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Glossary 
 

Word Definition 

OSL Open-Source Leg 2.0 

Active Joint A prosthetic joint that provides external power through motors. 

Passive Joint A prosthetic joint that allows for no movement. 

Gait Cycle Repetitive human walking pattern (cyclic). 

BMS Battery Measurement System 

BLDC Brushless Direct Current 

FSM Finite State Machine 
 
 

Abstract 
In front of you lies a master project report, on the development of the best control 
strategy for the Open-Source Leg 2.0 at the ProtheseAcademie. The report will take 
you through an introduction and methods section which will highlight how optimal 
and most feasible use cases were selected. The different control strategies will then 
be evaluated to see which is most suitable for the chosen applications. The report was 
written as an intern at the ProtheseAcademie department of UMCG in Groningen, 
where the OSL has been assembled and will continue to be worked with when this 
project is concluded. The report has been written to the standards of the engineering 
department of Rijksuniversiteit Groningen, and has been worked on since mid-April 
for 10.5 weeks until the beginning period of July. I would like to thank both my 
supervisors at the ProtheseAcademie, Han Houdijk and Verena Schuurmans, for 
their guidance and assistance throughout the project, pointing me in the right 
direction. Alongside this project I have had the pleasure of being able to help two 
PhD students with their projects, who I would like to thank for the experience. 
Chengxiang (Oran) Liu, who is working on the ‘MyLeg’ prosthesis, and Thijs Tankink 
who is working on optimising an ankle prosthesis.   
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1. Introduction 
The development of lower extremity prosthetics has seen significant advancements 
over the past decade, driven by enhancing user mobility and improving quality of life 
for individuals with limb impairments [1]. Despite these advancements, the 
integration and collaboration among various research groups working on prosthetics 
have often been fragmented. This is due to the fact that all researchers must build their 
own test platform, such as their own prosthetic, limiting the full potential of collective 
work. Leg prosthetics come in different forms, the two main ones being regular 
mechanical prosthetics with passive joints, and microprocessor-controlled prosthesis 
with active joints. A combination of passive and active joints is also a possibility and 
regular occurrence, as most active knee prosthetics have a passive ankle. In response 
to the challenge of everyone conducting individual research, an open-source robotic 
leg, the Open-Source Leg (OSL) 2.0, a microprocessor-controlled leg has been 
developed, serving as a platform to push the boundaries of prosthetic research and 
encourage collaboration across multiple research domains [2]. It bridges the gap 
between isolated research projects by providing a platform that all backgrounds can 
access. 

One of the most significant challenges in the development of lower extremity 
prosthetics has been the control of the leg prosthesis. Effective control strategies are 
crucial for ensuring that the joints in the prosthetic leg respond accurately and 
intuitively to the user’s movements. These joints should mimic the biological neuro-
muscular structures that are missing when a leg is amputated. However, achieving this 
level of control has been a major drawback, hindering the full potential and usability 
of these devices [3]. Addressing this challenge is critical to optimising the functionality 
and user experience of prosthetic legs. The Open-Source Leg allows us to tackle this 
challenge by incorporating advanced control systems that allow real-time adjustments 
and responses to movements through feedback. This enhances comfort, usability, and 
confidence of the user when walking with a robotic leg. 

The goal for the Open-Source Leg is to allow many researchers around the world to be 
involved and contribute to the control of robotic leg prosthesis and any problems 
surrounding this. All hardware and software can be obtained from the Open-Source 
website, improving the chances of these control methods being shared and 
implemented in the real world after developments are completed. This means that 
even those without specialised facilities, such as movement scientists, can develop 
their own mechatronics system. 

This report outlines the approach taken to determine the optimal use cases and 
corresponding control strategy for the robotic leg. Through a series of stakeholder 
interviews involving potential users, engineers, researchers, technicians and insurance 
representatives, insight was gathered into the needs and preferences of the prosthetic 
user community. It will delve into the methodology for stakeholder discussions, 
present the key findings from the interviews, and discuss how it influences the 
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direction of the OSL project at the ProtheseAcademie. This includes the development 
of a control strategy to optimise the robotic leg’s performance for the identified use 
cases. Through this, the aim is to find a clear path forward for the development and 
application of the open-source robotic leg. 

1.1 Gait Cycle 

Before delving into what control strategy is best suited for various use cases, it is 
crucial to first understand the intricacies of human gait, as it will need to be replicated 
with the OSL. The natural walking pattern, is a highly coordinated and complex 
process involving the integration of multiple physiological systems. It involves the 
rhythmic and cyclical motion of the limbs, the balance and posture adjustments by the 
core, and the dynamic interaction with the ground. By understanding the fundamental 
mechanics and phases of human gait, the requirements and challenges faced when 
designing effective control strategies for applications such as prosthetics can be 
tackled [4]. Figure 1 shows the different phases of human gait. Figure 2 shows the 
leg angles. 

 

 

 

 

 

 

Stance Phase [6]: 

1) Heel Strike – Knee = 0° (full extension), Ankle = 0° (neutral) 
2) Loading Response – Knee = 15° (flexion), Ankle = 0 - 5° 

(plantarflexion) 
3) Mid-Stance – Knee = 5° (flexion), Ankle = 5° (dorsiflexion) 
4) Terminal Stance – Knee = 0° (full extension), Ankle = 0° 

(neutral) 
5) Pre-Swing – Knee = 30° (flexion), Ankle = 20° 

(plantarflexion) 

Swing Phase [6]: 

1) Toe-Off – Knee = 60° (flexion), Ankle = 10° (plantarflexion) 
2) Mid-Swing – Knee = moves to 30° (flexion), Ankle = 0° 

(neutral) 
3) Terminal Swing – Knee = 0° (full extension), Ankle = 0° 

(neutral) 

θK

θL

θA

Leg
Knee
Ankle

Figure 2 - Gait Leg Angles 

Figure 1 - Gait Cycle [5] 
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The list below shows gait requirements needed for the Open-Source Leg 2.0: 

- The prosthetic must be able to support the load from the user throughout all 
phases of gait. 

- The knee joint of the prosthetic must allow at least 60° of flexion. 
- The ankle joint of the prosthetic must allow at least 5° of dorsiflexion. 
- The ankle joint of the prosthetic must allow at least 20° of plantarflexion. 

2. Problem Analysis 
 
2.1 Problem Definition 

The primary objective of this project is to identify the most relevant use cases through 
discussion with a range of stakeholders, and to then investigate to which extent these 
use cases are feasible for the open-source robotic leg. This use case will guide the 
development and application of the prosthetic, ensuring it tackles the most pressing 
needs within the prosthetic user community while also serving as a versatile tool for 
researchers. In addition to identifying these use cases this project will also focus on 
exploring which control strategy is best suited and available in the OSL for the given 
applications. The control strategy is a critical component, as it dictates how the robotic 
leg responds to user inputs, ultimately influencing the effectiveness. The parameters 
should be easily adjustable, enabling the OSL to be used across a variety of different 
applications. 

2.2 Overview Open-Source Leg 2.0 

The Open-Source Leg 2.0 can be seen in Figure 3. It is 
primarily constructed from aluminium and stainless steel. 
The mechanical system is composed of 40 machined parts, 
18 screws, 2 actuators to aid the movement of both joints, 
and 2 batteries to supply each of them with power. It is 
designed to be easy to manufacture, assemble, and repair. 
The entire system weighs less than 5.4 kg, including both 
knee and ankle joints fitted with a foot attachment. The cost 
of the Open-Source Leg ranges from $9,000 to $19,000, 
depending on whether both the knee and ankle are being 
used as active joints or passive (degrees of freedom), and the 
sensing options chosen when building it, which is dependent 
on the control strategy selected. The knee and ankle joints 
are mechanically identical, which simplifies assembly, 
repair, and allows them to be controlled in the same way. 

The minimum build height of the system is 451 mm, 
measured from the ground to the top of the knee pyramid 
adapter with a flat foot attachment. The height can be adjusted by changing the shaft 

Figure 3 - Open-Source Leg 2.0 [2] 

± 30°
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ActPack 
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Load Cell 



 
 

 6 

length between the two joints. Unfortunately, the shaft is not adjustable, so it must be 
entirely replaced.  The knee joint has a range of motion of 120° for flexion in the sagittal 
plane, while the ankle joint has a range of ± 30° for plantar / dorsiflexion also in the 
sagittal plane. Both joints support series elasticity, which can be achieved by fitting 
custom-designed radial springs without increasing the system's volume. Series elastic 
actuators, unlike rigid actuators, contain an elastic element in series with the 
mechanical energy source output. This gives the actuator passive mechanical energy 
storage, tolerance to impact loads, and low mechanical output impedance. However, 
impedance is only low if the springs are able to support the loads generated [7].  

The control system of the Open-Source Leg includes 4 encoders to convert information 
from one format to another, 2 current sensors (1 at each joint), 2 inertial measurement 
units (1 at each joint) to measure orientation, acceleration, angular rates and 
gravitational forces.  A load cell is used below the knee joint to measure load applied 
during walking, and a Raspberry Pi, which is a single-board computer, is used to 
control the electronic components. It is designed to be easy to sense, program, and 
control. The system can deliver up to 145 Nm of peak instantaneous torque at both the 
knee and ankle. The highest torque during human gait occurs when descending stairs, 
with a torque value of approximately 1.3 Nm/kg for the knee, and 1.55 Nm/kg for the 
ankle [8]. This means the OSL can support a user of up to 93 kg. It supports a variety 
of additional sensors and actuators through SPI, UART, I2C, and USB communication 
protocols. Communication protocols are a set of rules on how to transfer or exchange 
data. Each protocol serves a different purpose, and is chosen based on specific 
requirements such as power consumption, complexity, speed, etc. Safety is a priority, 
with built-in protections such as Battery I2t, to ensure the batteries can handle thermal 
load without overheating. Motor I2t is implemented to similarly stops the motor from 
overheating, and Voltage Limits to set maximum and minimum voltage for these 
components to safeguard both the user and the system. 

The Open-Source Leg is a self-contained system with all necessary electronics 
embedded. It exhibits less than 0.045° of backlash at both the knee and ankle joints. 
The system supports various control strategies, including voltage, current, position, 
and impedance, for both joints. Developers can program the system using Python, 
C/C++, and MATLAB [2]. 

2.2.1 Adjustable Parameters 

In this section, the adjustable parameters of the OSL will be discussed. These 
parameters can be fine-tuned to enhance the prosthetic's performance, ensuring it 
meets the specific needs and preferences of the user. Table 1 shows an overview of 
the adjustable parameters along with a description for each. Other parameters that 
are not controlled specifically by software, but can still have influence on the OSL can 
be seen below the table. 
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Table 1 - Adjustable Parameters OSL 

Parameters Description 

Joint Target 
Angles 

Adjusting the desired flexion and extension angle of the knee joint, and 
dorsiflexion and plantarflexion angle of the ankle joint. 

Threshold 
Angles 

Angle where transition occurs from one phase to another (mid / late 
stance and swing). 

Joint Stiffness Modifying the resistance to movement in the knee and ankle joints. 

Joint Damping Adjusting the energy dissipation rate in the knee and ankle joints. 

Torque Limits Setting the maximum and minimum torque that can be applied by the 
knee and ankle actuator. 

Trajectory Planned movement path for the knee and ankle joint during different 
activities. 

Gain Settings 

 

[9] 

Gains for position, velocity, and force feedback control for the knee and 
ankle joints. 

Proportional Gain – Drives position error to zero. 

Derivative Gain – Drives derivative of error to zero. 

Integral Gain – Drives total error accumulated to zero. 

 

Equilibrium – Alignment of Components 

Usually this would include the alignment of the socket, knee, ankle, shaft, and the 
foot attachment. However, the OSL does not allow alignment of the ankle, knee, and 
shaft, as these are fixed. Therefore, the only components that can be adjusted are the 
socket (geometry, but also attachment site and orientation), foot attachment, and the 
length of the shaft between joints. Joint angles may also be considered a part of the 
leg’s equilibrium. 
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Gait 

This includes the timing parameters for different phases of the gait cycle (stance and 
swing phase), and adjusting the length and frequency of steps (speed) taken by the 
prosthetic leg. 

2.2.2 Current Control Options 

Before being able to decide the best control strategy for the OSL, research was 
conducted to gain a better understanding of all the possible options. As outlined in 
Section 2.2.0, the system supports multiple control modes for both the knee and 
ankle joints, including voltage, current, position, and impedance, to generate the gait 
pattern desired by a specific use case. An overview of these control strategies is 
provided below, Table 2 highlights their respective advantages and disadvantages. 
[10] [11] 

Voltage Control - Voltage control involves regulating the voltage supplied to the 
motors or actuators by the two batteries specifically in the Open-Source Leg. By 
changing the voltage, you can control the speed and torque of the motor. Higher 
voltage typically means higher speed or more force. An example of this is that when a 
user is walking up a set of stairs, more force is required, so more voltage must be 
generated. [12] [13] 

Current Control - Current control involves precisely regulating the current flowing 
through the motors or actuators. In the OSL current is detected with two current 
sensors. Current is directly related to the torque or force produced by a motor, so this 
control strategy is crucial for applications that require torque control. By controlling 
the current, you can control the force the motor applies. [12] 

Position Control - Position control involves regulating the exact position of the 
robotic leg. It uses sensors (like encoders) that measure and provide feedback about 
the leg's position and adjusts the motor's actions to achieve the desired position. The 
OSL has 2 inertial measurement units (IMUs) to detect orientation and other variables 
[14]. In general position control is accurate, however response time, accuracy, and 
error are heavily dependent on how advanced the sensors are and the control system 
chosen. Calibration is also important. 

Impedance Control - Impedance control manages the dynamic interaction between 
the robotic leg and its environment. It combines elements of position and force control 
to adjust the leg's behaviour based on external forces. The leg can be made to act 
"softer" or "stiffer" depending on the situation, by changing specific parameters. These 
specific parameters include stiffness (K), damping (D), and inertia (M). [14] 
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Table 2 - Advantages & disadvantages of control strategies 

Control 
Strategy 

Advantages Disadvantages 

 

Voltage 

Cost-effective, and simple 
to implement. Makes it a 
valuable option for many 
practical applications. 

Can be difficult to control the exact position or 
speed of the leg by adjusting only the voltage. 
Not very precise as the relationship between 
voltage and output is often not linear, but 
influenced by various other factors. Has no 
feedback mechanism, and is less energy 
efficient. 

 

Current 

Better for controlling force 
and torque when 
compared to voltage 
control. This makes the 
system more stable. 

Needs more advanced sensors and feedback 
systems, so not perfect for precise position 
control. May lack sensor resolution and 
sensitivity needed. Inadequate feedback can 
result in errors or delays. Expensive hardware. 

 

Position 

Can make the robotic leg 
move to an exact location, 
so very precise and 
repeatable. The fact it is 
precise also increases 
safety. 

Can be complex to implement as it requires 
precise sensors and feedback systems similar to 
current control. If sensors and feedback are not 
advanced enough it can lead to reduced 
performance. Expensive hardware. 

 

Impedance 

Great for tasks that require 
interaction with 
unpredictable 
environments as has good 
adaptability. This also 
means it is safe, versatile, 
and robust. 

Requires good models of both the robot and its 
environment, as it must capture the interaction 
between the robot and surroundings. Complex 
and computationally intensive as must 
continuously compute desired impedance value 
(inertia, stiffness, damping), and optimise 
tuning of these parameters, so the actuator 
outputs the required force / torque. This 
requires accurate and sensitive sensors. 
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2.3 Market Research 
2.3.1 Optimisation Options 

Before selecting the best use case, it is essential to explore optimisation possibilities 
and applicable parameters for the Open-Source Leg. This was done by conducting 
market research. Currently there is not general consensus on what should be 
optimised in a prosthetic leg. Many prosthetic optimisations focus on metabolic or 
energy consumption, which can be measured with spirometry. Additionally, user 
feedback based on physical fatigue and comfort can provide valuable insights. 
Comfort is an optimisation in itself, which is influenced by load and stress on the 
user.  Another factor to optimise is walking symmetry and step length, ensuring they 
are as close to the natural walking pattern as possible. By thoroughly investigating 
these aspects, the most effective optimisations for each use case can be determined. 

2.4 Requirements 

Table 3 shows an overview of the requirements for the OSL before interviews. 

Table 3 - Requirements 

 Description 

User - The product should be controlled to be capable of achieving K-Level 
3 use cases when optimised (unrestricted outdoor walking) [15]. 

- The selected control system should enable any user to achieve their 
desired position or motion. 

Function - The product must fit all patients. The control system must allow 
adjustments to be made without influencing the accuracy and 
responsiveness of the prosthetic leg (changing socket or shaft). 

- The control of the product must be adaptable to cater to all 
patients. This can be done by altering parameters and noting 
influence. 

Safety - The product, including all electrical components, must conform 
with medical electrical ISO standards (IEC 80601-2-78:019) [16] 

- The OSL should be able to be optimised for all applications whilst 
maintaining safety standards. 

Ergonomics - The control of the product must assist patients with an above-knee, 
transfemoral amputation. 

- The control method of the product should be able to control the 
prosthetic on both the right and left side of the body. 



 
 

 11 

2.5 Stakeholder Analysis  

To be better prepared for the stakeholder interviews, such as knowing what 
questions to ask, an overview was made for each stakeholder with their expected 
thoughts and demands for the OSL. This can be seen in Table 4. Stakeholders are 
essential to gain multiple opinions from a wide range of experts from different 
disciplines. 

Table 4 - Stakeholder Analysis 

Stakeholder Focus Expectations Conclusions 

Insurance 
Representative 

Cost-effectiveness, 
reimbursement 
processes, and 

coverage policies 
 

Information on cost, 
long-term benefits, and 
insurance coverage for 

the prosthetic 
 

Whether the tool is 
financially viable and 
fits within coverage 

policies 
 

Researcher Developing new 
technologies and 
methodologies 

 

Technical 
specifications, research 
data, and potential for 

future innovations 
 

Interested in the 
scientific and 
technological 

advancement the tool 
represents 

 

Orthopaedic 
Technician 

Fitting and 
adjusting prosthetic 

devices 

 

Usability, adjustability, 
and maintenance of the 

prosthetic tool 

Ensures tool is 
effectively integrated 
and customised for 

patients 

Engineer Design, materials, 
and functionality 

 

Engineering data, 
material properties, 

and performance 
metrics 

 

Evaluate technical 
integrity and 

innovative aspects of 
the design 

 

Rehabilitation 
Doctor 

Patient recovery 
and therapy 

 

Tools impact on patient 
rehabilitation, ease of 

use, and patient 
outcomes 

 

Ensures tool aids in 
effective patient 

recovery and 
improves quality of 

life 
 

Prosthetic 
Users 

Actual users of the 
prosthetic leg tool 

 

Comfort, ease of use, 
durability, and 

improved mobility 
 

Feedback for 
understanding real-
world efficiency and 

user satisfaction 
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3. Methods 
To discover what the needs of the Open-Source robotic leg are for its potential users, 
a series of interviews were conducted with a wide range of stakeholders, as prosthetics 
is a multidisciplinary field. These interviews aimed to gather insights into how 
different stakeholders would utilise the robotic leg and to collaboratively brainstorm 
ideas for its application. Discussing with a broad spectrum of stakeholders ensured 
that all possible uses were covered, capturing an understanding of specific 
requirements, and limitations. This collaborative approach enabled the identification 
of practical use cases that will inform the development and optimisation of the control 
strategy and software integration, which was the outcome of this part of the project. 
Before the interviews, each participant received a presentation on the project and the 
Open-Source Leg (OSL) to ensure a common understanding and facilitate more 
insightful responses. The questions asked from this presentation can be seen in 
Appendix I. Stakeholders were strategically chosen from a diverse array of relevant 
disciplines, including orthopaedic technicians, insurance representatives, engineers, 
rehabilitation doctors, prosthetic users, and researchers with expertise in the field. A 
summary of what was discussed with each stakeholder can be seen below. 

3.1 Stakeholder Interviews 
3.1.1 Insurance Representative (Tanja Bastiaansen – CZ) 

During the meeting with Tanja, an insurance representative, Tanja noted that this 
prosthetic is currently too heavy, bulky, and expensive for regular use by amputees. 
Although it is primarily used as a research instrument, Tanja suggested it could be 
more effectively utilised during the provision process in a trial phase. 

Specifically, Tanja recommended using the Open-Source Leg 2.0 to compare knee and 
ankle joints with different components and software. This approach is feasible because 
the leg's components are quickly and easily interchangeable, but more importantly 
that the OSL actuators can simulate other commercially available components. 
However, since the leg is not intended to be a definitive long-term solution, it will not 
be covered by insurance. 

To implement this use-case, a protocol must be developed to ensure the smooth 
changing of electrical components such as sensors, and mechanical ones like the 
shaft/pylon and the foot. Additionally, there should be a mechanism for switching 
between different control scripts or software versions. 

3.1.2 Researcher (Bob van der Windt– TU Delft) 

During the meeting with Bob, a researcher, potential applications for the Open-Source 
Leg 2.0 (OSL) were discussed. Bob outlined a few key areas where the OSL could be 
beneficial: 
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The Open-Source Leg 2.0 could be used for a number of different applications. One 
use is in developing different walking algorithms for the knee and ankle joint during 
walking, enabling analysis of their impact on user gait patterns. By analysing how this 
relationship between joints affects the user's gait, researchers can better understand 
and improve walking patterns for prosthetic users. 

Another potential application could focus on the dynamics of standing up from a 
sitting position and vice versa, rather than only looking on gait. By altering the torque 
in the knee joint, researchers can study its impact on these movements, and find the 
torque required. This is especially relevant to Bob’s current research, which is aimed 
at developing a prosthetic specifically designed to assist with these motions. 

A different suggestion was to use the leg as a decision-making tool for fitting 
prosthetics in hospitals. By having patients wear the OSL and adjusting its parameters, 
clinicians can determine the optimal conditions for each patient. However, it is 
important to consider that the OSL is heavier than most commercial prosthetics, which 
must be considered in this application. 

The final use case mentioned would be to test software. Bob mentioned his work on 
the ERiK leg, which has an unwanted button on the front of the thigh part. If the OSL 
could be used to develop a controller that replicates the function of this button, it could 
then be implemented into the ERiK leg, enhancing its usability. 

3.1.3 Orthopaedic Technician (Jeroen Olsman – OIM) 

In the meeting with Jeroen, an Orthopaedic Technician, several potential uses for the 
Open-Source Leg 2.0 (OSL) were explored. Jeroen highlighted the following key 
points: 

The Open-Source Leg 2.0 could be used as a tool to compare different components and 
hardware or as a decision-making tool for a client's prosthetic needs. Currently, 
opinions are subjective and rely on the experience of the technician, but with the OSL, 
these could be turned into objective assessments. This objectivity could be particularly 
beneficial in improving the confidence of new technicians, as it means there is less 
need for years of experience. 

Using the OSL in the provision process, which currently involves a lot of trial and error, 
could significantly reduce the need to construct multiple prosthetics. This approach 
would make the process more efficient and less resource-intensive. 

While most prosthetics are designed to be lightweight, the OSL is quite heavy. To 
address this, Jeroen suggested the possibility of implementing a handicap factor. This 
adjustment would compensate for the weight difference between the OSL and the final 
prosthetic chosen for the user. 
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3.1.4 Engineer (Herman van der Kooij – Universiteit Twente) 

In the meeting with Herman, he suggested the potential of the Open-Source Leg 2.0 
as a development tool for creating new interfaces and controllers for various different 
leg prosthetics. Currently, the testing process is expensive due to the need for 
acquiring different components and hardware. Using the OSL could significantly 
reduce costs by reducing testing to a single leg, thereby minimising the need to 
purchase numerous components. To make implementation across different 
prosthetics easier, Herman recommended having a universal software solution 
alongside the OSL. However, it's important to note that the OSL currently lacks 
certification, which may impact its broader use. 

3.1.5 Rehabilitation Doctor (Aline Vrieling – UMCG) 

In the meeting with Aline, she suggested that the Open-Source Leg 2.0 can serve as a 
crucial tool during the start-up phase of prosthetics, aiding in the selection of optimal 
options for the provision process. Currently, most rehabilitation prosthetics are 
passive and assessed visually, lacking precise measurements from sensors for accurate 
feedback to doctors. Various joint options are borrowed for testing purposes. With the 
OSL, parameters of these joints can be simulated to assess them and compare against 
alternatives, and it can even operate in passive mode for comparison with mechanical 
prosthetics. 

Establishing clear instructions and protocols will be essential to enable easy parameter 
and component adjustments by rehabilitation doctors and others. However, the 
impact of the OSL's weight and distribution needs consideration, alongside its 
capability to accommodate different sockets. Additionally, achieving CE certification 
is crucial. 

3.1.6 Prosthetic Users (Johan, Wybe – ProtheseAcademie) 

Unlike most other stakeholders, Johan believes that the OSL is not too heavy to be 
used as a standard leg prosthetic. He states that if the OSL can reduce fatigue and 
function well as a prosthetic, its weight and aesthetics are of secondary importance. 
Johan, who uses a socket prosthetic himself, emphasises the importance of the type of 
socket used, such as vacuum or pin lock. He also believes the prototype is not too 
expensive compared to other prosthetics. Johan suggests that the OSL could be 
particularly beneficial for beginner prosthetic users. Currently, mechanical legs are 
used to introduce new users; however, Johan disagrees with this approach, opting 
instead for an adjustable leg tailored to the specific needs of the user. 

Wybe, on the other hand, believes that the OSL should be used as a tool to compare 
both microprocessor-controlled and mechanical prosthetics (with a passive mode). 
Unlike Johan, Wybe uses an osseointegration prosthetic, so the optimal fitting of a 
socket is not a concern for him. While he thinks that comparison is a valuable 
application for the OSL, he thinks that the initial highest priority is ensuring the leg 
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functions properly. Once that is achieved, different use cases can be tested to 
determine the best application. Wybe suggests that the OSL should be tested by 
experienced users who are comfortable and not afraid of trying new technologies. 

When asked about current limitations in leg prosthetics and their wishes for future 
developments, both mentioned the difficulty of walking on terrain with varying 
heights. They believe this could be improved with better suspension, as the current 
method of compensating for height differences is to bend the prosthetic knee. I believe 
that having two active joints, as opposed to the current passive ankle, would make 
adjustments easier since both joints could change angles. Additionally, they expressed 
a desire for the leg to be waterproof and able to react to resistance, which they currently 
lack. 

3.2 Stakeholder Summary 

Table 5 shows a summary of the various opinions from different stakeholders on 
what the application of the OSL should be. 
 

Table 5 - Summary Stakeholder Interviews 

Stakeholder Opinion OSL Application 

Insurance 
Representative 

Testing / Comparison Tool 

Researcher Gait Analysis (algorithms), Decision-Making Tool, Development Tool 

Orthopaedic 
Technician 

Testing / Comparison Tool, Decision-Making Tool 

Engineer Development Tool 

Rehabilitation 
Doctor 

Testing / Comparison Tool 

Prosthetic Users Standard Prosthesis, Testing / Comparison Tool 

 
3.3 Use Case Selection 

Following discussion with all stakeholders, each potential application mentioned in 
the meetings was further investigated to give a better overview and find the most 
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relevant and feasible use cases to prioritise. The different use cases were compared in 
terms of viability, including technical and operational feasibility, as well as usefulness 
including the benefits, impact, and demand. The potential drawbacks and 
complications were also looked into. Finally, the parameters needed for the selected 
optimisation will be looked into to see which is the best suited control strategy. 

3.3.1 Use Case I – Testing / Comparison Tool 

The Open-Source Leg 2.0 (OSL) could serve as a tool for testing and comparing 
different prosthetic components and software. By allowing for quick changes, as well 
as simulation of components and software, existing prosthetics can be mimicked 
through parameter adjustments, and the OSL significantly enhances both research 
and clinical practices. In order for this to be successful, the components must be easily 
changed with a clear set of instructions for researchers. Additionally, a comparing 
protocol should be developed to ensure everything is covered and nothing is over 
looked. For this specific use case, the optimisation goals are not limited, but can be 
selected based on what is wanting to be compared. Therefore, all parameters should 
be able to be adjusted in this use case. Having a smooth switch between programming 
languages will make this application very beneficial. Other than mimicking, which 
does not require switching of physical components, there are a number of different 
components that can be compared. This includes electrical components like sensors, 
comparing their accuracy (error), or how their placement affects this. It can also 
include mechanical components such as a foot attachment, and seeing how this affects 
gait. 

3.3.2 Use Case II – Control Algorithm Tool 

The Open-Source Leg 2.0 (OSL) could serve as a tool for developing and testing 
different algorithms for the relationship between the knee and ankle joints during 
walking. It will give a better understanding of the combination of two active joint 
prosthetics, as current research is mostly working with a passive ankle. By enabling 
real-time adjustments and detailed gait analysis, the OSL can help optimise walking 
patterns, and enhance functional movements. This not only improves the prosthetic’s 
performance but also ensures a more personalised and effective process for users. 
Something I believe this could specifically target is improving walking on terrain with 
uneven heights, as the difference in height should be easier accounted for with two 
joints rather than one. 

3.3.3 Use Case III – Decision-Making Tool 

The Open-Source Leg 2.0 (OSL) could serve as a decision-making tool for amputees 
and clinicians to determine the best prosthetic leg options for them specifically. By 
developing a detailed testing protocol and focusing on specific optimisation goals such 
as metabolic consumption and walking symmetry, the OSL can provide valuable 
insights and data-driven recommendations. This approach ensures a personalised and 
well-informed prosthetic selection process, leading to improved user satisfaction and 
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functional outcomes. The testing protocol should include a set of steps that focus on 
specific aspects of the protocol based on the wanted optimisation. This can include 
damping, stiffness, equilibrium, etc. for energy consumption. 

3.3.4 Use Case IV – Development Tool 

The Open-Source Leg 2.0 (OSL) could serve as a development tool for advancing 
prosthetic technology. By enabling the testing of mechanical components and the 
development of control systems, the OSL can help researchers and engineers refine 
and improve other prosthetics in their development stage. An example of this is an 
engineer not being happy with a specific component of their prosthetic before it is 
brought to the market. They would reach out to use to OSL as a tool to come up with a 
solution to this problem, as is allows multiple different software, control strategies, 
and components to be tested. This approach leads to significant advancements in 
prosthetic design and functionality, ultimately benefiting users with more effective 
and comfortable prosthetic options. It would also reduce time and money needed for 
constructing multiple prosthetics. This use case is not limited to finding the best 
parameters or components for a prosthetic, but instead is used to tackle the task of 
implementing a new feature or control system to a prosthetic. 

3.3.5 Use Case V – Standard Prosthesis 

The Open-Source Leg 2.0 (OSL) could serve as a standard socket prosthesis for 
amputees. The OSL may be heavier than the average upper leg prosthesis of 8 lbs (3.6 
kg) [10], but it can still be a viable option for a prosthetic leg. As long as functionality 
is high, for some prosthetic users, this will outweigh the aesthetics and bulkiness of 
the leg. If the OSL is used for this application, then the socket fitment will be of highest 
importance, as it distributes the user’s weight and helps with smooth movements. 

3.4 Use Case Overview 

Table 6 shows an overview of the different use case’s, along with the advantages and 
disadvantages of each of these applications. 

Table 6 - Advantages & disadvantages of use cases 

Use Case Advantages Disadvantages 

Testing / 
Comparison 

Tool 

Flexibility: Easy changing of 
prosthetic components and software, 
including programming language, 
allows testing and comparison. 

Mimicking Prosthetics: Can adjust 
parameters to mimic existing 
prosthetics, which enhances research, 

Complexity: Requires a clear set of 
instructions for researchers to change 
components. 

Protocol: A comparison protocol must be 
developed, which can be time-consuming 
and complex. 
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and also makes the product 
customisable. 

Research and Clinical Benefits: 
Improves research and clinical 
outcomes through detailed comparison 
protocols. 

Resource Intensive: Will require many 
resources to develop and maintain the 
testing and comparison if components are 
being tested instead of mimicked. 

Control 
Algorithm 

Tool 

Real-Time Adjustments: Allows 
real-time adjustments and detailed gait 
analysis, leading to optimised walking 
patterns, and functionality. 

Dual Joint Research: Gives an 
insight on the combination of active 
knee and ankle joints, which is rarely 
explored in current research. This can 
improve things such as walking on 
uneven terrain by accounting for 
height differences with two joints. 

Complexity: Developing and testing 
walking algorithms can be challenging and 
requires research and expertise. 

Resource Intensive: Will require 
computational resources and real-time 
adjustment capabilities (possible with 
OSL). 

Specialised Equipment: Will require 
specialised equipment for detailed gait 
analysis and real-time adjustments. 

Decision-
Making Tool 

Personalised: Provides 
recommendations from data for 
selecting the best prosthetic options. 
This improves user satisfaction. 

Specific Optimisation: Can focus 
on specific optimisation goals such as 
metabolic consumption and walking 
symmetry. 

Versatile Testing: Includes detailed 
testing protocols that address various 
aspects like damping, stiffness, and 
equilibrium. 

Protocol: Developing a detailed testing 
protocol can be complex and time-
consuming, as translation of optimal 
settings from the OSL to a daily prosthesis 
may be difficult. 

Training: Requires training for clinicians 
to effectively interpret results. 

Initial Investment: Significant initial 
investment in developing the decision-
making framework and tools. 

Development 
Tool 

Technological Advancement: 
Helps in advancing prosthetic 
technology by testing mechanical 
components and developing control 
systems. 

Versatile Testing: Allows for testing 
multiple software, control strategies, 
and components, leading to improved 
designs. 

Resource Intensive: Requires 
significant resources for testing and 
development. 

Technical Expertise: Needs research 
and expertise for effective utilisation and 
development. 

Infrastructure: Requires a robust 
infrastructure to support extensive testing 
and development. 
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Cost-Effective: Reduces the need for 
constructing multiple prosthetics, 
saving time and money. 

Problem Solving: Provides a 
platform for engineers to address 
specific issues with prosthetic 
components before market release. 

Standard 
Prosthesis 

Viable Prosthetic: Can serve as a 
standard socket prosthesis despite 
being heavier than average, as for 
some users, high functionality may 
outweigh concerns about aesthetics 
and bulkiness. 

Socket Fitment: Emphasises the 
importance of socket fitment for 
weight distribution and smooth 
movement, which can enhance comfort 
and usability. 

Weight: Heavier than the average upper 
leg prosthesis, which could be a drawback. 

Aesthetics and Bulkiness: Not be as 
aesthetically pleasing or as lightweight as 
other prosthetic options. This could make 
it less successful once placed on the 
market. 

Certification: Will be required to meet 
certain standards and certification, due to 
it being an everyday long-term assistive 
device. 

 
3.5 Use Case Control Strategies 

Selection of the best control strategy for each use case depends on the specific 
requirements and goals for each use case. Any of the four control strategies could be a 
viable option for each application. Below recommendations for each use case can be 
found based on typical control strategy characteristics. 

Testing / Comparison Tool: Impedance Control 

• Impedance control is flexible and allows for fine-tuning of the interaction 
between the prosthetic and the user. It can mimic different prosthetic 
behaviours and is ideal for testing various components, such as motors, load 
cells, sensors, but also non electrical things for example foot attachments under 
different conditions. It allows researchers to adjust stiffness and damping 
parameters easily, making it suitable for comparison purposes, and looks to be 
feasible for the OSL. Although position control is precise, it does not offer the 
same level of interaction properties needed for extensive testing and 
comparison. Current control focuses on torque of the actuator, but it lacks the 
ability to adjust parameters like stiffness and damping. Voltage control is more 
suitable for basic control of actuators and less for the testing of dynamic 
interactions. 

Control Algorithm Tool: Position Control 
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• Position control is important for precise gait analysis and the development of 
walking algorithms. It ensures that the prosthetic moves to the desired 
positions accurately, which is essential for testing and optimising gait patterns. 
It allows for detailed study and refinement of walking dynamics, especially 
when dealing with complex terrains and joint coordination. Impedance control 
could also be a viable option as it is adaptive, however it is less precise when it 
comes to detailed positional adjustments that are needed in gait analysis. 
Current control focuses on torque control rather than positional accuracy 
needed for this application. Voltage control is also not effective for precise 
movement. 

Decision-Making Tool: Impedance Control 

• Impedance control offers a balance between force and position control, 
providing a more natural and adaptive interaction with the user. This is 
important for prosthetic selection based on specific user needs and optimising 
the OSL. It can adjust to different walking conditions, which is beneficial for 
decision-making processes, and can change many parameters in the joints such 
as stiffness, inertia, and damping. These parameters have an influence on user 
interaction with the OSL. Position control lacks the adaptability required; 
current control is too focused on actuator output as opposed to user interaction. 
Finally, voltage control does not have the response capabilities needed for 
adjustments. 

Development Tool: All Control Methods 

• As the development tool is so broad, all control strategies can be a viable option 
based on the specific application it is used for. Impedance control allows testing 
under various conditions and fine tuning; therefore, it would be best for 
adaptive component testing. Position control is ideal where positional accuracy 
is needed, so it is well suited for ensuring accurate movement and gait 
simulation. Current control would be optimal for motor and actuator testing as 
it focuses on torque management and component durability. Voltage control 
would be effective in basic component and electrical circuit testing, and is a very 
simple method. 

Standard Prosthesis: Impedance Control 

• For a standard prosthesis, impedance control offers the best compromise 
between adaptability and ease of use. It allows the prosthesis to respond 
dynamically to the user's movements and varying walking conditions, providing 
a more comfortable and natural experience. While it may be heavier, the focus 
on functionality through impedance control can improve user satisfaction. 
Position control could be viable, but it lacks the adaptive response needed for 
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everyday use. Voltage and current control don’t provide the user comfort and 
adaptability required. 

4. Results 
 
4.1 Final Use Case 

Each use case of the OSL offers unique advantages and challenges, making it suitable 
for various applications in the field of prosthetics. Rather than developing a control 
strategy for the best use case, the focus should lie on the development of a control 
strategy that can effectively be applied across various applications. This makes the 
product much more versatile, increasing the chances of it aiding the advancement of 
these technologies. 

4.2 Control Strategy Selection 

For the possible applications, position and impedance control seem like the best 
choice. They have higher precision and accuracy than other control strategies, and give 
feedback. This section will give an overview of these two control strategies with a step 
by step on how it works and some examples. 

4.2.1 Strategy I – Position Control 

When using position control for an active prosthetic leg, it usually does so by 
controlling the angle of both joints, to achieve the desired movements to get to the 
needed positions. Below is an overview of how a position control system works, and 
how it would be implemented into the OSL. 

1) Joint Angle: Both joints will have sensors that will measure the current 
angle of the joint and provide feedback. 

2) Desired Position: A desired position or movement input will be set in the 
control script. This can come from various sources such as sensors, or 
can even pre-programmed. 

3) Control Algorithm: The error (difference) between the desired (input) 
and current (sensors) position can be calculated with a control 
algorithm. This could be a PID controller, which calculates proportional, 
integral, and derivative responses. This could also be just a P 
(proportional) controller. 

𝑃𝐼𝐷	𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑂𝑢𝑡𝑝𝑢𝑡 = 	𝐾! ∗ 𝐸𝑟𝑟𝑜𝑟 +	𝐾" ∗ 	3𝐸𝑟𝑟𝑜𝑟	𝑑𝑡 +	𝐾# ∗ 	
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑡 	 

4) Actuator Torque or Force: Based on the error, the control algorithm 
determines how much torque or force is required for the joints to move 
to the desired position. The actuators then apply this torque or force. 
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5) Feedback Loop: The sensors continuously provide feedback to the 
control algorithm. This allows real-time adjustments to achieve the 
desired positions of the joints. 

6) Safety: To ensure safety, the control script should include limits to 
prevent the joints from exerting too much force and moving past their 
desired positions. 

Example Code 

The example code below shows an example of position control with a PID controller. 
Trajectory is also implemented, and comments in green explain the code. 

# Import necessary libraries 
import time                      
# Provides various time-related functions to manage timing and delays in a control 
loop 
 
import math                      
# Provides mathematical functions defined by C standard 
 
import prosthetic_module 
# Replace with actual modules needed (units, Event, State, StateMachine, 
OpenSourceLeg) 
 
# PID constants (tune for specific hardware) 
Kp = 1.0    # Proportional gain 
Ki = 0.1    # Integral gain 
Kd = 0.05   # Derivative gain 
 
# Initialise variables 
previous_error_knee = 0  
# Previous error for derivative term calculation (Knee) 
 
integral_knee = 0  
# Integral of errors (Knee) 
 
previous_error_ankle = 0     
# Previous error for derivative term calculation (Ankle) 
 
integral_ankle = 0           
# Integral of errors (Ankle) 
 
# Trajectory parameters 
trajectory_period = 10     
# Total time of trajectory in seconds 
 
time_step = 0.01         
# Control loop time in seconds (interval at which updates)  
 
current_time = 0             
# Tracks the current time 
 
# Function to generate desired trajectory 
def desired_trajectory(t):   
# Function with parameter 't' to compute and return desired angle at 't' 
 
# Example sinusoidal trajectories for knee and ankle joints 
    desired_angle_knee = 30 * math.sin(2 * math.pi * t / trajectory_period)    
# 30 degrees amplitude sin wave so joint will move (± 30°) 
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    desired_angle_ankle = 15 * math.sin(2 * math.pi * t / trajectory_period)   
# 15 degrees amplitude sin wave so joint will move (± 15°) 
 
    return desired_angle_knee, desired_angle_ankle 
 
# math.sin generates sine wave and * by 2 to get full cycle (360°) 
# Divide by duration/period (time for one complete cycle) 
 
# Main control loop 
while current_time <= trajectory_period: 
 
    # Get desired joint angles from the trajectory function 
    desired_angle_knee, desired_angle_ankle = desired_trajectory(current_time) 
 
    # Sensors read joint angles 
    current_angle_knee = prosthetic_module.read_knee_angle() 
    current_angle_ankle = prosthetic_module.read_ankle_angle() 
 
    # Calculate errors (difference) 
    error_knee = desired_angle_knee - current_angle_knee 
    error_ankle = desired_angle_ankle - current_angle_ankle 
 
    # Update integral term 
    integral_knee += error_knee * time_step 
    integral_ankle += error_ankle * time_step 
 
    # Calculate PID control outputs 
    control_output_knee = Kp * error_knee + Ki * integral_knee + Kd * (error_knee 
- previous_error_knee) / time_step 
    control_output_ankle = Kp * error_ankle + Ki * integral_ankle + Kd * 
(error_ankle - previous_error_ankle) / time_step 
 
    # Update previous errors for next iteration 
    previous_error_knee = error_knee 
    previous_error_ankle = error_ankle 
 
    # Apply control outputs to actuators 
    prosthetic_module.control_knee_actuator(control_output_knee) 
    prosthetic_module.control_ankle_actuator(control_output_ankle) 
 
    # Increment current time 
    current_time += time_step 
 
    # Sleep to maintain the control loop timing 
    time.sleep(time_step)    
# Adjust depending on the control loop frequency 

To generate the desired trajectory, a sinusoidal wave is used to provide a mathematical 
function. A feedback control system (PID) is then used to adjust the actuators position 
to the desired trajectory. The general form of a sinusoidal can be seen below: 

𝑥(𝑡) = 𝐴 sin(𝑤𝑡 + 𝜙) + 𝐵 

Where: 

- 𝑥(𝑡) is position at time 𝑡 
- 𝐴 is the amplitude of the wave (maximum displacement from equilibrium, so 

desired angle for this case) 
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- 𝑤 is angular frequency where 𝑤 = $%
&

 and 𝑇 is period 
- 𝜙 is the phase shift (determines where wave starts at 𝑡 = 0, if 𝜙 < 0 the wave is 

shifted to right so peaks and troughs reached slower) 
- 𝐵 is offset (represents equilibrium position) 

A basic motion script using position control, developed by Kevin Best, can be seen in 
Appendix II. The script works with a proportional controller and trajectory, and 
comments have been added to explain each step. 

4.2.3 Strategy II – Impedance Control 

When using impedance control for an active prosthetic leg, it involves setting up 
parameters that determine how the joints respond to user inputs and external forces. 
Stiffness, damping, and inertia can be adjusted to provide the user with a more 
responsive and natural movement experience. Below is an overview of how impedance 
control system works, and how it would be implemented into the OSL. 

1) Model Dynamics: This is done to get a better understanding of how 
forces affect each joint before defining parameters. Dynamics such as 
mass, inertia, and damping are modelled, and how the product interacts 
with the environment is considered. 

2) Define Parameters: The desired stiffness (K), damping (D), and inertia 
(M) are defined. These parameters determine the responsiveness of the 
OSL during use. 

3) Design Controller: The control method must be decided upon. Position 
control can be used as a part of the impedance control in a hierarchal 
manner. If this is the case, position control is used for desired 
trajectories, and impedance determines interaction forces with the 
environment, making it adaptable. An impedance controller adjusts the 
torque / force applied based on the current position, external forces, and 
velocity. An FSM controller can be implemented to manage the phases 
of the leg during gait, which would be needed for the OSL. Again, 
position control can be used alongside impedance for this. 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑀(�̈�# − �̈�) + 𝐷(�̇�# − �̇�) + 𝐾(𝑥# − 𝑥) 

(𝑥# − 𝑥) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟, 𝐾 = 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠	𝑀𝑎𝑡𝑟𝑖𝑥 

(�̇�# − �̇�) = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝐸𝑟𝑟𝑜𝑟, 𝐷 = 𝐷𝑎𝑚𝑝𝑖𝑛𝑔	𝑀𝑎𝑡𝑟𝑖𝑥 

(�̈�# − �̈�) = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟, 𝑀 = 𝐼𝑛𝑒𝑟𝑡𝑖𝑎	𝑀𝑎𝑡𝑟𝑖𝑥 

4) Feedback: The sensors give feedback to continuously adjust the 
impedance parameters, allowing the OSL to adapt to changes in gait or 
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the environment. Here the error (difference) between current and 
desired is calculated to help compute control torque / force. 

5) Safety: To ensure safety, the control script should include limits to 
prevent the joints from exerting too much force or torque, that could 
damage to prosthetic. 

Example Code 

The example code below shows an example of impedance control with comments 
made in green explain the code. 

# Import necessary libraries 
import numpy as np 
# For numerical operations, to handle matrices and arrays 
 
import time              
# Provides time-related functions to manage timing, delays in control loop 
 
# Initialise stiffness (K), damping (D), and inertia (M) matrices 
K = np.array([[500, 0], [0, 200]])  # Stiffness values for knee and ankle 
D = np.array([[50, 0], [0, 20]])    # Damping values for knee and ankle 
M = np.array([[1, 0], [0, 1]])      # Inertia values for knee and ankle 
# Here numpy creates 2D array/matrix, example: [500, 0], [0, 200] represents a 2x2 
matrix: 𝐾 = #500 0

0 200' 
 
# Desired trajectories (sinusoidal trajectories used for this example) 
def desired_trajectories(t): 
 
    x_d = np.array([0.1 * np.sin(t), 0.05 * np.sin(t)])      
# Desired positions in the two dimensions (x and y), 0.1 being the amplitude (x) 
 
    v_d = np.array([0.1 * np.cos(t), 0.05 * np.cos(t)])      
# Desired velocities, cos used here as derivative of sinusoidal position function 
 
    a_d = np.array([-0.1 * np.sin(t), -0.05 * np.sin(t)])    
# Desired accelerations, negative as second derivative of position function 
 
    return x_d, v_d, a_d 
 
# Placeholder functions to get sensor data 
def joint_positions(): 
    # Replace the random number with actual sensor reading 
    return np.random.randn(2) * 0.01 
 
def joint_velocities(): 
    # Replace the random number with actual sensor reading 
    return np.random.randn(2) * 0.01 
 
def joint_accelerations(): 
    # Replace the random number with actual sensor reading 
    return np.random.randn(2) * 0.01 
 
# Placeholder function to apply control to the motors 
def apply_control(control_force): 
    # Replace with actual motor force driving the joints 
    print(f"Applying control force: {control_force}") 
 
# Set control loop parameters 
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control_loop_period = 0.01      # Control loop period in seconds 
end_time = 10                   # Run the control loop for 10 seconds 
 
# Main control loop 
start_time = time.time()                     
# Records start time of control loop 
 
while time.time() - start_time < end_time:   
# While loop runs control loop for specific time 
    t = time.time() - start_time             
# 't' is time since start of loop 
     
    # Desired trajectories 
    x_d, v_d, a_d = desired_trajectories(t) 
     
    # Sensor readings 
    x = joint_positions() 
    v = joint_velocities() 
    a = joint_accelerations() 
     
    # Calculate errors (difference) between desired and actual 
    position_error = x_d - x 
    velocity_error = v_d - v 
    acceleration_error = a_d - a 
     
    # Compute control force/torque using impedance control law 
    control_force = M @ acceleration_error + D @ velocity_error + K @ 
position_error 
     
    # Applies computed control forces to the joints 
    apply_control(control_force) 
     
    # Sleep for the control loop period 
    time.sleep(control_loop_period) 
    # Waits for next control loop iteration to maintain desired loop frequency 
 

A script using impedance control with a FSM controller, developed by Raj Ayyappan, 
and Kevin Best, can be seen in Appendix II. The script works with state transitions 
conditions, for transitioning between different phases (stance and swing), and event-
driven transitions for events within phases such as foot-flat, heel-off, toe-off etc. The 
FSM uses mostly impedance control, but also with position control (joint angles) 
being a component of the impedance control strategy. 

4.3 Electrical Components 

This section will cover the current components implemented in the OSL. Any 
limitations will be discussed. 
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4.3.1 Battery 

It is recommended to use a BA3o LiPo battery for the OSL, 
which refers to a type of Lithium Polymer (LiPo) battery, 
seen in Figure 4. Its voltage is 33.3 V, and it has a 
maximum current of 10A, which should be sufficient for a 
prosthetic leg with two active joints. The batteries capacity 
is 1Ah (Amp Hours), however the duration of usage will 
depend on the power consumption of the OSL. This may be 
a limitation for the device if used intensively. It has an 
integrated BMS which will ensure it does not overcharge, 
and should have adequate longevity to for a prosthetic 
device. The battery is charged with a Dephy BA30 Smart 
Dock [17]. 

4.3.2 Load Cell 

The M3564F load cell seen in Figure 5 is from the M35XX 
series by Sunrise Instruments [18]. This series is a range of 
extra thin 6-axis stainless steel load cell designed to 
measure forces and torques in 3D space (Fx, Fy, Fz, Mx, My, 
Mz). They have a simple and small design (30mm – 70mm 
diameter), making them ideal for applications with limited 
space such as prosthetic legs. The M3564F has a diameter 
of 65mm and thickness of 9.2mm, can measure forces up to 
2500N in the Fx, Fy direction and 5000N in the Fz 
direction. It can measure torques up to 200Nm in the Mx, 
My direction, and 100Nm in the Mz direction. This model is 
known for being lightweight and features a high resolution 
suitable for a prosthetic leg. It being a 6-axis load cell may 
increase complexity, but this is necessary for a high-tech 
prosthetic. 

4.3.3 ActPack 

An ActPack [20] is an advanced actuator system 
which integrates multiple components into a single, 
compact unit. It is designed to provide high-
performance and precise actuation for robotic 
devices, including prosthetics. It works with a BLDC 
motor, which is highly efficient, durable, and 
provides precise control with high torque. It 
supports various communication protocols, 
programming languages, and control modes needed 
for a prosthetic leg. To ensure safety, it includes 
voltage limits, temperature safeguards, and battery 

Figure 5 - M3564F Load Cell [19] 

Figure 4 – BA30 LiPo Battery [17] 

Figure 6 – Geared Actuator [20] 
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and motor operation. The actuator comes in three different configurations, the OSL 
using the 9:1 geared configuration seen in Figure 6. This actuator gears down the 
motors output by a ratio of 9:1, meaning the output shaft turns once for every nine 
motor rotations. This configuration provides the highest torque and lowest speed from 
the three, which is ideal for prosthetic joints that require significant force, and where 
supporting body weight and stable movement is crucial. The voltage range required is 
20 – 50 V which complies with the 33 V supplied by the batteries. 

The ActPack also includes other components including a 6-axis IMU, voltage, current, 
temperature sensors, a rotary encoder, a strain gauge amplifier, and an expansion port 
[20].  

The IMU is an ICM-20602 with a 3-axis gyroscope component that measures angular 
velocity across the x, y, z axes. The range is ±250 to ±2000 degrees per second. It also 
has a 3-axis accelerometer which measures linear acceleration across the same axes. 
The range is ±2g to ±16g (gravity). With these components it can track motion and 
orientation, providing data to make real-time adjustments of the actuator [20].  

The encoder is a AS5048A/AS5048B magnetic rotary motor encoder with a high 
precision 14-bit resolution, meaning it can detect small changes in angles. The encoder 
measures speed, position, and direction of the motor shaft. This gives positional and 
rotational data as feedback. It has a broad temperature range (-40° – 150°) making it 
reliable in most environments [21]. 

The strain gauge amplifier used One Full-Bridge Channel amplifier. It has a 5V 
excitation voltage to generate a measurable output, and a gain of 203 to boost small 
signals by a factor of 203. It is used to amplify small voltage changes produced by the 
strain gauge, so that it can be easily read by the ActPack’s control system. The Full-
Bridge configuration ensures high sensitivity and accuracy by using four strain gauges 
in a Wheatstone arrangement [20]. 

5. Conclusion 
From the extensive research done throughout this project, and the input given by 
stakeholders during their interviews, the optimal control strategy for the Open-Source 
Leg (OSL) should be a combination of impedance control with a Finite State Machine 
(FSM) controller, including aspects of position control (Appendix II). This hybrid 
approach ensures both precision and adjustability, addressing the diverse 
requirements of various use cases. 

Impedance control, known for its ability to adapt to different walking conditions and 
provide a natural interaction with the user, stands out for its versatility and stability. 
This control strategy is especially beneficial in scenarios such as testing and 
comparison, where fine-tuning of interaction properties like stiffness and damping is 
of high importance. It also offers significant advantages for decision-making tools, 
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where personalised adjustments to different gait conditions are necessary for optimal 
prosthetic selection and user satisfaction. 

The FSM controller enhances impedance control by allowing smooth transitions 
between different control modes, thereby improving the overall responsiveness and 
adaptability of the prosthetic leg. This combination ensures that the prosthetic can 
handle the complex dynamics of human gait, providing a smooth and user friendly 
experience. 

Incorporating aspects of position control adds an additional layer of accuracy essential 
for applications requiring exact positional adjustments, such as gait analysis and the 
development of walking algorithms. Position control ensures that the prosthetic moves 
accurately to the desired positions, which is critical for studying and refining walking 
dynamics. 

In summary, a control strategy that integrates impedance control with a FSM 
controller and incorporates position control offers the best balance of adaptability, 
precision, and user interaction. This approach not only meets the diverse needs of 
various applications but also enhances the functionality and user experience of the 
Open-Source Leg. 

Furthermore, all the electric components selected for the OSL, including the BA30 
LiPo battery, M3564F load cell, and ActPack, appear to be well-chosen, providing the 
necessary performance, durability, and safety features required for an advanced 
prosthetic leg. This ensures that the OSL remains a versatile and effective tool for 
advancing prosthetic technology, optimising walking patterns, and improving the 
quality of life for prosthetic users. 
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Appendix I 
Stakeholder Questions 

General Questions: 

- How would you like to use this leg? 
- What requirements must the leg meet? 
- Who would use the leg? 
- Do you have any other ideas that are important for the functioning of the leg? 

 

Specific Questions: 

Researchers: 

- In what different ways do you think this OSL can be used to advance research 
on lower limb prosthetics? (Gait analysis) 

Engineers: 

- Do you believe that the OSL can help in the development of building 
prosthetics? 

Rehabilitation: 

- Do you believe that a robotic knee and ankle joint would have an advantage 
over a mechanical leg prosthesis in terms of rehabilitation? (positive and 
negative points) 

- Do you believe that the OSL can be used to identify abnormal gait in users? 

Prosthetic Users: 

- According to you, what are the differences between a microprocessor-
controlled prosthesis and a mechanical prosthesis for this use? (positive and 
negative points) 

Orthopaedic Technologist: 

- Do you believe that the OSL can be used as a tool to improve the provision 
process? 

Insurance: 

- Do you believe it would be economically feasible to use the OSL as a prosthesis 
for amputees, or could it be better used as a tool for, for example, 
rehabilitation or research on lower limb prosthetics? 
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- When would the health insurer reimburse this leg? 

- Do you believe that the OSL can be used as a tool to improve the provision 
process? 

Appendix II 
 
Position Control 

Basic motion using position control, with a P-Controller and trajectory [22]: 

import numpy as np 
# for numerical operations 
 
from opensourceleg.osl import OpenSourceLeg      
# provides interface to control OSL 
 
from opensourceleg.tools import units            
# for unit conversion 
 
osl = OpenSourceLeg(frequency=200)               
# set the control frequency (how often control system updates) 
 
osl.add_joint("knee", gear_ratio=9 * 83 / 18)    
# specify gear ratio knee 
osl.add_joint("ankle", gear_ratio=9 * 83 / 18)   
# specify gear ratio ankle 
 
def make_periodic_traj_func(period, minimum, maximum):   
# function that generates lamba function 
    amplitude = (maximum - minimum) / 2 
    mean = amplitude + minimum 
    return lambda t: amplitude * np.cos(t * 2 * np.pi / period) + mean 
 
# generates periodic trajectory using cosine wave by taking a single 
argument ‘t’ and calculating cosine wave value at that time. 
# cos is used instead of sin when generating trajectories from peak 
position as cos(0) = 1 
 
ankle_traj = make_periodic_traj_func(10, -20, 20)    
# defined to oscillate between -20 and 20 degrees with a period of 10 
seconds 
 
knee_traj = make_periodic_traj_func(10, 10, 90)      
# defined to oscillate between 10 and 90 degrees with the same period 
 
with osl: 
    osl.home() 
    input("Homing complete: Press enter to continue") 
    osl.knee.set_mode(osl.knee.control_modes.position)       
# control mode set to position control (knee) 
 
    osl.ankle.set_mode(osl.ankle.control_modes.position)     
# control mode set to position control (ankle) 
 
    osl.knee.set_position_gains(kp=5)                        
# set proportional gains knee 
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    osl.ankle.set_position_gains(kp=5)                      
# set proportional gains ankle 
 
    for t in osl.clock: 
        osl.update() 
        knee_setpoint = units.convert_to_default(knee_traj(t), 
units.position.deg)       
# set units to default (radians) 
 
        ankle_setpoint = units.convert_to_default(ankle_traj(t), 
units.position.deg)    # set units to default (radians) 
 
        osl.knee.set_output_position(knee_setpoint)                                     
# set desired position 
 
        osl.ankle.set_output_position(ankle_setpoint)                                   
# set desired position 
        print( 
            "Ankle Desired {:+.2f} rad, Ankle Actual {:+.2f} rad, Knee 
Desired {:+.2f} rad, Ankle Desired {:+.2f} rad".format( 
                ankle_setpoint, 
                osl.ankle.output_position, 
                knee_setpoint, 
                osl.knee.output_position, 
            ), 
            end="\r", 
        ) 
 
print("\n") 
 
Impedance Control 

Impedance control with a Finite State Controller and position control included [23]: 

import numpy as np       
# For numerical operations, to handle matrices and arrays 
 
import opensourceleg.tools.units as units                                       
# Provides unit conversion tools 
 
from opensourceleg.control.state_machine import Event, State, StateMachine      
# Provides classes for FSM 
 
from opensourceleg.osl import OpenSourceLeg                                     
# Provides OSL hardware control 
 
offline_mode = False    # Set to true for debugging without hardware 
 
# next define all tuneable FSM parameters (finite state machine) 
# include impedance parameters for each state as well as transitions 
between states 
 
# ------------- TUNABLE FSM PARAMETERS ---------------- # 
BODY_WEIGHT = 60 * 9.8 
 
# STATE 1: EARLY STANCE 
KNEE_K_ESTANCE = 99.372      # Knee stiffness early stance 
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KNEE_B_ESTANCE = 3.180       # Knee damping early stance 
KNEE_THETA_ESTANCE = 5       # Knee target angle early stance (position) 
ANKLE_K_ESTANCE = 19.874     # Ankle stiffness early stance 
ANKLE_B_ESTANCE = 0          # Ankle damping early stance 
ANKLE_THETA_ESTANCE = -2     # Ankle target angle early stance (position) 
 
LOAD_LSTANCE: float = -1.0 * BODY_WEIGHT * 0.25 
# Load applied to leg 
 
ANKLE_THETA_ESTANCE_TO_LSTANCE = 6.0 
# Threshold angle where transition occurs 
 
# STATE 2: LATE STANCE 
KNEE_K_LSTANCE = 99.372       # Same as above, but for late stance 
KNEE_B_LSTANCE = 1.272 
KNEE_THETA_LSTANCE = 8 
ANKLE_K_LSTANCE = 79.498 
ANKLE_B_LSTANCE = 0.063 
ANKLE_THETA_LSTANCE = -20 
LOAD_ESWING: float = -1.0 * BODY_WEIGHT * 0.15 
 
# STATE 3: EARLY SWING 
KNEE_K_ESWING = 39.749        # Same as above, but for early swing 
KNEE_B_ESWING = 0.063 
KNEE_THETA_ESWING = 60 
ANKLE_K_ESWING = 7.949 
ANKLE_B_ESWING = 0.0 
ANKLE_THETA_ESWING = 25 
KNEE_THETA_ESWING_TO_LSWING = 50 
KNEE_DTHETA_ESWING_TO_LSWING = 3 
 
# STATE 4: LATE SWING 
KNEE_K_LSWING = 15.899        # Same as above, but for late swing 
KNEE_B_LSWING = 3.816 
KNEE_THETA_LSWING = 5 
ANKLE_K_LSWING = 7.949 
ANKLE_B_LSWING = 0.0 
ANKLE_THETA_LSWING = 15 
LOAD_ESTANCE: float = -1.0 * BODY_WEIGHT * 0.4 
KNEE_THETA_LSWING_TO_ESTANCE = 30 
# ---------------------------------------------------- # 
 
# specific parameters tuned for moderately paced walking gait (can be tuned 
to suit use case) 
 
# next enter main function, run_FSM_controller(). 
# first instantiate an OSL object, add joints, and add a loadcell  
# (instantiating explained in adding actuator and loadcell tutorial) 
 
def run_FSM_controller(): 
    """ 
    This is the main function for this script. 
    It creates an OSL object and builds a state machine with 4 states. 
    It runs a main loop that updates the state machine based on the 
    hardware information and sends updated commands to the motors. 
    """ 
    osl = OpenSourceLeg(frequency=200)                                                       
    osl.add_joint(name="knee", gear_ratio=41.4999, 
offline_mode=offline_mode)                          # add knee joint 
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    osl.add_joint(name="ankle", gear_ratio=41.4999, 
offline_mode=offline_mode)                          # add ankle joint 
 
    LOADCELL_MATRIX = np.array(                   
# NumPy array used for calibrating/configuring loadcell measurements 
        [ 
            (-38.72600, -1817.74700, 9.84900, 43.37400, -44.54000, 
1824.67000),       
# col-1 coefficient x-axis force 
            (-8.61600, 1041.14900, 18.86100, -2098.82200, 31.79400, 
1058.6230),       
# col-2 coefficient y-axis force 
            (-1047.16800, 8.63900, -1047.28200, -20.70000, -1073.08800, -
8.92300),    
# col-3 coefficient z-axis force 
            (20.57600, -0.04000, -0.24600, 0.55400, -21.40800, -0.47600),            
# col-4 coefficient x-axis torque 
            (-12.13400, -1.10800, 24.36100, 0.02300, -12.14100, 0.79200),            
# col-5 coefficient y-axis torque 
            (-0.65100, -28.28700, 0.02200, -25.23000, 0.47300, -27.3070),            
# col-6 coefficient z-axis torque 
        ]    
        # calibration coefficients determined during calibration process 
where forces applied to load cell 
        # calibration techniques (least squares regression) coefficients 
determined to convert raw sensor readings 
    )                                                                           
    osl.add_loadcell( 
        dephy_mode=False, 
        offline_mode=offline_mode, 
        loadcell_matrix=LOADCELL_MATRIX, 
    ) 
 
# then create StateMachine instance 
 
    fsm = build_4_state_FSM(osl) 
 
# next configure the OSL log 
 
    osl.log.add_attributes(container=osl, attributes=["timestamp"])     # 
logging settings are applied to the osl object 
    osl.log.add_attributes(                                             # 
only attribute to be logged for the osl object is the "timestamp" 
        container=osl.knee, 
        attributes=[ 
            "output_position", 
            "motor_current", 
            "joint_torque", 
            "motor_voltage", 
            "accelx", 
        ], 
    ) 
    osl.log.add_attributes( 
        container=osl.ankle, 
        attributes=[ 
            "output_position", 
            "motor_current", 
            "joint_torque", 
            "motor_voltage", 
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            "accelx", 
        ], 
    ) 
    osl.log.add_attributes(container=osl.loadcell, attributes=["fz"])                       
# force on z-axis logged 
    osl.log.add_attributes(container=fsm.current_state, 
attributes=["name"])                # log name assigned to each state 
 
# MAIN LOOP 
# everything set up, now home the OSL and enter main loop 
# during each iteration of main loop, call update method for both the OSL 
and the FSM 
# write current impedance parameters for each joint to the hardware 
# print statement also included for debugging 
 
    with osl:                                                                               
# resources acquired by osl object properly released after block of code 
executes 
        osl.home()                                                                          
# instruct component to predefined home position 
        fsm.start()                                                                         
# start the FSM, initiating operation to control 
 
        for t in osl.clock:                                                                 
# iterates sequence time values provided by osl.clock. update/control 
system's behaviour 
            osl.update()                                                                    
# update states for both OSL system and FSL controller at each time step 
            fsm.update() 
 
            if osl.knee.mode != osl.knee.control_modes.impedance: 
                osl.knee.set_mode(mode=osl.knee.control_modes.impedance) 
                osl.knee.set_impedance_gains() 
            osl.knee.set_joint_impedance( 
                K=units.convert_to_default( 
                    fsm.current_state.knee_stiffness,                                       
# updates the control parameters (such as impedance gains, 
                    units.stiffness.N_m_per_rad,                                            
# stiffness, damping, and position) for joints based on the 
                ),                                                                          
# current state of the FSM controller 
                B=units.convert_to_default( 
                    fsm.current_state.knee_damping, 
                    units.damping.N_m_per_rad_per_s, 
                ), 
            ) 
            osl.knee.set_output_position( 
                position=units.convert_to_default( 
                    fsm.current_state.knee_theta, units.position.deg 
                ), 
            ) 
 
            if osl.ankle.mode != osl.ankle.control_modes.impedance: 
                osl.ankle.set_mode(osl.ankle.control_modes.impedance) 
                osl.ankle.set_impedance_gains() 
            osl.ankle.set_joint_impedance( 
                K=units.convert_to_default( 
                    fsm.current_state.ankle_stiffness, 
                    units.stiffness.N_m_per_rad, 
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                ), 
                B=units.convert_to_default( 
                    fsm.current_state.ankle_damping, 
                    units.damping.N_m_per_rad_per_s, 
                ), 
            ) 
            osl.ankle.set_output_position( 
                position=units.convert_to_default( 
                    fsm.current_state.ankle_theta, units.position.deg 
                ), 
            ) 
            print(           
                "Current time in state {}: {:.2f} seconds, Knee Eq {:.2f}, 
Ankle Eq {:.2f}, Fz {:.2f}".format( 
                    fsm.current_state.name, 
                    fsm.current_state.current_time_in_state, 
                    fsm.current_state.knee_theta, 
                    fsm.current_state.ankle_theta, 
                    osl.loadcell.fz, 
                ),                                                                          
# prints status information to the console 
                end="\r", 
            ) 
 
# OSL library provides sensor values in default units (convert to prior if 
library expects other units) 
# can use units module and tools sub package to do this for example: 
# ankle_angle_in_deg = 
units.convert_from_default(osl.ankle.output_position, units.position.deg) 
 
# BUILDING THE STATE MACHINE 
# uses StateMachine functionality of opensourceleg.control module to make 
a state machine with 4 states 
 
def build_4_state_FSM(osl: OpenSourceLeg) -> StateMachine: 
    """This method builds a state machine with 4 states. 
    The states are early stance, late stance, early swing, and late swing. 
    It uses the impedance parameters and transition criteria above. 
 
    Inputs: 
        OSL instance 
    Returns: 
        FSM object""" 
 
    early_stance = State(name="e_stance") 
    late_stance = State(name="l_stance") 
    early_swing = State(name="e_swing") 
    late_swing = State(name="l_swing") 
 
# then assign impedance values for each state 
 
    early_stance.set_knee_impedance_paramters( 
        theta=KNEE_THETA_ESTANCE, k=KNEE_K_ESTANCE, b=KNEE_B_ESTANCE 
    ) 
    early_stance.make_knee_active() 
    early_stance.set_ankle_impedance_paramters( 
        theta=ANKLE_THETA_ESTANCE, k=ANKLE_K_ESTANCE, b=ANKLE_B_ESTANCE 
    ) 
    early_stance.make_ankle_active() 
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    late_stance.set_knee_impedance_paramters( 
        theta=KNEE_THETA_LSTANCE, k=KNEE_K_LSTANCE, b=KNEE_B_LSTANCE 
    ) 
    late_stance.make_knee_active() 
    late_stance.set_ankle_impedance_paramters( 
        theta=ANKLE_THETA_LSTANCE, k=ANKLE_K_LSTANCE, b=ANKLE_B_LSTANCE 
    ) 
    late_stance.make_ankle_active() 
 
    early_swing.set_knee_impedance_paramters( 
        theta=KNEE_THETA_ESWING, k=KNEE_K_ESWING, b=KNEE_B_ESWING 
    ) 
    early_swing.make_knee_active() 
    early_swing.set_ankle_impedance_paramters( 
        theta=ANKLE_THETA_ESWING, k=ANKLE_K_ESWING, b=ANKLE_B_ESWING 
    ) 
    early_swing.make_ankle_active() 
 
    late_swing.set_knee_impedance_paramters( 
        theta=KNEE_THETA_LSWING, k=KNEE_K_LSWING, b=KNEE_B_LSWING 
    ) 
    late_swing.make_knee_active() 
    late_swing.set_ankle_impedance_paramters( 
        theta=ANKLE_THETA_LSWING, k=ANKLE_K_LSWING, b=ANKLE_B_LSWING 
    ) 
    late_swing.make_ankle_active() 
 
# states defined, now define transition functions 
# functions take osl instance as arguments and return a boolean when 
transition criteria met 
# example: first define transition from early stance to late stance based on 
the loadcell z force  
# and the ankle angle as: 
 
    def estance_to_lstance(osl: OpenSourceLeg) -> bool: 
        """ 
        Transition from early stance to late stance when the loadcell 
        reads a force greater than a threshold. 
        """ 
        assert osl.loadcell is not None 
        return bool( 
            osl.loadcell.fz < LOAD_LSTANCE 
            and osl.ankle.output_position > ANKLE_THETA_ESTANCE_TO_LSTANCE 
        ) 
 
# remaining transition functions defined similarly 
 
    def estance_to_lstance(osl: OpenSourceLeg) -> bool: 
        """ 
        Transition from early stance to late stance when the loadcell 
        reads a force greater than a threshold. 
        """ 
        assert osl.loadcell is not None 
        return bool( 
            osl.loadcell.fz < LOAD_LSTANCE 
            and osl.ankle.output_position > ANKLE_THETA_ESTANCE_TO_LSTANCE 
        ) 
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    def lstance_to_eswing(osl: OpenSourceLeg) -> bool: 
        """ 
        Transition from late stance to early swing when the loadcell 
        reads a force less than a threshold. 
        """ 
        assert osl.loadcell is not None 
        return bool(osl.loadcell.fz > LOAD_ESWING) 
 
    def eswing_to_lswing(osl: OpenSourceLeg) -> bool: 
        """ 
        Transition from early swing to late swing when the knee angle 
        is greater than a threshold and the knee velocity is less than 
        a threshold. 
        """ 
        assert osl.knee is not None 
        return bool( 
            osl.knee.output_position > KNEE_THETA_ESWING_TO_LSWING 
            and osl.knee.output_velocity < KNEE_DTHETA_ESWING_TO_LSWING 
        ) 
 
    def lswing_to_estance(osl: OpenSourceLeg) -> bool: 
        """ 
        Transition from late swing to early stance when the loadcell 
        reads a force greater than a threshold or the knee angle is 
        less than a threshold. 
        """ 
        assert osl.knee is not None and osl.loadcell is not None 
        return bool( 
            osl.loadcell.fz < LOAD_ESTANCE 
            or osl.knee.output_position < KNEE_THETA_LSWING_TO_ESTANCE 
        ) 
 
# next define events corresponding to state transitions using the Event 
class 
 
    foot_flat = Event(name="foot_flat") 
    heel_off = Event(name="heel_off") 
    toe_off = Event(name="toe_off") 
    pre_heel_strike = Event(name="pre_heel_strike") 
    heel_strike = Event(name="heel_strike") 
 
# finally, make an instance of the StateMachine class and add the states, 
events and transitions created 
# the add_transition() method takes arguments of source state, a 
destination state, an event, and the callback 
# function defining when that transition occurs 
# after, the FSM is fully built and can be returned 
 
    fsm = StateMachine(osl=osl, spoof=offline_mode) 
    fsm.add_state(state=early_stance, initial_state=True) 
    fsm.add_state(state=late_stance) 
    fsm.add_state(state=early_swing) 
    fsm.add_state(state=late_swing) 
 
    fsm.add_event(event=foot_flat) 
    fsm.add_event(event=heel_off) 
    fsm.add_event(event=toe_off) 
    fsm.add_event(event=pre_heel_strike) 
    fsm.add_event(event=heel_strike) 
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    fsm.add_transition( 
        source=early_stance, 
        destination=late_stance, 
        event=foot_flat, 
        callback=estance_to_lstance, 
    ) 
    fsm.add_transition( 
        source=late_stance, 
        destination=early_swing, 
        event=heel_off, 
        callback=lstance_to_eswing, 
    ) 
    fsm.add_transition( 
        source=early_swing, 
        destination=late_swing, 
        event=toe_off, 
        callback=eswing_to_lswing, 
    ) 
    fsm.add_transition( 
        source=late_swing, 
        destination=early_stance, 
        event=heel_strike, 
        callback=lswing_to_estance, 
    ) 
    return fsm 
 
# finally, call main function: 
 
if __name__ == "__main__": 
    run_FSM_controller() 
 
 
 
 
 
 
 
 
 
 
 
 
 


