

OPEN-SOURCE LEG 2.0

Development of a control strategy

ProtheseAcademie

Stijn Brouwer | 3641171

 1

Glossary

Word Definition

OSL Open-Source Leg 2.0

Active Joint A prosthetic joint that provides external power through motors.

Passive Joint A prosthetic joint that allows for no movement.

Gait Cycle Repetitive human walking pattern (cyclic).

BMS Battery Measurement System

BLDC Brushless Direct Current

FSM Finite State Machine

Abstract
In front of you lies a master project report, on the development of the best control
strategy for the Open-Source Leg 2.0 at the ProtheseAcademie. The report will take
you through an introduction and methods section which will highlight how optimal
and most feasible use cases were selected. The different control strategies will then
be evaluated to see which is most suitable for the chosen applications. The report was
written as an intern at the ProtheseAcademie department of UMCG in Groningen,
where the OSL has been assembled and will continue to be worked with when this
project is concluded. The report has been written to the standards of the engineering
department of Rijksuniversiteit Groningen, and has been worked on since mid-April
for 10.5 weeks until the beginning period of July. I would like to thank both my
supervisors at the ProtheseAcademie, Han Houdijk and Verena Schuurmans, for
their guidance and assistance throughout the project, pointing me in the right
direction. Alongside this project I have had the pleasure of being able to help two
PhD students with their projects, who I would like to thank for the experience.
Chengxiang (Oran) Liu, who is working on the ‘MyLeg’ prosthesis, and Thijs Tankink
who is working on optimising an ankle prosthesis.

 2

Table of Contents

Glossary .. 1

Abstract .. 1

1. Introduc3on ... 3

1.1 Gait Cycle ... 4

2. Problem Analysis .. 5

2.1 Problem Defini7on .. 5

2.2 Overview Open-Source Leg 2.0 .. 5
2.2.1 Adjustable Parameters .. 6
2.2.2 Current Control Op8ons ... 8

2.3 Market Research .. 10
2.3.1 Op8misa8on Op8ons .. 10

2.4 Requirements .. 10

2.5 Stakeholder Analysis .. 11

3. Methods ... 12

3.1 Stakeholder Interviews .. 12
3.1.1 Insurance Representa8ve (Tanja Bas8aansen – CZ) .. 12
3.1.2 Researcher (Bob van der Windt– TU DelK) ... 12
3.1.3 Orthopaedic Technician (Jeroen Olsman – OIM) .. 13
3.1.4 Engineer (Herman van der Kooij – Universiteit Twente) ... 14
3.1.5 Rehabilita8on Doctor (Aline Vrieling – UMCG) ... 14
3.1.6 Prosthe8c Users (Johan, Wybe – ProtheseAcademie) .. 14

3.2 Stakeholder Summary .. 15

3.3 Use Case Selec7on ... 15
3.3.1 Use Case I – Tes8ng / Comparison Tool .. 16
3.3.2 Use Case II – Control Algorithm Tool .. 16
3.3.3 Use Case III – Decision-Making Tool ... 16
3.3.4 Use Case IV – Development Tool .. 17
3.3.5 Use Case V – Standard Prosthesis ... 17

3.4 Use Case Overview .. 17

3.5 Use Case Control Strategies .. 19

4. Results .. 21

4.1 Final Use Case .. 21

4.2 Control Strategy Selec7on .. 21
4.2.1 Strategy I – Posi8on Control ... 21
4.2.3 Strategy II – Impedance Control ... 24

4.3 Electrical Components ... 26
4.3.1 Ba^ery .. 27
4.3.2 Load Cell ... 27
4.3.3 ActPack ... 27

5. Conclusion .. 28

6. References ... 30

Appendix I ... 32

Stakeholder Ques7ons .. 32

Appendix II .. 33

Posi7on Control ... 33

Impedance Control .. 34

 3

1. Introduction
The development of lower extremity prosthetics has seen significant advancements
over the past decade, driven by enhancing user mobility and improving quality of life
for individuals with limb impairments [1]. Despite these advancements, the
integration and collaboration among various research groups working on prosthetics
have often been fragmented. This is due to the fact that all researchers must build their
own test platform, such as their own prosthetic, limiting the full potential of collective
work. Leg prosthetics come in different forms, the two main ones being regular
mechanical prosthetics with passive joints, and microprocessor-controlled prosthesis
with active joints. A combination of passive and active joints is also a possibility and
regular occurrence, as most active knee prosthetics have a passive ankle. In response
to the challenge of everyone conducting individual research, an open-source robotic
leg, the Open-Source Leg (OSL) 2.0, a microprocessor-controlled leg has been
developed, serving as a platform to push the boundaries of prosthetic research and
encourage collaboration across multiple research domains [2]. It bridges the gap
between isolated research projects by providing a platform that all backgrounds can
access.

One of the most significant challenges in the development of lower extremity
prosthetics has been the control of the leg prosthesis. Effective control strategies are
crucial for ensuring that the joints in the prosthetic leg respond accurately and
intuitively to the user’s movements. These joints should mimic the biological neuro-
muscular structures that are missing when a leg is amputated. However, achieving this
level of control has been a major drawback, hindering the full potential and usability
of these devices [3]. Addressing this challenge is critical to optimising the functionality
and user experience of prosthetic legs. The Open-Source Leg allows us to tackle this
challenge by incorporating advanced control systems that allow real-time adjustments
and responses to movements through feedback. This enhances comfort, usability, and
confidence of the user when walking with a robotic leg.

The goal for the Open-Source Leg is to allow many researchers around the world to be
involved and contribute to the control of robotic leg prosthesis and any problems
surrounding this. All hardware and software can be obtained from the Open-Source
website, improving the chances of these control methods being shared and
implemented in the real world after developments are completed. This means that
even those without specialised facilities, such as movement scientists, can develop
their own mechatronics system.

This report outlines the approach taken to determine the optimal use cases and
corresponding control strategy for the robotic leg. Through a series of stakeholder
interviews involving potential users, engineers, researchers, technicians and insurance
representatives, insight was gathered into the needs and preferences of the prosthetic
user community. It will delve into the methodology for stakeholder discussions,
present the key findings from the interviews, and discuss how it influences the

 4

direction of the OSL project at the ProtheseAcademie. This includes the development
of a control strategy to optimise the robotic leg’s performance for the identified use
cases. Through this, the aim is to find a clear path forward for the development and
application of the open-source robotic leg.

1.1 Gait Cycle

Before delving into what control strategy is best suited for various use cases, it is
crucial to first understand the intricacies of human gait, as it will need to be replicated
with the OSL. The natural walking pattern, is a highly coordinated and complex
process involving the integration of multiple physiological systems. It involves the
rhythmic and cyclical motion of the limbs, the balance and posture adjustments by the
core, and the dynamic interaction with the ground. By understanding the fundamental
mechanics and phases of human gait, the requirements and challenges faced when
designing effective control strategies for applications such as prosthetics can be
tackled [4]. Figure 1 shows the different phases of human gait. Figure 2 shows the
leg angles.

Stance Phase [6]:

1) Heel Strike – Knee = 0° (full extension), Ankle = 0° (neutral)
2) Loading Response – Knee = 15° (flexion), Ankle = 0 - 5°

(plantarflexion)
3) Mid-Stance – Knee = 5° (flexion), Ankle = 5° (dorsiflexion)
4) Terminal Stance – Knee = 0° (full extension), Ankle = 0°

(neutral)
5) Pre-Swing – Knee = 30° (flexion), Ankle = 20°

(plantarflexion)

Swing Phase [6]:

1) Toe-Off – Knee = 60° (flexion), Ankle = 10° (plantarflexion)
2) Mid-Swing – Knee = moves to 30° (flexion), Ankle = 0°

(neutral)
3) Terminal Swing – Knee = 0° (full extension), Ankle = 0°

(neutral)

θK

θL

θA

Leg
Knee
Ankle

Figure 2 - Gait Leg Angles

Figure 1 - Gait Cycle [5]

 5

The list below shows gait requirements needed for the Open-Source Leg 2.0:

- The prosthetic must be able to support the load from the user throughout all
phases of gait.

- The knee joint of the prosthetic must allow at least 60° of flexion.
- The ankle joint of the prosthetic must allow at least 5° of dorsiflexion.
- The ankle joint of the prosthetic must allow at least 20° of plantarflexion.

2. Problem Analysis

2.1 Problem Definition

The primary objective of this project is to identify the most relevant use cases through
discussion with a range of stakeholders, and to then investigate to which extent these
use cases are feasible for the open-source robotic leg. This use case will guide the
development and application of the prosthetic, ensuring it tackles the most pressing
needs within the prosthetic user community while also serving as a versatile tool for
researchers. In addition to identifying these use cases this project will also focus on
exploring which control strategy is best suited and available in the OSL for the given
applications. The control strategy is a critical component, as it dictates how the robotic
leg responds to user inputs, ultimately influencing the effectiveness. The parameters
should be easily adjustable, enabling the OSL to be used across a variety of different
applications.

2.2 Overview Open-Source Leg 2.0

The Open-Source Leg 2.0 can be seen in Figure 3. It is
primarily constructed from aluminium and stainless steel.
The mechanical system is composed of 40 machined parts,
18 screws, 2 actuators to aid the movement of both joints,
and 2 batteries to supply each of them with power. It is
designed to be easy to manufacture, assemble, and repair.
The entire system weighs less than 5.4 kg, including both
knee and ankle joints fitted with a foot attachment. The cost
of the Open-Source Leg ranges from $9,000 to $19,000,
depending on whether both the knee and ankle are being
used as active joints or passive (degrees of freedom), and the
sensing options chosen when building it, which is dependent
on the control strategy selected. The knee and ankle joints
are mechanically identical, which simplifies assembly,
repair, and allows them to be controlled in the same way.

The minimum build height of the system is 451 mm,
measured from the ground to the top of the knee pyramid
adapter with a flat foot attachment. The height can be adjusted by changing the shaft

Figure 3 - Open-Source Leg 2.0 [2]

± 30°

120° flexion

ActPack

Battery

Load Cell

 6

length between the two joints. Unfortunately, the shaft is not adjustable, so it must be
entirely replaced. The knee joint has a range of motion of 120° for flexion in the sagittal
plane, while the ankle joint has a range of ± 30° for plantar / dorsiflexion also in the
sagittal plane. Both joints support series elasticity, which can be achieved by fitting
custom-designed radial springs without increasing the system's volume. Series elastic
actuators, unlike rigid actuators, contain an elastic element in series with the
mechanical energy source output. This gives the actuator passive mechanical energy
storage, tolerance to impact loads, and low mechanical output impedance. However,
impedance is only low if the springs are able to support the loads generated [7].

The control system of the Open-Source Leg includes 4 encoders to convert information
from one format to another, 2 current sensors (1 at each joint), 2 inertial measurement
units (1 at each joint) to measure orientation, acceleration, angular rates and
gravitational forces. A load cell is used below the knee joint to measure load applied
during walking, and a Raspberry Pi, which is a single-board computer, is used to
control the electronic components. It is designed to be easy to sense, program, and
control. The system can deliver up to 145 Nm of peak instantaneous torque at both the
knee and ankle. The highest torque during human gait occurs when descending stairs,
with a torque value of approximately 1.3 Nm/kg for the knee, and 1.55 Nm/kg for the
ankle [8]. This means the OSL can support a user of up to 93 kg. It supports a variety
of additional sensors and actuators through SPI, UART, I2C, and USB communication
protocols. Communication protocols are a set of rules on how to transfer or exchange
data. Each protocol serves a different purpose, and is chosen based on specific
requirements such as power consumption, complexity, speed, etc. Safety is a priority,
with built-in protections such as Battery I2t, to ensure the batteries can handle thermal
load without overheating. Motor I2t is implemented to similarly stops the motor from
overheating, and Voltage Limits to set maximum and minimum voltage for these
components to safeguard both the user and the system.

The Open-Source Leg is a self-contained system with all necessary electronics
embedded. It exhibits less than 0.045° of backlash at both the knee and ankle joints.
The system supports various control strategies, including voltage, current, position,
and impedance, for both joints. Developers can program the system using Python,
C/C++, and MATLAB [2].

2.2.1 Adjustable Parameters

In this section, the adjustable parameters of the OSL will be discussed. These
parameters can be fine-tuned to enhance the prosthetic's performance, ensuring it
meets the specific needs and preferences of the user. Table 1 shows an overview of
the adjustable parameters along with a description for each. Other parameters that
are not controlled specifically by software, but can still have influence on the OSL can
be seen below the table.

 7

Table 1 - Adjustable Parameters OSL

Parameters Description

Joint Target
Angles

Adjusting the desired flexion and extension angle of the knee joint, and
dorsiflexion and plantarflexion angle of the ankle joint.

Threshold
Angles

Angle where transition occurs from one phase to another (mid / late
stance and swing).

Joint Stiffness Modifying the resistance to movement in the knee and ankle joints.

Joint Damping Adjusting the energy dissipation rate in the knee and ankle joints.

Torque Limits Setting the maximum and minimum torque that can be applied by the
knee and ankle actuator.

Trajectory Planned movement path for the knee and ankle joint during different
activities.

Gain Settings

[9]

Gains for position, velocity, and force feedback control for the knee and
ankle joints.

Proportional Gain – Drives position error to zero.

Derivative Gain – Drives derivative of error to zero.

Integral Gain – Drives total error accumulated to zero.

Equilibrium – Alignment of Components

Usually this would include the alignment of the socket, knee, ankle, shaft, and the
foot attachment. However, the OSL does not allow alignment of the ankle, knee, and
shaft, as these are fixed. Therefore, the only components that can be adjusted are the
socket (geometry, but also attachment site and orientation), foot attachment, and the
length of the shaft between joints. Joint angles may also be considered a part of the
leg’s equilibrium.

 8

Gait

This includes the timing parameters for different phases of the gait cycle (stance and
swing phase), and adjusting the length and frequency of steps (speed) taken by the
prosthetic leg.

2.2.2 Current Control Options

Before being able to decide the best control strategy for the OSL, research was
conducted to gain a better understanding of all the possible options. As outlined in
Section 2.2.0, the system supports multiple control modes for both the knee and
ankle joints, including voltage, current, position, and impedance, to generate the gait
pattern desired by a specific use case. An overview of these control strategies is
provided below, Table 2 highlights their respective advantages and disadvantages.
[10] [11]

Voltage Control - Voltage control involves regulating the voltage supplied to the
motors or actuators by the two batteries specifically in the Open-Source Leg. By
changing the voltage, you can control the speed and torque of the motor. Higher
voltage typically means higher speed or more force. An example of this is that when a
user is walking up a set of stairs, more force is required, so more voltage must be
generated. [12] [13]

Current Control - Current control involves precisely regulating the current flowing
through the motors or actuators. In the OSL current is detected with two current
sensors. Current is directly related to the torque or force produced by a motor, so this
control strategy is crucial for applications that require torque control. By controlling
the current, you can control the force the motor applies. [12]

Position Control - Position control involves regulating the exact position of the
robotic leg. It uses sensors (like encoders) that measure and provide feedback about
the leg's position and adjusts the motor's actions to achieve the desired position. The
OSL has 2 inertial measurement units (IMUs) to detect orientation and other variables
[14]. In general position control is accurate, however response time, accuracy, and
error are heavily dependent on how advanced the sensors are and the control system
chosen. Calibration is also important.

Impedance Control - Impedance control manages the dynamic interaction between
the robotic leg and its environment. It combines elements of position and force control
to adjust the leg's behaviour based on external forces. The leg can be made to act
"softer" or "stiffer" depending on the situation, by changing specific parameters. These
specific parameters include stiffness (K), damping (D), and inertia (M). [14]

 9

Table 2 - Advantages & disadvantages of control strategies

Control
Strategy

Advantages Disadvantages

Voltage

Cost-effective, and simple
to implement. Makes it a
valuable option for many
practical applications.

Can be difficult to control the exact position or
speed of the leg by adjusting only the voltage.
Not very precise as the relationship between
voltage and output is often not linear, but
influenced by various other factors. Has no
feedback mechanism, and is less energy
efficient.

Current

Better for controlling force
and torque when
compared to voltage
control. This makes the
system more stable.

Needs more advanced sensors and feedback
systems, so not perfect for precise position
control. May lack sensor resolution and
sensitivity needed. Inadequate feedback can
result in errors or delays. Expensive hardware.

Position

Can make the robotic leg
move to an exact location,
so very precise and
repeatable. The fact it is
precise also increases
safety.

Can be complex to implement as it requires
precise sensors and feedback systems similar to
current control. If sensors and feedback are not
advanced enough it can lead to reduced
performance. Expensive hardware.

Impedance

Great for tasks that require
interaction with
unpredictable
environments as has good
adaptability. This also
means it is safe, versatile,
and robust.

Requires good models of both the robot and its
environment, as it must capture the interaction
between the robot and surroundings. Complex
and computationally intensive as must
continuously compute desired impedance value
(inertia, stiffness, damping), and optimise
tuning of these parameters, so the actuator
outputs the required force / torque. This
requires accurate and sensitive sensors.

 10

2.3 Market Research
2.3.1 Optimisation Options

Before selecting the best use case, it is essential to explore optimisation possibilities
and applicable parameters for the Open-Source Leg. This was done by conducting
market research. Currently there is not general consensus on what should be
optimised in a prosthetic leg. Many prosthetic optimisations focus on metabolic or
energy consumption, which can be measured with spirometry. Additionally, user
feedback based on physical fatigue and comfort can provide valuable insights.
Comfort is an optimisation in itself, which is influenced by load and stress on the
user. Another factor to optimise is walking symmetry and step length, ensuring they
are as close to the natural walking pattern as possible. By thoroughly investigating
these aspects, the most effective optimisations for each use case can be determined.

2.4 Requirements

Table 3 shows an overview of the requirements for the OSL before interviews.

Table 3 - Requirements

 Description

User - The product should be controlled to be capable of achieving K-Level
3 use cases when optimised (unrestricted outdoor walking) [15].

- The selected control system should enable any user to achieve their
desired position or motion.

Function - The product must fit all patients. The control system must allow
adjustments to be made without influencing the accuracy and
responsiveness of the prosthetic leg (changing socket or shaft).

- The control of the product must be adaptable to cater to all
patients. This can be done by altering parameters and noting
influence.

Safety - The product, including all electrical components, must conform
with medical electrical ISO standards (IEC 80601-2-78:019) [16]

- The OSL should be able to be optimised for all applications whilst
maintaining safety standards.

Ergonomics - The control of the product must assist patients with an above-knee,
transfemoral amputation.

- The control method of the product should be able to control the
prosthetic on both the right and left side of the body.

 11

2.5 Stakeholder Analysis

To be better prepared for the stakeholder interviews, such as knowing what
questions to ask, an overview was made for each stakeholder with their expected
thoughts and demands for the OSL. This can be seen in Table 4. Stakeholders are
essential to gain multiple opinions from a wide range of experts from different
disciplines.

Table 4 - Stakeholder Analysis

Stakeholder Focus Expectations Conclusions

Insurance
Representative

Cost-effectiveness,
reimbursement
processes, and

coverage policies

Information on cost,
long-term benefits, and
insurance coverage for

the prosthetic

Whether the tool is
financially viable and
fits within coverage

policies

Researcher Developing new
technologies and
methodologies

Technical
specifications, research
data, and potential for

future innovations

Interested in the
scientific and
technological

advancement the tool
represents

Orthopaedic
Technician

Fitting and
adjusting prosthetic

devices

Usability, adjustability,
and maintenance of the

prosthetic tool

Ensures tool is
effectively integrated
and customised for

patients

Engineer Design, materials,
and functionality

Engineering data,
material properties,

and performance
metrics

Evaluate technical
integrity and

innovative aspects of
the design

Rehabilitation
Doctor

Patient recovery
and therapy

Tools impact on patient
rehabilitation, ease of

use, and patient
outcomes

Ensures tool aids in
effective patient

recovery and
improves quality of

life

Prosthetic
Users

Actual users of the
prosthetic leg tool

Comfort, ease of use,
durability, and

improved mobility

Feedback for
understanding real-
world efficiency and

user satisfaction

 12

3. Methods
To discover what the needs of the Open-Source robotic leg are for its potential users,
a series of interviews were conducted with a wide range of stakeholders, as prosthetics
is a multidisciplinary field. These interviews aimed to gather insights into how
different stakeholders would utilise the robotic leg and to collaboratively brainstorm
ideas for its application. Discussing with a broad spectrum of stakeholders ensured
that all possible uses were covered, capturing an understanding of specific
requirements, and limitations. This collaborative approach enabled the identification
of practical use cases that will inform the development and optimisation of the control
strategy and software integration, which was the outcome of this part of the project.
Before the interviews, each participant received a presentation on the project and the
Open-Source Leg (OSL) to ensure a common understanding and facilitate more
insightful responses. The questions asked from this presentation can be seen in
Appendix I. Stakeholders were strategically chosen from a diverse array of relevant
disciplines, including orthopaedic technicians, insurance representatives, engineers,
rehabilitation doctors, prosthetic users, and researchers with expertise in the field. A
summary of what was discussed with each stakeholder can be seen below.

3.1 Stakeholder Interviews
3.1.1 Insurance Representative (Tanja Bastiaansen – CZ)

During the meeting with Tanja, an insurance representative, Tanja noted that this
prosthetic is currently too heavy, bulky, and expensive for regular use by amputees.
Although it is primarily used as a research instrument, Tanja suggested it could be
more effectively utilised during the provision process in a trial phase.

Specifically, Tanja recommended using the Open-Source Leg 2.0 to compare knee and
ankle joints with different components and software. This approach is feasible because
the leg's components are quickly and easily interchangeable, but more importantly
that the OSL actuators can simulate other commercially available components.
However, since the leg is not intended to be a definitive long-term solution, it will not
be covered by insurance.

To implement this use-case, a protocol must be developed to ensure the smooth
changing of electrical components such as sensors, and mechanical ones like the
shaft/pylon and the foot. Additionally, there should be a mechanism for switching
between different control scripts or software versions.

3.1.2 Researcher (Bob van der Windt– TU Delft)

During the meeting with Bob, a researcher, potential applications for the Open-Source
Leg 2.0 (OSL) were discussed. Bob outlined a few key areas where the OSL could be
beneficial:

 13

The Open-Source Leg 2.0 could be used for a number of different applications. One
use is in developing different walking algorithms for the knee and ankle joint during
walking, enabling analysis of their impact on user gait patterns. By analysing how this
relationship between joints affects the user's gait, researchers can better understand
and improve walking patterns for prosthetic users.

Another potential application could focus on the dynamics of standing up from a
sitting position and vice versa, rather than only looking on gait. By altering the torque
in the knee joint, researchers can study its impact on these movements, and find the
torque required. This is especially relevant to Bob’s current research, which is aimed
at developing a prosthetic specifically designed to assist with these motions.

A different suggestion was to use the leg as a decision-making tool for fitting
prosthetics in hospitals. By having patients wear the OSL and adjusting its parameters,
clinicians can determine the optimal conditions for each patient. However, it is
important to consider that the OSL is heavier than most commercial prosthetics, which
must be considered in this application.

The final use case mentioned would be to test software. Bob mentioned his work on
the ERiK leg, which has an unwanted button on the front of the thigh part. If the OSL
could be used to develop a controller that replicates the function of this button, it could
then be implemented into the ERiK leg, enhancing its usability.

3.1.3 Orthopaedic Technician (Jeroen Olsman – OIM)

In the meeting with Jeroen, an Orthopaedic Technician, several potential uses for the
Open-Source Leg 2.0 (OSL) were explored. Jeroen highlighted the following key
points:

The Open-Source Leg 2.0 could be used as a tool to compare different components and
hardware or as a decision-making tool for a client's prosthetic needs. Currently,
opinions are subjective and rely on the experience of the technician, but with the OSL,
these could be turned into objective assessments. This objectivity could be particularly
beneficial in improving the confidence of new technicians, as it means there is less
need for years of experience.

Using the OSL in the provision process, which currently involves a lot of trial and error,
could significantly reduce the need to construct multiple prosthetics. This approach
would make the process more efficient and less resource-intensive.

While most prosthetics are designed to be lightweight, the OSL is quite heavy. To
address this, Jeroen suggested the possibility of implementing a handicap factor. This
adjustment would compensate for the weight difference between the OSL and the final
prosthetic chosen for the user.

 14

3.1.4 Engineer (Herman van der Kooij – Universiteit Twente)

In the meeting with Herman, he suggested the potential of the Open-Source Leg 2.0
as a development tool for creating new interfaces and controllers for various different
leg prosthetics. Currently, the testing process is expensive due to the need for
acquiring different components and hardware. Using the OSL could significantly
reduce costs by reducing testing to a single leg, thereby minimising the need to
purchase numerous components. To make implementation across different
prosthetics easier, Herman recommended having a universal software solution
alongside the OSL. However, it's important to note that the OSL currently lacks
certification, which may impact its broader use.

3.1.5 Rehabilitation Doctor (Aline Vrieling – UMCG)

In the meeting with Aline, she suggested that the Open-Source Leg 2.0 can serve as a
crucial tool during the start-up phase of prosthetics, aiding in the selection of optimal
options for the provision process. Currently, most rehabilitation prosthetics are
passive and assessed visually, lacking precise measurements from sensors for accurate
feedback to doctors. Various joint options are borrowed for testing purposes. With the
OSL, parameters of these joints can be simulated to assess them and compare against
alternatives, and it can even operate in passive mode for comparison with mechanical
prosthetics.

Establishing clear instructions and protocols will be essential to enable easy parameter
and component adjustments by rehabilitation doctors and others. However, the
impact of the OSL's weight and distribution needs consideration, alongside its
capability to accommodate different sockets. Additionally, achieving CE certification
is crucial.

3.1.6 Prosthetic Users (Johan, Wybe – ProtheseAcademie)

Unlike most other stakeholders, Johan believes that the OSL is not too heavy to be
used as a standard leg prosthetic. He states that if the OSL can reduce fatigue and
function well as a prosthetic, its weight and aesthetics are of secondary importance.
Johan, who uses a socket prosthetic himself, emphasises the importance of the type of
socket used, such as vacuum or pin lock. He also believes the prototype is not too
expensive compared to other prosthetics. Johan suggests that the OSL could be
particularly beneficial for beginner prosthetic users. Currently, mechanical legs are
used to introduce new users; however, Johan disagrees with this approach, opting
instead for an adjustable leg tailored to the specific needs of the user.

Wybe, on the other hand, believes that the OSL should be used as a tool to compare
both microprocessor-controlled and mechanical prosthetics (with a passive mode).
Unlike Johan, Wybe uses an osseointegration prosthetic, so the optimal fitting of a
socket is not a concern for him. While he thinks that comparison is a valuable
application for the OSL, he thinks that the initial highest priority is ensuring the leg

 15

functions properly. Once that is achieved, different use cases can be tested to
determine the best application. Wybe suggests that the OSL should be tested by
experienced users who are comfortable and not afraid of trying new technologies.

When asked about current limitations in leg prosthetics and their wishes for future
developments, both mentioned the difficulty of walking on terrain with varying
heights. They believe this could be improved with better suspension, as the current
method of compensating for height differences is to bend the prosthetic knee. I believe
that having two active joints, as opposed to the current passive ankle, would make
adjustments easier since both joints could change angles. Additionally, they expressed
a desire for the leg to be waterproof and able to react to resistance, which they currently
lack.

3.2 Stakeholder Summary

Table 5 shows a summary of the various opinions from different stakeholders on
what the application of the OSL should be.

Table 5 - Summary Stakeholder Interviews

Stakeholder Opinion OSL Application

Insurance
Representative

Testing / Comparison Tool

Researcher Gait Analysis (algorithms), Decision-Making Tool, Development Tool

Orthopaedic
Technician

Testing / Comparison Tool, Decision-Making Tool

Engineer Development Tool

Rehabilitation
Doctor

Testing / Comparison Tool

Prosthetic Users Standard Prosthesis, Testing / Comparison Tool

3.3 Use Case Selection

Following discussion with all stakeholders, each potential application mentioned in
the meetings was further investigated to give a better overview and find the most

 16

relevant and feasible use cases to prioritise. The different use cases were compared in
terms of viability, including technical and operational feasibility, as well as usefulness
including the benefits, impact, and demand. The potential drawbacks and
complications were also looked into. Finally, the parameters needed for the selected
optimisation will be looked into to see which is the best suited control strategy.

3.3.1 Use Case I – Testing / Comparison Tool

The Open-Source Leg 2.0 (OSL) could serve as a tool for testing and comparing
different prosthetic components and software. By allowing for quick changes, as well
as simulation of components and software, existing prosthetics can be mimicked
through parameter adjustments, and the OSL significantly enhances both research
and clinical practices. In order for this to be successful, the components must be easily
changed with a clear set of instructions for researchers. Additionally, a comparing
protocol should be developed to ensure everything is covered and nothing is over
looked. For this specific use case, the optimisation goals are not limited, but can be
selected based on what is wanting to be compared. Therefore, all parameters should
be able to be adjusted in this use case. Having a smooth switch between programming
languages will make this application very beneficial. Other than mimicking, which
does not require switching of physical components, there are a number of different
components that can be compared. This includes electrical components like sensors,
comparing their accuracy (error), or how their placement affects this. It can also
include mechanical components such as a foot attachment, and seeing how this affects
gait.

3.3.2 Use Case II – Control Algorithm Tool

The Open-Source Leg 2.0 (OSL) could serve as a tool for developing and testing
different algorithms for the relationship between the knee and ankle joints during
walking. It will give a better understanding of the combination of two active joint
prosthetics, as current research is mostly working with a passive ankle. By enabling
real-time adjustments and detailed gait analysis, the OSL can help optimise walking
patterns, and enhance functional movements. This not only improves the prosthetic’s
performance but also ensures a more personalised and effective process for users.
Something I believe this could specifically target is improving walking on terrain with
uneven heights, as the difference in height should be easier accounted for with two
joints rather than one.

3.3.3 Use Case III – Decision-Making Tool

The Open-Source Leg 2.0 (OSL) could serve as a decision-making tool for amputees
and clinicians to determine the best prosthetic leg options for them specifically. By
developing a detailed testing protocol and focusing on specific optimisation goals such
as metabolic consumption and walking symmetry, the OSL can provide valuable
insights and data-driven recommendations. This approach ensures a personalised and
well-informed prosthetic selection process, leading to improved user satisfaction and

 17

functional outcomes. The testing protocol should include a set of steps that focus on
specific aspects of the protocol based on the wanted optimisation. This can include
damping, stiffness, equilibrium, etc. for energy consumption.

3.3.4 Use Case IV – Development Tool

The Open-Source Leg 2.0 (OSL) could serve as a development tool for advancing
prosthetic technology. By enabling the testing of mechanical components and the
development of control systems, the OSL can help researchers and engineers refine
and improve other prosthetics in their development stage. An example of this is an
engineer not being happy with a specific component of their prosthetic before it is
brought to the market. They would reach out to use to OSL as a tool to come up with a
solution to this problem, as is allows multiple different software, control strategies,
and components to be tested. This approach leads to significant advancements in
prosthetic design and functionality, ultimately benefiting users with more effective
and comfortable prosthetic options. It would also reduce time and money needed for
constructing multiple prosthetics. This use case is not limited to finding the best
parameters or components for a prosthetic, but instead is used to tackle the task of
implementing a new feature or control system to a prosthetic.

3.3.5 Use Case V – Standard Prosthesis

The Open-Source Leg 2.0 (OSL) could serve as a standard socket prosthesis for
amputees. The OSL may be heavier than the average upper leg prosthesis of 8 lbs (3.6
kg) [10], but it can still be a viable option for a prosthetic leg. As long as functionality
is high, for some prosthetic users, this will outweigh the aesthetics and bulkiness of
the leg. If the OSL is used for this application, then the socket fitment will be of highest
importance, as it distributes the user’s weight and helps with smooth movements.

3.4 Use Case Overview

Table 6 shows an overview of the different use case’s, along with the advantages and
disadvantages of each of these applications.

Table 6 - Advantages & disadvantages of use cases

Use Case Advantages Disadvantages

Testing /
Comparison

Tool

Flexibility: Easy changing of
prosthetic components and software,
including programming language,
allows testing and comparison.

Mimicking Prosthetics: Can adjust
parameters to mimic existing
prosthetics, which enhances research,

Complexity: Requires a clear set of
instructions for researchers to change
components.

Protocol: A comparison protocol must be
developed, which can be time-consuming
and complex.

 18

and also makes the product
customisable.

Research and Clinical Benefits:
Improves research and clinical
outcomes through detailed comparison
protocols.

Resource Intensive: Will require many
resources to develop and maintain the
testing and comparison if components are
being tested instead of mimicked.

Control
Algorithm

Tool

Real-Time Adjustments: Allows
real-time adjustments and detailed gait
analysis, leading to optimised walking
patterns, and functionality.

Dual Joint Research: Gives an
insight on the combination of active
knee and ankle joints, which is rarely
explored in current research. This can
improve things such as walking on
uneven terrain by accounting for
height differences with two joints.

Complexity: Developing and testing
walking algorithms can be challenging and
requires research and expertise.

Resource Intensive: Will require
computational resources and real-time
adjustment capabilities (possible with
OSL).

Specialised Equipment: Will require
specialised equipment for detailed gait
analysis and real-time adjustments.

Decision-
Making Tool

Personalised: Provides
recommendations from data for
selecting the best prosthetic options.
This improves user satisfaction.

Specific Optimisation: Can focus
on specific optimisation goals such as
metabolic consumption and walking
symmetry.

Versatile Testing: Includes detailed
testing protocols that address various
aspects like damping, stiffness, and
equilibrium.

Protocol: Developing a detailed testing
protocol can be complex and time-
consuming, as translation of optimal
settings from the OSL to a daily prosthesis
may be difficult.

Training: Requires training for clinicians
to effectively interpret results.

Initial Investment: Significant initial
investment in developing the decision-
making framework and tools.

Development
Tool

Technological Advancement:
Helps in advancing prosthetic
technology by testing mechanical
components and developing control
systems.

Versatile Testing: Allows for testing
multiple software, control strategies,
and components, leading to improved
designs.

Resource Intensive: Requires
significant resources for testing and
development.

Technical Expertise: Needs research
and expertise for effective utilisation and
development.

Infrastructure: Requires a robust
infrastructure to support extensive testing
and development.

 19

Cost-Effective: Reduces the need for
constructing multiple prosthetics,
saving time and money.

Problem Solving: Provides a
platform for engineers to address
specific issues with prosthetic
components before market release.

Standard
Prosthesis

Viable Prosthetic: Can serve as a
standard socket prosthesis despite
being heavier than average, as for
some users, high functionality may
outweigh concerns about aesthetics
and bulkiness.

Socket Fitment: Emphasises the
importance of socket fitment for
weight distribution and smooth
movement, which can enhance comfort
and usability.

Weight: Heavier than the average upper
leg prosthesis, which could be a drawback.

Aesthetics and Bulkiness: Not be as
aesthetically pleasing or as lightweight as
other prosthetic options. This could make
it less successful once placed on the
market.

Certification: Will be required to meet
certain standards and certification, due to
it being an everyday long-term assistive
device.

3.5 Use Case Control Strategies

Selection of the best control strategy for each use case depends on the specific
requirements and goals for each use case. Any of the four control strategies could be a
viable option for each application. Below recommendations for each use case can be
found based on typical control strategy characteristics.

Testing / Comparison Tool: Impedance Control

• Impedance control is flexible and allows for fine-tuning of the interaction
between the prosthetic and the user. It can mimic different prosthetic
behaviours and is ideal for testing various components, such as motors, load
cells, sensors, but also non electrical things for example foot attachments under
different conditions. It allows researchers to adjust stiffness and damping
parameters easily, making it suitable for comparison purposes, and looks to be
feasible for the OSL. Although position control is precise, it does not offer the
same level of interaction properties needed for extensive testing and
comparison. Current control focuses on torque of the actuator, but it lacks the
ability to adjust parameters like stiffness and damping. Voltage control is more
suitable for basic control of actuators and less for the testing of dynamic
interactions.

Control Algorithm Tool: Position Control

 20

• Position control is important for precise gait analysis and the development of
walking algorithms. It ensures that the prosthetic moves to the desired
positions accurately, which is essential for testing and optimising gait patterns.
It allows for detailed study and refinement of walking dynamics, especially
when dealing with complex terrains and joint coordination. Impedance control
could also be a viable option as it is adaptive, however it is less precise when it
comes to detailed positional adjustments that are needed in gait analysis.
Current control focuses on torque control rather than positional accuracy
needed for this application. Voltage control is also not effective for precise
movement.

Decision-Making Tool: Impedance Control

• Impedance control offers a balance between force and position control,
providing a more natural and adaptive interaction with the user. This is
important for prosthetic selection based on specific user needs and optimising
the OSL. It can adjust to different walking conditions, which is beneficial for
decision-making processes, and can change many parameters in the joints such
as stiffness, inertia, and damping. These parameters have an influence on user
interaction with the OSL. Position control lacks the adaptability required;
current control is too focused on actuator output as opposed to user interaction.
Finally, voltage control does not have the response capabilities needed for
adjustments.

Development Tool: All Control Methods

• As the development tool is so broad, all control strategies can be a viable option
based on the specific application it is used for. Impedance control allows testing
under various conditions and fine tuning; therefore, it would be best for
adaptive component testing. Position control is ideal where positional accuracy
is needed, so it is well suited for ensuring accurate movement and gait
simulation. Current control would be optimal for motor and actuator testing as
it focuses on torque management and component durability. Voltage control
would be effective in basic component and electrical circuit testing, and is a very
simple method.

Standard Prosthesis: Impedance Control

• For a standard prosthesis, impedance control offers the best compromise
between adaptability and ease of use. It allows the prosthesis to respond
dynamically to the user's movements and varying walking conditions, providing
a more comfortable and natural experience. While it may be heavier, the focus
on functionality through impedance control can improve user satisfaction.
Position control could be viable, but it lacks the adaptive response needed for

 21

everyday use. Voltage and current control don’t provide the user comfort and
adaptability required.

4. Results

4.1 Final Use Case

Each use case of the OSL offers unique advantages and challenges, making it suitable
for various applications in the field of prosthetics. Rather than developing a control
strategy for the best use case, the focus should lie on the development of a control
strategy that can effectively be applied across various applications. This makes the
product much more versatile, increasing the chances of it aiding the advancement of
these technologies.

4.2 Control Strategy Selection

For the possible applications, position and impedance control seem like the best
choice. They have higher precision and accuracy than other control strategies, and give
feedback. This section will give an overview of these two control strategies with a step
by step on how it works and some examples.

4.2.1 Strategy I – Position Control

When using position control for an active prosthetic leg, it usually does so by
controlling the angle of both joints, to achieve the desired movements to get to the
needed positions. Below is an overview of how a position control system works, and
how it would be implemented into the OSL.

1) Joint Angle: Both joints will have sensors that will measure the current
angle of the joint and provide feedback.

2) Desired Position: A desired position or movement input will be set in the
control script. This can come from various sources such as sensors, or
can even pre-programmed.

3) Control Algorithm: The error (difference) between the desired (input)
and current (sensors) position can be calculated with a control
algorithm. This could be a PID controller, which calculates proportional,
integral, and derivative responses. This could also be just a P
(proportional) controller.

𝑃𝐼𝐷	𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑂𝑢𝑡𝑝𝑢𝑡 = 	𝐾! ∗ 𝐸𝑟𝑟𝑜𝑟 +	𝐾" ∗ 	3𝐸𝑟𝑟𝑜𝑟	𝑑𝑡 +	𝐾# ∗ 	
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑡 	

4) Actuator Torque or Force: Based on the error, the control algorithm
determines how much torque or force is required for the joints to move
to the desired position. The actuators then apply this torque or force.

 22

5) Feedback Loop: The sensors continuously provide feedback to the
control algorithm. This allows real-time adjustments to achieve the
desired positions of the joints.

6) Safety: To ensure safety, the control script should include limits to
prevent the joints from exerting too much force and moving past their
desired positions.

Example Code

The example code below shows an example of position control with a PID controller.
Trajectory is also implemented, and comments in green explain the code.

Import necessary libraries
import time
Provides various time-related functions to manage timing and delays in a control
loop

import math
Provides mathematical functions defined by C standard

import prosthetic_module
Replace with actual modules needed (units, Event, State, StateMachine,
OpenSourceLeg)

PID constants (tune for specific hardware)
Kp = 1.0 # Proportional gain
Ki = 0.1 # Integral gain
Kd = 0.05 # Derivative gain

Initialise variables
previous_error_knee = 0
Previous error for derivative term calculation (Knee)

integral_knee = 0
Integral of errors (Knee)

previous_error_ankle = 0
Previous error for derivative term calculation (Ankle)

integral_ankle = 0
Integral of errors (Ankle)

Trajectory parameters
trajectory_period = 10
Total time of trajectory in seconds

time_step = 0.01
Control loop time in seconds (interval at which updates)

current_time = 0
Tracks the current time

Function to generate desired trajectory
def desired_trajectory(t):
Function with parameter 't' to compute and return desired angle at 't'

Example sinusoidal trajectories for knee and ankle joints
 desired_angle_knee = 30 * math.sin(2 * math.pi * t / trajectory_period)
30 degrees amplitude sin wave so joint will move (± 30°)

 23

 desired_angle_ankle = 15 * math.sin(2 * math.pi * t / trajectory_period)
15 degrees amplitude sin wave so joint will move (± 15°)

 return desired_angle_knee, desired_angle_ankle

math.sin generates sine wave and * by 2 to get full cycle (360°)
Divide by duration/period (time for one complete cycle)

Main control loop
while current_time <= trajectory_period:

 # Get desired joint angles from the trajectory function
 desired_angle_knee, desired_angle_ankle = desired_trajectory(current_time)

 # Sensors read joint angles
 current_angle_knee = prosthetic_module.read_knee_angle()
 current_angle_ankle = prosthetic_module.read_ankle_angle()

 # Calculate errors (difference)
 error_knee = desired_angle_knee - current_angle_knee
 error_ankle = desired_angle_ankle - current_angle_ankle

 # Update integral term
 integral_knee += error_knee * time_step
 integral_ankle += error_ankle * time_step

 # Calculate PID control outputs
 control_output_knee = Kp * error_knee + Ki * integral_knee + Kd * (error_knee
- previous_error_knee) / time_step
 control_output_ankle = Kp * error_ankle + Ki * integral_ankle + Kd *
(error_ankle - previous_error_ankle) / time_step

 # Update previous errors for next iteration
 previous_error_knee = error_knee
 previous_error_ankle = error_ankle

 # Apply control outputs to actuators
 prosthetic_module.control_knee_actuator(control_output_knee)
 prosthetic_module.control_ankle_actuator(control_output_ankle)

 # Increment current time
 current_time += time_step

 # Sleep to maintain the control loop timing
 time.sleep(time_step)
Adjust depending on the control loop frequency

To generate the desired trajectory, a sinusoidal wave is used to provide a mathematical
function. A feedback control system (PID) is then used to adjust the actuators position
to the desired trajectory. The general form of a sinusoidal can be seen below:

𝑥(𝑡) = 𝐴 sin(𝑤𝑡 + 𝜙) + 𝐵

Where:

- 𝑥(𝑡) is position at time 𝑡
- 𝐴 is the amplitude of the wave (maximum displacement from equilibrium, so

desired angle for this case)

 24

- 𝑤 is angular frequency where 𝑤 = $%
&

 and 𝑇 is period
- 𝜙 is the phase shift (determines where wave starts at 𝑡 = 0, if 𝜙 < 0 the wave is

shifted to right so peaks and troughs reached slower)
- 𝐵 is offset (represents equilibrium position)

A basic motion script using position control, developed by Kevin Best, can be seen in
Appendix II. The script works with a proportional controller and trajectory, and
comments have been added to explain each step.

4.2.3 Strategy II – Impedance Control

When using impedance control for an active prosthetic leg, it involves setting up
parameters that determine how the joints respond to user inputs and external forces.
Stiffness, damping, and inertia can be adjusted to provide the user with a more
responsive and natural movement experience. Below is an overview of how impedance
control system works, and how it would be implemented into the OSL.

1) Model Dynamics: This is done to get a better understanding of how
forces affect each joint before defining parameters. Dynamics such as
mass, inertia, and damping are modelled, and how the product interacts
with the environment is considered.

2) Define Parameters: The desired stiffness (K), damping (D), and inertia
(M) are defined. These parameters determine the responsiveness of the
OSL during use.

3) Design Controller: The control method must be decided upon. Position
control can be used as a part of the impedance control in a hierarchal
manner. If this is the case, position control is used for desired
trajectories, and impedance determines interaction forces with the
environment, making it adaptable. An impedance controller adjusts the
torque / force applied based on the current position, external forces, and
velocity. An FSM controller can be implemented to manage the phases
of the leg during gait, which would be needed for the OSL. Again,
position control can be used alongside impedance for this.

𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑀(�̈�# − �̈�) + 𝐷(�̇�# − �̇�) + 𝐾(𝑥# − 𝑥)

(𝑥# − 𝑥) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟, 𝐾 = 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠	𝑀𝑎𝑡𝑟𝑖𝑥

(�̇�# − �̇�) = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝐸𝑟𝑟𝑜𝑟, 𝐷 = 𝐷𝑎𝑚𝑝𝑖𝑛𝑔	𝑀𝑎𝑡𝑟𝑖𝑥

(�̈�# − �̈�) = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟, 𝑀 = 𝐼𝑛𝑒𝑟𝑡𝑖𝑎	𝑀𝑎𝑡𝑟𝑖𝑥

4) Feedback: The sensors give feedback to continuously adjust the
impedance parameters, allowing the OSL to adapt to changes in gait or

 25

the environment. Here the error (difference) between current and
desired is calculated to help compute control torque / force.

5) Safety: To ensure safety, the control script should include limits to
prevent the joints from exerting too much force or torque, that could
damage to prosthetic.

Example Code

The example code below shows an example of impedance control with comments
made in green explain the code.

Import necessary libraries
import numpy as np
For numerical operations, to handle matrices and arrays

import time
Provides time-related functions to manage timing, delays in control loop

Initialise stiffness (K), damping (D), and inertia (M) matrices
K = np.array([[500, 0], [0, 200]]) # Stiffness values for knee and ankle
D = np.array([[50, 0], [0, 20]]) # Damping values for knee and ankle
M = np.array([[1, 0], [0, 1]]) # Inertia values for knee and ankle
Here numpy creates 2D array/matrix, example: [500, 0], [0, 200] represents a 2x2
matrix: 𝐾 = #500 0

0 200'

Desired trajectories (sinusoidal trajectories used for this example)
def desired_trajectories(t):

 x_d = np.array([0.1 * np.sin(t), 0.05 * np.sin(t)])
Desired positions in the two dimensions (x and y), 0.1 being the amplitude (x)

 v_d = np.array([0.1 * np.cos(t), 0.05 * np.cos(t)])
Desired velocities, cos used here as derivative of sinusoidal position function

 a_d = np.array([-0.1 * np.sin(t), -0.05 * np.sin(t)])
Desired accelerations, negative as second derivative of position function

 return x_d, v_d, a_d

Placeholder functions to get sensor data
def joint_positions():
 # Replace the random number with actual sensor reading
 return np.random.randn(2) * 0.01

def joint_velocities():
 # Replace the random number with actual sensor reading
 return np.random.randn(2) * 0.01

def joint_accelerations():
 # Replace the random number with actual sensor reading
 return np.random.randn(2) * 0.01

Placeholder function to apply control to the motors
def apply_control(control_force):
 # Replace with actual motor force driving the joints
 print(f"Applying control force: {control_force}")

Set control loop parameters

 26

control_loop_period = 0.01 # Control loop period in seconds
end_time = 10 # Run the control loop for 10 seconds

Main control loop
start_time = time.time()
Records start time of control loop

while time.time() - start_time < end_time:
While loop runs control loop for specific time
 t = time.time() - start_time
't' is time since start of loop

 # Desired trajectories
 x_d, v_d, a_d = desired_trajectories(t)

 # Sensor readings
 x = joint_positions()
 v = joint_velocities()
 a = joint_accelerations()

 # Calculate errors (difference) between desired and actual
 position_error = x_d - x
 velocity_error = v_d - v
 acceleration_error = a_d - a

 # Compute control force/torque using impedance control law
 control_force = M @ acceleration_error + D @ velocity_error + K @
position_error

 # Applies computed control forces to the joints
 apply_control(control_force)

 # Sleep for the control loop period
 time.sleep(control_loop_period)
 # Waits for next control loop iteration to maintain desired loop frequency

A script using impedance control with a FSM controller, developed by Raj Ayyappan,
and Kevin Best, can be seen in Appendix II. The script works with state transitions
conditions, for transitioning between different phases (stance and swing), and event-
driven transitions for events within phases such as foot-flat, heel-off, toe-off etc. The
FSM uses mostly impedance control, but also with position control (joint angles)
being a component of the impedance control strategy.

4.3 Electrical Components

This section will cover the current components implemented in the OSL. Any
limitations will be discussed.

 27

4.3.1 Battery

It is recommended to use a BA3o LiPo battery for the OSL,
which refers to a type of Lithium Polymer (LiPo) battery,
seen in Figure 4. Its voltage is 33.3 V, and it has a
maximum current of 10A, which should be sufficient for a
prosthetic leg with two active joints. The batteries capacity
is 1Ah (Amp Hours), however the duration of usage will
depend on the power consumption of the OSL. This may be
a limitation for the device if used intensively. It has an
integrated BMS which will ensure it does not overcharge,
and should have adequate longevity to for a prosthetic
device. The battery is charged with a Dephy BA30 Smart
Dock [17].

4.3.2 Load Cell

The M3564F load cell seen in Figure 5 is from the M35XX
series by Sunrise Instruments [18]. This series is a range of
extra thin 6-axis stainless steel load cell designed to
measure forces and torques in 3D space (Fx, Fy, Fz, Mx, My,
Mz). They have a simple and small design (30mm – 70mm
diameter), making them ideal for applications with limited
space such as prosthetic legs. The M3564F has a diameter
of 65mm and thickness of 9.2mm, can measure forces up to
2500N in the Fx, Fy direction and 5000N in the Fz
direction. It can measure torques up to 200Nm in the Mx,
My direction, and 100Nm in the Mz direction. This model is
known for being lightweight and features a high resolution
suitable for a prosthetic leg. It being a 6-axis load cell may
increase complexity, but this is necessary for a high-tech
prosthetic.

4.3.3 ActPack

An ActPack [20] is an advanced actuator system
which integrates multiple components into a single,
compact unit. It is designed to provide high-
performance and precise actuation for robotic
devices, including prosthetics. It works with a BLDC
motor, which is highly efficient, durable, and
provides precise control with high torque. It
supports various communication protocols,
programming languages, and control modes needed
for a prosthetic leg. To ensure safety, it includes
voltage limits, temperature safeguards, and battery

Figure 5 - M3564F Load Cell [19]

Figure 4 – BA30 LiPo Battery [17]

Figure 6 – Geared Actuator [20]

 28

and motor operation. The actuator comes in three different configurations, the OSL
using the 9:1 geared configuration seen in Figure 6. This actuator gears down the
motors output by a ratio of 9:1, meaning the output shaft turns once for every nine
motor rotations. This configuration provides the highest torque and lowest speed from
the three, which is ideal for prosthetic joints that require significant force, and where
supporting body weight and stable movement is crucial. The voltage range required is
20 – 50 V which complies with the 33 V supplied by the batteries.

The ActPack also includes other components including a 6-axis IMU, voltage, current,
temperature sensors, a rotary encoder, a strain gauge amplifier, and an expansion port
[20].

The IMU is an ICM-20602 with a 3-axis gyroscope component that measures angular
velocity across the x, y, z axes. The range is ±250 to ±2000 degrees per second. It also
has a 3-axis accelerometer which measures linear acceleration across the same axes.
The range is ±2g to ±16g (gravity). With these components it can track motion and
orientation, providing data to make real-time adjustments of the actuator [20].

The encoder is a AS5048A/AS5048B magnetic rotary motor encoder with a high
precision 14-bit resolution, meaning it can detect small changes in angles. The encoder
measures speed, position, and direction of the motor shaft. This gives positional and
rotational data as feedback. It has a broad temperature range (-40° – 150°) making it
reliable in most environments [21].

The strain gauge amplifier used One Full-Bridge Channel amplifier. It has a 5V
excitation voltage to generate a measurable output, and a gain of 203 to boost small
signals by a factor of 203. It is used to amplify small voltage changes produced by the
strain gauge, so that it can be easily read by the ActPack’s control system. The Full-
Bridge configuration ensures high sensitivity and accuracy by using four strain gauges
in a Wheatstone arrangement [20].

5. Conclusion
From the extensive research done throughout this project, and the input given by
stakeholders during their interviews, the optimal control strategy for the Open-Source
Leg (OSL) should be a combination of impedance control with a Finite State Machine
(FSM) controller, including aspects of position control (Appendix II). This hybrid
approach ensures both precision and adjustability, addressing the diverse
requirements of various use cases.

Impedance control, known for its ability to adapt to different walking conditions and
provide a natural interaction with the user, stands out for its versatility and stability.
This control strategy is especially beneficial in scenarios such as testing and
comparison, where fine-tuning of interaction properties like stiffness and damping is
of high importance. It also offers significant advantages for decision-making tools,

 29

where personalised adjustments to different gait conditions are necessary for optimal
prosthetic selection and user satisfaction.

The FSM controller enhances impedance control by allowing smooth transitions
between different control modes, thereby improving the overall responsiveness and
adaptability of the prosthetic leg. This combination ensures that the prosthetic can
handle the complex dynamics of human gait, providing a smooth and user friendly
experience.

Incorporating aspects of position control adds an additional layer of accuracy essential
for applications requiring exact positional adjustments, such as gait analysis and the
development of walking algorithms. Position control ensures that the prosthetic moves
accurately to the desired positions, which is critical for studying and refining walking
dynamics.

In summary, a control strategy that integrates impedance control with a FSM
controller and incorporates position control offers the best balance of adaptability,
precision, and user interaction. This approach not only meets the diverse needs of
various applications but also enhances the functionality and user experience of the
Open-Source Leg.

Furthermore, all the electric components selected for the OSL, including the BA30
LiPo battery, M3564F load cell, and ActPack, appear to be well-chosen, providing the
necessary performance, durability, and safety features required for an advanced
prosthetic leg. This ensures that the OSL remains a versatile and effective tool for
advancing prosthetic technology, optimising walking patterns, and improving the
quality of life for prosthetic users.

 30

6. References
[1] – Laferrier, J. Z., & Gailey, R. (2010). Advances in lower-limb prosthetic
technology. Physical medicine and rehabilitation clinics of North America, 21(1),
87–110. https://doi.org/10.1016/j.pmr.2009.08.003

[2] – Open-Source leg. (n.d.). https://www.opensourceleg.org/

[3] – Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., & Beckerle, P. (2016).
Active lower limb prosthetics: a systematic review of design issues and solutions.
Biomedical engineering online, 15(Suppl 3), 140. https://doi.org/10.1186/s12938-
016-0284-9

[4] – Amsaprabhaa, M., Jane, Y. N., & Nehemiah, H. K. (2021). A survey on spatio-
temporal framework for kinematic gait analysis in RGB videos. Journal of Visual
Communication and Image Representation, 79, 103218.
https://doi.org/10.1016/j.jvcir.2021.103218

[5] – Moltedo, Marta & Bacek, Tomislav & Verstraten, Tom & Rodriguez-Guerrero,
Carlos & Vanderborght, Bram & Lefeber, Dirk. (2018). Powered ankle-foot orthoses:
The effects of the assistance on healthy and impaired users while walking. Journal of
NeuroEngineering and Rehabilitation. 15. 10.1186/s12984-018-0424-5.

[6] – Joint range of motion during GAIT. (n.d.). Physiopedia. https://www.physio-
pedia.com/Joint_Range_of_Motion_During_Gait

[7] – Leal, A. G., Junior, De Andrade, R. M., & Filho, A. B. (2016). Series Elastic
Actuator: Design, analysis and comparison. In InTech eBooks.
https://doi.org/10.5772/63573

[8] – Park, K., Ahn, H. J., Lee, K. H., & Lee, C. H. (2020). Development and

Performance Verification of a Motorized Prosthetic Leg for Stair Walking. Applied
bionics and biomechanics, 2020, 8872362. https://doi.org/10.1155/2020/8872362

[9] – Introduction to PID. (n.d.). FIRST Robotics Competition Documentation.
https://docs.wpilib.org/en/stable/docs/software/advanced-
controls/introduction/introduction-to-pid.html

[10] – Lawson, Brian & Mitchell, Jason & Truex, Don & Shultz, Amanda & Ledoux,
Elissa & Goldfarb, Michael. (2014). A Robotic Leg Prosthesis: Design, Control, and
Implementation. Robotics & Automation Magazine, IEEE. 21. 70-81.
10.1109/MRA.2014.2360303.

[11] – Liu, C., Tagliabue, G., Raveendranathan, V., Houdijk, H. H., & Carloni, R.
(n.d.). Control Architecture of a Variable Stiffness Prosthetic Knee for Energy
Absorption and Restoration.

https://doi.org/10.1016/j.pmr.2009.08.003
https://www.opensourceleg.org/
https://doi.org/10.1186/s12938-016-0284-9
https://doi.org/10.1186/s12938-016-0284-9
https://www.physio-pedia.com/Joint_Range_of_Motion_During_Gait
https://www.physio-pedia.com/Joint_Range_of_Motion_During_Gait
https://doi.org/10.1155/2020/8872362
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/introduction/introduction-to-pid.html
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/introduction/introduction-to-pid.html

 31

[12] – Wang, J., & Chortos, A. (2022). Control Strategies for soft robot Systems.
Advanced Intelligent Systems, 4(5). https://doi.org/10.1002/aisy.202100165

[13] – Sadeghijaleh, M. (2015). Voltage Control Strategy for Direct-drive Robots
Driven by Permanent Magnet Synchronous Motors. International Journal of
Engineering, 28(5), 709-716.

[14] – Marchal-Crespo, L., Reinkensmeyer, D.J. Review of control strategies for
robotic movement training after neurologic injury. J NeuroEngineering Rehabil 6,
20 (2009). https://doi.org/10.1186/1743-0003-6-20

[15] – The importance of knowing your K-Level. (n.d.). Össur Prosthetics.
https://www.ossur.com/en-us/prosthetics/information/k-level

[16] – IEC 80601-2-78:2019. (n.d.). ISO. https://www.iso.org/standard/68474.html

[17] – Dephy. (2021). BA30 LiPO battery. In Dephy.
https://dephy.com/docs/BA30/C_0002_DS_0001_V03_BA30DATA.pdf

[18] – Gd-Admin. (n.d.). Best M35XX : 6 axis F/T load cell – Extra Thin
Manufacturer and Supplier | SRI. https://www.srisensor.com/.
https://www.srisensor.com/m35xx-series-6-axis-load-cell-extra-thin-product/

[19] – Open-Source leg. (n.d.). https://www.opensourceleg.org/control

[20] – Coughlin, J. & Dephy, Inc. (2023). ActPack 4.1.
https://dephy.com/docs/Dephy_DS_ActPack41.pdf

[21] – ams. (2018). AS5048A/AS5048B Magnetic Rotary Encoder (14-Bit angular
Position Sensor).
https://eu.mouser.com/datasheet/2/588/AS5048_DS000298_4_00-2324531.pdf

[22] – Basic Motion Test Script — Open-Source leg. (n.d.).
https://opensourceleg.readthedocs.io/en/latest/examples/basic_motion.html

[23] – Finite State Machine Controller — Open-Source leg. (n.d.).
https://opensourceleg.readthedocs.io/en/latest/examples/finite_state_machine.ht
ml

https://doi.org/10.1002/aisy.202100165
https://doi.org/10.1186/1743-0003-6-20
https://dephy.com/docs/BA30/C_0002_DS_0001_V03_BA30DATA.pdf
https://www.srisensor.com/m35xx-series-6-axis-load-cell-extra-thin-product/
https://www.opensourceleg.org/control
https://opensourceleg.readthedocs.io/en/latest/examples/finite_state_machine.html
https://opensourceleg.readthedocs.io/en/latest/examples/finite_state_machine.html

 32

Appendix I
Stakeholder Questions

General Questions:

- How would you like to use this leg?
- What requirements must the leg meet?
- Who would use the leg?
- Do you have any other ideas that are important for the functioning of the leg?

Specific Questions:

Researchers:

- In what different ways do you think this OSL can be used to advance research
on lower limb prosthetics? (Gait analysis)

Engineers:

- Do you believe that the OSL can help in the development of building
prosthetics?

Rehabilitation:

- Do you believe that a robotic knee and ankle joint would have an advantage
over a mechanical leg prosthesis in terms of rehabilitation? (positive and
negative points)

- Do you believe that the OSL can be used to identify abnormal gait in users?

Prosthetic Users:

- According to you, what are the differences between a microprocessor-
controlled prosthesis and a mechanical prosthesis for this use? (positive and
negative points)

Orthopaedic Technologist:

- Do you believe that the OSL can be used as a tool to improve the provision
process?

Insurance:

- Do you believe it would be economically feasible to use the OSL as a prosthesis
for amputees, or could it be better used as a tool for, for example,
rehabilitation or research on lower limb prosthetics?

 33

- When would the health insurer reimburse this leg?

- Do you believe that the OSL can be used as a tool to improve the provision
process?

Appendix II

Position Control

Basic motion using position control, with a P-Controller and trajectory [22]:

import numpy as np
for numerical operations

from opensourceleg.osl import OpenSourceLeg
provides interface to control OSL

from opensourceleg.tools import units
for unit conversion

osl = OpenSourceLeg(frequency=200)
set the control frequency (how often control system updates)

osl.add_joint("knee", gear_ratio=9 * 83 / 18)
specify gear ratio knee
osl.add_joint("ankle", gear_ratio=9 * 83 / 18)
specify gear ratio ankle

def make_periodic_traj_func(period, minimum, maximum):
function that generates lamba function
 amplitude = (maximum - minimum) / 2
 mean = amplitude + minimum
 return lambda t: amplitude * np.cos(t * 2 * np.pi / period) + mean

generates periodic trajectory using cosine wave by taking a single
argument ‘t’ and calculating cosine wave value at that time.
cos is used instead of sin when generating trajectories from peak
position as cos(0) = 1

ankle_traj = make_periodic_traj_func(10, -20, 20)
defined to oscillate between -20 and 20 degrees with a period of 10
seconds

knee_traj = make_periodic_traj_func(10, 10, 90)
defined to oscillate between 10 and 90 degrees with the same period

with osl:
 osl.home()
 input("Homing complete: Press enter to continue")
 osl.knee.set_mode(osl.knee.control_modes.position)
control mode set to position control (knee)

 osl.ankle.set_mode(osl.ankle.control_modes.position)
control mode set to position control (ankle)

 osl.knee.set_position_gains(kp=5)
set proportional gains knee

 34

 osl.ankle.set_position_gains(kp=5)
set proportional gains ankle

 for t in osl.clock:
 osl.update()
 knee_setpoint = units.convert_to_default(knee_traj(t),
units.position.deg)
set units to default (radians)

 ankle_setpoint = units.convert_to_default(ankle_traj(t),
units.position.deg) # set units to default (radians)

 osl.knee.set_output_position(knee_setpoint)
set desired position

 osl.ankle.set_output_position(ankle_setpoint)
set desired position
 print(
 "Ankle Desired {:+.2f} rad, Ankle Actual {:+.2f} rad, Knee
Desired {:+.2f} rad, Ankle Desired {:+.2f} rad".format(
 ankle_setpoint,
 osl.ankle.output_position,
 knee_setpoint,
 osl.knee.output_position,
),
 end="\r",
)

print("\n")

Impedance Control

Impedance control with a Finite State Controller and position control included [23]:

import numpy as np
For numerical operations, to handle matrices and arrays

import opensourceleg.tools.units as units
Provides unit conversion tools

from opensourceleg.control.state_machine import Event, State, StateMachine
Provides classes for FSM

from opensourceleg.osl import OpenSourceLeg
Provides OSL hardware control

offline_mode = False # Set to true for debugging without hardware

next define all tuneable FSM parameters (finite state machine)
include impedance parameters for each state as well as transitions
between states

------------- TUNABLE FSM PARAMETERS ---------------- #
BODY_WEIGHT = 60 * 9.8

STATE 1: EARLY STANCE
KNEE_K_ESTANCE = 99.372 # Knee stiffness early stance

 35

KNEE_B_ESTANCE = 3.180 # Knee damping early stance
KNEE_THETA_ESTANCE = 5 # Knee target angle early stance (position)
ANKLE_K_ESTANCE = 19.874 # Ankle stiffness early stance
ANKLE_B_ESTANCE = 0 # Ankle damping early stance
ANKLE_THETA_ESTANCE = -2 # Ankle target angle early stance (position)

LOAD_LSTANCE: float = -1.0 * BODY_WEIGHT * 0.25
Load applied to leg

ANKLE_THETA_ESTANCE_TO_LSTANCE = 6.0
Threshold angle where transition occurs

STATE 2: LATE STANCE
KNEE_K_LSTANCE = 99.372 # Same as above, but for late stance
KNEE_B_LSTANCE = 1.272
KNEE_THETA_LSTANCE = 8
ANKLE_K_LSTANCE = 79.498
ANKLE_B_LSTANCE = 0.063
ANKLE_THETA_LSTANCE = -20
LOAD_ESWING: float = -1.0 * BODY_WEIGHT * 0.15

STATE 3: EARLY SWING
KNEE_K_ESWING = 39.749 # Same as above, but for early swing
KNEE_B_ESWING = 0.063
KNEE_THETA_ESWING = 60
ANKLE_K_ESWING = 7.949
ANKLE_B_ESWING = 0.0
ANKLE_THETA_ESWING = 25
KNEE_THETA_ESWING_TO_LSWING = 50
KNEE_DTHETA_ESWING_TO_LSWING = 3

STATE 4: LATE SWING
KNEE_K_LSWING = 15.899 # Same as above, but for late swing
KNEE_B_LSWING = 3.816
KNEE_THETA_LSWING = 5
ANKLE_K_LSWING = 7.949
ANKLE_B_LSWING = 0.0
ANKLE_THETA_LSWING = 15
LOAD_ESTANCE: float = -1.0 * BODY_WEIGHT * 0.4
KNEE_THETA_LSWING_TO_ESTANCE = 30
-- #

specific parameters tuned for moderately paced walking gait (can be tuned
to suit use case)

next enter main function, run_FSM_controller().
first instantiate an OSL object, add joints, and add a loadcell
(instantiating explained in adding actuator and loadcell tutorial)

def run_FSM_controller():
 """
 This is the main function for this script.
 It creates an OSL object and builds a state machine with 4 states.
 It runs a main loop that updates the state machine based on the
 hardware information and sends updated commands to the motors.
 """
 osl = OpenSourceLeg(frequency=200)
 osl.add_joint(name="knee", gear_ratio=41.4999,
offline_mode=offline_mode) # add knee joint

 36

 osl.add_joint(name="ankle", gear_ratio=41.4999,
offline_mode=offline_mode) # add ankle joint

 LOADCELL_MATRIX = np.array(
NumPy array used for calibrating/configuring loadcell measurements
 [
 (-38.72600, -1817.74700, 9.84900, 43.37400, -44.54000,
1824.67000),
col-1 coefficient x-axis force
 (-8.61600, 1041.14900, 18.86100, -2098.82200, 31.79400,
1058.6230),
col-2 coefficient y-axis force
 (-1047.16800, 8.63900, -1047.28200, -20.70000, -1073.08800, -
8.92300),
col-3 coefficient z-axis force
 (20.57600, -0.04000, -0.24600, 0.55400, -21.40800, -0.47600),
col-4 coefficient x-axis torque
 (-12.13400, -1.10800, 24.36100, 0.02300, -12.14100, 0.79200),
col-5 coefficient y-axis torque
 (-0.65100, -28.28700, 0.02200, -25.23000, 0.47300, -27.3070),
col-6 coefficient z-axis torque
]
 # calibration coefficients determined during calibration process
where forces applied to load cell
 # calibration techniques (least squares regression) coefficients
determined to convert raw sensor readings
)
 osl.add_loadcell(
 dephy_mode=False,
 offline_mode=offline_mode,
 loadcell_matrix=LOADCELL_MATRIX,
)

then create StateMachine instance

 fsm = build_4_state_FSM(osl)

next configure the OSL log

 osl.log.add_attributes(container=osl, attributes=["timestamp"]) #
logging settings are applied to the osl object
 osl.log.add_attributes(#
only attribute to be logged for the osl object is the "timestamp"
 container=osl.knee,
 attributes=[
 "output_position",
 "motor_current",
 "joint_torque",
 "motor_voltage",
 "accelx",
],
)
 osl.log.add_attributes(
 container=osl.ankle,
 attributes=[
 "output_position",
 "motor_current",
 "joint_torque",
 "motor_voltage",

 37

 "accelx",
],
)
 osl.log.add_attributes(container=osl.loadcell, attributes=["fz"])
force on z-axis logged
 osl.log.add_attributes(container=fsm.current_state,
attributes=["name"]) # log name assigned to each state

MAIN LOOP
everything set up, now home the OSL and enter main loop
during each iteration of main loop, call update method for both the OSL
and the FSM
write current impedance parameters for each joint to the hardware
print statement also included for debugging

 with osl:
resources acquired by osl object properly released after block of code
executes
 osl.home()
instruct component to predefined home position
 fsm.start()
start the FSM, initiating operation to control

 for t in osl.clock:
iterates sequence time values provided by osl.clock. update/control
system's behaviour
 osl.update()
update states for both OSL system and FSL controller at each time step
 fsm.update()

 if osl.knee.mode != osl.knee.control_modes.impedance:
 osl.knee.set_mode(mode=osl.knee.control_modes.impedance)
 osl.knee.set_impedance_gains()
 osl.knee.set_joint_impedance(
 K=units.convert_to_default(
 fsm.current_state.knee_stiffness,
updates the control parameters (such as impedance gains,
 units.stiffness.N_m_per_rad,
stiffness, damping, and position) for joints based on the
),
current state of the FSM controller
 B=units.convert_to_default(
 fsm.current_state.knee_damping,
 units.damping.N_m_per_rad_per_s,
),
)
 osl.knee.set_output_position(
 position=units.convert_to_default(
 fsm.current_state.knee_theta, units.position.deg
),
)

 if osl.ankle.mode != osl.ankle.control_modes.impedance:
 osl.ankle.set_mode(osl.ankle.control_modes.impedance)
 osl.ankle.set_impedance_gains()
 osl.ankle.set_joint_impedance(
 K=units.convert_to_default(
 fsm.current_state.ankle_stiffness,
 units.stiffness.N_m_per_rad,

 38

),
 B=units.convert_to_default(
 fsm.current_state.ankle_damping,
 units.damping.N_m_per_rad_per_s,
),
)
 osl.ankle.set_output_position(
 position=units.convert_to_default(
 fsm.current_state.ankle_theta, units.position.deg
),
)
 print(
 "Current time in state {}: {:.2f} seconds, Knee Eq {:.2f},
Ankle Eq {:.2f}, Fz {:.2f}".format(
 fsm.current_state.name,
 fsm.current_state.current_time_in_state,
 fsm.current_state.knee_theta,
 fsm.current_state.ankle_theta,
 osl.loadcell.fz,
),
prints status information to the console
 end="\r",
)

OSL library provides sensor values in default units (convert to prior if
library expects other units)
can use units module and tools sub package to do this for example:
ankle_angle_in_deg =
units.convert_from_default(osl.ankle.output_position, units.position.deg)

BUILDING THE STATE MACHINE
uses StateMachine functionality of opensourceleg.control module to make
a state machine with 4 states

def build_4_state_FSM(osl: OpenSourceLeg) -> StateMachine:
 """This method builds a state machine with 4 states.
 The states are early stance, late stance, early swing, and late swing.
 It uses the impedance parameters and transition criteria above.

 Inputs:
 OSL instance
 Returns:
 FSM object"""

 early_stance = State(name="e_stance")
 late_stance = State(name="l_stance")
 early_swing = State(name="e_swing")
 late_swing = State(name="l_swing")

then assign impedance values for each state

 early_stance.set_knee_impedance_paramters(
 theta=KNEE_THETA_ESTANCE, k=KNEE_K_ESTANCE, b=KNEE_B_ESTANCE
)
 early_stance.make_knee_active()
 early_stance.set_ankle_impedance_paramters(
 theta=ANKLE_THETA_ESTANCE, k=ANKLE_K_ESTANCE, b=ANKLE_B_ESTANCE
)
 early_stance.make_ankle_active()

 39

 late_stance.set_knee_impedance_paramters(
 theta=KNEE_THETA_LSTANCE, k=KNEE_K_LSTANCE, b=KNEE_B_LSTANCE
)
 late_stance.make_knee_active()
 late_stance.set_ankle_impedance_paramters(
 theta=ANKLE_THETA_LSTANCE, k=ANKLE_K_LSTANCE, b=ANKLE_B_LSTANCE
)
 late_stance.make_ankle_active()

 early_swing.set_knee_impedance_paramters(
 theta=KNEE_THETA_ESWING, k=KNEE_K_ESWING, b=KNEE_B_ESWING
)
 early_swing.make_knee_active()
 early_swing.set_ankle_impedance_paramters(
 theta=ANKLE_THETA_ESWING, k=ANKLE_K_ESWING, b=ANKLE_B_ESWING
)
 early_swing.make_ankle_active()

 late_swing.set_knee_impedance_paramters(
 theta=KNEE_THETA_LSWING, k=KNEE_K_LSWING, b=KNEE_B_LSWING
)
 late_swing.make_knee_active()
 late_swing.set_ankle_impedance_paramters(
 theta=ANKLE_THETA_LSWING, k=ANKLE_K_LSWING, b=ANKLE_B_LSWING
)
 late_swing.make_ankle_active()

states defined, now define transition functions
functions take osl instance as arguments and return a boolean when
transition criteria met
example: first define transition from early stance to late stance based on
the loadcell z force
and the ankle angle as:

 def estance_to_lstance(osl: OpenSourceLeg) -> bool:
 """
 Transition from early stance to late stance when the loadcell
 reads a force greater than a threshold.
 """
 assert osl.loadcell is not None
 return bool(
 osl.loadcell.fz < LOAD_LSTANCE
 and osl.ankle.output_position > ANKLE_THETA_ESTANCE_TO_LSTANCE
)

remaining transition functions defined similarly

 def estance_to_lstance(osl: OpenSourceLeg) -> bool:
 """
 Transition from early stance to late stance when the loadcell
 reads a force greater than a threshold.
 """
 assert osl.loadcell is not None
 return bool(
 osl.loadcell.fz < LOAD_LSTANCE
 and osl.ankle.output_position > ANKLE_THETA_ESTANCE_TO_LSTANCE
)

 40

 def lstance_to_eswing(osl: OpenSourceLeg) -> bool:
 """
 Transition from late stance to early swing when the loadcell
 reads a force less than a threshold.
 """
 assert osl.loadcell is not None
 return bool(osl.loadcell.fz > LOAD_ESWING)

 def eswing_to_lswing(osl: OpenSourceLeg) -> bool:
 """
 Transition from early swing to late swing when the knee angle
 is greater than a threshold and the knee velocity is less than
 a threshold.
 """
 assert osl.knee is not None
 return bool(
 osl.knee.output_position > KNEE_THETA_ESWING_TO_LSWING
 and osl.knee.output_velocity < KNEE_DTHETA_ESWING_TO_LSWING
)

 def lswing_to_estance(osl: OpenSourceLeg) -> bool:
 """
 Transition from late swing to early stance when the loadcell
 reads a force greater than a threshold or the knee angle is
 less than a threshold.
 """
 assert osl.knee is not None and osl.loadcell is not None
 return bool(
 osl.loadcell.fz < LOAD_ESTANCE
 or osl.knee.output_position < KNEE_THETA_LSWING_TO_ESTANCE
)

next define events corresponding to state transitions using the Event
class

 foot_flat = Event(name="foot_flat")
 heel_off = Event(name="heel_off")
 toe_off = Event(name="toe_off")
 pre_heel_strike = Event(name="pre_heel_strike")
 heel_strike = Event(name="heel_strike")

finally, make an instance of the StateMachine class and add the states,
events and transitions created
the add_transition() method takes arguments of source state, a
destination state, an event, and the callback
function defining when that transition occurs
after, the FSM is fully built and can be returned

 fsm = StateMachine(osl=osl, spoof=offline_mode)
 fsm.add_state(state=early_stance, initial_state=True)
 fsm.add_state(state=late_stance)
 fsm.add_state(state=early_swing)
 fsm.add_state(state=late_swing)

 fsm.add_event(event=foot_flat)
 fsm.add_event(event=heel_off)
 fsm.add_event(event=toe_off)
 fsm.add_event(event=pre_heel_strike)
 fsm.add_event(event=heel_strike)

 41

 fsm.add_transition(
 source=early_stance,
 destination=late_stance,
 event=foot_flat,
 callback=estance_to_lstance,
)
 fsm.add_transition(
 source=late_stance,
 destination=early_swing,
 event=heel_off,
 callback=lstance_to_eswing,
)
 fsm.add_transition(
 source=early_swing,
 destination=late_swing,
 event=toe_off,
 callback=eswing_to_lswing,
)
 fsm.add_transition(
 source=late_swing,
 destination=early_stance,
 event=heel_strike,
 callback=lswing_to_estance,
)
 return fsm

finally, call main function:

if __name__ == "__main__":
 run_FSM_controller()

