0.125, 0.75], with
mean = 0.399 and median = 0.333; this means
that, on average, the non-random models correctly
predict around three out of eight answers per par-
ticipant assigned to these models.
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(a) Violin plot of coherence distribution for
all non-random models.

(b) Violin plot of coherence distribution for
the best model (random model).

Figure 5.4.5: Results for all models over the
wrong answers (N = 214): distributions of co-
herence. The left-most and right-most vertical
lines mark the extremes and the middle vertical
lines mark the mean and median, respectively.
The red crosses, marking the participants found
to best fit the strategy of the random model,
were jittered over the y-axis for readability -
thus, the y-axis has no meaning here.

5.4.4 Which cutting direction fits
the highest proportion of the
third-order and fourth-order
puzzle answers?

Figure 5.4.6: Results for the Cut 1-lr and Cut 1-
rl models, epistemic model, and random model
over all the answers for the third and fourth-
order puzzles (N = 192): proportion of fit to the
participant population for each strategy, accord-
ing to the RFX-BMS algorithm. Each bar cor-
responds to one model. The y-axis shows the
proportion of participants that was assigned to
the strategy associated with a model.

This section discusses the performance of the Cut 1-
lr, Cut 1-rl, epistemic and random models on all the
answers for all forty-nine participants and for the
third and fourth-order puzzles. Figure 5.4.6 shows
that the random model performs best, as it is as-
signed to around 43% of the population, followed
closely by the epistemic model. Interestingly, the
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Cut 1-lr model is assigned to a higher proportion
of the data than the Cut 1-rl model. This suggests
that cutting from left to right is more consistent
with the behaviour of the participants.

Figure 5.4.7a shows a violin plot of the distribu-
tion of coherence values for the non-random mod-
els. The red crosses mark the coherence values as-
sociated with those participants that match the
strategy of the random model the best. As can be
seen, five out of forty-nine participants were clas-
sified as exhibiting behavior most similar to the
random model and the associated coherence values
are in the range [0.01, 0.240], with mean = 0.169
and median = 0.184 (see also Figure 5.4.7b); on
average, the random model correctly predicts no
more than two out of eight answers per partic-
ipant assigned to this model. However, the non-
random models are associated with coherence val-
ues in the range [0.25, 0.75], with mean = 0.39 and
median = 0.333; on average, the non-random mod-
els correctly predict around three out of eight an-
swers per participant assigned to these models.

It is worth reminding the reader that the coher-
ence violin plots for the non-random models include
participants that were assigned to at least one of
the non-random models - this explains why the ran-
dom model was assigned to such a large proportion
of the data even though only five participants (red
crosses in Figure 5.4.7a) were uniquely assigned to
the random model.

(a) Violin plot of coherence distribution for
all non-random models.

(b) Violin plot of coherence distribution for
the best model (random model).

Figure 5.4.7: Results for the Cut 1-lr and Cut 1-
rl models, epistemic model, and random model
over all the answers for the third and fourth-
order puzzles (N = 192): distributions of coher-
ence. The left-most and right-most vertical lines
mark the extremes and the middle vertical lines
mark the mean and median, respectively. The
red crosses, marking the participants found to
best fit the strategy of the random model, were
jittered over the y-axis for readability - thus, the
y-axis has no meaning here.
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5.4.5 Which cutting direction fits
the highest proportion of the
third-order puzzle answers?

Figure 5.4.8: Results for the Cut 1-lr and Cut 1-
rl models, epistemic model, and random model
over all the answers for the third-order puzzles
(N = 95): proportion of fit to the participant
population for each strategy, according to the
RFX-BMS algorithm. Each bar corresponds to
one model. The y-axis shows the proportion of
participants that was assigned to the strategy
associated with a model.

This section discusses the performance of the Cut
1-lr, Cut 1-rl, epistemic and random models on all
the answers for all forty-nine participants and for
the third-order puzzles. Figure 5.4.8 shows that the
epistemic model performs best, as it is assigned to
50% of the population, followed closely by the ran-
dom model. The fact that now the epistemic model
performs better than the random model compared
to the results in Figure 5.4.6 is easily explain-

able: The third-order puzzles were associated with
a higher proportion of correct answers than the
fourth-order puzzles (or both combined). The Cut
1-lr and Cut 1-rl models explain an equally low pro-
portion of the data - note that both models give the
same answer (namely, “No solution”) for the third-
order puzzles.

Figure 5.4.9a shows a violin plot of the distribu-
tion of coherence values for the non-random mod-
els. The red crosses mark the coherence values asso-
ciated with those participants that match the strat-
egy of the random model the best. As can be seen,
eighteen out of forty-nine participants were classi-
fied as exhibiting behavior most similar to the ran-
dom model and the associated coherence values are
in the range [0.021, 0.284], with mean = 0.171 and
median = 0.179; this means that, on average, the
random model correctly predicts no more than two
out of eight answers per participant assigned to this
model. However, the non-random models are asso-
ciated with coherence values in the range [0.5, 1],
with mean = 0.693 and median = 0.5; this means
that, on average, the non-random models correctly
predict around five out of eight answers per partic-
ipant assigned to these models.

Figure 5.4.9b shows a violin plot of the distri-
bution of coherence values for the model that fits
the data best according to the RFX-BMS algorithm
(the epistemic model, in this case). As before, the
red crosses mark the coherence values associated
with those participants that match the strategy of
the random model the best. The Cut 2-lr model
is associated with coherence in the range [0.5, 1]
(mean = 0.729 and median = 0.5); this means that,
on average, the epistemic model correctly predicts
around six out of eight answers per participant as-
signed to this model.
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(a) Violin plot of coherence distribution for
all non-random models.

(b) Violin plot of coherence distribution for
the best model (epistemic model).

Figure 5.4.9: Results for the Cut 1-lr and Cut 1-
rl models, epistemic model, and random model
over all the answers for the third-order puzzles
(N = 95): distributions of coherence. The left-
most and right-most vertical lines mark the ex-
tremes and the middle vertical lines mark the
mean and median, respectively. The red crosses,
marking the participants found to best fit the
strategy of the random model, were jittered over
the y-axis for readability - thus, the y-axis has
no meaning here.

5.4.6 Which cutting direction fits
the highest proportion of the
fourth-order puzzle answers?

Figure 5.4.10: Results for the Cut 1-lr and
Cut 1-rl models, epistemic model, and random
model over all the answers for the fourth-order
puzzles (N = 97): proportion of fit to the partic-
ipant population for each strategy, according to
the RFX-BMS algorithm. Each bar corresponds
to one model. The y-axis shows the proportion
of participants that was assigned to the strategy
associated with a model.

This section discusses the performance of the Cut
1-lr, Cut 1-rl, epistemic and random models on all
the answers for all forty-nine participants and for
the fourth-order puzzles. Figure 5.4.10 shows that
the Cut 1-lr model performs best, as it is assigned
to around 45% of the population. Interestingly, the
Cut 1-lr model is assigned to a noticeably higher
proportion of the data than the Cut 1-rl model,
which suggests that cutting from left to right is
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more consistent with the behaviour of the partici-
pants.

Figure 5.4.11a shows a violin plot of the distribu-
tion of coherence values for the non-random mod-
els. The red crosses mark the coherence values asso-
ciated with those participants that match the strat-
egy of the random model the best. As can be seen,
twenty out of forty-nine participants were classified
as exhibiting behavior most similar to the random
model and the associated coherence values are in
the range [0.046, 0.196], with mean = 0.107 and
median = 0.108; this means that, on average, the
random model correctly predicts no more than two
out of eight answers per participant assigned to this
model. However, the non-random models are asso-
ciated with coherence values in the range [0.5, 1],
with mean = 0.638 and median = 0.5; this means
that, on average, the non-random models correctly
predict around six out of eight answers per partic-
ipant assigned to these models.

Figure 5.4.11b shows a violin plot of the distri-
bution of coherence values for the model that fits
the data best according to the RFX-BMS algorithm
(the Cut 1-lr model, in this case). As before, the red
crosses mark the coherence values associated with
those participants that match the strategy of the
random model the best. The Cut 1-lr model is as-
sociated with coherence values in the range [0.5, 1],
with mean = 0.65 and median = 0.5; this means
that, on average, the epistemic model correctly pre-
dicts around six out of eight answers per participant
assigned to this model.

(a) Violin plot of coherence distribution for
all non-random models.

(b) Violin plot of coherence distribution for
the best model (Cut 1-lr model).

Figure 5.4.11: Results for the Cut 1-lr and
Cut 1-rl models, epistemic model, and random
model over all the answers for the fourth-order
puzzles (N = 97): distributions of coherence. The
left-most and right-most vertical lines mark the
extremes and the middle vertical lines mark the
mean and median, respectively. The red crosses,
marking the participants found to best fit the
strategy of the random model, were jittered over
the y-axis for readability - thus, the y-axis has
no meaning here. 63



5.5 Conclusion

In this chapter, I investigated the goodness of fit
of the strategies proposed in Chapter 4 on (subsets
of) the participant data.
Firstly, according to the RFX–BMS algorithm,

around 71% of all the participant data was as-
signed to the cutting strategy and around 33%
of all the participant data was assigned to the
Cut 2-lr model. Moreover, the predictions of the
Cut 2-lr model match the participants’ answers for
more than half of the trials, on average. This sug-
gests that there is merit to further investigating
the cutting-operator strategy: It is assigned to a
higher proportion of the data and has higher co-
herence than the baseline models (i.e., an epistemic
model of perfect reasoning and a random model fit
to the sample of participants). As expected, when
testing the goodness of fit on only the correct an-
swers, the epistemic model was found to fit the data
best, because this model always answers all puzzles
correctly. Lastly, when testing the goodness of fit
on only the wrong answers, the random model was
found to fit around 43% and the Cut 1-lr model al-
most 40% of the participant data, according to the
RFX-BMS algorithm. This suggests that the mis-
takes made by participants can be attributed to
incorrectly reducing the ToM statements down to
a manageable order of complexity, as initially hy-
pothesized. However, it is worth noting that the rel-
atively high fit of the random model and the asso-
ciated low coherence values may indicate that there
are underlying mechanisms that the cutting strat-
egy cannot explain and that cannot be attributed
to (completely) random behaviour.
Secondly, I investigated whether the direction of

removing knowledge operators for the cutting mod-
els has an impact on the goodness of fit. I compared
the Cut 1-lr and Cut 1-rl models against each other
(and against the epistemic and random models) on
all data associated with the third and fourth-order
puzzles. For the third-order puzzles, the Cut 1-lr
model and the Cut 1-rl model give the same an-
swers and, therefore, explain the same (small) pro-
portion of the population. However, for the fourth-
order puzzles, the Cut 1-lr model explains notice-
ably more data than the Cut 1-rl model - around
45% the data. Therefore, this suggests that cutting
from left to right is more consistent with the par-
ticipants’ behaviour than cutting from right to left.
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CHAPTER 6

DISCUSSION

In this chapter, I reflect upon how the findings of
the study relate to past and future research. In Sec-
tion 6.1, I summarize the findings of the study and
answer the research questions posed in Section 1.3.
In Section 6.2, I discuss the strengths and weak-
nesses of the study from three perspectives: exper-
imental design, modeling approach and statistical
methodologies. In Section 6.3, I propose avenues for
future research. Lastly, in Section 6.4, I draw the
final conclusions.

6.1 Summary of Study

Theory of mind (ToM) is defined as the ability to
reason about the behaviour of others and oneself
by attributing mental states, such as beliefs, de-
sires and knowledge [Dennett, 1971, Premack and
Woodruff, 1978]. While humans are able to apply
ToM recursively (e.g., “I know that you believe that
they think...”), past research has shown that hu-
man recursive ToM use is limited in strategic games
and that it often does not exceed second-order ToM
[de Weerd et al., 2018, Devaine et al., 2014, Nagel,
1995]. However, ToM abilities seem to be highly de-
pendent on the task domain [Flobbe et al., 2008].
For example, in story comprehension tasks, humans
have been shown to score above chance on ques-
tions that require up to fourth-order ToM reasoning
[Stiller and Dunbar, 2007, Kinderman et al., 1998].

One possible explanation [Arslan et al., 2017b,
Arslan et al., 2017a, Verbrugge, 2009] for this lim-
itation of recursive ToM use is that embedded be-
liefs are processed serially through intermediate
reasoning steps that are eventually sent to the long-

term memory for later retrieval and retrieval from
the long-term memory has been shown to take long
and to be prone to errors [Anderson and Schooler,
2000]. This phenomenon is also known in the lit-
erature as the serial processing bottleneck [see e.g.,
Borst, 2012, Borst et al., 2010]. This hypothesis is
further supported by studies showing that there is
a correlation between ToM and working memory
capacity in various tasks [Laillier et al., 2019, Lin
et al., 2010, Mutter et al., 2006].

Formally measuring ToM limitations in humans
is difficult due to one apparent shortcoming in
the literature: Classical epistemic logic research
does not usually account for the upper-bound
limit found through behavioural research and be-
havioural research does not often test its predic-
tions on tasks that can be easily modeled in epis-
temic logic, such as epistemic puzzles. Moreover,
the few behavioural experiments on epistemic puz-
zles [Cedegao et al., 2021, Jonker and Treur, 2003,
Hayashi, 2002] have been criticized for their exper-
imental designs [e.g., Top et al., 2023], as it is often
unclear whether participants use theory of mind
reasoning or an alternative strategy to solve the
puzzles. Thus, the aim of the current study was
to bridge this gap, by proposing and conducting a
novel experimental design: Participants were asked
to solve a series of epistemic puzzles that were set
in different contexts (hereon, referred to as “scenar-
ios”) and required different orders of ToM reasoning
(specifically, first-order through fourth-order ToM
reasoning) as the only viable strategy to reach the
correct solution (see Chapter 2 for more informa-
tion on the experimental design). Additionally, I
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showed that: i) theories of ToM reasoning limita-
tions established through past research can be ob-
served in this new “Cheryl’s Puzzle” dataset and ii)
underlying mechanisms of ToM reasoning present
in the dataset can be modeled in epistemic logic.
Firstly, I showed that ToM reasoning is limited

by investigating the effects of ToM order and sce-
nario on the time needed to solve a puzzle and on
accuracy, respectively (see Chapter 3 for more in-
formation). A Kruskal-Wallis test and a post-hoc
Dunn test revealed that the time to solve a puz-
zle differed significantly across every two ToM or-
ders, except for third-order and fourth-order puz-
zles (first-order: M=130.91 seconds; second-order:
M=194.01 seconds; third-order: M=258.02 seconds;
fourth-order: M=261.69 seconds). A Chi-square
test revealed that accuracy was significantly dif-
ferent across ToM orders (first-order: 82.1% cor-
rect answers; second-order: 51.2% correct answers;
third-order: 34.5% correct answers; fourth-order:
2.4% correct answers). Overall, lower orders of ToM
are associated with lower solving time and higher
accuracy (and vice-versa for higher order of ToM)
- this suggests that participants have trouble cor-
rectly applying higher order ToM reasoning and
supports past research findings of a limitation to
the human recursive ToM use. A Kruskal-Wallis
test and a Chi-square test revealed that there is
no effect of scenario on solving time and accuracy,
respectively. This suggests that the difference in
performance over the different ToM orders is more
likely due to limitations in ToM recursive, rather
than the contextual information of the puzzles.
Secondly, I hypothesized about a possible un-

derlying ToM mechanism supported by past re-
search [e.g., Arslan et al., 2017b, Arslan et al.,
2017a]: When participants encounter a high-order
ToM statement that they cannot process, instead of
ignoring that statement (as proposed in Top et al.
[2023]), they sequentially remove knowledge oper-
ators, either from the front or from the back of
the statement, until the ToM order is low enough
to process the statement. This cutting model was
compared against two baseline models: i) an epis-
temic model of perfect reasoning, implemented in
a variant of dynamic epistemic logic [van Dit-
marsch et al., 2007] called public announcement
logic [Plaza, 1989, 2007], and ii) a “random” model
fit to the answers of the sample of participants.
I showed that the data of the “Cheryl’s Puzzle”

dataset is best explained by the cutting model that
reduces all statements of the puzzles to second-
order ToM statements (Cut 2-lr) and that, on av-
erage, five to six out of eight answers are explained
by this model for each participant assigned to this
model. Additionally, I showed that the mistakes
of the “Cheryl’s Puzzle” dataset are somewhat ex-
plained by the cutting model that reduces all state-
ments of the puzzles to first-order ToM statements
(Cut 1-lr) and that, on average, around three of
eight answers are explained by this model for each
participant assigned to this model. Overall, this
suggests that there is merit to the cutting-operators
hypothesis, because models using this strategy of-
ten out-performed both baseline models. However,
it is worth noting that the relatively high fit of
the random model and the associated low coher-
ence values may indicate that there are underlying
mechanisms that the cutting strategy cannot ex-
plain and that cannot be attributed to (completely)
random behaviour. Lastly, I showed that removing
operators from the front (left side) of a statement
matches the behaviour of participants better than
removing operators from the back (right side) of
the statement, especially for the fourth-order puz-
zles. Note that this is in line with the findings of
Arslan et al. [2017b] and Arslan et al. [2017a] and
sheds a critical perspective on alternative explana-
tions of reasoning about complex ToM statements
(such as ignoring these statements, as proposed in
Top et al. [2023]).

6.2 Critical Perspective

In this section, I reflect on the following research
procedures:

• Experimental design
The “Cheryl’s Puzzle” experiment consisted of
eight epistemic puzzles presented in two blocks
of four puzzles each. Each puzzle had an asso-
ciated ToM order and scenario - since there
were four ToM orders and four scenarios, each
ToM order and each scenario was presented
to each participant exactly twice and exactly
once per block, in a randomized order. The
⟨scenario×ToM order⟩ configuration (i.e., mir-
roring of attributes) was also randomized but
the same configuration could not occur in both
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blocks (for example, if a third-order hair puz-
zle occurred in the first block, another third-
order hair puzzle could not occur in the second
block for the same participant). This 4 ToM
orders × 4 scenarios × 4 configurations de-
sign allows for some interesting investigations
into recursive ToM use. Firstly, the four ToM
orders design allows one to clearly distinguish
between performance at different orders of re-
cursive ToM use. Secondly, the four scenar-
ios design addresses the issue of task depen-
dency [Flobbe et al., 2008] and is a first step
towards a more robust measuring of ToM rea-
soning abilities in epistemic puzzles. Lastly, the
configuration design provides a simple way of
generating a large number of seemingly differ-
ent puzzles, which require the same processing
steps to solve correctly.

Participants were tasked with finding Cheryl’s
birthday from a list of ten options, based on
clues from a conversation between Cheryl’s
friends, Albert, who knows the month of the
birthday and Bernard, who knows the day of
the birthday. In all conversations in all puz-
zles, Albert and Bernard simply state whether
they know the birthday (or whether they know
that the other person does or does not know
the birthday, etc.) - no other relevant piece
of information about Cheryl’s birthday was
made available to the participant. This is one
of the biggest strengths of the current study:
Since the only clues about Cheryl’s birthday
come from the conversation between Albert
and Bernard and the conversation is purely
epistemic in nature, this experimental design
ensures that the participantmust reason about
others’ knowledge (hence, use ToM reasoning)
in order to reach the correct answer. Addition-
ally, since there are thirteen answer options for
each puzzle, guessing the correct answer be-
comes an unfeasible strategy. This is in con-
trast to other epistemic puzzles, such as the
Aces and Eights puzzle, where there are four
answer options [Cedegao et al., 2021] or the
Wise Men puzzle, where there are only two
answer options [McCarthy, 1990].

It is also important to remark upon some de-
sign flaws. Firstly, the design of the two blocks
was not implemented as intended due to a bug

in the original code: Only in the first block,
each scenario was associated with one unique
ToM order for all participants. While this did
not influence the modeling approach (each par-
ticipant still encountered each ToM order and
each scenario exactly twice), it did hinder the
statistical analysis of the effect of the scenario
on solving time and accuracy: For each sce-
nario, one ToM order was encountered around
three times as often as the other three orders
independently. Nonetheless, the effect of sce-
nario on solving time and accuracy was found
to be not significant, which further supports
the idea that the bug did not have a strong
effect on the study, in the end.

Secondly, it might be a good idea to remove
“Multiple solutions” as a potential answer and
instead allow the participants to select mul-
tiple dates from Cheryl’s list of options - this
might be more informative for the analysis and
modeling approach.

Thirdly, isolating the actual puzzle-solving
time from the time to read the puzzle text (for
example, by showing the possible answers sep-
arately from the puzzle text) might provide a
more accurate estimation of the time it takes
to solve puzzles associated with different ToM
orders, as some participants might inherently
take longer to read than others.

Lastly, it might be worth keeping track of the
order in which the possible answers were shown
in the drop-down menu in order to search for
potential ordering effects - perhaps one partic-
ipant always selected the second option shown
in the drop-down menus so keeping track of
the order would be the only way to reveal this
behaviour.

• Modeling approach
The strategy proposed in this study can be
summarized as follows: Given a maximum the-
ory of mind order x that an agent can process
correctly and a statement with an associated
ToM order higher than x, then remove enough
knowledge operators (either from the back or
from the front of the statement) such that the
statement now has x ToM order (see Chap-
ter 4).

67



The strength of this proposed modeling ap-
proach lies in the fact that it is based on
past research: Arslan et al. [2017b] and Arslan
et al. [2017a] show that children who cannot
process second-order ToM statements but can
mostly process first-order ToM statements will
approach second-order ToM statements using
first-order ToM reasoning (as opposed to, for
example, ignoring the statement, probabilistic
guessing or using zero-order ToM reasoning).

While I showed that the models using this
strategy explain a good proportion of the data,
it is worth noting that the experimental de-
sign was a limiting factor, as most models give
the same answer for the same puzzles. For this
reason, it was not possible to formally com-
pare the models that remove operators down
to second-order ToM statements from the front
(left side) and back (right side) respectively,
because these two models give identical an-
swers for all puzzles and, therefore, cannot
be distinguished from each other. Similarly,
the answers given by the Cut 1 models can-
not be differentiated from the answers given
by the epistemic model for the first-order and
second-order puzzles, and similarly for the Cut
2 models and the epistemic model for all puz-
zles except the fourth-order puzzle. Nonethe-
less, a large part of the participant behaviour
is consistent to the cutting strategy. Addi-
tionally, following the approaches in Cedegao
et al. [2021] and Top et al. [2023], the fit of
these models was compared against two base-
line models of perfect reasoning and informed
random behaviour. However, it is worth noting
that, unlike the random models proposed by
Cedegao et al. [2021], the random model pro-
posed in this study has not stochasticity imple-
mented but is rather fit to the answers given
by the sample of participants, as also done in
Top et al. [2023].

Another design flaw is that the models never
answer “I don’t know”, even though, in prin-
ciple, the participants had this option. On a
similar note, it is worth noting that partici-
pants might have been hesitant to answer “No
solution” or “Multiple solutions”, given that
the puzzle text explicitly stated that Cheryl’s
birthday was one of the dates on the list of

options. Again, note that the interpretation of
“No solution” or “Multiple solutions” is that
the information given in the puzzle text is in-
sufficient to solve the puzzle rather than the
fact that Cheryl’s birthday is none or a mul-
tiple of the dates specified, respectively - but
this distinction may not have been clear to all
participants. In contrast, the cutting models
would often answer “No solution” to multiple
puzzles (see Table 4.3.1).

• Statistical methodologies
Two statistical analyses were conducted.
Firstly, I tested whether the ToM order and
scenario have an effect on the time it takes to
solve a puzzle and accuracy, respectively (see
Chapter 3). To this end, I followed the appro-
priate methodology: I identified the appropri-
ate statistical tests given the type of predictor
and response variables, I investigated whether
the assumptions of the selected statistical tests
hold and I drew the appropriate conclusions.
If the assumptions of the selected statistical
tests did not hold (as was the case for the solv-
ing time analysis), I instead opted for an al-
ternative non-parametric test. It is worth not-
ing here that non-parametric tests generally
do not hold as much statistical power as their
parametric equivalent and therefore subjecting
the data to a clever transformation or conduct-
ing another experiment with more participants
might address this issue better.

Secondly, I investigated the goodness of fit of
the proposed models to the “Cheryl’s Puzzle”
dataset (see Chapter 5). I first used the RFX-
BMS algorithm to estimate the frequency of
all ToM strategies within the population that
participants were drawn from (see Section 4.4).
It is worth noting that RFX-BMS must as-
sign each participant to one of the pre-defined
models, irrespective of how well that model ac-
tually fits the data. Even though I introduced
an epistemic model and a population-informed
random model as baselines, it is possible that
there are strategies that may explain the data
even better. Additionally, the penalty term p
used in the computation of the log-likelihood
(see Equation 4.4.1) strongly affects the rel-
ative fit of the models as computed by the
RFX-BMS algorithm. While there was clear
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justification behind setting the penalty term
to p = 1

12 (i.e., the chance of selecting a wrong
answer, where 12 is the number of wrong an-
swers for all puzzles), it is worth noting that
different values might lead to contradictory re-
sults.

Coherence was introduced as a metric to qual-
itatively assess how well a model explains the
data (see Section 4.5). One limitation of this
metric is that, due to there being a fixed num-
ber of possible answers, there will always be a
baseline coherence value. This makes it diffi-
cult to compare performance on the Cheryl’s
Birthday puzzle against performance on other
epistemic puzzles when the number of possible
answers is different - for example, the puzzle
of Aces and Eights investigated in Top et al.
[2023] has four possible answers and, therefore,
is associated with a higher baseline coherence
value. A metric more robust to different num-
bers of answer options might be more desir-
able.

6.3 Future Research

In this section, I introduce various avenues of future
research and divide them into areas of research.

6.3.1 A Cognitive Perspective

One aim of the study was to identify cognitive
limitations to recursive theory of mind use in the
“Cheryl’s Puzzle” dataset and to draw conclusions
about underlying mechanisms involved in ToM rea-
soning. The latter is particularly difficult because
past research has shown that ToM reasoning is
task-dependent [Flobbe et al., 2008]. To this end,
I introduced scenario as an experimental condition
and showed that participants did not perform sig-
nificantly differently when the puzzles were set in
different contexts. However, it is not clear what ef-
fect different scenarios may have had on the par-
ticipants’ reasoning ability and whether this ex-
perimental condition sufficiently accounts for task
dependency - in the end, the overall structure of
all puzzles was similar and participants reported
skipping to the relevant parts of the puzzle (i.e.,
Cheryl’s list of options and the dialogue between
Albert and Bernard) once they had gotten used

to the format. Additionally, I hypothesized that
limitations in recursive ToM use may be due to
working memory limitations and participants were
encouraged to make use of pen and paper to re-
lieve some of the workload placed on the working
memory. However, a more thorough study is re-
quired to determine the connection between work-
ing memory workload and ToM reasoning abili-
ties for the Cheryl’s Birthday puzzle - perhaps
EEG/fMRI data would be particularly useful here.

It would be interesting to investigate whether
participants’ performance can and does improve
over time. For example, Verbrugge et al. [2018]
showed that a carefully designed stepwise training
regime, in which items are presented in increasing
order of difficulty, leads to improved performance in
second-order iterations of the Matrix Game. Thus,
it would be interesting to investigate whether par-
ticipants’ performance would be improved by im-
plementing a similar training regime - for example,
instead of randomizing the order in which puzzles
are shown, participants could be shown puzzles that
gradually require higher orders of ToM to solve cor-
rectly.

With the latest developments in large language
models (LLMs), it has been of interest whether
LLMs have recursive ToM reasoning abilities [Stra-
chan et al., 2024, Verma et al., 2024]. Testing an
LLM’s recursive ToM reasoning abilities on an epis-
temic puzzle can prove problematic if that puzzle
has been extensively researched before, because the
LLMmight have access to all information presented
in those studies and this information could artifi-
cially enhance its ToM reasoning abilities. Since the
current study introduces a novel experimental de-
sign, the epistemic puzzles proposed here can be
safely used to investigate ToM abilities in LLMs.

6.3.2 A Modeling Perspective

A second aim of the study was to explain (some of)
the mechanisms involved in ToM reasoning using
public announcement logic (PAL) and I proposed a
model that removes knowledge operators from the
back or from the front of ToM statements that are
too complex to understand otherwise. However, a
more thorough analysis of the merit of the cutting
strategy was partially hindered by the experimen-
tal design: Many of the models provided identical
answers to many of the puzzles. Therefore, in a
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follow-up study, the puzzles should be redesigned
such that the answers of these models can be bet-
ter distinguished from each other.
The cutting operation was introduced intuitively

rather than through rigorous definitions that are
consistent with logical formalism. Therefore, re-
search is needed to determine how the cutting oper-
ation can be formalized within PAL or other forms
of dynamic epistemic logic.
The modeling approach presented in this study

was greatly inspired by the works of Cedegao et al.
[2021] and Top et al. [2023]. In the two studies,
the authors explain limitations in recursive ToM
reasoning by restricting the initial Kripke graph:
The lower the ToM order of an agent, the fewer
the number of states it would have access to (in
the sense of considering those states possible) and,
therefore, the more limited the worldview of possi-
ble answers. Instead, I propose an alternative ap-
proach, whereby an agent has access to the entire
initial Kripke graph but the public announcement is
instead restricted. Thus, it would be interesting to
investigate whether combining the two approaches
could yield a more accurate model. On a similar
note, it would be interesting to incorporate stochas-
ticity into the model, following the Cedegao et al.
[2021] approach.
It is worth noting that classical approaches

to modeling human behaviour through logics of
knowledge often suffer from making assumptions
about an agent’s reasoning which are often unreal-
istic in real-life settings. For example, Parikh has
argued that logical omniscience, the idea that an
agent knows all logical consequences of her assump-
tions, is not a realistic account of human knowledge
- for example, humans may not know some logical
truths or may not be aware of some consequences
of the things that they already know [Parikh, 1994,
1987]. Therefore, it would be interesting to aug-
ment formal models in epistemic logic with more
realistic theories of knowledge according to cogni-
tive research and investigate whether such an addi-
tion might provide a more complete explanation of
the underlying mechanisms in the “Cheryl’s Puz-
zle” dataset.

6.3.3 A Statistical Perspective

The goodness of fit for the proposed models was
measured using the RFX-BMS algorithm [Stephan
et al., 2009], which must always assign each partic-
ipant to one pre-defined model. Thus, it is possi-
ble that other strategies may explain the data even
better. Perhaps participants remove knowledge op-
erators both from the front and from the back of
the ToM statements, or perhaps participants do not
remove the negation along with the knowledge op-
erators, or perhaps they use completely different
strategies - for example, eye-tracking data could
be used to inform more accurate logically-inspired
models [Meijering et al., 2012, Top et al., 2018b,
Top et al., 2018a as cited by Top et al., 2023]. On
a similar note, coherence is bounded by the num-
ber of answer options of a puzzle, which makes it
difficult to compare findings across different stud-
ies testing ToM abilities on different epistemic puz-
zles. Thus, while there was clear justification be-
hind selecting RFX-BMS and coherence as vali-
dation methods, it might be worth investigating
whether other appropriate statistical methods may
confirm or contradict the findings of this study.

6.4 Conclusion

In this study, I introduced a novel experimental
design that can be used to distinguish theory of
mind (ToM) reasoning at different recursive or-
ders from other strategies in the epistemic puzzle
of Cheryl’s Birthday. This experimental design al-
lows one to generate a wide variety of fundamen-
tally equivalent puzzles, presented in different con-
textual scenarios. Moreover, I introduced a novel
modeling paradigm in public announcement logic,
whereby as many knowledge operators as necessary
(and no more) are sequentially removed from pub-
lic announcements that the agent could not have
understood otherwise. I showed that this modeling
paradigm captures systematic patterns in the be-
haviour of human participants that deviate from
a model of perfect recursive ToM reasoning and a
model of informed random behaviour. It is my hope
that the proposed experimental design and model-
ing paradigm will incite a wide variety of follow-up
research at the intersection of cognitive modeling
and dynamic epistemic logic.
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I. Krämer. Children’s application of theory of
mind in reasoning and language. Journal of
Logic, Language and Information, 17:417–442,
2008. 10.1007/s10849-008-9064-7.

H. Hayashi. Possibility of solving complex problems
by recursive thinking. The Japanese Journal of
Psychology, 73(2):179–185, 2002. 10.4992/jjpsy
.73.179.

S. Holm. A simple sequentially rejective multiple
test procedure. Scandinavian Journal of Statis-
tics, 6(2):65–70, 1979. URL http://www.jstor

.org/stable/4615733.

71

https://escholarship.org/uc/item/2kk1h4b2
https://escholarship.org/uc/item/2kk1h4b2
http://www.jstor.org/stable/4615733
http://www.jstor.org/stable/4615733


C.M. Jonker and J. Treur. Modelling the dynamics
of reasoning processes: Reasoning by assumption.
Cognitive Systems Research, 4(2):119–136, 2003.
10.1016/S1389-0417(02)00102-X.

M. Kaneko and N.Y. Suzuki. Epistemic logic of
shallow depths and game theoretical applica-
tions. In Advances In Modal Logic: Volume 3,
pages 279–298. World Scientific, 2002. 10.1142/
9789812776471 0015.

P. Kinderman, R.I. Dunbar, and R.P. Bentall.
Theory-of-mind deficits and causal attributions.
British Journal of Psychology, 89(2):191–204,
1998. 10.1111/j.2044-8295.1998.tb02680.x.

R. Laillier, A. Viard, M. Caillaud, H. Duclos, A. Be-
janin, V. de La Sayette, F. Eustache, B. Des-
granges, and M. Laisney. Neurocognitive de-
terminants of theory of mind across the adult
lifespan. Brain and Cognition, 136:103588, 2019.
10.1016/j.bandc.2019.103588.

S. Lin, B. Keysar, and N Epley. Reflexively mind-
blind: Using theory of mind to interpret behav-
ior requires effortful attention. Journal of Exper-
imental Social Psychology, 46(3):551–556, 2010.
10.1016/j.jesp.2009.12.019.

John McCarthy. Formalization of two puzzles in-
volving knowledge. Formalizing Common Sense:
Papers by John McCarthy, pages 158–166, 1990.

B. Meijering, H. van Rijn, N.A Taatgen, and
R. Verbrugge. What eye movements can tell
about theory of mind in a strategic game.
PLOS ONE, 7(9):1–8, 2012. 10.1371/journal
.pone.0045961.

G.A. Miller. The magical number seven, plus or
minus two: Some limits on our capacity for pro-
cessing information. Psychological review, 63(2):
81–97, 1956. 10.1037/h0043158.

B. Mutter, M.B. Alcorn, and M. Welsh. The-
ory of mind and executive function: Working-
memory capacity and inhibitory control as pre-
dictors of false-belief task performance. Per-
ceptual and Motor Skills, 102(3):819–835, 2006.
10.2466/pms.102.3.819-835.

R. Nagel. Unraveling in guessing games: An exper-
imental study. The American Economic Review,

85(5):1313–1326, 1995. URL http://www.jstor

.org/stable/2950991.

R. Parikh. Knowledge and the problem of logical
omniscience. In ISMIS, volume 87, pages 432–
439. Citeseer, 1987.

R. Parikh. Logical omniscience. In International
Workshop on Logic and Computational Complex-
ity, pages 22–29. Springer, 1994.

J. Perner. Higher-order beliefs and intentions in
children’s understanding of social interaction. In
J. W. Astington, P. L. Harris, and D. R. Olson,
editors, Developing Theories of Mind, pages 271–
294, 1988.

J. Plaza. Logics of public communications. Syn-
these, 158:165–179, 2007. 10.1007/s11229-007
-9168-7.

J.A. Plaza. Logics of public announcements. In
M.L. Emrich, M.S. Pfeifer, M. Hadzikadic, and
Z.W. Ras, editors, Proceedings of the 4th Inter-
national Symposium on Methodologies for Intel-
ligent Systems: Poster Session Program, pages
201–216, Oak Ridge National Laboratory, 1989.

D. Premack and G. Woodruff. Does the chim-
panzee have a theory of mind? Behavioral and
Brain Sciences, 1(4):515–526, 1978. 10.1017/
S0140525X00076512.

G. Priest. An Introduction to Non-Classical Logic:
From If to Is. Cambridge University Press, 2008.

K.E. Stephan, W.D. Penny, J. Daunizeau, R.J.
Moran, and K.J. Friston. Bayesian model selec-
tion for group studies. Neuroimage, 46(4):1004–
1017, 2009. 10.1016/j.neuroimage.2009.03.025.

J. Stiller and R.I. Dunbar. Perspective-taking
and memory capacity predict social network size.
Social Networks, 29(1):93–104, 2007. 10.1016/
j.socnet.2006.04.001.

J.W. Strachan, D. Albergo, G. Borghini,
O. Pansardi, E. Scaliti, S. Gupta, K. Sax-
ena, A. Rufo, S. Panzeri, Graziano M.S.A.
Manzi, G., and Becchio C. Testing theory of
mind in large language models and humans.
Nature Human Behaviour, pages 1–11, 2024.
10.1038/s41562-024-01882-z.

72

http://www.jstor.org/stable/2950991
http://www.jstor.org/stable/2950991


J.D. Top, R. Verbrugge, and S. Ghosh. An auto-
mated method for building cognitive models for
turn-based games from a strategy logic. Games,
9(3):44, 2018a. 10.3390/g9030044.

J.D. Top, R. Verbrugge, and S. Ghosh. Automat-
ically translating logical strategy formulas into
cognitive models. In 16th International Con-
ference on Cognitive Modelling, pages 182–187,
2018b.

J.D. Top, C. Jonker, R. Verbrugge, and
H. de Weerd. Predictive theory of mind
models based on public announcement logic. In
Nina Gierasimczuk and Fernando R. Velázquez-
Quesada, editors, Dynamic Logic. New Trends
and Applications: 5th International Work-
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APPENDIX A

EXPERIMENT MATERIALS
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A.1 Consent Form

Participants were first asked to read and sign an informed consent form. Participants were informed of
the general layout of the experiment, the broad purpose of the research, and privacy regulations.

Figure A.1.1: Informed consent form
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A.2 Interface

Participants were asked to enter a participant number (see Figure A.2.1). Each participant number was
linked to a pre-determined series of puzzles, for later reference.

Figure A.2.1: Participants were asked to enter a participant number, ranging from 0 to 49 (each
number unique for each of the 50 participants).

Next, participants were welcomed to the experiment and provided with additional instructions.

Figure A.2.2: Participants are welcomed to the experiment and provided with extra instructions
on materials and monetary reward. Each paragraph is shown upon button click.
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The experimental procedure comprised of three stages. Firstly, participants were tested on their (read-
ing) comprehension of important concepts relevant to Cheryl’s puzzle. See Comprehension Questions for
more details.
Secondly, a series of eight puzzles were shown in succession to the participants. One could advance

to the next puzzle only by selecting an answer form the drop-down menu. After the first four puzzles,
a p-beauty contest was inserted, in order to conduct a post-hoc analysis of the level of theory of mind
showcased, on average, by participants. The analysis of the answers recorded at this stage was the main
interest of the study. See Cheryl’s Puzzle for the puzzles associated with participant 0.
Lastly, participants were asked to fill in a series of personal information, such as contact information,

study background, and overall experience with the experimental procedure. All information that could
be used to trace back the data to the participant (i.e. name and email address) was stored separately
from the rest of the answers, in order to ensure anonymity. See Background Form for more details.
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A.2.1 Comprehension Questions

All text shown in this section was identical for all participants.

Figure A.2.3: Participants are shown a detailed instruction text, similar to the standard puzzle
texts. Each paragraph is shown upon button click. Comprehension question 1 tests the partici-
pants’ understanding of common knowledge and perfect logicians. Correct answer: “Yes”, because
it is well known by anybody that [...] Cheryl [...] never lies.

Figure A.2.4: Same text as in Figure A.2.3. Comprehension question 2 tests the participants’
understanding of common knowledge and perfect logicians. Correct answer: “No, he only ever
speaks the truth”, because it is well known by anybody that [...] Bernard [...] has perfect reasoning,
never lies or purposefully deceives.
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Figure A.2.5: Same text as in Figure A.2.3. Comprehension question 3 tests the participants’
reading comprehension. Correct answer: “The month of Cheryl’s birthday”, because Cheryl says
that she will whisper in Albert’s ear the month of her birthday, and nothing else.

Figure A.2.6: Same text as in Figure A.2.3. Comprehension question 4 tests the participants’
reading comprehension. Correct answer: “No”, because Cheryl says that her month is on the list
and May, 15 is not.
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Figure A.2.7: Same text as in Figure A.2.3. Comprehension question 5 tests the participants’
dialogue comprehension. Correct answer: “Cheryl”, because Albert and Bernard just met Cheryl
and they are only told the month and day, respectively. This questions relies on common sense:
one cannot know another’s birthday only from the month (which leaves 28-31 options) or day
(which leaves 7, 11 or 12 options).

Figure A.2.8: Same text as in Figure A.2.3. Comprehension question 5 tests the participants’
dialogue comprehension. Correct answer: “Cheryl”, because Albert and Bernard both say that
they do not know when Cheryl’s birthday is.
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Figure A.2.9: Message shown after the participant has answered all comprehension questions
correctly.
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A.2.2 Cheryl’s Puzzle

Each participant received a unique series of puzzles, drawn from the same pool of 64 puzzles. Below, the
puzzles for participant 0 are shown.

Figure A.2.10: Puzzle 1: scenario hair, level-4 ToM. Correct answer: With bangs, green

Figure A.2.11: Same puzzle text as in Figure A.2.10. The answer can be selected from the drop-
down menu. Note that “Multiple solutions and “No solution” are never the correct answer. The
participants have to select an option and click on the “Submit” button to proceed to the next
puzzle. For brevity, showing the drop-down menu options will be skipped for the remainder of the
puzzles.
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Figure A.2.12: Puzzle 2: scenario birthday, level-3 ToM. Correct answer: September, 17

Figure A.2.13: Puzzle 3: scenario toy, level-1 ToM. Correct answer: On the windowsill, bunny
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Figure A.2.14: Puzzle 4: scenario drink, level-2 ToM. Correct answer: Extra large, hot

Figure A.2.15: P-Beauty Contest
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Figure A.2.16: Puzzle 5: scenario birthday, level-2 ToM. Correct answer: May, 18

Figure A.2.17: Puzzle 6: scenario drink, level-4 ToM. Correct answer: Extra large, hot
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Figure A.2.18: Puzzle 7: scenario hair, level-1 ToM. Correct answer: With bangs, blue

Figure A.2.19: Puzzle 8: scenario toy, level-3 ToM. Correct answer: On the windowsill, cat
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Figure A.2.20: Message shown at the end of the puzzle series.
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A.2.3 Background Form

All text shown in this section was identical for all participants.

Figure A.2.21: First page of the form. Participants are asked to fill in their demographic data.
Validity checkers were implemented for the age entry (must be a number between 15 and 50) and
email address (must follow the X@Y.Z format). Additionally, no entry can be left empty.

Figure A.2.22: Second page of the form. Participants are asked to fill in their educational back-
ground. For the last question, if “Other” is selected, a text-box field is revealed. No entry can be
left empty. Note: RUG is the abbreviation for the University of Groningen.
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Figure A.2.23: Third page of the form. Participants are asked to recount their experience with
the experimental procedure. For the second question, if “Other” is selected, a text-box field is
revealed. No entry can be left empty.

Figure A.2.24: Fourth page of the form. Participants are asked to recount their experience with
the experimental procedure. Only the final entry can be left empty.
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Figure A.2.25: Final message of the interface. Participants are thanked for their contribution and
encouraged to contact the experimenter with any questions.
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