
Computational Stemmatology: Reconstructing

Text Phylogenies through Computer Assisted

Methods

Master Research Project Applied

Mathematics

Master in Applied Mathematics

12th July 2024

First Supervisor: Dr J. Koellermeier

Second Supervisor: Dr T. M. Tashu

Student: Darren Zammit s5284236

1

Abstract

Stemmatology is a branch of textual criticism whose aim is to reconstruct the history, or
stemma, of a text given a collection of manuscripts imperfectly copied from each other.
Typically, a philologist would have to read through all the manuscripts several times and
from the small differences in between the texts, the stemma would be constructed. This
can be a very long process since dates and textual features which expose the documents’
evolutionary direction are not always available or reliable and thus in this project, a tool chain
was developed to derive a preliminary stemma using computational tools. This project serves
to describe a general framework for reliably reconstructing stemmata and some experiments
involving synthetic data sets and corpora with known stemmata, to which a number of
computer-assisted methods from phylogenetics and natural language processing were applied.
Moreover, we applied these methods to a tradition whose stemma is unknown, provided to
us by a philologist, leading to believable results.

i

Contents

1 Introduction to Computational Stemmatology, Graphs and Phylogenetics 1
1.1 Stemmatology . 1
1.2 Computational Stemmatology . 4
1.3 Graph Theory in Stemmatology and Phylogenetics 4
1.4 Outline . 7

2 Distance Matrics Mehtods for Tree Construction 8
2.1 Word Representation . 8

2.1.1 Count Vectorization . 9
2.1.2 n-grams . 9
2.1.3 Term frequency–inverse document frequency 9

2.2 Word Embeddings . 10
2.2.1 Word2Vec . 10
2.2.2 FastText . 13
2.2.3 GloVe . 14

2.3 NLP Document dissimilarity Calculation . 16
2.3.1 Cosine Distance . 17
2.3.2 Word Mover’s Distance . 17
2.3.3 Relaxed Word Mover’s Distance . 20

2.4 Sequence Similarity Metrics . 21
2.4.1 Hamming Distance . 21
2.4.2 (Demerau-)Levenshtein Distance . 21

2.5 Clustering Algorithms . 22
2.5.1 Least Squares . 22
2.5.2 Unweighted Pair Group Method with Arithmetic Mean (UPGMA) . . 24
2.5.3 Neighbour Joining . 24
2.5.4 Minimum Spanning Trees . 26

2.6 Optimality Criterion Based Methods . 27
2.6.1 Parsimony Based Methods . 27
2.6.2 Minimum Evolution . 28

2.7 Reliability . 28
2.7.1 Bootstrapping . 28
2.7.2 Consensus Tree . 29

2.8 Rooting A Stemma . 29
2.8.1 Minimum Cost Heuristic . 30

3 Methodology and Experiment Design 34
3.1 Computational Tools . 34

3.1.1 CollateX . 34
3.1.2 PAUP* . 34
3.1.3 Biopython . 34
3.1.4 Networkx . 35
3.1.5 Gensim . 35

ii

3.2 Data Sets . 35
3.2.1 Artificial Datasets . 35

3.3 Parzival . 36
3.4 Heinrichi . 37
3.5 Phareta Fidei . 37
3.6 Phylogenetics Software Pipeline . 38
3.7 NLP Distance Matrix Pipeline . 39
3.8 Pre-trained word vectors. 40
3.9 Accuracy Measures . 40

3.9.1 Root . 40
3.9.2 Leaves . 40
3.9.3 Depth . 41
3.9.4 Indirected Edges . 41
3.9.5 Directed Edges . 41
3.9.6 Ancestry . 41
3.9.7 Average Signed Distance . 42

4 Results 43
4.1 Artificial Datasets . 43

4.1.1 Misspellings with 5% Edit Limit . 43
4.1.2 Synonyms and Additives with 5% Edit Limit 44
4.1.3 Paraphrasing of Sentences 20 nodes 45

4.2 Parzival . 45
4.3 Heinrichi . 51
4.4 Phareta Fidei . 53

4.4.1 Phareta Fidei 10 . 54
4.4.2 Phareta Fidei 28 . 56

5 Discussion 59
5.1 Artificial Datasets . 59
5.2 Parzival . 60
5.3 Heinrichi . 61
5.4 Phareta Fidei . 61

6 Conclusion 62
6.1 Future Works . 62

iii

List of Tables

1 Average Signed Distance between the correct stemma of Parzival and the
stemmata predicted by PAUP*, and minimum spanning trees using cosine
distances between the word embedding sums of each document, Relaxed Word
Mover’s Distance (RWMD), Word Mover’s Distance (WMD) and Text Fre-
quency Inverse Document Frequency. 50

2 Average Signed Distance between the correct stemma of Heinrichi and the
stemmata predicted by PAUP* algorithms, and minimum spanning trees using
cosine distances between the and Text Frequency Inverse Document Frequency
vectors. 51

3 The textual witnesses in Phareta Fidei 28 and their names in the generated
graphs. The naming convention is ”City, Library, Variant ID, Year Written,
Place of Origin”. 53

iv

List of Figures

1 Some textual witnesses of Phareta Fidei tradition which is further discussed
in section 3.2. 1

2 Example of a tabular collation: Thomas Hoccleve’s Regiment of Princes, line
4264. Hoccleve Archive, University of Texas Libraries. Extracted from [1]. . 2

3 Schlyter’s schema cognationis for the Västgötalagen (Schlyter and Collin 1827,
appendix), which may be the first printed stemma. Extracted from [1] 3

4 The main types of graphs in stemmatology and phylogenetics. (b) is a general
stemma with more than one root, contamination and more than two children
per node. 5

5 An phylogenetic tree of some primates with internal nodes and ranch lengths
labelled. 6

6 The continuous bag of words and skip-gram models suggested in [13]. Ex-
tracted from [13]. 11

7 An illustration of the word mover’s distance where all non-stop words (bold)
of both documents are embedded into a word2vec space. 18

8 The components of the word mover’s distance between a query D0 and two
sentences D1 and D2 (with equal bag-of-words distance). The arrows repre-
sent flow between two words and are labeled with their distance contribution.
(Bottom:) The flow between two sentences D3 and D0 with different num-
bers of words. This mismatch causes the measure to move words to multiple
similar words. Extracted from [16]. 19

9 Bootstrapping: Resampling from one’s sample with replacement. The resam-
pled sequence consists of copies of the observed columns with replacement. . 29

10 The runtime for calculating the root heuristic vs the number of nodes. 31
11 An example of a weighted tree. 31
12 A linear tree where each node can have at most one child nodes. 32
13 A symmetric binary tree where each node can have at most two child nodes. 32
14 The number of nodes between the correct root and the predicted root for

linear trees against the number of nodes. 33
15 The number of nodes between the correct root and the predicted root for even

binary trees against the number of nodes. 33
16 Two sentences aligned using Collatex. 38
17 Example of a Nexus File Data Block. 38
18 Pipeline for tree estimation using distance matrices calculation. The input is

a set of documents, whilst the output is a rooted tree. 39
19 Accuracy rate averages of 100 examples per data point for the root, leaves,

depth, directed and undirected edges vs number of nodes for stemmata where
the differences between the texts are misspellings (at rate 60% of edits) and
correction of misspellings (40%). 43

20 Accuracy rate averages of 100 examples per data point for the root, leaves,
depth, directed and undirected edges vs number of nodes where the differences
between the texts are synonym exchange (at rate 30% of edits), addition of
adverbs/adjectives (40%) or removal of adverbs/adjectives (30%). 44

v

21 Accuracy rate averages of 100 examples per data point for the root, leaves,
depth, directed and undirected edges vs portion of sentences paraphrased. All
stemmata had 20 nodes, with the edit portion changed from 10% to 50% in
steps of 10%. 45

22 Parzival Correct Stemma. Nodes 17-21 are missing and are thus named arbi-
trarily. 46

23 Parzival predicted stemma using TF-IDF with 1-,2-,3-grams. 46
24 Parzival predicted stemma using the cosine distances between the Word2Vec

word vectors. 46
25 Parzival predicted stemma using the reduced word mover’s distances between

Word2Vec vectors. 46
26 Parzival predicted stemma using the word mover’s distances betweenWord2Vec

vectors. 47
27 Parzival predicted stemma using the cosine distances between the FastText

word vectors. 47
28 Parzival predicted stemma using pre-trained FastText word vectors and re-

duced word mover’s distance. 47
29 Parzival predicted stemma using pre-trained FastText word vectors and word

mover’s distance. 47
30 Parzival predicted stemma using the cosine distances between the Glove word

vectors. 48
31 Parzival predicted stemma using pre-trained Glove word vectors and reduced

word mover’s distance. 48
32 Parzival predicted stemma using pre-trained Glove word vectors and word

mover’s distance. 48
33 Parzival predicted stemma ordinary least squares in PAUP*. 48
34 Parzival predicted stemma using UPGMA in PAUP*. 49
35 The predicted stemma for Parzival using neighbour joining in PAUP*. 49
36 The predicted stemma for Parzival using maximum parsimony. 49
37 The predicted stemma for Parzival using minimum evolution in PAUP*. . . . 49
38 Parzival UPGMA consensus tree using on 100 bootstrap replicates in PAUP*. 49
39 Parzival neighbour joining consensus tree using on 100 bootstrap replicates in

PAUP*. 49
40 Heinrichi correct stemma. Missing manuscripts are labelled as arbitrary num-

bers whereas observed manuscripts are denoted by letters. 52
41 Heinrichi minimum spanning tree generated using TF-IDF with 1-,2-,3-grams. 52
42 Phareta Fidei minimum spanning tree generated using TF-IDF with 1-,2-,3-

grams. 54
43 Phareta Fidei tree using least squares in PAUP*. 54
44 Phareta Fidei using UPGMA in PAUP*. 54
45 Phareta Fidei predicted stemma using neighbour joining in PAUP*. 54
46 Phareta Fidei prediction using maximum parsimony in PAUP*. 55
47 Phareta Fidei prediction using minimum evolution in PAUP*. 55
48 Phareta Fidei UPGMA consensus tree on 100 bootstrap replicates. 55
49 Phareta Fidei neighbour joining consensus tree on 100 bootstrap replicates. . 55

vi

50 Phareta Fidei minimum spanning tree generated using TF-IDF with 1-,2-,3-
grams. 56

51 Phareta Fidei tree using least squares in PAUP*. 56
52 Phareta Fidei using UPGMA in PAUP*. 57
53 Phareta Fidei predicted stemma using neighbour joining in PAUP*. 57
54 Phareta Fidei prediction using neighbour joining in PAUP*. 57
55 Phareta Fidei prediction using minimum evolution in PAUP*. 57
56 Phareta Fidei UPGMA consensus tree on 100 bootstrapreplicates. 58
57 Phareta Fidei neighbour joining consensus tree on 100 bootstrap replicates. . 58

vii

Acknowledgements

I thank my supervisors Dr Julian Koellermeier and Dr Tsegaye Tashu who allowed me to
work independently throughout the project as well as for their suggestions. This was quite
a unique project and I consider myself to have been very lucky to have worked on it.

I am also grateful to Lois Bakker and Dr Andrew Irving for providing me with a digital
version of the Phareta Fidei tradition, expecially Lois who spent weeks going through the
nearly illegible manuscripts and typing them down into a computer readable format.

I am grateful to my friends and family who always encouraged me to push myself forward
and especially all those who belayed me whilst climbing or held up a pad during martial arts
classes.

viii

The research work disclosed in this publication is partially funded by the Endeavour II Scholarships

Scheme. The project is co-funded by the ESF+ 2021-2027

1 Introduction to Computational Stemmatology, Graphs

and Phylogenetics

This section starts off as an introduction to stemmatology as a discipline. We then introduce
some graph theoretical concepts and how they can be applied for phylogenetics and thus
stemmatology. Finally, we discuss the main goals of this project.

1.1 Stemmatology

Copying a text multiple times over long periods of time usually results in changes in its
content. Stemmatology [1] is a methodical approach to textual criticism and is based on
the assumption that if two or more surviving witnesses have common errors then they were
likely derived from a common intermediate ancestor (hyparchetype). Relations between
the lost ancestors are determined similarly and such predicted ancestors are placed in with
all surviving witnesses in a family tree or ”stemma” descended from a single although not
necessarily known common ancestor or ”archetype”. Given a set of manuscripts such as in
Figure 1, the aim is to derive the order in which the manuscripts were copied from each
other.

Figure 1: Some textual witnesses of Phareta Fidei tradition which is further discussed in
section 3.2.

One way of deriving a stemma is to compare the scripts by aligning them word by word
in a process called ’collation’ as shown in Figure 2. This way it is fairly easy to analyse
changes in vocabulary, from which the stemma may be constructed.

1

Figure 2: Example of a tabular collation: Thomas Hoccleve’s Regiment of Princes, line 4264.
Hoccleve Archive, University of Texas Libraries. Extracted from [1].

Once the stemma is derived, the text of the archetype is constructed by examining
variants from the hyparchetypes closest to the archetype and selecting the most likely ones.
This phase is called selection. The most common variant at each locus (position in the script)
at the same level of the tree, is selected as the most likely variant. If multiple variants occur
equally often, then the philologist must use their judgement to determine which makes the
most sense. A common example is that scribes tend to replace more difficult and older
words with simpler and newer words, thus whilst constructing the archetype, the philologist
typically would favour the more complex and sometimes older words that became less often
used over time.

The most informative changes or copying errors include exchanging a word with a syn-
onym, skipping words or sentences (usually by accident), paraphrasing of sentences and
abbreviating names. Spelling mistakes, changes in punctuation, doubling of sentences and
words are also quite common however, they are far less informative as the next scribe is very
likely to fix these mistakes.

The text must then undergo the process of ”examination” during which the philologist
must identify errors as in some loci it may be that none of the surviving variants preserve
the original text. If the text is determined to have significant amounts of missing text, it
must be corrected through ”emendation”. At the end of this process it is sometimes possible
to reconstruct a text closer to the original than any of the surviving witnesses.

2

Figure 3: Schlyter’s schema cognationis for the Västgötalagen (Schlyter and Collin 1827,
appendix), which may be the first printed stemma. Extracted from [1]

The process of deriving a stemma has been studied in mathematical terms [1] since a
stemma is essentially a graph as in Figure 3. However, some of the crucial steps in the
process are largely impregnable to algorithmic analysis. Usually, familiarising oneself with
a text and its contexts is instrumental in understanding its transmission which can be very
time-consuming since the philologist often starts knowing very little about the original text
or its author(s), their writing style, the environment where the text was written or even
the time-period it was written in. This information plays a crucial role in determining the
direction of copying and thus finding the root of the stemma. With each successive analysis of
the scripts, the philologist identifies more subtleties. However, manual stemmatology can still
lead to the philologist to mistakenly see patterns where there are none since every collection of
manuscripts is unique and may follow very different and complicated patterns which humans
are typically not well suited to fully understand. This non-linearity makes the process difficult
to program fully, however, some steps in the process have been computerised to save time
for the philologist or derive a hypothetical stemma when one deals with impregnable or very
numerous scripts.

3

1.2 Computational Stemmatology

There exists a wide variety of approaches in dealing with textual and stemmatic reconstruc-
tion and an equally wide variety of tools are available [1]. Computer tools have simplified
many steps in text editing. Moreover, computer simulations allow for the study of the evo-
lution of large volumes of textual data. On top of this, computational stemmatology has
potential applications in plagiarism detection [2], analysing the evolution of computer viruses
[3] and content-based social network analysis [4] since any algorithm used in computational
stemmatology in some way relies on comparing scripts.

Graphical modelling takes a central role in constructing stemmata [1]. Contemporary
methods – which are primarily analogous to those in phylogenetics, the study of the evo-
lutionary history of species – can be split into distance-based [5], parsimony-based [6], and
statistical methods [7]. In these methods every word in the text is equally important. In
reality there are many different kinds of errors and changes, some more significant than oth-
ers, leading to the algorithm failing to faithfully construct a stemma. For example, spelling
mistakes or changing symbols should have far less impact on a script than adding or redact-
ing text. Another issue which these methods struggle to address is that of contamination,
that is when a text is copied from multiple manuscripts [1]. If different scripts were used for
different chapters then this could lead to outputs which faithfully reflect the stemma of most
chapters but not all if different chapters were copied from different manuscripts. Phyloge-
netic methods are usually only capable of generating bifurcating trees which are incapable
of explaining contaminated stemmata.

Since the seminal paper [8] which first applied computational phylogenetics models in
stemmatology some advances in computational stemmatology have been made. However,
most papers in computational stemmatology are authored by computer scientists and philol-
ogists with mathematicians and statisticians representing a small minority of authors [1].
Moreover, algorithms designed specifically for stemmatology, even ones whose framework is
adapted for stemmatolology, are very few in number [1]. Computational methods usually rely
on transforming the data into analogues of genetic data and feeding it directly into a phylo-
genetics program as though it were phylogenetic data, with very few algorithms developed
exclusively for stemmatology.

One area of computational stemmatology which has not been very well studied is the
rooting of a stemma. So far most of the work done in computational stemmatology has
been focused on generating the stemma. Rooting, however, is almost always done manually.
This is due to the fact that whilst rooting a stemma, the philologist relies on context such
as the historical era, the age of words, changes in spelling etc. Computerised methods are
incapable of identifying without highly detailed datasets about such changes, which to the
author’s knowledge do not exist.

1.3 Graph Theory in Stemmatology and Phylogenetics

Approaches to formalising stemmata rely on graph theory as a framework. A graph G is a
pair of a set of vertices (sometimes called nodes) V and a set of edges connecting the vertices
E. Vertices represent entities, in the case of stemmata the variants and in phylogenetics the
species, whereas edges represent relationships between the entities. A graph is said to be

4

undirected if it consists of a set of vertices and a set of undirected edges, and directed if it
consists of a set of nodes and a set of directed edges (ordered pairs of vertices). The two
vertices forming an edge are said to be the edge’s endpoints. An edge connecting vertices A
and B can be denoted (A,B), in which case the vertices A and B are said to be adjacent.
The neighbourhood of vertex A is the subgraph formed by all of its adjacent vertices. The
degree of a vertex is the number of edges connecting to it. A vertex is called a leaf if it has
degree 1. A graph is said to be connected if there exists a path (a sequence of edges which
joins a sequence of vertices) between any two vertices. A cycle is a path of vertices and edges
in which a vertex is both the start and the end of the path. A directed acyclic graph (DAG)
is a directed graph with no directed cycles consisting of vertices and edges with each edge
directed from one vertex to another in such a manner that it is impossible to start at any
vertex and follow any sequence of edges looping back to the starting vertex as can be see
in Figure 4 (b). A tree is an undirected graph in which any pair of vertices are connected
by only one path. A polytree is a DAG whose undirected graph is a tree. In the absence
of contamination, the stemma usually takes the form of a polytree [1]. Trees are useful in
describing the relations between objects which evolve without interfering with one another.
In biology, the leaves are usually extant species or groups thereof, whereas in stemmatology
the leaves represent extant witnesses of a text. Most current phylogenetic models produce
strictly bifurcating or ”binary” trees wherein each vertex has at most two descendants as in
Figure 4 (a).

(a) An bifurcating tree. (b) A direct acyclic graph.

Figure 4: The main types of graphs in stemmatology and phylogenetics. (b) is a general
stemma with more than one root, contamination and more than two children per node.

A rooted tree is a tree in which one vertex is taken as the root. The edges of such a tree
can be directed, either all away from or all towards the root. In phylogenetics, unrooted
trees or networks can only describe the relations between the leaves and their ancestries. To
transform the unrooted tree into a rooted tree, one must determine the direction of change.
The root of the tree would represent the most recent common ancestor of all leaves.

The most common method for rooting phylogenetic trees is by using an outgroup [1],
that is, a taxon or set of taxa which is a relative of the group of taxa under study (ingroup)
which is related to the ingroup but is lacks a sufficient number of characteristics common
amongst the ingroup. The outgroup should be similar enough to allow inference, yet different

5

enough to be distinguished from the ingroup. The ingroup members should be more closely
related to one another than to the outgroup. Points where an outgroup is connected to the
rest of the tree is taken as the root. Analogues to phylogenetic outgroups are sometimes
found in traditions which incorporate texts or parts of texts from other traditions or early
translations. Unfortunately, stemmatological outgroups are rare and thus philologists must
determine the root via other methods. Reticulation is when two taxa merge and create
a new one and is largely analogous to hybridisation, where two species interbreed or in
horizontal gene transfer, where genes migrate from one species to another (such as from
viruses to bacteria). Contamination is analogous to reticulation and can only be explained
via networks rather than trees and it may even necessitate multiple roots rather than just
one such as when multiple variants are published at once or when manuscripts which include
the root have been lost.

In phylogenetics trees the taxa are placed as leaves at the end of the tree and are separated
by internal nodes which correspond to the common ancestors of the taxa. The number of
internal nodes in a phylogenetic tree depends on the number of taxa in the tree. The
relationship between the number of taxa n and the number of internal nodes i in a binary
phylogenetic tree is i = n − 1 since each taxon contributes one leaf node and each internal
node has two child nodes. However, the root node does not have an incoming edge, thus it
is not counted as an internal node. In Figure 5 the inner nodes are the points separating
the taxa. This is also an example of an ultrametric tree where the taxa are all equidistant
from the root. In such a tree, the branch lengths can be though of as time since the species
all evolve at the same rate. Such an assumption is not compatible with stemmatology
since the rate of copying errors made by scribes changes drastically between scribes and
the conditions in which they were copying. Moreover, manuscripts usually produce multiple
daughter documents throughout their sometimes very long lifespans, thus, time does not
necessarily correlate with larger dissimilarities.

Figure 5: An phylogenetic tree of some primates with internal nodes and ranch lengths
labelled.

6

1.4 Outline

The aim of this thesis is to create a pipeline to reconstruct stemmata using phylogenetic
methods and compare them to some standard methods for natural language processing. The
latter has been explored fairly recently in [9] and [10] with some positive results. Phylogenetic
methods have been used for stemmatics for quite some time [8], however, papers on the
subject are very scarce. In this thesis we build a pipeline using ready made tools and
packages for text processing, reconstruction of stemmata and accuracy measurements.

Another objective is to test various stemma reconstruction methods for different num-
bers of manuscripts, text lengths and for missing data such as different numbers of missing
manuscripts and missing text.

The report is structured as follows: In chapter 2, we introduce a variety of methods
from phylogenetics and natural language processing which can be used to reconstruct a
stemma. In chapter 3 we discuss the pipelines used, experimental setups, datasets and data
management, accuracy measures as well as implementation details. In chapter 4, we show
our results which are then discussed in chapter 5. Finally, in chapter 6 we give a short
summary of the work done and make suggestions for future work.

7

2 Distance Matrics Mehtods for Tree Construction

This section introduces the methods used to reconstruct a stemma’s structure. The first
half is concerned with calculating the dissimilarity matrix between texts whilst the other is
concerned with reconstructing the stemma’s structure from the dissimilarity matrix. In this
project we consider both natural language processing and phylogenetics methods to calculate
the distance matrices.

Distance based methods are two-step processes. In the first step one calculates a sym-
metric dissimilarity matrix with zeros on the diagonal for the input whilst the second step
involves constructing a tree from the distance matrix by clustering the closest data points to-
gether. Such matrices do not generally satisfy the triangle inequality and thus are sometimes
referred to as dissimilarity matrices rather than distance matrices. Many distance-based tree
estimation methods are polynomial time and efficient, and thus are favoured over most other
algorithms which tend to be computationally expensive [1]. As an input, phylogenetics
distance matrix methods require a sequence alignment and produce as output a pairwise
distance matrix. In natural language processing, all that is required is the (processed) text.

Definition 2.1. The measure d is said to be a distance metric of similarity if and only if:

• d(x, y) ≥ 0 with equality attained ⇐⇒ x = y

• d(x, y) = d(x, y)

• d(x, y) ≤ d(x, z) + d(z, y)

Distance metrics are the most common methods used for measuring the similarity between
words and documents. In natural language processing such techniques are often used for
spell-checking, auto-completing sentences or correcting words and sentences. There exist
plenty of distance metrics which can be used to compute and measure similarities between
texts. In sections 2.1 to 2.3 we introduce methods used to encode text documents. Following
this, we describe some methods used in phylogenetics in sections 2.4 to 2.7.

2.1 Word Representation

A primary challenge for any natural language processing problem is representing text in a
computer-readable form [11]. The standard way of achieving this is through the creation of
a vector space model of the text, where vectors are used to represent text sequences via a
variety of methods. This section aims to introduce some of the most notable methods.

Before encoding text, the text is usually first preprocessed. Punctuation, stop-words
(words that are common such as ”a”, ”the”etc.) suffixes and prefixes are removed for com-
putational efficiency as well as to remove uninformative words. In the case of stemmatology,
the texts are distinguished via very small details, thus removal of suffixes, prefixes and stop-
words is not done. Punctuation can sometimes be informative, although it depends heavily
on the texts, the era in which they were written and the scribes. Older manuscripts typically
have more inconsistent punctuation [1].

8

2.1.1 Count Vectorization

Arguably the simplest method for representing text as a vector space is by taking each
unique word as a separate dimension, and one-hot encode it as a vector, which is usually
quite sparse, with length equal to the number of unique words [11]. The bag-of-words model
is very commonly used to represent entire texts. It is a count vector derived from the sum
of the one-hot encoded word vectors of all words in the document. A drawback is that
it completely ignores contextual meaning. For example, the bag-of-words vector for the
sentence “Jesse likes cats” is orthogonal to that of the sentence “Jack has an affinity for
felines”, even though the sentences have similar meaning.

Given two documents including text ”Jesse likes cats. Jill also likes cats.” and “Jack has
an affinity for felines.” the count vectors would be:

Jesse likes cats Jill also Jack has an affinity for felines
Document 1 1 2 2 1 1 0 0 0 0 0 0
Document 2 0 0 0 0 0 1 1 1 1 1 1

2.1.2 n-grams

n-grams are sequences of n adjacent ordered symbols which may be n adjacent characters,
which includes punctuation marks and blanks and also syllables, or sometimes whole words
found in a language dataset. These are collected from a text corpus or speech corpus.
In natural language processing, n-grams allow bag-of-words models to capture information
about the word ordering which is completely lost when using bag-of-words models made up
of 1-grams.

As an example, the 2-gram or ”bigram” of ”To be or not to be” would be ”To be, be or,
or not, not to, to be”. When training on large corpora one can for example calculate the
probability of two words appearing next to each other. Usually up to 5-grams are used as
the higher the n the more prone to over-fitting the model would be.

2.1.3 Term frequency–inverse document frequency

Term frequency–inverse document frequency (TF-IDF) [12] is an efficient numerical statistic
which reflects the importance of a word in a document relative to a collection of documents
[11]. It is commonly used in natural language processing and information retrieval.

The term frequency TF (t, d) is the relative frequency of term t in document d:

TF (t, d) =
ft,d∑

t′∈d ft′,d
, (1)

where ft,d is the the number of occurrences of t in document d. As such this is the number of
occurrences of a word in a document divided by the total number of words in the document.
This naturally leads to common words such as stop words (commonly used but uninformative
words such as ”a”, ”the” etc.) to have higher scores since they have higher rates of occurrence.
This is counteracted by the inverse document frequency, which decreases with the number
of documents the word appears in.

9

The inverse document frequency measures the informativeness or rarity amongst docu-
ments of a term and is defined as:

IDF (t,D) = log
N

|d : {d ∈ D and t ∈ d}|
, (2)

where N is the number of documents, D is the set of documents.
Combining these two measures yields the TF-IDF:

TF − IDF (t, d,D) = tf(t, d)× idf(t,D). (3)

The weight of a term in a document increases with the number of occurrences in that
document and decreases with the number of documents the term occurs in. Thus, the weights
tend to give less importance to common terms.

In stemmatology this measure is quite useful since most of the text is identical between
scripts except for a few words, thus the mutual text is given less importance than the
distinguishing words. However, if the differences between the texts are commonly occurring
words this would backfire. Another feature of this measure is that it treats all differently
spelled words as separate. It does not treat misspelled words as different from the correctly
spelled word and it does not distinguish between synonyms. Another major disadvantage of
this method is that it loses the positional information, however, this could be alleviated by
taking the TF-IDF of n-grams rather than just the words.

2.2 Word Embeddings

Word embeddings were invented to alleviate the curse of dimensionality problem in one-hot
word encodings. Such techniques were designed to transform large one-hot encoded word
vectors to a dense continuous vector space capturing contextual relations between words.
Thus, embeddings of semantically similar words should be expected to be close in the vector
space. Words which frequently appear in the same sentences or contexts are likely to be
semantically related. The models are trained on large corpora to determine the statistical
properties of the words.

A weakness of this approach is that words which do not occur in the training corpus,
often referred to as out-of-vocabulary words, are not explained by the model. If for example
one wants to exchange a synonym with one which is not in the training corpus, the model
would assign a likelihood of zero to the out-of-vocabulary synonym occurring. Misspellings,
which are common in stemmatology, would not usually appear in the training set and thus
are taken as unknowns.

2.2.1 Word2Vec

Word2vec [13] consists of two variants: a continuous bag-of-words and a skip-gram model.
The continuous bag-of-words model is trained to predict a word given its context as shown
in 6. Essentially, the input is the one-hot encoding of words surrounding a target word and
the output predicts what the target is. The projection layer is shared between all of the
input words, and thus the input word vectors are averaged in the projection layer into the

10

same position. Contrary to the standard bag-of-words model, this model relies on continuous
distributed representation of the context, hence the name.

Figure 6: The continuous bag of words and skip-gram models suggested in [13]. Extracted
from [13].

In this project we use the second architecture proposed in [13], that is, the continuous
skip-gram model which, as shown in Figure 6, is in essence a reversed continuous bag-of-
words architecture. Rather than predicting a word given the context, the continuous skip-
gram model is trained to predict the words surrounding a particular word. The word vector
for each word in the vocabulary is initially random for each word. The algorithm then goes
through each locus t using a context window of arbitrary length say c, learning the relations
between the word at t and the words between t− c and t+ c. The larger the window used,
the higher the accuracy as and the longer the training time. Finally, once all the context
words at locus t are run through, the next step is to find the maximum likelihood of the
neighbouring words (from t− c to t + c) given the word at the locus t. This likelihood can
be represented using the formula:

L(θ) =
T∏
t=1

∏
−c≤j≤c

j ̸=0

P (wt+j | wt; θ) . (4)

To turn this into a minimisation problem, the negative log likelihood is taken. Given a
sequence of T words, each word vector is trained to maximise the log probability of neigh-
bouring words in a corpus, i.e., given a sequence of words w1, . . . , wT :

J(θ) = − 1

T
logL(θ) = − 1

T

T∑
t=1

∑
−c≤j≤c

j ̸=0

logP (wt+j | wt; θ) , (5)

where P (wj | wt) is the softmax function of the word vector representations of wj and wt.
The conventional softmax function takes a k-dimensional vector as input and outputs a

11

probability distribution of k possible outcomes. Effectively, it is a generalisation of the
logistic function to multiple dimensions.

In the skip-gram model, each word is assigned d-dimensional vector representations to
calculate the conditional probabilities. For any word with index i in the vocabulary, the
vector when used as a centre word is denoted as vi ∈ Rd and ui ∈ Rd is the vector when
it is used as a context word. The conditional probability of generating a word wo given the
center word wc, the basic skip-gram model uses a softmax operation on vector dot products:

P (wo | wc) =
exp

(
u⊤
o vc

)∑
i∈V exp

(
u⊤
i vc

) . (6)

In the numerator is the dot product of the centre word and the context word vectors, thus
giving their similarity. The denominator is a normalising function which ensures that the
sum of all outputs adds up to 1, thus yielding a probability distribution. It is essentially a
generalisation of the logistic function to multiple dimensions and is often used as a so called
activation function in artificial neural networks.

During training, the θ parameter vector is optimised. This consists of the stacked word
vector representations of all target words and context words.

Taking the derivative of J(θ) with respect to the centre vector word representation vc

yields:

∂J(θ)

∂vc

=
∂

∂vc

(
log
(
exp

(
uT
o vc

)))
− ∂

∂vc

(
log

∑
w∈V ocab

exp
(
uT
wvc

))
. (7)

The first term can easily be calculated as u0 i.e. the context word representation. For
the second term take Z =

∑
w∈V ocab exp

(
uT
wvc

)
. Taking the derivative of Log(Z):

1∑
w∈V ocab exp (u

T
wvc)

∑
Z∈V ocab

∂

∂vc

exp
(
uT
Zvc

)
=

∑
Z∈V ocab

exp
(
uT
Zvc

)∑
w∈V ocab exp (u

T
wvc)

uZ (8)

=
∑

Z∈V ocab

P (Z | c)vZ . (9)

Thus, we end up with:

∂J(θ)

∂vc

= −uo +
∑

Z∈V ocab

P (Z | c)uZ . (10)

In the above the first term is the ’current’ word vector representation of the context
word whereas the second term is the expected context word vector representation should
be according to the model. In essence, the difference between the actual and expected
representations is used to determine the direction towards which the vector should move by
updating the weight vector vc with the aim of maximising the likelihood.

In similar fashion, one can take the derivative of the cost function with respect to the
context vectors. In this case there are two cases: when the context word is the same as the
centre word:

12

∂J(θ)

∂uw

= −vc +
∑

Z∈V ocab

P (Z | c)vc, (11)

and when it is not:

∂J(θ)

∂uw

=
∑

Z∈V ocab

P (Z | c)vc. (12)

Calculating the denominator consists of taking the exponential of the dot product of all
words in the vocabulary and thus, this is very computationally intensive for large corpora.
Instead, [13] suggests using hierarchical softmax functions which, instead of calculating the
full softmax for all words, breaks down the computation into a series of binary decisions using
a binary tree structure, significantly reducing the computational complexity from O(V) to
O(log2V). This function represents the output layer by a binary tree with the V words as
its leaves. For every node it explicitly represents the relative probabilities of its descendent
nodes, essentially using a random walk assigning probabilities to the words. There is a path
from the root of the tree to each word w in the vocabulary. Take n(w, j) to be the j-th node
on the path from the root to w, and let L(w) be the path length such that n(w, 1)− root and
n(w,L(w)) = w. Moreover, for any inner node n, take an arbitrary fixed child node ch(n)
and let JxK = 1 if x is true and −1 otherwise. Then the hierarchical softmax approximates
the conditional probability P (wo | wc) as follows:

P (wo | wc) =

L(wo)−1∏
j=1

σ
(
Jn (wo, j + 1) = ch (n (wo, j))Ku⊤

n(wo,j)vc

)
, (13)

where function σ is the sigmoid function σ(x) = 1
1+exp(−x)

.
The tree structure used by the hierarchical softmax significantly effects performance. In

[13] a binary Huffman tree is used to train the google news 300 dataset, since it assigns
short codes to the frequent words speeding up training. The theory behind Huffman trees
is beyond the scope of this project.

A major disadvantage of word2vec is that to generate a word embedding for a particular
word, the model must be trained on a dataset which contains that word. Thus, spelling
mistakes, rare words and compound words which never occur in the vocabulary would not
have a word vector. Thus FastText [14] was developed to alleviate this issue.

2.2.2 FastText

FastText is a newer extension of Word2vec designed to alleviate some of the limitations
deriving from ignoring word morphology, thus allowing the use of out-of-vocabulary words
in the test data [14].

In this case, the softmax function discussed in the previous section is not applicable since
if it is given word wt only one context word wc can be predicted. Instead, the problem of
predicting context words is framed as a set of independent binary classification tasks where
the goal is to independently predict the absence or presence of context words. For wt take

13

all context words as positive examples and sample negatives at random from the dictionary.
Given wc, using the binary logistic loss, the negative log-likelihood can be computed as:

log
(
1 + e−s(wt,wc)

)
+
∑

n∈Nt,c

log
(
1 + es(wt,n)

)
, (14)

where s(wt, wc) = u⊤
wt
vwc is the dot product of the word vector representations of wt and

wc whereas Nt,c is a set of negative examples sampled from the vocabulary. The logistic loss
function ℓ : x 7→ log (1 + e−x), allows the objective to be expressed:

T∑
t=1

∑
c∈Ct

ℓ (s (wt, wc)) +
∑

n∈Nt,c

ℓ (−s (wt, n))

 . (15)

Through the use of unique vector representations for every word, the skip-gram model
ignores the spelling of words. In [14], a different scoring function s is proposed in order to
take into account this information.

The embeddings are trained on the words’ constituent character n-grams, including word
boundaries denoted as ”<” for the word’s start and ”>” for its end, together with the whole
word itself to learn a representation for each word. The word vector is then computed from
the sum of the embeddings of all n-grams. As an example, the set of n-grams representing
the word ‘self’ with n = 3 is {< se, sel, elf, lf >,< self >}. The word boundaries ensure that
the word ’elf’ with corresponding sequence < elf > does not get confused with the ‘elf’ in
’self’. This approach allows the model to generate accurate embeddings for rare, misspellings,
compound words, or words which occur in different forms or tenses. Moreover, it does not
need to learn separate vectors for different morphological forms of the same word. If a word
is particularly rare in a corpus, but still shares character n-grams with more common words
it can be assigned a robust embedding.

Given a size G dictionary of n grams and a word w, denote the set of n-grams appearing
in w as Gw ⊂ {1, . . . , G} and to each n-gram g associate a word vector zg. Each word vector
is calculated as the sum of its character n-gram vector representations, leading to the score
function:

s(w, c) =
∑
g∈Gw

z⊤g vc, (16)

which shares the representations across words and is thus able to learn word embeddings for
rare words, misspellings as well as compound words.

2.2.3 GloVe

Context-based methods such as Word2vec only learn relationships from local context and
capture word location and ordering. Statistical methods leverage the information contained
in the corpus since they are derived from the entire corpus. GloVe [15] is a competitive recent
word embedding model which uses the statistics of the word co-occurrence matrix rather than
word frequencies on the entire corpus and attempts to keep some of the advantages of both
statistical and context based methods, although it is at its core a statistical model. Since it
uses co-occurrences rather than frequencies, some information is kept about the context of
words.

14

Take Xij to be the frequency of a word i in the windows of a word j. Pij and Xi are
defined as:

Pij = P (j | i) = Xij

Xi

=
Xij∑
k Xik

. (17)

The scores depend on two target words and one context word leading to to the most
general form of the model:

F (wi, wj, w̃k) =
Pik

Pjk

, (18)

with word vectors w ∈ Rd and context vector w̃ ∈ Rd. This ratio is better at distinguishing
relevant from irrelevant words and distinguishing relevant words compared to the raw prob-
abilities. In the above equation, the right hand side is derived from some large corpus. The
definition of F is based on some constraints. F must encode the information in the right
hand side in the vector space. Since vector spaces are linear, F can be constricted to use
only the difference between two target words:

F (wi − wj, w̃k) =
Pik

Pjk

. (19)

To prevent F from mixing vector dimensions non-linearly, the arguments’ dot product is
taken:

F
(
(wi − wj)

T · w̃k

)
=

Pik

Pjk

. (20)

Now, for the word-word co-occurrence matrices, the distinction between a word and a
context word is arbitrary meaning their roles are interchangeable. Thus, it must also be
ensured that this is invariant to swapping w ↔ w̃ and that X ↔ XT , since the difference
between a context and a regular word should be exchangeable. Hence, F is taken to be a
homomorphism for the groups (R,+) and (R>0,×), meaning that any function F (A + B)
such that A,B ∈ R can be recast as F (A)∗F (B) whilst keeping the same output. Moreover,
this then means that F (A− B) can be expressed as F (A)/F (B), allowing equation (20) to
be rewritten as:

F
(
(wi − wj)

T · ŵk

)
=

F
(
wT

i · w̃k

)
F
(
wT

j · w̃k

) . (21)

From equation (20) we can see that this can be solved with:

F
(
wT

i w̃k

)
= Pik =

Xik

Xi

. (22)

It is obvious that equation (21) can be solved by F = exp or:

wT
i · w̃k = log (Pik) = log (Xik)− log (Xi) , (23)

15

where the log (Xi) avoids invariance to swapping by enforcing asymmetry. Since this is
independent of the context term k, it can be exchanged with bias bi. To retain symmetry, a
similar bias b̃k is added:

wT
i · w̃k + bi + b̃k = log (Xik) . (24)

Unfortunately, this is an ill-defined function since the logarithm diverges for zero argu-
ment. To resolve this, it is possible to add an additive shift to the logarithm:

log (Xik)→ log (1 +Xik) , (25)

to maintain X’s sparsity whilst at the same time avoiding the divergences. A major disad-
vantage to this is that all co-occurrences are weighed equally, including ones which never or
rarely occur. Now, rare co-occurrences introduce noise and are less informative. Even word
pairs which appear only once in the entire corpus are weighed equally to pairs which occur
multiple times. Thus, in [15], equation (24) can be recast into a least squares problem, and
a weighting factor is added to the cost function. Given a vocabulary of size V :

J =
V∑

i,j=1

f (Xij)
(
wT

i · w̃j + bi + b̃j − log (Xij)
)2

. (26)

The weighting function f(Xij) is taken such that it has the following properties:

• f(0) = 0. If f is viewed as a continuous function, it should vanish as x→ 0 fast enough
that the limx→0 f(x) log2 x is finite.

• f(x) should be non-decreasing so that rare co-occurrences are given too much weight.

• f(x) should be relatively small for large values of x, such that frequent co-occurrences
are not given too much weight.

There exist many such functions which satisfy these properties, but the paper by [15]
recommends:

f(x) =

{ (
x

xmax

)α
if x < xmax

1 else
, (27)

where xmax is a predetermined cutoff point constant and α is a parameter.
Like Word2Vec, Glove is not capable of predicting out-of-vocabulary word vectors since

it does not take sub-word information into account.

2.3 NLP Document dissimilarity Calculation

In the previous section, we introduced some methods in which texts can be encoded into
vectors. In this section we introduce some common methods to derive the dissimilarity
between the document vectors from which dissimilarity matrices can be computed. It is
from the dissimilarity matrix that the texts can be later clustered into a tree-like structure.

16

2.3.1 Cosine Distance

The cosine similarity is a similarity measure between two non-zero vectors and is defined as
the cosine of the angle between the vectors:

(cos)(θ) =
x · y
|x||y|

(28)

Cosine similarity is a popular metric used to measure the text-similarity between vector
representations of two documents irrespective of their size in text analysis. Words are repre-
sented in a vector and the text documents are represented as an n-dimensional vector space.
Cosine similarity depends only on the angle between the vectors rather than on the vectors’
magnitudes.

A major advantage of this measure is its simplicity, in particular for sparse vectors since
only the non-zero coordinates are considered. For TF-IDF in section 2.1.3, the document is
represented as a vector where the elements correspond to the TF-IDF statistic for each word
in the corpus, thus the dissimilarity between the documents can be calculated as the angle
between the document vectors. For word embeddings, one approach would be to take the
document vector to be the sum of the word vectors of all words in the document, and then
take the cosine distance of this. This was attempted for this task in [10]. In this project we
use the more modern word mover’s distance.

2.3.2 Word Mover’s Distance

The word mover’s distance [16] computes document dissimilarity by using the optimal align-
ment between the sets of word embeddings or the minimal cumulative distance that the
embedded words of one document need to “move” to reach the embedded words of the
other. Word mover’s distance is inspired by the Earth Mover’s Distance which is a very
well studied transport problem. The main advantage of this metric is that it captures the
distance between individual words. Take the example in Figure 7. The two sentences have
no common words yet contain nearly identical information which cannot be explained using
word frequencies or the bag of words model.

17

Figure 7: An illustration of the word mover’s distance where all non-stop words (bold) of
both documents are embedded into a word2vec space.

The word mover’s distance is widely used due to its interpretability, lack of hyperpa-
rameters and high accuracy. Having said that, the best average time complexity scales to
O (n3 log n), where n is the number of unique words in the documents, making it impractical
for long scripts datasets. Another advantage it has is the fact that it naturally incorporates
the knowledge encoded in a word2vec space. As discussed in section 2.2 each word vector
is trained to maximise the log probability of neighbouring words in a corpus, i.e., given a
sequence of words w1, . . . , wT :

1

T

T∑
t=1

∑
j∈nb(t)

log p (wj | wt) , (29)

where nb(t) is the set of neighboring words of word wt and p (wj | wt) is the hierarchical
softmax of the word vectors vwj

and vwt .
Given a word embedding matrix of embeddings X ∈ Rd×n for n words, the ith column,

xi ∈ Rd represents the embedding of the ith word in d-dimensional space. Assuming the text
documents are represented as normalised bag-of-words vectors d ∈ Rn (which are usually
very sparse since most words do not appear in any given document.) thus, given that a word
i appears fi times in a document the word’s weight (which signifies its importance) is taken
as:

wi =
fi∑n
j=1 fj

, (30)

where the fj’s are the frequencies of all words and n is the number of unique words in the
document. To incorporate semantic similarity between pairs of words into the document
distances the Euclidean distance over the word embedding space is used. The dissimilarity
between word wi and word wj can be computed as

c (wi, wj) = ∥xi − xj∥2 , (31)

18

where xi and xj respectively correspond to the word embeddings of wi and wj. Let d and
d′ be normalised bag-of-words representations of documents d and d′ and T ∈ Rn×n be a
flow matrix, where Tij ≥ 0 denotes how much the word wi in d has to ”move” to reach the
word wj in d′ as shown in Figure 8. To transform D to D′ the complete flow

∑
j T ij from

the word wi should equal di and similarly the incoming flow
∑

i T ij to the word wj should
equal d′j. The word mover’s distance is then defined as the minimal weighted cumulative
cost needed to move all words from d to d′:

min
T≥0

n∑
i,j=1

T ijc (wi, wj) (32)

Figure 8: The components of the word mover’s distance between a query D0 and two sen-
tences D1 and D2 (with equal bag-of-words distance). The arrows represent flow between
two words and are labeled with their distance contribution. (Bottom:) The flow between two
sentences D3 and D0 with different numbers of words. This mismatch causes the measure
to move words to multiple similar words. Extracted from [16].

Given these constraints, the solution of the transformation problem is calculated through:

min
T≥0

n∑
i,j=1

T ijc(wi, wj) (33)

subject to:
n∑

j=1

T ij = di ∀i ∈ {1, . . . , n}, (34)

n∑
i=1

T ij = d′j ∀j ∈ {1, . . . , n}. (35)

The best case computational complexity for this algorithm is O(V ocab3log(V ocab)) [16].

19

2.3.3 Relaxed Word Mover’s Distance

For corpora with many unique words or large corpora calculating the word mover’s distance
can become very computationally demanding. In our case, since the documents are very
similar having many unique words from different documents is usually not a problem since
most words appear in all documents, however, one may have to deal with long texts or
many witnesses. [16] also shows how the word mover’s distance can be sped up by relaxing
the distance optimisation problem by removing one of the two constraints leading to the
optimisation problem:

min
T≥0

n∑
i,j=1

Tijc(i, j) (36)

subject to:
n∑

j=1

Tij = di ∀i ∈ {1, . . . , n}. (37)

This results in a lower bound to the word mover’s distance. The optimal solution is for
each word in d to move all its probability mass to the most similar word in d′. The optimal
T ∗ matrix is defined as:

T∗
ij =

{
di if j = argminj c(i, j)
0 otherwise.

(38)

If T is a feasible matrix for the relaxed problem, the contribution to the objective value
for any word i, with closest word j∗ = argminj c(i, j), cannot be smaller:

∑
j

Tijc(i, j) ≥
∑
j

Tijc (i, j
∗) = c (i, j∗)

∑
j

Tij (39)

= c (i, j∗) di =
∑
j

T∗
ijc(i, j). (40)

Hence, T ∗ results in a minimum objective value. To caclulate this solution one needs
only to identify j∗ = argmini c(i, j) via a nearest neighbor search in the Euclidean word2vec
space. For every word vector xi in document D, one needs to find the closest word vector xj
in document D′. Removing the first constraint reverses nearest neighbor search. The lower
bounds depend on the pairwise distances between the word vector representations. Such
calculations from removing either constraint can be combined with the other to obtain both
bounds. Let the two relaxed solutions be ℓ1 (d,d

′) and ℓ2 (d,d
′). Taking the maximum

of the two, ℓr (d,d
′) = max (ℓ1 (d,d

′) , ℓ2 (d,d
′)) results in an even tighter bound which is

referred to as the ”relaxed” word mover’s distance. In this case the complexity is O(V ocab2)
Whilst the relaxed word mover’s distance is faster, it is less accurate than the word

mover’s distance since it only considers the ”best-case” scenario for moving words without
accounting for the balanced distribution of words across documents.

20

2.4 Sequence Similarity Metrics

In this subsection we introduce spelling based measures. These are used during the alignment
process and the derivation of the distance matrices in the phylogenetics methods through
the PAUP* package (see section 3.1.2).

2.4.1 Hamming Distance

The Hamming distance [7] between two strings or vectors of equal length is the number of
positions at which the corresponding symbols differ i.e. the minimum number of substitutions
required to change one string into the other.

HD(x, y) =
∑
i

⊮(xi ̸= yi) (41)

In texts, the strings are usually not of the same length, as in multiple sequence alignment,
and thus this metric cannot be used directly. The Hamming distance can be used if the
words in a collection of scripts are aligned and turned into individual characters to produce
a multiple alignment sequence as in bioinformatics, however, one loses much information
in this manner. This method is used in PAUP* (section 3.1.2) to calculate the number of
mismatches there are in the multiple aligmnent sequences.

To calculate the edit distance between words of differing lengths, this concept was then
extended into the Levenshtein distance.

2.4.2 (Demerau-)Levenshtein Distance

The Levenshtein distance is a generalisation of the Hamming Distance used for measur-
ing the difference between two sequences of arbitrary lengths. It is the minimum number
of insertions, deletions or substitutions required to change one word into the other. This
method is used in in the CollateX package (see section 3.1.1) to align the words according
to similarities in spelling.

This can be further extended to the Demerau-Levenshtein distance by allowing for trans-
positions for adjacent characters. The Demerau-Levenshtein distance [17] between two
strings x and y and corresponding character positions i and j is defined as:

LDx,y(i, j) =

0 if i = j = 0,

LDx,y(i− 1, j) + 1 if i > 0,

LDx,y(i, j − 1)− 1 if j > 0,

LDx,y(i− 1, j − 1) + ⊮(xi ̸= yj) if i, j > 0,

LDx,y(i− 2, j − 2) + ⊮(xi ̸= yj) if i, j > 0 and xi = yj−1 and xi−1 = yj,

The first case is the trivial case of empty strings, the second case corresponds to a
deletion from x to y, the third case to an insertion from x to y, the fourth case corresponds
to a match or mismatch, depending on whether the respective characters are the same
whereas the final fifth case (which distinguishes the Demerau-Levenshtein from the regular
Levenshtein distance) corresponds to a transposition between two successive characters. A

21

typical implementation via a recursive algorithms is shown in Algorithm 1. This algorithm is
best used to compare individual words rather than documents as it is very computationally
intensive [17].

Algorithm 1 Demerau-Levenshtein Distance Algorithm

1: procedure DemerauLevenshteinDistance(s, t) ▷ s and t are the input strings
2: m← length of string s
3: n← length of string t
4: Initialize a 2D array D with dimensions (m+ 1)× (n+ 1)
5: for i from 0 to m do
6: D[i][0]← i
7: end for
8: for j from 0 to n do
9: D[0][j]← j
10: end for
11: for i from 1 to m do
12: for j from 1 to n do
13: if s[i] = t[j] then
14: cost← 0
15: else
16: cost← 1
17: end if
18: D[i][j]← min(D[i− 1][j] + 1, D[i][j − 1] + 1, D[i− 1][j − 1] + cost)
19: if i > 1 and j > 1 and s[i] = t[j − 1] and s[i− 1] = t[j] then
20: D[i][j]← min(D[i][j], D[i− 2][j − 2] + cost) ▷ Transposition
21: end if
22: end for
23: end for
24: return D[m][n] ▷ Return the Demerau-Levenshtein distance
25: end procedure

2.5 Clustering Algorithms

Once the distances between the different texts are calculated, the distance matrix can then
be used to generate the network or tree structure. In this section we introduce some phylo-
genetic and general clustering methods which could be used to reconstruct a stemma. We
begin by introducing least squares for phylogenetics, followed by two phylogenetics simple
clustering algorithms (UPGMA and Neighbour Joining). The main disadvantage of phyloge-
netic algorithms is that they are usually limited to bifurcating trees. Thus, we also introduce
minimum spanning trees.

2.5.1 Least Squares

We begin by introducing the least squares method for phylogenetics following [7]. This
method is used to calculate the branch lengths in the PAUP* software for the aforementioned

22

clustering algorithms given the multiple alignment sequences. Given observed distances Dij

and expected distances dij, the least squares measure is defined as:

Q =
n∑

i=1

n∑
j=1

wij (Dij − dij)
2 , (42)

where the wij are weights depending on the particular variant of least squares with the most
common three being wij = 1, wij =

1
D2

ij
, wij =

1
Dij

[7].

If we number all branches of the tree and introduce an indicator variable xij,k, which is
1 if branch k lies in the path from species i to species j and else 0. The expected distance
between i and j will then be

di,j =
∑
k

xij,kλk. (43)

Equation (42) then becomes

Q =
r∑

i=1

∑
j:j ̸=i

wij

(
Dij −

∑
k

xij,kλk

)2

(44)

Taking the derivative of Q with respect to vk, and equating to zero:

dQ

dλk

= −2
n∑

i=1

∑
j:j ̸=i

wijxij,k

(
Dij −

∑
k

xij,kλk

)
= 0 (45)

Stacking the Dij’s into a n(n−1)
2

-dimensional vector d and rearranging the coefficients xij,k

into a n(n−1)
2
×K matrix where K is the number of branches in the tree and where each row

corresponds to the Dij in that row of d and containing a 1 if branch k occurs on the path
between species i and j:

XTd =
(
XTX

)
λ (46)

Multiplying on the left by the inverse of XTX, we can solve for the least squares branch
lengths:

λ =
(
XTX

)−1
XTd (47)

For diagonal weight matrix W :

XTWd =
(
XTWX

)
λ, (48)

with solution
λ =

(
XTWX

)−1
XTWd (49)

23

2.5.2 Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

UPGMA is an agglomeration algorithm which computes a rooted tree from an input distance
matrix [7]. In the first iteration, it finds the pair of taxa which have the smallest distance,
clusters them together and the distance from the new cluster to every other taxon is calcu-
lated as the average of the distance from each element of the cluster to the other taxa. In
each iteration, the pair of clusters with the smallest distance are clustered together. The
distance matrix is then updated by removing the rows and columns for the aforementioned
clusters and replacing them with a row for the new cluster. This process is repeated until
all the taxa are merged into a single cluster which produces a rooted tree. The distance
matrix can be updated in a variety of ways such as by simply removing the row and column
corresponding to one of the closest two taxa and this has an impact on the output tree.
Algorithm 2 shows the implementation of UPGMA.

Algorithm 2 UPGMA Clustering Algorithm

1: Initialize each species as a separate group with ni = 1 for all i.
2: while more than one group remains do
3: Find the pair of groups (i, j) with the smallest distance Dij.
4: Create a new group (i, j) with n(ij) = ni + nj members.
5: Connect i and j on the tree to a new node corresponding to the new group (ij).
6: Set the branch lengths from i to (ij) and from j to (ij) to Dij/2.
7: for each group k not equal to i or j do
8: Compute the distance between the new group (ij) and group k using:

D(ij),k =

(
ni

ni + nj

)
Dik +

(
nj

ni + nj

)
Djk

9: end for
10: Delete the rows and columns of the distance matrix corresponding to groups i and j.
11: Add a new row and column for the new group (ij).
12: end while

The UPGMA algorithm produces rooted trees and assumes an ultrametric tree in which
the distances from the root to every branch tip are equal, a condition which is almost always
violated in stemmata.

2.5.3 Neighbour Joining

Neighbor joining is one of the most widely used distance-based method due to its accuracy
in constructing unrooted phylogenetic trees [18]. Neighbor joining is also an iterative ag-
glomerative technique wherein the tree is built from the bottom up. The input is an n× n
dissimilarity matrix d and in the first iteration, the n leaves are all in their own clusters. In
subsequent iterations, each cluster is a set of leaves, however, the clusters are disjoint. At
the beginning of each iteration the taxa are partitioned into clusters each of which has a
rooted tree that is leaf-labeled by the elements in the cluster. During each iteration a pair
of clusters is selected to be made siblings resulting in the cluster’s respective trees to be

24

merged into a rooted tree by making their roots siblings. Given three sub-trees, the three
sub-trees are merged into a tree on all the taxa by adding a new node, and making the roots
of the three sub-trees adjacent to it. Once the tree is generated the root is ignored such that
neighbor joining yields an unrooted tree. The advantage of Neighbor joining over UPGMA
is that it chooses which pair of clusters to make siblings (and how to update the distance
matrix) using a more sophisticated strategy:

First it computes the n× n Q matrix:

Qij = (n− 2)dij −
n∑

k=1

(dik + djk). (50)

Whilst n > 2 it then finds the pair i, j minimising Qij, say l,m. The rooted trees
associated with taxa l and m are made siblings. The distance matrix is updated by deleting
the rows and columns for l and m, and including a new row and column for the formed tree’s
root u and set du,k =

dlk+dmk−dlb
2

∀k ̸= u. Subtract n by 1.
When there are only two elements left in the distance matrix i.e. n = 2; the star tree

with a single internal node v where the roots of the three rooted trees are all adjacent to v
is outputted.

Neighbour Joining is very efficient compared to other methods which makes it useful when
dealing with large data sets as well as for bootstrapping. Unlike UPGMA it is statistically
consistent under many models of evolution meaning that given enough data, it reconstructs
correct phylogenetic trees with high probability [18]. Another advantage neighbor joining
has over UPGMA is that it does not assume ultrametricity which also makes it far more
compatible in a stemmatological context. Its main downside is that it lacks tree search and
optimality criteria meaning there is no guarantee that the recovered tree is optimal. Thus,
usually Neighbour Joining is used to produce a tree which is then used as an initial guess in a
tree search using some optimality criterion [7]. Below, in Algorithm 3, is an implementation
of the neighbour joining algorithm.

25

Algorithm 3 Neighbour Joining Algorithm

1: procedure NeighbourJoining(D) ▷ D is the distance matrix
2: n← number of taxa in D
3: Initialize an empty tree T
4: Initialize a list of taxa L containing all taxa
5: while |L| > 2 do ▷ Until only two taxa remain
6: Compute total branch lengths Li for each taxon i
7: Compute the Q matrix from distance matrix D
8: Find the minimum element qij of Q

9: Create a new node u with edge lengths diu =
Dij+Li−Lj

2
and dju = Dij − diu

10: Remove taxa i and j from L
11: Attach taxa i and j to node u
12: Update distance matrix D with u
13: Add node u to tree T
14: end while
15: Attach the two remaining taxa to T with the appropriate edge lengths
16: return T ▷ Return the phylogenetic tree
17: end procedure

Such methods can only yield bifurcating trees, however, stemmata are usually multifur-
cating.

2.5.4 Minimum Spanning Trees

In [9], instead of phylogenetically inspired agglomerative algorithms, minimum spanning
trees are constructed using Kruskal’s algorithm as shown below in Algorithm 4. A minimum
spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that
connects all the vertices without any cycles and with the minimum possible total edge weight.
A feature of this approach is that it does not attempt accounting for missing taxa, resulting
in a tree consisting only of the observed variants. This creates a more faithful tree structure
in the case of complete datasets with no contamination since it allows for multifurcations,
unlike phylogenetics algorithms. To generate minimum spanning trees we use Kruskal’s
algorithm which has complexity O(Elog(E)) where E is the number of edges.

26

Algorithm 4 Kruskal’s Algorithm for Minimum Spanning Tree

1: procedure Kruskal(G) ▷ G is the graph
2: T ← ∅ ▷ Initialize an empty set for the MST
3: Sort all edges of G by weight
4: for each vertex v in G do
5: MakeSet(v)
6: end for
7: for each edge (u, v) in G in sorted order do
8: if Find(u) ̸= Find(v) then ▷ If adding (u, v) doesn’t create a cycle
9: T ← T ∪ {(u, v)} ▷ Add edge (u, v) to MST
10: Union(u, v) ▷ Merge the sets containing u and v
11: end if
12: end for
13: return T ▷ Return the MST
14: end procedure

2.6 Optimality Criterion Based Methods

Distance based methods are not considered state of the art in phylogenetics anymore but
are instead used to generate an initial guess tree which is then used to infer the correct tree
using some optimality criterion. In real cases in phylogenetics, the real tree is unknown
and thus there is no way to measure the correctness of the predicted trees. Thus, selection
criteria are often used. These selection criteria are also inference methods in of themselves
when combined with search algorithms. Starting from a tree constructed using distance
matrix methods, the tree’s structure is iteratively rearranged and has an optimality criterion
computed at each iteration, optimising for the criterion selected. The tree is then taken as
the one with the highest/lowest criterion value.

In this project, these methods were only applied to the benchmark datasets and Phareta
Fidei since they are too computationally intensive to perform on the large numbers of arti-
ficial datasets we generated. Thus, we only give a brief description of the methods.

2.6.1 Parsimony Based Methods

Maximum parsimony is one of the oldest methods to construct trees [7]. The output is a
tree T in which the input sequences are placed at the leaves of T and additional sequences
are placed at the internal nodes of T such that the total number of changes over the entire
tree, is minimised. Essentially it is the ’Hamming Distance Steiner Tree Problem’ wherein
the input is a set of sequences and the output is a tree connecting these sequences at the
leaves with optimised sequences at the internal nodes, minimising the total of the Hamming
distances on the tree’s edges. The Hamming distance between two sequences of the same
length is the number of positions in which they disagree, thus the sum of the Hamming
distances (section 2.4.1) on the edges of the tree is equal to the tree length. Determining the
optimal tree under this criterion is an NP-hard problem [7], and hence heuristics are used
to find suitable solutions which are not necessarily globally optimal.

27

The aim is to find character state assignments to the internal nodes of the tree so as
to minimise the number of edges with different states at the edge’s endpoints. This is the
“fixed tree parsimony problem” or the “small parsimony problem”. Inferring the optimal
tree and its internal node labels which yield the optimal parsimony score is called the “large
parsimony problem”. The tree root does not impact the parsimony score as only this depends
only on the total number of changes.

2.6.2 Minimum Evolution

Minimum evolution is a collection of methods [7] whose goal is to find the optimal tree from
the set of possible trees. As an input it takes an n×n dissimilarity matrix D on n leaves, and
it assigns edge weights using least squares (section 2.5.1). The total sum of branch lengths
of each individual tree topology considered is then computed by adding up the branches
lengths in the tree. The tree whose edge weights minimise the total sum of branch lengths
is returned. Such methods are distinguished by how they define the edge weights of each
tree. For example, given a tree and an input dissimilarity matrix, the optimal weights on
the edges could be based on minimising ordinary least squares distances or weighted least
squares distances.

2.7 Reliability

Once a tree is generated, it cannot be assumed to be reliable. Typically, scholars use various
different methods constructing the tree and place more confidence in subgraphs that are
consistently recovered with different methods. A consensus tree is a summary or represen-
tation of the phylogenetic relationships derived from multiple individual phylogenetic trees.
Phylogeneticists often generate multiple trees to explore the uncertainty and variability in
evolutionary relationships among a group of organisms. These individual trees can result
from different methods, datasets, or variations in the analysis parameters.

The process of constructing a consensus tree involves combining information from mul-
tiple trees to produce a single, summarized representation that reflects the common or well-
supported aspects of the phylogenetic relationships.

2.7.1 Bootstrapping

Bootstrapping is a very commonly used resampling method to estimate the statistical reli-
ability of a tree’s sub-graphs by taking the original dataset and picking the same number
of sites randomly from within the dataset with replacement, some sites are sampled once or
more than once whereas others are not sampled at all [7]. This is repeated using the original
dataset to generate a large number of different auxiliary datasets. The tree inference method
is then applied to each of the auxiliary datasets, as can be seen in Figure 9, and the corre-
sponding output trees are compared to the tree from the original dataset. The percentage
of sub-graphs which occur in the auxiliary trees and in the original tree are then calculated
and assigned to the nodes which define the sub-graphs in the original tree. A high bootstrap
value indicates a high level of confidence that a particular sub-graph is independent of the
sites used to calculate the tree. Applying the tree inference method to each auxiliary dataset

28

takes the same amount of time as calculating the original tree, hence there are computational
constraints for large datasets or computationally demanding models.

Observed Resampled

Homo Sapiens A-CAATGGAG-A-- AA-AATGCAG-A-C

Pan A-CAATA-AGCAAA AAAAATACAGCAAC

Gorilla ATCAA-A-AGCGG- AA-AA-ACAGCGGC

Figure 9: Bootstrapping: Resampling from one’s sample with replacement. The resampled
sequence consists of copies of the observed columns with replacement.

2.7.2 Consensus Tree

A consensus tree is a synthetic phylogenetic tree that summarizes the information from
a set of different trees [7]. This type of tree is commonly used in evolutionary biology to
represent the relationships that are most commonly observed across a collection of trees, often
generated from different datasets, bootstrap samples, different methods of tree construction
or even trees generated from the same method. The latter case is useful for methods which
could potentially yield ties or else trees with very similar selection criterion values such
as in maximum parsimony. Consensus trees help in identifying the relationships that are
most strongly supported across multiple studies. Moreover, creating consensus trees from
bootstrap samples can improve the result [7].

There are two main types of consensus trees: strict and majority-rule. Strict consensus
trees include only the groupings which appear in all of the input trees. If there are many
conflicting signals in the input trees this can sometimes result in a tree with many polytomies,
where multiple branches emerge from a single node. A majority-rule consensus tree includes
all clades which appear in more than 50% of the input trees.

2.8 Rooting A Stemma

The root of a tree represents the most recent common ancestor of all taxa in the tree [1].
Thus, it is the oldest part of the tree and defines the the direction of evolution, with the
information flowing from the root and towards the leaves.

There are two main methods of rooting a phylogenetic tree [7]: using an outgroup or
assuming a molecular clock. In the outgroup method one includes a taxon that is close
enough to the set of taxa under investigation (ingroup) to make comparisons however, farther
apart from all ingroup taxa are to each other.

An alternative is to use a ”molecular clock” where it is assumed that the same amount of
changes are observed on all lineages implying that there should be a point in the tree with
equal branch lengths from that point to all leaves. The root is the node which makes the
amounts of change approximately equal on all lineages. The midpoint method consists of
identifying the longest path between two leaves and placing the root at the midpoint of the
path.

29

In stemmatology, the outgroup is rarely available and a molecular clock assumption
would almost always be violated since scripts evolve much more dynamically than genetics
[1]. Thus, different methods must be used. Typically, a stemmatologist would use their
intuition and knowledge to determine which manuscript is older. Older manuscripts would
contain older spellings and words. To root a stemma this way, one would require some
database containing information about when spellings and words were used. To the author’s
knowledge, there is no such database in existence, thus other methods must be used.

2.8.1 Minimum Cost Heuristic

In [9], a rooting method which may be applicable to stemmatology is suggested. Given a
non-oriented tree, one can assign any of the nodes as the root and calculate the tree cost,
that being the sum of the edge weights of all edges on the path from the potential root
to all the other nodes in the tree. The root is then taken as the node corresponding to
the minimal cost tree. If two or more nodes generate trees of minimal cost, one of them is
randomly selected as the root of the reconstructed tree.

The depth-first search algorithm (see Algorithm 5 below), is used to traverse or search
trees. Starting at the root node (which is defined using the minimum cost heuristic), the
algorithm explores each branch fully all the way down to the leaves and then backtracks.

Algorithm 5 Depth-First Search to Create a Directed Tree

1: procedure DFS(node, parent)
2: for neighbour ∈ neighbours(node) do
3: if neighbour ̸= parent then
4: direct edge(neighbour, node)
5: DFS(neighbour, node)
6: end if
7: end for
8: end procedure

Depth first search takes two parameters: node, which is the current node being visited
and the parent node from which the current node was accessed. This avoids revisiting the
parent node and thus avoids cycles. This is done for all neighours of the current node. The
algorithm then checks if the current neighbour is not the parent of the node to avoid going
back to the node it came from, which is especially important in undirected graphs where
each edge is bidirectional by nature. The edges are then directed away from the parent node
at each step and the function is recursively called with the current neighbour as the new
node to visit and the current node as its parent allowing it to dive deeper into the graph
from the current neighbour. The algorithm then explores its sub-tree until it reaches the
leaves, and finally backtrack to explore other branches.

This algorithm is polynomial in time. In a tree with n nodes, the number of pairs of nodes
is
(
n
2

)
= n(n−1)

2
. For each pair of nodes (u, v), there is a unique path in the tree. To compute

the sum of edge weights on the path between each pair (u, v) one needs to traverse the path
between u and v, summing the weights of the edges on this path, in our case, using depth
first search which has a computational complexity of O(|V | + |E|) which is asymptotically

30

O(n). Now, this has to be done for every node pair and thus this leads to a complexity of

O(n× n(n−1)
2

n) = O(n3). In Figure 10 we plot the time it takes to calculate the root heuristic
for randomly generated trees of N nodes. The shape is clearly polynomial and it is feasible
to compute for thousands of nodes.

Figure 10: The runtime for calculating the root heuris-
tic vs the number of nodes.

To illustrate how this heuristic is calculated consider the simple example in Figure 11:

Figure 11: An example of a weighted tree.

In Figure 11, the total cost to traverse all paths starting from node 2 can be calculated
as the sum of the cost required to traverse each path from node 2 as:

Total Cost(2) = Σ

Cost(2→ 1) = 34
Cost(2→ 1→ 3) = 65
Cost(2→ 1→ 3→ 4) = 100
Cost(2→ 5) = 25
Cost(2→ 1→ 6) = 61

 = 285.

31

Repeating, the calculation for all nodes:

Total Cost(1) = 217,

Total Cost(2) = 285,

Total Cost(3) = 279,

Total Cost(4) = 419,

Total Cost(5) = 385,

Total Cost(6) = 325.

In this example, node 1 happens to yield the smallest value and thus it is taken as the
root.

One drawback is that this method assumes that the stemma has only one root which
may not necessarily be the case in stemmatology. Another disadvantage of this method is
that it assumes that textual evolution leads to trees which tend to balance out over time in
terms of the differences between the nodes. If a document’s stemma does not branch out,
this method becomes inaccurate since a tree with no branchings will have higher costs than
one with branchings. To see this, suppose all edges have weight 1 and that each node can
have only one child, (a linear tree as in Figure 12). Then the root would be calculated as
the node at the middle of the tree. If, however, the tree branches and evens out in the sense
that it is more symmetrical with the root close to the centre of the graph, such as when each
node has 2 child nodes as in Figure 13, then a node close to the true root would be chosen.
In Figure 12, node 3 would have the minimum total cost whilst in Figure 13, the minimum
cost node would be the correct node 0.

Figure 12: A linear tree where each node
can have at most one child nodes.

Figure 13: A symmetric binary tree where
each node can have at most two child
nodes.

To show this, rooted linear (one child per node) and (nearly) symmetric binary trees of
with the number of nodes ranging from 0 to 500 were generated. The root was predicted
for each using the minimum cost heuristic and the depth (see 3.9.3) was plotted against the
number of nodes in the trees. For matching total costs, the first predicted root in a list
of predicted roots is selected as the root. As can be seen in Figures 14 and 15, the depth
depends on the tree structure. For a linear tree, the root is at the midpoint of the graph.

32

Since the binary trees were designed to ”balance out”, the predicted root is always at or very
close to the actual root.

Figure 14: The number of nodes between
the correct root and the predicted root for
linear trees against the number of nodes.

Figure 15: The number of nodes between
the correct root and the predicted root
for even binary trees against the number
of nodes.

33

3 Methodology and Experiment Design

The main goal of this project was to test various methods to reconstruct the stemma of
a given set of manuscripts. Thus, several of the mentioned methods from the previous
chapters were benchmarked both on real-world and artificially generated datasets. This
chapter serves to detail the experimental setup used for each case, what datasets were used,
how the artificial datasets were generated, the models’ configuration and the packages used.

3.1 Computational Tools

This project heavily relied on the use of different and often unrelated tools and packages to
create pipelines for computing and generating stemmata. The main ones used were:

3.1.1 CollateX

CollateX [19] is a software tool designed for collating, aligning and visualizing multiple
versions of a text, especially for tasks related to textual criticism and historical text analysis.
It is often used to compare different manuscript versions, editions, or translations of a text
and identify variations or differences between them.

The input texts are assumed to have been tokenized. During alignment, CollateX matches
tokens across different text versions, aligning identical tokens and inserting placeholders for
unmatched ones to ensure that the sequences line up. The alignment might also involve
identifying and handling transpositions, where parts of the text have been moved.

3.1.2 PAUP*

PAUP* [20] is one of the most widely used phylogenetic program applied to stemmatology.
It offers an easy-to-use graphical interface with many options, algorithms, and parameteri-
sation options. Methods include, parsimony based methods (section 2.6.1), distance matrix
methods such as neighbour joining (section 2.5.3), UPGMA (section 2.5.2), least squares
(section 2.5.1), minimum evolution (section 2.6.2) as well as bootstrap and consensus trees
(section 2.7). One major advantage of PAUP* is that it can readily read and process arbi-
trary numbers of character states rather than just the ”ACTG” used in DNA sequencing.
Another advantage of PAUP* is that it is highly optimised to be very computationally ef-
ficient and has an easy to use interface with little need for coding skills making it an ideal
tool for humanities departments, although it does have a scripting language. This has been
used for stemmatology before in [34].

3.1.3 Biopython

To read the PAUP* tree outputs which are in the Newick format, the BioPython package
[21] is used to then turn the trees into Networkx objects allowing for the computation of
accuracy measures. BioPython is a powerful toolset for biological computation, specialising
in phylogenetics. It is an open-source collection of Python libraries and modules that allow
researchers, developers, and enthusiasts to handle biological data more efficiently. This
package could be used instead of PAUP*, however, we relied on PAUP* since most of the

34

papers on computational stemmatology use PAUP* and PAUP* is also quite efficient [1].
Biopython also cannot read the pseudo-DNA sequences we created, thus methods which
require the sequences themselves rather than the distance matrices would not be available.

3.1.4 Networkx

NetworkX is a powerful Python library designed for the creation, manipulation, and study of
complex networks of nodes and edges. With its versatile range of tools and functionalities,
NetworkX is suitable for analysing both large-scale and small-scale network data across
diverse applications. This package was used to generate the artificial stemmatas’ structures,
process trees and in defining the accuracy measures.

3.1.5 Gensim

Gensim [23] is a robust open-source library designed specifically for unsupervised semantic
modeling from plain text, making it an ideal tool for the purposes of this project. It is par-
ticularly well-suited for tasks involving large-scale text analysis, such as document similarity
and has efficient implementations of word2vec, GloVe, FastText, word mover’s distance and
much more. Gensim is written in Python and optimized for performance with the use of
Cython, making it a highly efficient option for natural language processing tasks that need
to handle large volumes of text. This package was mostly used for the calculation of the
distance matrices using the methods described in sections 2.1 till 2.3.

3.2 Data Sets

To test the methods artificially generated stemmata were used along with, two stemmatol-
ogy datasets which were previously used in a computational stemmatology challenge [24]
(Parzival and Heinrichi). [24] also included two other traditions, however, the true stemmas
are not given and thus these were not used. On top of this, some variants of the Phareta
Fidei tradition (provided to us by the philologists mentioned in the Acknowledgements) were
studied as a test case for when the true stemma is unknown. In the latter case, heuristics
were used to measure the results.

3.2.1 Artificial Datasets

Synthetic datasets consisting of near-duplicate documents were created according to a variety
of of parameters. Subsets of the Reuters 50 50 [25] training dataset were used depending
on the word-count of the article. Artificial stemmas were generated by taking a document
to be the root and generating a set of child documents with randomised edits. Each child
document is modified up to an editing limit. The edit operations were selected such that
the overall meaning of the child documents does not stray far away from the original. These
are:

• Synonym exchange: A given word is replaced by a randomly selected synonym using
the WordNet dictionary [26].

35

• Misspelling and Correction: A word is misspelled or a misspelling is corrected using
the Birkbeck [27], Holbrook [28], Aspell [29] and Wikipedia [30] misspelling datasets
obtained from [27].

• Insertion and removal of adjectives and adverbs: Adverbs and adjectives are either
added or removed before nouns using the NLTK [31] package by checking their part-
of-speech tags.

• Paraphrasing. The T5 (text to text transfer transformer), pre-trained on the PAWS
(Paraphrase Adversaries from Word Scrambling) dataset from [32] was used to para-
phrase a sentence at random.

Whilst these transformations do occur often in stemmatics, some are more impactful
than others. Misspellings are often corrected (especially if they are very obvious to the next
scribe) and happen more frequently when the scribe is not a native speaker of language
in which the manuscript is written. Usually, scribes are quite literate which means they
rarely make spelling mistakes and usually only for very complicated words, however, since
the misspellings datasets used are extracted from very poor spellers (people with learning
disabilities and young children), the kind of spelling mistakes may not be too realistic.
Synonym exchange or change in spelling also occur very frequently in stemmatics, especially
if the scripts are written centuries apart. Performing synonym exchange using ready-made
packages always has the risk of changing the context of the script as synonyms sometimes
have different meanings in different contexts. Another common mistake is the doubling of
words or of entire sentences. This is usually spotted by the next scribe.

Typically, very little of the text differs from manuscript to manuscript. It is assumed
that the errors made during the copying of a manuscript are statistically independent events,
although in reality this may not necessarily be the case. Moreover, it is assumed that the
errors are rare and therefore far apart enough to be independent in terms of the logical,
grammatical, and poetic relationships between the words.

We performed this experiment for synonym, adjective and adverb transformations to-
gether, misspellings and paraphrasing separately. For each case we randomly select 100
news articles from the Reuters dataset and generate a predetermined number of child nodes
as described above, with each differing by up to a predetermined edit limit. For the first
two cases, the edit limit was based on word changes and the number of nodes was increased
from 10 to 50 in steps of 10 i.e. for each article we generate 5 different stemmata with the
only difference being the number of nodes. For paraphrasing, the edit limit was based on
the number of sentences which were paraphrased whilst the edit limit was increased from
10% to 50%.

3.3 Parzival

This dataset is comprised of 21 documents consisting of the first part of Wolfram von Es-
chenbach’s German poem Parzival, translated to English by A.T. Hatto, and copied by hand
by scribes. The true stemma has no cases of contamination (i.e. all nodes have at most one
parent). Moreover, 5 of the 21 documents are missing.

36

3.4 Heinrichi

This data set is comprised of 67 variants of an old Finnish text (Piispa Henrikin surmavirsi
’The Death-Psalm of Bishop Henry’). It was artificially constructed by volunteer scribes, who
copied a given text by hand, according to an imaginary stemma. To simulate the situation
where a portion of the manuscripts are missing 30 of the variants were left out of the dataset
and some of the manuscripts also had some significant passages deleted to simulate the
situations where manuscripts are partially lost. In our collation this dataset yielded 1090
loci with 147 being constant. Since this is written in Old Finnish, word embedding methods
are not applicable as Old Finnish pre-trained vectors seem not to exist. The use of Old
Finnish was done to simulate the situation where the scribe is not a native speaker of the
language in which the manuscripts were written.

3.5 Phareta Fidei

This dataset is of a real Medieval anti-Semitic tradition written in Latin, with several hundred
known variants from different libraries and archives. We were provided with two different
datasets, the first containing 10 variants and an expanded version with 28 variants. After
collation, the first set of texts had 225 loci about a quarter of which are non-constant. The
second had 639 loci with 354 being constant. The texts vary in their spelling, abbreviations,
sentence structure as well as word count. It should be noted that only a very small portion of
the tradition was provided in both cases, thus results should not be expected to be definitive.

According to the philologist who provided the dataset, Rouen and Roma seemed closely
related, the 2 Graz witnesses seemed related to Trier 964, Klosterneuburg and Kremsmunster
are related as well and Prague X.B.II seems closely connected to Seitenstetten andWien 4396.
Wien 4396 seemed to be the oldest variant from this group of manuscripts, although this is
not definitive.

The orthography and punctuation of the Corpus Christianorum Continuatio Mediaevalis
(CCCM) is largely followed meaning that the letter ”u” is used for ”u” and ”v”, but the
capital ”V” for ”U” and ”V” is used. The letter ”i” is used for ”i” and ”j”, both in the
case of capital and lowercase letters. E-caudata are represented by an ”e”, in accordance
with normal medieval standards. The punctuation reflects modern usage: no attempt has
been made to represent the irregular punctuation found in the manuscripts. Capital letters
are only used at the beginning of a sentence, not in the case of proper names or nomina
sacra. All numbers, either numeral or cardinal, are presented as ordinal, written in Roman
or Arabic numbers depending on what is found in the manuscript. Abbreviations are silently
expanded.

Most orthographic variants were kept, with the exception of ”t”/”c”. Orthographic
variants kept are single or double consonants (”b”/”bb”; ”c”/”cc” etc.), the addition of
”h” after a consonant or before a vowel (”c”/”ch”, ”t”/”th”, ”a”/”ha”, ”i”/”hi”, ”y”/”hi”
etc.) and letter combinations that sounded roughly equivalent in medieval Latin (”d”/”t”;
”f”/”ph”; ”i”/”y”; ”m”/”n”).

37

3.6 Phylogenetics Software Pipeline

The texts were all in ”.txt” format and processed through the python package CollateX
which generates the best alignment of the tokens in the text. As part of the preprocessing
for using the ready-made phylogenetics package PAUP*, the texts were then reformatted
into the Nexus format by ordering aligning the words at each position. Each variant of the
token in each position was then assigned symbol (A,B,C, ...), such that if say, three different
variants of a given word appear in the texts, then the symbols A,B, and C appear in the
Nexus file at the same position, identical words at the same position are assigned the same
symbol, whereas missing tokens are represented by a ”-”. Modern philologists typically keep
punctuation (hyphens, commas, periods etc.) since in some cases they may be informative.
Having said that, punctuation is typically heavily dependent on the scribes’ writing style
and thus some philologists remove punctuation since its more random nature can be seen as
adding noise to the data [1]. For the phylogenetic analysis we keep the punctuation as part
of words as in Figure 16.

Figure 16: Two sentences aligned using Collatex.

Figure 17 is an example of a Nexus datablock. ”ntax” corresponds to the number of
taxa, ”nchar” corresponds to the number of characters in the aligned sequences which must
be the same for all taxa (in our case the symbols correspond to the word variants and ”-”’s
correspond to gaps in the alignment) and ”format symbols” is the list of symbols used to
denote the words.

#NEXUS

BEGIN DATA;

dimensions ntax = 5 nchar = 10;

format symbols = "ABCD" labels = left;

matrix

Taxon1 AABAAAAAAB

Taxon2 AABBA-BABA

Taxon3 AAABAACACA

Taxon4 AAA-AAABCA

Taxon5 AAABAACBDA;

end;

Figure 17: Example of a Nexus File Data Block.

The nexus files are then fed into phylogenetics software such as PAUP* and the Newick
tree outputs are then read using the Bio.Phylo package [21] in python, converted to Networkx

38

[22] objects and finally compared to the true stemma via the averaged signed distance since
the other measures of accuracy are not ideal in this case due to the fact that phylogenetic
tree outputs contain latent nodes.

In phylogenetics one often deals with missing data. Typically, these values are replaced
by character states to obtain the best possible score. An alternative treatment of missing
data replaces all the missing entries with the same new state, and then seeks a tree that
optimises the criterion. If a dataset contains too many missing characters, the corresponding
positions are removed before the tree is computed. In stemmatology missing data could be
due to either destruction of part of a manuscript or due the scribe skipping certain words or
punctuation, in which case the changes are informative. In the case that large sections of a
manuscript is missing one may opt to either remove the variant, or to only use the available
part. Another option would be to impute the missing sections from the closest manuscripts.
In PAUP* distances are calculated based only on the available data, and positions with
missing data are excluded from the calculation. For maximum parsimony, however, they are
imputed such that the minimum total Hamming distance is achieved.

There does not seem to exist a stemmatological tool which allows the conversion of a
collation to a distance matrix or to pseudo-DNA, which would be required to easily produce
distance matrices or trees using bioinformatics software [1]. Thus, this pipeline could poten-
tially be a useful setup for philologists. For the PAUP* software analysis we use the default
settings which seemed to work quite well. These methods were least squares, minimum
evolution, maximum parsimony, neighbour joining, neighbour joining consensus tree on 100
bootstrap replicates, UPGMA and UPGMA consensus tree on 100 bootstrap replicates.

3.7 NLP Distance Matrix Pipeline

To generate the synthetic stemmata we use a pipeline similar to that suggested in [9] as
shown in Figure 18. Using a variety of different methods, the distance matrix is calculated
from which the stemma’s structure is reconstructed. The minimum cost heuristic is then
used to root the stemma. For simplicity we assume that the stemmata have only a single
root.

Figure 18: Pipeline for tree estimation using distance matrices calculation. The input is a
set of documents, whilst the output is a rooted tree.

Given N near-duplicate documents, an N × N symmetric dissimilarity matrix M is

39

calculated and used to construct an undirected unrooted tree using a minimal spanning tree.
Finally, the minimum cost heuristic is used to root the tree using a depth first search.

One main bottleneck of these experiments is that it takes a considerable amount of time
to generate the artificial datasets. A dataset has to be created from scratch for each set of
transformation parameters as well as for different numbers of nodes. Higher editing limits
and numbers of nodes require more time. Thus, a file management system was created to
save the generated datasets so that one need not start from scratch each time. The correct
stemma is also saved with the artificially generated texts. The reconstructed stemma is then
computed from the texts and saved in the same folder. Finally, the reconstructed stemma
is then compared with the correct stemma.

3.8 Pre-trained word vectors.

For Word2Vec a pre-trained the 300 dimensional ’google-news-300’ model with 3 million
tokens from [13] was used, for Glove, the 300 dimensional Glove embeddings trained on
42 billion tokens from [15] and for Fastext, the model was trained on the ’crawl-300d-2M-
subword’ Common Crawl sub-word dataset from [33]. We use these pre-trained models on
such large datasets since the quality and robustness of the embeddings directly depend on
the amount and variety of data they are trained on. Larger datasets provide a broader
range of contexts in which words appear. This variety helps the model learn more accurate
representations, capturing subtle differences in meaning and usage. In large corpora, words
with multiple meanings (polysemes) appear in different contexts, aiding the algorithm in
learning distinct representations for each sense of the word. Training on large datasets helps
the model avoid over-fitting to idiosyncrasies in a small data sample. A well-trained model
on a large corpus generalises better to new, unseen texts. Larger datasets are also more
likely to include a wider range of vocabulary, including rare words and phrases which is
particularly useful when using word embedding models which are incapable of generating
embeddings for out of word vocabulary. A disadvantage of using such large models is that
they require large amounts of memory and longer loading times.

3.9 Accuracy Measures

The tree construction methods are evaluated based on their success of finding a stemma
that is close to the true stemma. For the case where there are missing manuscripts and
non-tree-like structured stemmata we use the Average Signed Distance suggested in [34] and
for complete datasets some of the measures used in multimedia phylogeny suggested in [35]
and [9].

3.9.1 Root

This metric returns a 1 if the roots agree and 0 otherwise.

3.9.2 Leaves

This metric evaluates whether the leaves of the reconstructed stemma are the same as in the
true stemma. A score close to 100% would mean a perfect match.

40

Leaves(T1, T2) =
Leaves(T1) ∩ Leaves(T2)

Leaves(T1) ∪ Leaves(T2)
(51)

3.9.3 Depth

The depth distance is defined as the number of edges between the true root of the true
stemma and the predicted root in the reconstructed tree. Defining dist(i, j, T) to be the
number of edges between nodes i and j on the tree T , the Depth is then:

Depth(T1, T2) = dist(Root(T1), Root(T2), T2). (52)

The less nodes between the true root and the predicted root, the better.

3.9.4 Indirected Edges

This measure evaluates the edges. Thus, should an edge connect two nodes in the recon-
structed tree and in the the original, then it is considered correct:

Edges(T1, T2) =
Edges(T1) ∩ Edges(T2)

n− 1
(53)

A score close to 100% would mean a perfect match.

3.9.5 Directed Edges

This measure evaluates the edges along with their direction. Thus, should a directed edge
connect two nodes in the reconstructed tree and in the the original, then it is considered
correct:

DirectedEdges(T1, T2) =
DirectedEdges(T1) ∩DirectedEdges(T2)

n− 1
(54)

A score close to 100% would mean a perfect match.

3.9.6 Ancestry

This measure evaluates whether the ancestors (parents, grandparents etc.) of each root are
the same in the reconstructed tree and in the true tree.

Ancestry(T1, T2) =
Ancestry(T1) ∩ Ancestry(T2)

Ancestry(T1) ∪ Ancestry(T2)
(55)

A score close to 100% would mean a perfect match. In our implementation, the intersec-
tion is computed between the nodes which have the same ancestors up to the root, but not
necessarily in the same order. Moreover, all the ancestors of a particular node must match
with those of the corresponding node in the true stemma.

41

3.9.7 Average Signed Distance

In situations where there are missing manuscripts or when one uses methods which include
internal nodes, two arbitrary latent tree structures are being compared and thus the usual
measures such as counting the number of shared edges do not apply since there is no one-
to-one correspondence between the latent nodes in the true stemma and the estimated one.
Moreover, the tree generating algorithms which place the extant taxa as leaves makes the
’Leaves’ measure redundant. It is not guaranteed that the number of latent nodes will be the
same, let alone their positions in the stemma. Thus, we employ the average sign similarity
score [34].

This measure depends on the number of edges between pairs of nodes and ignoring the
edge weights. For each pair of nodes A, B, the true distance, d(A,B) is defined as the number
of edges on the shortest path between A and B in the true stemma. Thus d(A,B) = d(B,A).
Similarly, the same quantity computed from the predicted stemma is denoted by d′(A,B).
Whenever the predicted stemma is correct, d′(A,B) = d(A,B) for all pairs of nodes, and
otherwise the two values differ for some A and B. Given three nodes A, B, and C, one can
measure the distances d(A,B) and d(A,C). We consider which one of these two distances is
greater than the other, or whether they are equal. Let sign(d(A,B)− d(A,C)) be the sign
of the difference between the two distances, so that the index:

u(A,B,C) = 1− 1

2
|sign(d(A,B)− d(A,C))− sign((d′(A,B)− d′(A,C))|, (56)

so that:

u(A,B,C) =

1 if sign(d(A,B)− d(A,C)) = sign(d′(A,B)− d′(A,C))

0 if sign(d(A,B)− d(A,C)) = −sign(d′(A,B)− d′(A,C))

1/2 otherwise.

The average sign similarity score is the average of over all distinct observed nodes cor-
responding to the extant manuscripts (but not the latent nodes) given that none of the
three nodes are the same. This measure can be used with any pair of graphs, given that
both include all the observed nodes and may include any number of additional nodes, which
need not be identical for the correct and the proposed stemma. The computation of the
distance requires that the pairwise distances between all nodes are computed and then used
to calculate the average. This has a computational complexity of O(n3) [34].

42

4 Results

This section presents the results from the experiments described in chapter 3. The first half
deals with different experiments conducted with the artificial data sets. Due to computa-
tional constraints, only shorter texts were used. The second half of this chapter deals with
the benchmark dataset Parzival and Phareta Fidei.

4.1 Artificial Datasets

In this section the results for the synthetic datasets generated by editing the Reuters news
articles via various transformations are described. We start with the synthetic datasets
generated from Reuters 50 50 news articles, then proceed to the benchmark datasets Parzival
and Heinrichi, and finally Phareta Fidei.

4.1.1 Misspellings with 5% Edit Limit

Figure 19: Accuracy rate averages of 100 examples per data point for the root, leaves,
depth, directed and undirected edges vs number of nodes for stemmata where the differences
between the texts are misspellings (at rate 60% of edits) and correction of misspellings (40%).

43

In Figure 19 the undirected edges and leaves seem not to vary too much against the number
of nodes whereas, directed edges seem to improve whereas all others seem to worsen. For
this dataset, the word embeddings performed nearly as well as TF-IDF, even managing to
correctly predict the root in a good portion of the stemmata.

4.1.2 Synonyms and Additives with 5% Edit Limit

Figure 20: Accuracy rate averages of 100 examples per data point for the root, leaves, depth,
directed and undirected edges vs number of nodes where the differences between the texts are
synonym exchange (at rate 30% of edits), addition of adverbs/adjectives (40%) or removal
of adverbs/adjectives (30%).

In Figure 20 the the number of nodes did not seem to make much of a difference to the
results, with 50 node trees being an outlier. The root was almost never correctly guessed for
the word embedding methods, thus, the ancestries were not correctly predicted. Still, the
root is off by only a few nodes at most, meaning these methods are still quite feasible.

44

4.1.3 Paraphrasing of Sentences 20 nodes

Figure 21: Accuracy rate averages of 100 examples per data point for the root, leaves, depth,
directed and undirected edges vs portion of sentences paraphrased. All stemmata had 20
nodes, with the edit portion changed from 10% to 50% in steps of 10%.

In Figure 21 the edit portion seemed to improve the results. Once again, the root was
almost never correctly guessed for the word embedding methods, thus, the ancestries were
not correctly predicted. Still, the root is off by only a few nodes at most, meaning these
methods are still quite feasible. The improving result for the other accuracy measures with
the edit portion is probably due to the paraphrased sentences being very similar to the
originals, sometimes with only a few words being changed, making the documents very
difficult to tell apart. With higher portions of edited sentences, the documents become more
distinguishable.

4.2 Parzival

This section serves to display the results for Parzival. In the PAUP* outputs, the internal
nodes are labelled as arbitrary integers.

45

Figure 22: Parzival Correct Stemma. Nodes
17-21 are missing and are thus named arbi-
trarily.

Figure 23: Parzival predicted stemma using
TF-IDF with 1-,2-,3-grams.

Figure 24: Parzival predicted stemma using
the cosine distances between the Word2Vec
word vectors.

Figure 25: Parzival predicted stemma using
the reduced word mover’s distances between
Word2Vec vectors.

In Figure 22 is the correct stemma for Parzival, where nodes 17-21 are missing. TF-
IDF, Word2Vec with cosine and reduced word mover’s distance in Figures 23-25 gave fairly
believable results. Nodes which neighbour each other in the correct stemma, also tended to
neighbour each other in these trees for example p12 neighbours p13 and p7 neighbours p3 in
all of these. The main problem seems to be when the nodes are separated by missing nodes.
Having said that, nodes separated by missing nodes in the true stemma usually neighbour
the closest available observed node. For example p1 neighbours p4 in Figures 23-25. The
root was predicted to be p12 by Word2Vec using reduced word mover’s distance. All other
NLP methods gave p13 as the root which is one node closer to the actual root in the correct
stemma.

46

Figure 26: Parzival predicted stemma us-
ing the word mover’s distances between
Word2Vec vectors.

Figure 27: Parzival predicted stemma using
the cosine distances between the FastText
word vectors.

Figure 28: Parzival predicted stemma us-
ing pre-trained FastText word vectors and re-
duced word mover’s distance.

Figure 29: Parzival predicted stemma using
pre-trained FastText word vectors and word
mover’s distance.

The results from Word2Vec with word mover’s distance, FastText with reduced word
mover’s distance, word mover’s distance and cosine distances shown in Figures 26-29 gave
very similar results to Figures 23-25. Once again, nodes separated by missing nodes tend to
end up paired with the closest available node. Node p8 is taken as the parent of p11 and p10
in all of these examples. In the stemma they are separated by missing p19 and p20.

47

Figure 30: Parzival predicted stemma using
the cosine distances between the Glove word
vectors.

Figure 31: Parzival predicted stemma using
pre-trained Glove word vectors and reduced
word mover’s distance.

Figure 32: Parzival predicted stemma us-
ing pre-trained Glove word vectors and word
mover’s distance.

Figure 33: Parzival predicted stemma ordi-
nary least squares in PAUP*.

The results from Glove with all three distance methods considered shown in Figures 30-32
gave very similar results to Figures 23-25. Once again, nodes separated by missing nodes
tend to end up paired with the closest available node. Node p8 is also taken as the parent
of p11 and p10 in all of these examples. It seems that three clusters of nodes emerge from all
the NLP method predictions. p2, p12, p13, p15 and p16 tend to cluster together, so do p9, p1,
p4 p7 and p3. The third cluster seems to be p5, p10, p6, p8, p14, p11. These groupings also
appear in the stemma.

48

Figure 34: Parzival predicted stemma using
UPGMA in PAUP*.

Figure 35: The predicted stemma for Parzival
using neighbour joining in PAUP*.

Figure 36: The predicted stemma for Parzival
using maximum parsimony.

Figure 37: The predicted stemma for Parzival
using minimum evolution in PAUP*.

Figure 38: Parzival UPGMA consensus tree
using on 100 bootstrap replicates in PAUP*.

Figure 39: Parzival neighbour joining consen-
sus tree using on 100 bootstrap replicates in
PAUP*.

Figures 33-39 show the results for Parzival using PAUP* software. All results were very
similar to one another. UPGMA is the only phylogenetic method which yields the root. In

49

both the basic UPGMA and the bootstrap consensus, p3 was found out to be the root (this is
identified as the node connected to an internal node with degree 2). This is separated by the
true root by p9 and p7. In all cases, nodes which appear as neighbours in the true stemma
tend to appear close together in the trees generated by these methods. The same groupings
tend to appear in all of these methods as well. UPGMA and UPGMA with bootstrap seems
to be the worst violators of these patterns. p7 and p3 appear very far from one another.
Meanwhile, p16 is grouped with p3 even though they should be very far apart. This seems to
be the main mistake this algorithm made, with all other nodes being close to nodes which
occur close in the true stemma.

Method Average Signed Distance (%)
Least Squares 83.3

Minimum Evolution 81.5
Maximum Parsimony 77.8
Neighbour Joining 81.5

Neighbour Joining + Bootstrap 84.4
UPGMA 71.6

UPGMA + Bootstrap 71.6
TF-IDF 1-,2-,3-gram 71.6
Word2Vec+Cosine 70.1
Word2Vec+WMD 71.6
Word2Vec+RWMD 76.8

Glove+Cosine 75.5
Glove+WMD 74.9
Glove+RWMD 77.9
FastText+Cosine 75.8
FastText+WMD 74.4
FastText+RWMD 76.9

Table 1: Average Signed Distance between the correct stemma of Parzival and the stemmata
predicted by PAUP*, and minimum spanning trees using cosine distances between the word
embedding sums of each document, Relaxed Word Mover’s Distance (RWMD), Word Mover’s
Distance (WMD) and Text Frequency Inverse Document Frequency.

In Table 1 are the accuracy rates for all methods considered. The best performer is
neighbour joining with bootstrapping using the default settings in PAUP* seemed to give very
good results. The bootstraps reported here were done with 100 replicates since improving
the number of replicates did not improve the result.

50

4.3 Heinrichi

Method Average Signed Distance (%)
Least Squares 57.2

Minimum Evolution 59.5
Maximum Parsimony 67.2
Neighbour Joining 63.3

Neighbour Joining + Bootstrap 59.6
UPGMA 52.5

UPGMA + Bootstrap 56.7
TF-IDF 1-,2-,3-gram 82.3

Table 2: Average Signed Distance between the correct stemma of Heinrichi and the stemmata
predicted by PAUP* algorithms, and minimum spanning trees using cosine distances between
the and Text Frequency Inverse Document Frequency vectors.

Since the phylogenetic methods performed very poorly on this dataset, we only plot the
result for the TF-IDF with 1-,2-,3-grams which gave a very good result as can be seen in
Table 2. Moreover, the predicted root Ba is separated from the real root (which in this case
is missing), by only two missing nodes as can be seen in Figures 40 and 41. Surprisingly,
even though this tradition is very large, is missing nearly half of its nodes and has five cases
of contamination (9 to A, 24 to 18, 24 to Ca and 24 to 27, TF-IDF with 1-,2-,3-grams gave
an exceptionally good prediction.

The first main clusters in the correct stemma were O, P , V , Ba, I, J , Da, I, J , T , S,
Ae and W (starting from 24). The second cluster was N , X, H, Cd, E, C, Be, F , Ca, Bd
and Bb (starting from node 12). The third cluster was Z, Ad, Cb, Cc, G, Ab, Ce, R, B, Cf ,
M , A, L, K (starting from node 1).

In the TF-IDF tree there are three distinct clusters: O, P , N , F , H, C, Cd, E, V , Ba,
I, J , Da, I, J , T , S, Ae and W . A second grouping was Z, Ab, Ad, Cb, R, Ce, Ac, G,
Cc, A, B, K, M , Cf and L. V , Ca, J I and Da were also correctly grouped together. P
neighbours Ba in the reconstructed stemma which makes sense since they are separated by
one missing node in the true stemma. Thus, the high accuracy rate in Table 2 is clearly
visible in this graph.

51

Figure 40: Heinrichi correct stemma. Missing manuscripts are labelled as arbitrary numbers
whereas observed manuscripts are denoted by letters.

Figure 41: Heinrichi minimum spanning tree generated using TF-IDF with 1-,2-,3-grams.

52

4.4 Phareta Fidei

Witness Name in Graph

Bamberg, Staatliche Bibliothek, Theol. 109, fol. 120r-131v (1401-1500, Bam-
berg)

Bamberg Bamberg

Berlin, Staatsbibliothek Preussische Kulturbesitz, germ. Qu. 1577, 97r-112v
(1437, Sulczmatt)

Berlin Sulczmatt

Berlin, Staatsbibliothek Preussische Kulturbesitz, lat. Fol. 772, 185r-200v
(1401-1500, Trier)

Berlin Trier

Brno, Statni Vedecka Knihovna, Mk 43 (II. 148), 1r-17r (1301-1400, Rokycany) Brno Rokycany
Ceske Budejovice, Vysśı Brod, 123, 156-226 (1410) CeskeBudejovice
Erfurt, Universitätsbibliothek, Ampl. 4 82, 131-148 (1333-1400, Erfurt) Erfurt Erfurt 13331400
Erfurt, Universitätsbibliothek, Ampl. 4 116, 204r-216r (1401, Erfurt) Erfurt Erfurt 1401
Graz, Universitätsbibliothek, 312, 2r-15 (1378-1418, Seckau) Graz Seckau
Graz, Universitätsbibliothek, 873, 129v-148v (1401-1450, Neuberg an der
Mürz)

Graz Murz

Klosterneuburg, Bibl. Des Chorherrenstifts, 933, no 49, 239-248 (1301-1500,
Krems)

Klosterneuburg Krems

Köln, Hist. Archiv d. Stadt, GB 4 66, 24r-39v (1401-1425, Köln) Koln Koln
Kremsmunster, Stiftsbibliothek, 99, 180r-202v (1401-1450, Stein bei Krems) Kremsmunster SteinbeiKrems
London, British Library, Royal 8.F.XI, 43r-55v (1401, Köln) London Koln
Mainz, Wissenschaftliche Stadtbibliothek Mainz, Hs I 130, 24v-55v (1401-1450,
Mainz)

Mainz Mainz

Madrid, Biblioteca Nacional de Espana, INC/2661 (1488-1490, Zagaroza) Madrid Zaragoza
München, Bayerische Staatsbibliothek, clm 12389, 196r-221v (1301-1500 Rait-
enbuch/Rottenbuch)

Munich Raitenbuch

Prague, Národńı knihovna, I.B.7, 312r-323v (1401-1500) Prague IB7
Prague, Národńı knihovna, X.B.11, 1r-45r (1401-1500) Prague XB11
Rome, Biblioteca Casanatense, Ms. 159, 5v-35v (1511, Wien) Rome Wien
Rouen, Bibliotheque Municipale, Ms. Leber 59, 1r-107 (1301-1400) Rouen
Seitenstetten, Stiftsbibliothek, 268, 157r-192v (1401-1450, Seitenstetten) Seitenstetten Seitenstetten
Trier, Stadtbibliothek, 964/1158, 211v-228r (1401-1500, Trier) Trier Trier 211v 228r
Trier, Stadtbibliothek, 1296/554, 78r-95v (1401-1500, Trier) Trier Trier 78r 95v

Wien, Österreichische Nationalbibliothek, 362, fol. 181v-188v (1301-1333,
Lilienveld)

Wien Lilienveld

Wien, Österreichische Nationalbibliothek, 812, 107r-121v (1301-1350) Wien 812

Wien, Österreichische Nationalbibliothek, 4180, 26-42v (1401-1500, Essingen) Wien Essingen

Wien, Österreichische Nationalbibliothek, 4213, 134r-156r (1401-1500, Wien) Wien Wien

Wien, Österreichische Nationalbibliothek, 4396, 1r-24v (1401-1500) Wien 4936

Table 3: The textual witnesses in Phareta Fidei 28 and their names in the generated graphs.
The naming convention is ”City, Library, Variant ID, Year Written, Place of Origin”.

53

4.4.1 Phareta Fidei 10

Figure 42: Phareta Fidei minimum spanning
tree generated using TF-IDF with 1-,2-,3-
grams.

Figure 43: Phareta Fidei tree using least
squares in PAUP*.

Figure 44: Phareta Fidei using UPGMA in
PAUP*.

Figure 45: Phareta Fidei predicted stemma
using neighbour joining in PAUP*.

54

Figure 46: Phareta Fidei prediction using
maximum parsimony in PAUP*.

Figure 47: Phareta Fidei prediction using
minimum evolution in PAUP*.

Figure 48: Phareta Fidei UPGMA consensus
tree on 100 bootstrap replicates.

Figure 49: Phareta Fidei neighbour joining
consensus tree on 100 bootstrap replicates.

Figures 42-49 show the results for the methods used to predict the stemma for the 10 variant
Phareta Fidei corpus. The philologist who provided these manuscripts predicted that Rouen
and Roma are related, Klosterneuburg and Kremsmunster are related. Encouragingly, Rouen
neighbours Roma whilst Klosterneuburg neighbours Kremsmunster in all methods except
UPGMA and UPGMAwith bootstrap. Graz Sackau tends to appear close to Wien Lilienveld.

55

UPGMA gives the Rome variant as the root both with and without bootstrap. Out of this
set the root was not obvious to the philologist thus little can be said about the accuracy.

4.4.2 Phareta Fidei 28

The philologist who provided these manuscripts predicted that Rouen and Roma are related,
the 2 Graz witnesses seemed related to Trier 964, Klosterneuburg and Kremsmunster are
related as well and Prague X.B.II is closely connected to Seitenstetten and Wien 4396. Wien
4396 seemed to be the oldest variant from this group of manuscripts. Figure 50 agrees with
all of these observations, with the exception that Graz Seckau was the root, although this
is only two nodes away from Wien 4396. UPGMA managed to correctly predict the root as
Wien 4396 both with and without bootstrap. However, it must be emphasised that the root
of this tradition is not known for certain.

Figure 50: Phareta Fidei minimum spanning
tree generated using TF-IDF with 1-,2-,3-
grams.

Figure 51: Phareta Fidei tree using least
squares in PAUP*.

56

Figure 52: Phareta Fidei using UPGMA in
PAUP*.

Figure 53: Phareta Fidei predicted stemma
using neighbour joining in PAUP*.

Figure 54: Phareta Fidei prediction using
neighbour joining in PAUP*.

Figure 55: Phareta Fidei prediction using
minimum evolution in PAUP*.

57

Figure 56: Phareta Fidei UPGMA consensus
tree on 100 bootstrapreplicates.

Figure 57: Phareta Fidei neighbour joining
consensus tree on 100 bootstrap replicates.

In the bootstrap consensus graphs using neighbour joining and UPGMA (Figures 56 and
57), several nodes had their internal nodes collapsed, causing them to end up in a multifurca-
tion, at the internal node leading to the root. This happens when these appear neighbouring
the same node less than 50% of the trees generated from the bootstrap replicates since we
use a 50% majority rule. Thus, they should be studied further by the domain expert. These
are Trier-Trier 211v 228, Kremsmunster-Stein bei Krems, Brno-Rokycany, Wien-Essingen,
Bamberg-Bamberg, Berlin-Suiczmatt, Mainz-Mainz, Graz-Murz, Graz-Seckau and Munich-
Raitenbuch.

The manuscripts sometimes have the name of the city in which they were written, in the
graphs this is specified as the second name. It seems that those written at the same place
such as those written in Köln and Erfurt tend to appear either as neighbours or very close
together which makes sense. The predictions made by the philologist did not seem to appear
often in the PAUP* outputs. Klosterneuburg and Kremsmunster usually appear fairly close
but not attached to the same internal node.

58

5 Discussion

In this section the results from the previous section are discussed, dataset by dataset. We
start by discussing the artificial datasets generated from the Reuters news articles, followed
by Parzival, Heinrichi and finally Phareta Fidei.

5.1 Artificial Datasets

In the synthetic data experiments (Figures 19-21), the performance of TF-IDF with 1-,2-
,3-grams was compared to the trees based on the reduced word mover’s distance between
FastText, Word2Vec and Glove word embeddings. The tree complexity was increased from
10 to 50 nodes in steps of 10, and generated 100 trees for each increment at 5% edit limit for
the misspellings and the synonym/additive exchange whilst for the paraphrasing experiment
the the portion of sentences paraphrased was increased from 10 to 50% in steps of 10%
with the number of nodes kept constant at 20. All three word embedding methods yielded
very similar results in all cases. It seems that the accuracy increases with the number
of nodes which is unexpected. TF-IDF with 1-,2-,3-grams seems to perform better than
word embedding representations for all cases. Advanced methods such as pre-trained word
embeddings with word mover distance did not yield the best results, although most of the
indirected edges were correctly guessed in all experiments. This is most likely due to the fact
that the synthetic texts generated were extremely similar to one another, thus, traditional
text representations such as TF-IDF with n-grams are more able to identify the changes
made via the transformations used. Word embeddings operate by mainly looking at changes
in context, however, since the context is largely unchanged, the word vectors are not much
affected overall, leading to the algorithm to struggle to tell the difference between the very
similar texts. This can explain why the word embeddings did not perform well for the
synonym exchange and adjective/adverb removal and addition dataset in 20.

Surprisingly, for the misspellings dataset in Figure 19, the word embeddings gave better
results than for the paraphrasing and the synonym exchange dataset, even though word
embedding methods are not designed to distinguish between spelling mistakes since these
do not usually occur in the training vocabulary. Even more surprising was the fact that
FastText achieved the lowest results in all categories, even though this is the only method
which takes the spelling into account. This could be explained along similar lines to those
in the previous paragraph. For misspellings, FastText should yield word vectors close to
those of the correct spelling, thus, the word vectors do not change much from document to
document, making it more difficult to distinguish them. For Glove and Word2Vec, out of
vocabulary words are assigned zero vectors, thus it is easier to distinguish words and their
misspellings.

Another surprise was that the word embedding methods also did not perform better on
the paraphrased datasets as can be seen in Figure 21. This could again be explained by
the fact that the context does not change much when paraphrasing and thus methods based
on word frequency are better at detecting these changes. However, it was also noticed that
the paraphrased sentences are usually very similar to the original sentences, usually only
differing by a few words, sometimes with only one word being exchanged with a synonym.
The edit proportion was based on the number of sentences rather than word count, thus the

59

number of changes were not very consistent. In Figure 21, the accuracy measures for the
word embedding methods seemed to improve with greater edit proportion, most likely due
to the fact that when paraphrasing sentences, too few words were actually changed, leaving
extremely similar documents which word embedding methods may not perform too well on.

It should be noted that the relaxed word mover distance was used for the artificial
datasets. This was done due to computational constraints. Unfortunately, this reduces the
accuracy of the measure [16]. In stemmatics, the tree is reconstructed using the tiniest
differences which when using the relaxed word mover distance, may not be appropriately
captured. In any case, its performance was not too disappointing. Most of the nodes were
neighbours, however, the root was never correctly guessed, leading to bad performance for
the other measures. Having said that, in stemmatology, the most important thing is that the
indirect edges are correct since the root must always be derived by the scholar using prior
knowledge such as the age of the words, the date of the documents and their own knowledge
and intuition.

The ancestries measure seems to have been too strict for this case. Since it compares
the ancestors of the nodes upto the root, if the root is predicted to be incorrect, then this
guarantees an ancestry result of zero. The rooting heuristic seems to work quite well, even
though it may not yield the root, it usually yields a node close to the root.

5.2 Parzival

For Parzival, the phylogenetic methods seemed to work best, especially neighbour joining
and minimum evolution. UPGMA did not give too bad a result which is surprising since since
it yields ultrametric trees, where the branch lengths are all equal from the root node and
the leaves. Since different scribes make different mistakes at different rates, this assumption
is rarely met.

The NLP methods did not perform as well at the PAUP* methods on Parzival, however,
they were still very competitive. That they did not perform so well can be explained by the
fact that most of the positional information is lost when encoding the texts as word vectors or
documents as TF-IDF vectors. Having said that, the graphs produced by all NLP methods
were quite similar and accurate, especially considering that the data had 5 nodes missing out
of 21 and that minimum spanning trees cannot generate latent nodes. The mistakes tended
to be where the latent nodes corresponding to the missing manuscript should have been,
thus, had the entire dataset been available these algorithms probably would have performed
much better. Surprisingly, the word embedding methods outperformed TF-IDF by a small
margin which they did not for the synthetic experiments. This could be explained by the fact
that when humans are copying texts, the changes they make may change the context more
than when done randomly through some algorithm. Another surprise was that the relaxed
word mover’s distance outperformed the word mover’s distance on this dataset when using
all three word embeddings, although by very small margins. TF-IDF was already applied to
this dataset in [9], however, the average signed distance was not applied. Word embeddings
have never been applied to a real stemmatology dataset before, thus this is a new result.

One disadvantage of word vector methods, however, is that one needs to have large pre-
trained models to get good results. For extinct languages such as Old Finnish these usually
are not available and since spelling changed so much throughout history, the models may

60

have been trained on datasets which lack the particular spellings used by the scribes in
sufficient numbers. In any case it was encouraging to see modern NLP methods perform so
well.

5.3 Heinrichi

The phylogenetic methods seem to not work very well in this case. This could be due to the
large number of missing nodes, the contamination or the size of this dataset. On the other
hand, Text Frequency - Inverse Document Frequency seems to have been able to predict the
tree with a very high degree of accuracy as shown in Figure 41. Moreover, the predicted
root Ba is separated from the real root (which in this case is missing), by only two missing
nodes. This was already done in [9], however, the average signed distance was not applied.
This may mean that for real world stemmata, NLP methods may be more robust than
phylogenetics methods. This could also be due to the fact that in our implementation, the
NLP methods yield minimum spanning trees which are more faithful to the multifurcating
nature of stemmata.

5.4 Phareta Fidei

The expanded Phareta Fidei’s minimum weight spanning tree computed from TF-IDF agreed
with the relationships identified by the philologist who provided the dataset. There were
only two variants in between the TF-IDF predicted stemma (Graz Seckau) and the root
predicted by the philologist (Wien 4936). As discussed before, the location of the root
should always be determined by a scholar using their knowledge and intuition. Having said
that, the stemma for Phareta Fidei has never been rigorously studied and this only considers
a very small portion of the entire tradition. Thus, the structure and the root are uncertain,
however, it is quite encouraging to see that this method produces believable results. To the
author’s knowledge, this is the first real-world tradition to which natural language processing
methods have been applied. Encouragingly, the relationships which the philologist noticed
tended to occur in the stemmata as well, both in the 10 variant corpus and in the 28 variant
corpus.

The PAUP* methods yielded similar results to TF-IDF for the 10 variant dataset. In this
reduced dataset Rouen neighbours Roma whilst Klosterneuburg neighbours Kremsmunster
in all methods but UPGMA with and without bootstrapping. The structure of the graphs
was fairly consistent. Meanwhile, for the 28 variant dataset, the PAUP* predictions did not
usually agree with the philologist’s heuristics, although usually the number of nodes between
the predicted pairs is not too large. For example Kremsmunster and Klosterneuburg tend to
be a few nodes away from each other but never attached to the same internal node. This may
suggest that for larger datasets, pylogenetic methods do not work as well as the NLP methods
considered. This could be due to the fact that larger traditions are more likely to involve cases
of contamination and have many multifurcations which cannot be predicted by phylogenetic
methods. Surprisingly, UPGMA agreed perfectly with the philologist’s prediction that the
root was Wien 4936. It should be noted that these are all heuristics and not confirmed since
this tradition was never studied in a stemmatology setting.

61

6 Conclusion

In this project we have developed a pipeline which aligns the words in a given corpus of text
files, turns them into pseudo-DNA sequences and outputs NEXUS files which can be read by
the phylogenetics PAUP* package for stemmatological analysis of any corpus of manuscripts.
On top of this we built another pipeline which calculates the document dissimilarity matrix
between the text files and predicts the stemma using Kruskal’s algorithm to find the minimum
spanning tree, expanding on the work done in [9], by including sentence paraphrasing in the
generation of the artificial datasets and by using the reduced word mover’s distance. All
scripts and datsets were made available at https://github.com/DarZam/Masters-Thesis.

The minimum spanning tree calculated using the cosine distance and Text Frequency -
Inverse Document Frequency with 1-,2-,3- grams or using word embeddings seems to yield
good results for the synthetic datasets and the results are very easy to read. For Parzival,
word vector methods also gave good results, even beating those from Text Frequency -
Inverse Document Frequency albeit by a small margin, however the phylogenetic methods
all managed to outperform the NLP methods with the exception of UPGMA and UPGMA
with bootstrap (although Glove with the reduced word mover’s distance achieved a higher
average signed distance than maximum parsimony by a very small margin) 1. Moreover,
the minimum cost heuristic [9] seems to yield consistently good results with all of the NLP
methods considered. To the author’s knowledge, this was the first time that the word
mover’s distance was used for stemmatology, demonstrating that natural language processing
methods are indeed viable for this application. Having said that, the neighbour joining
method with bootstrap yielded the best results for Parzival. It seems that TF-IDF with
minimum spanning trees is a good starting hypothesis from which a skilled philologist would
be able to reconstruct the true stemma.

Having said that, this is not a final solution for stemmatology, as there are several things
which need to be considered depending on the corpus used. The methods used are incapable
of incorporating information such as the date of publication, no assumptions on the direc-
tionality of the changes between the documents (such as newer words replacing older words)
and the topology is restricted to trees.

6.1 Future Works

The main limitation of the artificial dataset experiments is that it is very time consuming to
generate the datasets and thus it is difficult to perform these experiments on a mass scale.
One idea would be to parallelise the process and generate the datasets using a computer
cluster. This may also be useful when applying more time consuming methods such as the
word mover’s distance. Different tree/graph structures could be considered such as direct
acyclic graphs to reconstruct contaminated texts or Steiner trees to predict where the location
of the missing manuscripts should be [1].

Another direction would be to used different transformations to generate the datasets.
The dataset generator used could incorporate new transformations quite easily. In particular
it could be fruitful to conduct larger scale experiments with more varied text document
lengths and larger numbers of nodes, missing nodes, missing texts and contamination. In
our case, we only used text files of word counts of 500-750 due to computational constraints.

62

Using a wider range would allow a proper study of how the document length relates to the
accuracy.

It could also be interesting to perform experiments conducted on datasets written by
humans such as Parzival where the stemma is known for certain. Such open source datasets
seem to be lacking.

One could also use other packages than PAUP* for phylogenetic inferencing. MrBayes
[37] is a Bayesian phylogenetics program and is considered the standard model of choice
across a wide range of phylogenetic and evolutionary models. MrBayes relies on variants
of Markov chain Monte Carlo methods to estimate the posterior distribution of model pa-
rameters. One major limitation of MrBayes is that it is designed for Linux systems and
that it can only read DNA and protein sequences rather than the pseudo-DNA sequences
we generate in this project. The author of this script is aware of only a few papers which
used Bayesian phylogenetic methods for stemmatology. In [38] BEAST 2 package [39] was
used with collations encoded in TEI XML using the teiphy Python package to convert TEI
XML to BEAST XML. Their results were consistent with established findings on the textual
tradition they considered.

SplitsTree [36] is another popular program for computing unrooted phylogenetic networks
from molecular sequence data. As an input it takes distance matrices or a set of trees and
outputs a phylogenetic tree or network. Methods include split decomposition, neighbor-net,
consensus networks, super networks methods or methods for computing hybridization or
simple recombination networks. This makes it able to detect contamination however, the
graph outputs are generally very difficult to interpret. Once again, this package was not able
to read our pseudo-DNA sequences. A limitation of this package is that it can only read
DNA and protein data and thus there is a much more limited number of character states
that can be used than with PAUP*.

Another idea would be to investigate different methods for rooting the stemma. [40]
suggests a method which relies on the directionality of changes. Correctly guessing all
directions of the edges in a tree would naturally lead to the root. Some changes are less
likely to occur than others. The addition of text is less likely to occur than transpositions
and deletion of text and thus, from this one can guess the direction of textual evolution. In
[40], it is shown that this method can be effective in predicting the root.

63

References

[1] P. Roelli. (2020). Handbook of stemmatology: History, methodology, digital approaches.
Berlin, Germany: De Gruyter.

[2] C. Liu, C. Chen, J. Han, and P. S. Yu. (2006) “GPLAG: Detection of software plagiarism
by program dependence graph analysis,” Proc. KDD 2006, pp. 872–881.

[3] J. Sun, S. Papadimitriou, C.-Y. Lin, N. Cao, S. Liu, W. Qian. (2009). “MultiVis: Content-
based social network exploration through multi-way visual analysis,” Proc. SDM 2009,
pp. 1063–1074

[4] S. Wehner. (2007). “Analyzing worms and network traffic using compression,” J. Comp.
Secur., vol. 15, pp. 303–320.

[5] M. Spencer and C. J. Howe. (2001). ”Estimating distances between manuscripts based
on copying errors,” Literary and Linguistic Computing, vol. 16, p. 467–484.

[6] W. M. Fitch. (1971). ”Toward defining the course of evolution: minimum change for a
specific tree topology,” Systematic Biology, vol. 20, p. 406–416.

[7] J. Felsenstein, (2004). Inferring Phylogenies. Sinauer Associates.

[8] P. Robinson, R. J. and O’Hara. (1992). Report on the textual criticism challenge 1991.
Bryn Mawr Classical Review, 3(4): 331–7.

[9] G.D. Marmerola, M. A. Oikawa, Z. Dias, S. Goldenstein, A. Rocha. (2006). On the
Reconstruction of Text Phylogeny Trees: Evaluation and Analysis of Textual Rela-
tionships. PLoS One. 2016 Dec 19;11(12):e0167822. doi: 10.1371/journal.pone.0167822.
PMID: 27992446; PMCID: PMC5167249.

[10] B. Shen, C. W. Forstall, A. D. R. Rocha & W. J. Scheirer. (2018). ”Practical Text
Phylogeny for Real-World Settings,” in IEEE Access, vol. 6, pp. 41002-41012, doi:
10.1109/ACCESS.2018.2856865.

[11] D. Jurafsky, & J. H. Martin. (2024). Speech and Language Processing (rd edition draft).
Obained from https://web.stanford.edu/ jurafsky/slp3/.

[12] G. Salton & C. Buckley. (1988) Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513–523.

[13] T. Mikolov, K. Chen, G. Corrado, & J. Dean. (2013). Efficient estimation of word
representations in vector space. Proceedings of the International Conference on Learning
Representations.

[14] P. Bojanowski, E. Grave, A. Joulin, & T. Mikolov. (2017). Enriching Word Vectors with
Subword Information. Transactions of the Association for Computational Linguistics, 5,
135-146.

64

[15] J. Pennington, R. Socher, & C. D. Manning. (2014). GloVe: Global Vectors
for Word Representation. Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 1532-1543. Data obtained from:
https://nlp.stanford.edu/projects/glove/

[16] M. J. Kusner, Y. Sun, N. I. Kolkin, & K. Q. Weinberger. (2015). From word embeddings
to document distances. In Proceedings of the 32nd International Conference on Machine
Learning (pp. 957-966).

[17] F. J. Damerau. (March 1964), ”A technique for computer detection and cor-
rection of spelling errors”, Communications of the ACM, 7 (3): 171–176,
doi:10.1145/363958.363994, S2CID 7713345

[18] N. Saitou, & M. Nei. (1987) ”The neighbor-joining method: a new method for recon-
structing phylogenetic trees”: Molecular Biology and Evolution (Volume 4, Issue 4, Pages
406-425).

[19] R. H. Dekker, & G. Middell. (2011). Computer-Supported Collation with CollateX:
Managing Textual Variance in an Environment with Varying Requirements. Supporting
Digital Humanities 2011. University of Copenhagen, Denmark. 17-18 November 2011.

[20] D. L. Swofford. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

[21] E. Talevich, B. M. Invergo, P. J. Cock, et al. (2012). Bio.Phylo: A unified toolkit for pro-
cessing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinformatics
13, 209. https://doi.org/10.1186/1471-2105-13-209

[22] A. A. Hagberg, D. A. Schult, & P. J. Swart. (2008). Exploring Network Structure,
Dynamics, and Function using NetworkX, Proceedings of the 7th Python in Science
conference (SciPy 2008), G. Varoquaux, T. Vaught, J. Millman (Eds.), pp. 11–15.

[23] R. Řeh̊uřek, & P. Sojka. (2010). Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks (pp. 45-50). Valletta, Malta: ELRA. Retrieved from
http://is.muni.cz/publication/884893/en.

[24] https://www.cs.helsinki.fi/u/ttonteri/casc/data.html

[25] M. Lichman. (2013). UCI Machine Learning Repository. [Online]. Available:
http://archive.ics.uci.edu/ml

[26] C. Fellbaum (Ed.). (1998). WordNet: An electronic lexical database. Cambridge, MA:
MIT Press.

[27] R. Mitton. Corpora of misspellings for download; (1985). Available:
http://www.dcs.bbk.ac.uk/ roger/ corpora.html

65

[28] D. Holbrook, (1964). English for the Rejected: Training Literacy in the Lower Streams
of the Secondary School, Cambridge University Press.

[29] K. Atkinson: GNU Aspell spellchecker. Available: http://aspell.net/

[30] Wikipedia: The Free Encyclopedia. Common Misspellings. Available: https://en.

wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines

[31] S. Bird, E. Klein, E. Loper. (2009). Natural Language Processing with Python. O’Reilly.

[32] Y. Zhang, J. Baldridge, & L. He. (2019). PAWS: Paraphrase Adversaries from Word
Scrambling. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers) (pp. 1298-1308). Minneapolis, Minnesota: Association for
Computational Linguistics. doi:10.18653/v1/N19-1131

[33] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin (2018). Advances in
Pre-Training Distributed Word Representations. Proceedings of the International Con-
ference on Language Resources and Evaluation (LREC 2018). Data obtained from:
https://fasttext.cc/docs/en/english-vectors.html

[34] T. Roos, T. Heikkilä. (2009). Evaluating methods for computer-assisted stemmatology
using artificial benchmark data sets, Literary and Linguistic Computing, Volume 24,
Issue 4, December 2009, Pages 417–433, https://doi.org/10.1093/llc/fqp002.

[35] Z. Dias, A. Rocha, S. Goldenstein. (2012). Image Phylogeny by Minimal Spanning
Trees. IEEE Transactions on Information Forensics and Security. 2012; 7(2):774±788.
doi: 10.1109/TIFS.2011.2169959

[36] D.H. Huson, & D. Bryant. (2006). Application of Phylogenetic Networks in Evolutionary
Studies. Molecular Biology and Evolution, 23(2), 254-267.

[37] F. Ronquist, and J. P. Huelsenbeck. (2003). MRBAYES 3: Bayesian phylogenetic infer-
ence under mixed models. Bioinformatics 19:1572-1574.

[38] J. McCollum & R. Turnbull. (2024) Using Bayesian phylogenetics to infer manuscript
transmission history, Digital Scholarship in the Humanities, Volume 39, Issue 1, April
2024, Pages 258–279, https://doi.org/10.1093/llc/fqad089

[39] R. Bouckaert, J. Heled, D. Kühnert, T. Vaughan, C. H. Wu, D. Xie, et al. (2014).
BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computa-
tional Biology, 10(4): e1003537. doi:10.1371/journal.pcbi.1003537.

[40] A. Hoenen. (2019). “Rooting through Direction - New and Old Approaches”. In DHd
2019: Digital Humanities; Multimedial & Multimodal: Konferenzabstracts, edited by
Patrick Sahle.

66

