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1 Introduction

In this thesis we will explore the article written by Moritz Otto titled ” Cou-
plings and Poisson approximation fot stabelizing functionals of determinantal
point process” [18]. The goal of this thesis we be to explain the main results of
the paper and explain the proof of this paper for readers of a bachelor’s level
of mathematics. Consequently, we will cover basic concepts such as measurable
sets and point processes, also we will look at the the specific Poisson point pro-
cess ,which is a very widely reconigezed point process. We will also look at the
determinantal point process (DPP)that was introduced in quantum mechanics
to study the arrangement of fermions [16]. A key characteristic of a DPP is that
it is a repulsive point process, repulsion just means that points want to move
away from each other this makes a DPP useful in applied sciences. For example,
they can be used as a model for base stations in wireless network [17]. In math-
ematics DPPs arise naturally in different fields, such as an random spanning
tree [5]. DDPs have important probabilistic properties. Notably, the (reduced)
Palm process is again a determinantal process. A DPP on Rd is determined by
its correlation kernel K, which is hermitian function from Rd × Rd to C, what
means that we take to point and returns a complex element. An well know DPP
is the Ginibre process on R2 with Gaussian kernel explained in section 3. In this
thesis we will look at the functionals of DPPs. But what does that functionals
of DPP mean? This model is a stationary determinantal point process ξ on
Rd and let g be measurable function Rd × N to {0, 1} , where we write N is
the σ-finite set with all possible point configurations in Rd (will be explained in
section 2). For some measurable W ⊂ Rd , let

Ξ[ξ] :=
∑

x∈ξ∩W

g(x, ξ)δx,

where δx denotes the Dirac measure at x. The function g will remove points
away from the DPP of ξ. This means that Ξ has a point x that is in ξ and
g(x, ξ) = 1 holds. With an idea of what the functional of a determinantal
point process is, we finally want to take the distance in some appropriate metric
of point processes because this processes are random we cannot take a simple
distance between points. So, the idea is to find a distance between Ξ and Poisson
point process. This continuous the studies for stabilizing functionals of Poisson
point process [3] ,[19] . However , the repulsive of DPPs requires different tools
then if we would use a Poisson input as the ξ in the functional of Ξ. The main
result of this paper will be,

• If the correlation kernel K is fast decaying and if the function g is stabi-
lizing and satisfies certain assumptions , then the distance between Ξ and
a Poisson process can be bounded is comparable to a bound seen from the
thinned Poisson point processes [3].

• If ξ is a Ginibre process and if Ξ is the point process of elements in ξ∩W ,
and if we take the thinning function such that we get a large distance
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between the nearest neighbor, we will proof that if the volume W tends to
infinity, then with an appropriate scaling of Ξ will asymptotically converge
to a Poisson point process.

This thesis will start with section 2 covering basic concepts in measure theory. In
section 3, we will introduce point processes (Poisson, determinantal, Ginibre and
Palm processes) and the distance we taking such that we can take a distance
between point processes. In section 4 we will discuss the main result in this
paper, section 5 we will see the preliminaries of the main theorems, followed by
section 6, where we will present the proof of the main theorems in this paper.
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2 Measure theory

2.1 σ-algebra

We first need some basic notation from measure theory so we can explain
the point processes later. Therefore we start with the notions of algebras.

Definition 2.1. A collection F of subsets of a set Ω is a σ-algebra if,

1. Ω ∈ F

2. A ∈ F ⇒ Ac ∈ F

3. An ∈ F , n ∈ N ⇒
⋃∞

n=1 An ∈ F

We denote a σ-algebra as a measurable set (Ω,F). This notation will be
used throughout the paper.

Examples of a σ-algebra of the set Ω are F = (∅,Ω) or F = P (Ω). The
power set of Ω. This two set are the smallest and biggest σ- algebras of any set.
Now we want to define the measure for any given σ-algebra.

Definition 2.2. A measure µ on a σ-algebra F is an extended real-valued func-
tion µ : F → [0,∞] which satisfies:

1. µ(∅) = 0

2. An ∈ F , n ∈ N pairwise disjoint ⇒ µ(
⋃∞

n=1 An) =
∑∞

n=1 µ(An)

With this last definition we can define a measure space with the triplet of
(Ω,F , µ). Very important point: a measure space is a probability space if the
measure µ(Ω) = 1. This triple gets distinguished with the notation (Ω,F ,P).
Where we change µ by the well known P from probability. Now we want to look
at some important measures for point processes.

Definition 2.3. (Dirac measure) Let Ω be set and let F be a σ-algebra. For
x ∈ Ω and A ∈ F . Then define the function:

δx(A) =

{
1, if x ∈ A

0, otherwise

Definition 2.4. (counting measure) Let Ω be a set and let F = P (Ω) (the
power set). Let A ∈ F . Then we can define µ as:

µ(A) =

{
|A| if A is a finite set

∞ if A is an infinite set

Here the measure counts the amount of point in the set. Also the σ-algebra
needs to be the power set (which is the biggest σ-algebra in the set).
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2.2 Generators of σ-algebra

Important idea is how can we create a σ-algebra from a given subset from
Ω. Also can we make new algebras from different algebras. The second point
will be shown by the lemma below.

Lemma 2.5. The intersection of a nonempty family of σ-algebras on a set Ω
is a σ-algebra.

Proof. we going to check the definition of the σ-algebra. Let us define Fα with
α ∈ I some index set, be a collection of σ- algebras. The first point we know
that Ω ∈ Fα for all α This means it is also in the intersection of these sets.
second point take a element A and let A∈

⋂
α∈I Fα. This means that A is

an element in all of the Fα. Because the Fα is a σ-algebra. We can say that
Ac ∈ Fα, for all α. This means that Ac ∈

⋂
α∈I Fα. This means statement two

holds. The third statement let use take An, n ∈ N be in
⋂

α∈I Fα. Then for
all α ∈ I An belongs in Fα and by definition of σ-algebra this means

⋃∞
n=1 An

This union also belongs to Fα. thus this means also for
⋂

α∈I Fα.

This proof tells use that if we have two of more σ-algebras we can always
have the smallest σ-algebra by taking the intersection of them.

Proposition 2.6. Let ε be a collection of subsets of a set Ω. Then there is
precisely one σ-algebra F such that:

1. ε ⊂ F

2. If A is a σ-algebra with ε ⊂ A then F ⊂ A

Proof. The set is never empty by just producing the power set we know ε will
be in the set. statement one follows from the idea of the lemma. If the second
statement holds for another F ′ then we can show easily that F ′ ⊂ F and
F ⊂ F ′. This means it is unique σ-algebra.

This proposition tells use there exist a smallest σ-algebra. from any subset
in Ω. Also now we want to construct this set.

Definition 2.7. Let ε be a collection of subsets of a set Ω. The unique σ-
algebra in proposition above is generated by ε, denoted by σ(ε), and ε is said to
be generator of this σ-algebra.

Now we gonna use by defining a specific subset and define the Borel σ-
algebra, this algebra will be used in the next chapter to define the space we will
work in.

Definition 2.8. Borel σ-algebra Let Ω be a topological space. The σ-algebra
generated by all open sets of Ω in the Borel σ-algebra B(Ω). Its elements are
called Borel measurable subsets

5



This definition tells use what a Borel σ-algebra is. It is the set of subset
generated by open sets in the topology. This definition is important but we want
to work for this theory in a Rd space. Thus we look at the next proposition.

Proposition 2.9. The Borel σ-algebra Bd on Rd where d is the dimensions is
generated by:

1. the collection of closed subsets;

2. the collection of half-spaces (x1, . . . , xd) : xi ≤ b for some index i and b ∈ R

3. the collection of rectangles (a1, b1]× . . .× (ad, bd] where ai, bi ∈ R, ai ≤ bi
and 1 ≤ i ≤ d.

Now we can create a Borel σ-algebra, given a set of closed subsets in Rd.
Now we will define a measure that will be used later in chapter two to define a
measure of our space we are in.

Definition 2.10. Let Ω be a set and let P (Ω) be the power set. the real-valued
function µ∗ : P (Ω) → [0,∞] is an outer measure on Ω if:

1. µ∗(∅) = 0

2. A ⊂ B ⇒ µ∗(A) ≤ µ∗(B)

3. An ⊂ Ω, n ∈ N ⇒ µ∗(
⋃∞

n=1 An) ≤
∑∞

n=1 µ
∗(An)

Definition 2.11. Let µ∗ be an outer measure on Ω. A set A ⊂ Ω is measurable
with respect to µ∗ if for any set Z ⊂ Ω.

µ∗(Z) = µ∗(Z ∩A) + µ∗(Z ∩Ac)

The outer measure is a measure were we can split the measure in smaller
sub-measures so it can be easier solved. This property is an important point for
the next measure that we will see. This measure is the Lebesgue measure.

We can take the volume of a R rectangle R of the form

R = [a1, b1]× . . .× [ad, bd], ai, bi ∈ R, ai ≤ bi, i = 1, . . . , d.

This volume is defined as

l(R) = (b1 − a1)× . . .× (bd − ad). (1)

This measure can be used to calculate rectangles and has defining elements like
if the rectangle is dimension Rd−1 the measure is zero and the unit box( defined
by all R = [0, 1]× . . .× [0, 1]) has measure 1.

Definition 2.12. Let A ⊂ Rd. Then m∗(A) ∈ [0,∞] is defined by

m∗(A) = inf{
∞∑

N=1

l(Rn) : Rn ⊂ Rd closed rectangle, A ⊂ A ⊂
∞⋃

n=1

Rn} (2)
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This is called the Lebesgue outer measure.

Theorem 2.13. [21, Theorem 2.7] Let the Lebesgue outer measure m∗ an let
R ⊂ Rd be a closed rectangle with volume l(R). then M∗(R) = l(R)

Definition 2.14. The Lebesgue measurable sets of Rd are the measurable sets
defined by the Lebesgue outer measure m∗, and Lebesgue measure is the restric-
tion of m∗ to the Lebesgue measurable sets. The measure space is denoted by
(Rd,Md,m).

Remark we can now take the volume of some Borel-set in Rd. By using the
lebesgue measure, defined by (1). This will be used in the section about point
processes.
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3 Point processes

3.1 Point process

A point process is a random collection of countable many points, with mul-
tiplicities meaning that not all points have the same integer measure. We first
want to define a counting measure on Rd.

Definition 3.1. A counting measure ξ on Rd is a map ξ : Bd → N0 ∪∞, B 7→
ξ(B), B ∈ Bd.

This is a function that takes the set of Borel-sets in Rd and gives you the
amount of points with multiplicities in this Borel-set. We can define a simple
counting measure as a counting measure that counts points with a measure 1.
We can write this statement above as take a counting measure ξ, with for all
x ∈ Rd, such that ξ({x}) ∈ {0, 1}.

The counting measure ξ counts the amount of points. However as we wrote
above, it should be countable. How can we making this counting measure count-
able and have a collection of random counting measure? For this we want a set
of bounded Borel-set that keeps them from being infinite.

Definition 3.2. A counting measure ξ on Rd is σ-finite if for all B ∈ Bd where
B is a bounded set, then ξ(B) < ∞.

Now we have a definition of a σ-finite but now we want this ξ counting
measure to be random and not determined.

Definition 3.3. We define N as the set of all σ-finite counting measure on Rd.

Definition 3.4. We define N̂ as the set of all finite counting measures on Rd

The difference between this set is that for all finite counting measure we mean
that for any B ∈ Rd, then the µ(B) < ∞. We defined two sets of functions
but now we want to find an σ-algebra N and N̂ . We want to generate this by
looking at all counting measure that are measurable from a map from the space
(Ω,F).

Definition 3.5. A map between measure spaces f:(Ω,F) → (Ω′,F ′) is measur-
able if f−1(A) ∈ F for any A ∈ F ′.

Definition 3.6. A σ-algebra for N is induced as N := {fB : (Ω,F) →
(N0,F(N0) : f−1

B (n) ∈ F for all n ∈ N0}, where fB takes all bounded Borel
sets.

Definition 3.7. A σ-algebra for N̂ is induced as N̂ := {f : (Ω,F) → (N0,F(N0)
: f−1

B (n) ∈ F for all n ∈ N0}.

This mean we can generate the σ-algebra for this set as σ({f−1
B ({n}}) : B ∈

B, n ∈ N0 ∪∞}). This is the smallest σ-algebra on N that contains all sets of
the pre-image of a number of points for all Borel-sets in (Ω,F ,P). This makes
(N ,N ) and (N̂ , N̂ ) are measurable sets of functions, We can finally give the
general definition for a point processes.
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Definition 3.8. A point process on Rd is a random element ξ of (N ,N ), that
is a measurable mapping ξ : Ω → N , on the probability space (Ω,F ,P).

Now some example for some point processes. Take a point processes on Rd.
If Z : Ω → N , ω → Z(w) is such that (Z(ω)({x})) ∈ {0, 1} for all ω ∈ Ω and
all x ∈ Rd. We can define then we can identify z(ω) with the support in the
case we write,

(Z(ω))(B) = card(Z(ω) ∩B), B ∈ Rd.

where card means the cardinality of the set, thus counting how many points
are in the set. This measure is just the counting measure defined earlier for a
set. This is also a simple counting measure because every point is counted only
once.

An important question of point processes is the amount of points we expect
to see in a Borel set B. This is called the intensity measure and we define it like
this.

Definition 3.9. The intensity measure of a point processes ξ on N is the
measure on (Rd,Bd) defined by:

E[ξ](B) := E[ξ(B)] for B ∈ Bd.

The intensity measure is defined on a Borel-set for the point process.
Now we want to talk stationary point processes. In probability we encounter

a lot of stationary distributions. It just means that under translation the dis-
tribution does not change. let us first define the shifts: θy : N → N , y ∈ Rd ,
defined by,

θyµ(B) := µ(B + y), µ ∈ N , B ∈ Bd (3)

Definition 3.10. Two point processes η and ξ are equal in distribution if P(η ∈
E) = P(ξ ∈ E) for any E ∈ N this we can write as η

d
= ξ.

Now we can define this shift map for point processes and distribution.

Definition 3.11. A point process ξ on Rd is said to be stationary if θxξ
d
= ξ

for all x ∈ Rd.

If we have a stationary distribution we can say something about the intensity
measure. Therefore there is also a term called the intensity this is defined as
λ ∈ R+ such that the intensity measure could be written like this :

E[ξ(B)] = λ|B|, (4)

where the |B| is the Lebesgue measure on the set B. We also want to look at
the correlation function.This will tell us if the point processes have points being
attractive or repulsive to each other. We first will look at the notation of locally
square integrable .
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Definition 3.12. We say a point processes ξ on Rd is locally square integrable
if:

E[(ξ(B))2] < ∞, B ∈ Bd
b .

Here Bd
b is all bounded Borel subsets.

We will define the correlation function for order m. This means we look
at m points xi in Rd where i ∈ I. This tells us if the points are repulsive or
attractive to each other. We will define this correlation function as:

Definition 3.13. The function ρm : (Rd)m → [0,∞] is the correlation function
of a point process ξ if

E[ξ(A1) · · · ξ(Am)] =

∫
A1×...×Am

ρm(x1, . . . , xm)d(x1, . . . , xm)

For pairwise disjoint A1, . . . , Am ∈ Bd, and for x1, . . . , xm ∈ Rd,m ∈ N

Remark: We could take this definition above that we can write this correla-
tion function for m = 1 we get:

E[ξ](B) =

∫
B

ρ1(x1)dx1 (5)

Proposition 3.14. [12]Let ξ be a locally square integrable stationary point pro-
cesses on Rd with positive intensity. Then there exists a correlation function
ρm for the point processes.

Last property we want look at is negatively associated.

Definition 3.15. Let’s take a point process ξ. Then the point process is nega-
tively associated if for each collection of disjoint sets B1, . . . , Bm ∈ Bd and each
subset I ⊂ {1, . . .m} we have that

Cov(F (ξ(Bi), i ∈ I), G(ξ(Bi), i ∈ Ic)) ≤ 0, (6)

where F,G are real bounded and increasing functions

Now we can look at point processes, like determinantal, Poisson, Ginibre,
and Palm point processes.

3.2 Determinantal point processes

We first define the determinantal point processes (DPP). Let K : (Rd)2 → C
be a complex function. We say that ξ is a determinantal point processes with
correlation kernel K, if for every n ∈ N and pairwise disjoint A1, . . . , An ∈ Bd

we have that

E[ξ(A1) · · · ξ(An)] =

∫
A1×...×An

det[(K(xi, xj))
n
i,j=1]d(x1, . . . , xn), (7)
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where d.. denotes integration with respect to the Lebesgue measure on Rd,
the (K(xi, xj)

m
i,j=1) is the m×m- matrix with entry K(xi, xj) at position (i, j)

and det(M) is the determinant of the complex value matrix. If we look back at
definition 3.13 we can say the correlation is:

ρm(x1, · · · , xm) = det(K(xi, xj))
m
i,j=1, x1, . . . , xm ∈ Rd,m ∈ N (8)

In this article we will assume K to have the following four assumptions.

1. K is hermitian i.e. K(x, y) = K(y, x), x, y ∈ Rd, where the bar means the
complex conjugate of the element.

2. K is locally square integrable like in the definition 3.12 for every compact
B ∈ Bd the integral ∫

B

∫
B

|K(x, y)|2dydx < ∞.

3. K is locally of the trace class, i.e. for every compact B ∈ Bd the integral∫
B
K(x, x) < ∞.

Under the assumptions 1-3 we can use Mercer’s theorem that states:

Theorem 3.16. Mercer’s theorem [13, Theorem B.18] Suppose that B ⊂
Rd is a compact Borel set. Let K : B × B → R be a symmetric non-
negative definite and continuous function. Let η be a finite measure on Rd

then there exist λB
k ≥ 0 and ϕB

K , ϕB
m ∈ L2(B), k,m ∈ N s.t∫

B

ϕB
k (x)ϕ

B
m(x)η(dx) = 1{λk > 0}1{k = m}

and

K(x, y) =

∞∑
k=1

λB
k ϕ

B
k (x)ϕ

B
k (y), (x, y) ∈ B ×B.

This shows us that we can write K as the last equation above. Now the
last assumption

4. 0 ≤ λB
k ≤ 1 for all k ∈ N and all compact B ∈ Bd.

Now with the four assumptions we can say we have a unique determinantal
point processes with correlation kernel K. [22, Theorem 3].

We now want to define a functionals we will use:

Definition 3.17. Let ξ be a stationary determinantal processes with intensity
ρ > 0. Let g : Rd ×N → {0, 1} be a measurable function and let W ∈ Bd. We
define:

Ξ[ξ] =
∑

x∈ξ∩W

g(x, ξ)δx. (9)

We call g the score function.
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We can see that at the end of the function there is a Dirac measure on x,
that sums points that are in the the intersection of ξ and W . For any score
function g. We can say this is a thinning function if g takes values in {0, 1}.

The last property that we will be :

Proposition 3.18. [15, Theorem 3.7] Determinantal point processes are nega-
tively associated, as seen in definition 3.15 .

3.3 Poisson processes

In the paper we will look at the Poisson processes that will give us the point
processes on Rd.

Definition 3.19. Let λ be a measure on (Rd,Bd). A Poisson processes with
intensity λ is a point process ζ on Rd with the following properties:

1. For every B ∈ Bd the distribution of ζ(B) is a Poisson random variable
with parameter λ(B), that is to say P(ζ(B) = k) = PO(λ(B); k) for all
k ∈ N0

2. For every m ∈ N and pairwise disjoint sets B1, . . . , Bm ∈ Bd then the
random variables ζ(B1), . . . , ζ(Bm) are independent.

We want to write the correlation in the form of a determinantal point process.

Proposition 3.20. For any given finite stationary Poisson process with inten-
sity λ ∈ (0,∞) we can write it as a DPP with correlation kernel:

K(x, y) =

{
λ for x = y

0 otherwise
for all x, y ∈ Rd

Proof. First note that if we take the pairwise disjoint sets are independent.
Makes that if we look back at the intensity measure for every n ∈ N and pairwise
disjoint A1, . . . , An ∈ Bd.

∫
A1×...×An

ρm(x1, . . . , xn)d(x1, . . . , xn) = E[ζ(A) · · · ζ(An)] = E[ζ(A1)] · · ·E[ζ(An)].

Now we know for all the intensity there exist a

E[ζ(A1)] · · ·E[ζ(An)] = λ|A1| · · ·λ|An| =

λmΠm
i=1|Ai| =

∫
A1×...×Am

λmd(x1, . . . , dxn)

where λm = ρm are the same. intensity measure with the intensity being λ as
in (4). Now with this knowledge we can write the correlation kernel of this set
as.
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K(x, y) =

{
λ for x = y

0 otherwise
for all i, j ∈ I.

This is the Poisson processes, this will be useful for both main theorem and
the smaller theorem.

3.4 Ginibre processes

The Ginibre process is a simple example of a determinantal point process
in R2. The Ginibre process is a stationary determinantal point process with a
correlation kernel given by:

K(z, w) = π−1e−(|z|2+|w|2)/2ezw (10)

for all z, w ∈ C see, [18].
We want to calculate the intensity of this point process. We take the function

by Definition 3.9 we get :

E[ξ](B) =

∫
B

K(x, x)dx,B ∈ B2.

If we substitute (10) and use of the Definition 3.13 with m = 1 we get:

E[ξ(B)] =

∫
B

π−1e−(|x|2+|x|2)/2exxdx.

Looking at xx = |x|2 by definition.

E[ξ](B) =

∫
B

π−1e−|x|2e|x|
2

dx =

∫
B

π−1 = π−1

∫
B

dx = π−1|B|.

Thus the Ginibre process has intensity π−1.
We also need for the proof an important statement about the Ginibre process.

Theorem 3.21. [11]Take a (infinite) Ginibre process ξ and take the set of all
point xi ∈ C i ∈ I take the absolute value of this points. this is the same distri-
bution as a sequence (Xi)i∈N of independent random variables with distribution
X2

i ∼ Gamma(i, 1)

The statement comes from the idea that the correlation function is a Gaus-
sian kernel.
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3.5 Palm point processes

Defining a Palm process we first need to give a Campbell Theorem.

Theorem 3.22. (Refined Campbell theorem) [13] Suppose that ξ is a stationary
point process on Rd with finite strictly positive intensity λ, and a measurable
function f : (Rd × N) → R+. Then there exists a unique probability measure
ξx on N such that:

E[
∫

f(x, ξ)ξ(dx)] =

∫
E[f(x, ξx)]λdx.

The element defined as ξx in the theorem above can be called a Palm version
of the point process ξ seen at x ∈ Rd. This can be seen as a new point process
with the condition that you look at x ∈ Rd. In a simple point process, this can
be seen as point process ξ that is conditioned to have a point at x, then we get
the Palm version ξx. Additionally, the Campbell theorem tells us that we can
calculate the intensity measure for a measurable function f and a point process
ξ by using the Palm version.

Now we can write the intensity measure L of Ξ[ξ] defined in (9). Using the
Campbell theorem we get,

L(A) = ρ

∫
W∩A

E[g(x, ξx)]dx,A ∈ Bd. (11)

We can state the Campbell’s Theorem for stationary point process ξx. But
what if we take the condition not on a single point x but on more random finite
points? This generalize this statement we call this a Palm measure.

Definition 3.23. Let ξ,Ξ be point processes on (Rd,Bd), f : Rd × N → R+

be a measurable function that assume Ξ has σ-finite intensity measure L. Then
there exists a point process ξx,Ξ, x ∈ Rd such that,

E[
∫

f(x, ξ)Ξ(dx)] =

∫
E[f(x, ξx,Ξ)]L(dx)

The process ξx,Ξ, x ∈ Rd, is a Palm process of ξ with the condition that Ξ
has a point at x. The distribution P x,Ξ is called a Palm measure. If it is simple
point process ξx,Ξ can be interpreted as the process where the points x from Ξ
are conditioned on the point process. Now if we define ξ to be a determinantal
point process with the four assumptions made in Section 3.2 and Ξ the equation
(9) with a thinning function g for ξ, This gives us the next property.

Proposition 3.24. [9, Lemma 6.2] Let’s ξ be a DPP. Let Ξ be defined as in
(9).Then their exist the Palm process ξx,Ξ on Rd. Let n ∈ N and xi ∈ Rd. We
a.s. have the following property:

1. P(Πk<nξ
x,Ξ{xk} = 0) = 0, xk ∈ Rd\{x}
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2. δx ∈ ξx,Ξ

With the last property only holding because the Ξ is a sub process of the
ξ. Let now define the reduced Palm process for ξx such that we omitted the
specific point from the point processes.

Definition 3.25. The reduced Palm process on ξ and x ∈ Rd is ξx! := ξ − δx

We can define a reduced Palm process, on this specific point process.

Definition 3.26. Let ξ,Ξ be point process as in (9), and Palm process ξx,Ξ

then we can define a reduced Palm processes as :

ξx!,Ξ := ξx,Ξ − δxa.s.

Now we finally can define the correlation function of this reduced Palm
process for ξ. Important to know this can only happen because all reduced
palm processes of a DPP is also a new DPP.

Theorem 3.27. [20, Theorem 1.7] Let ξ be a DPP distributed by P satisfying
conditions 1-4 in Section 2.2, with correlation kernel K.Then the reduced Palm
process ξx!, x ∈ Rd distributed by P x!, has a correlation kernel Kx given by,

Kx(z, w) = K(z, w)− K(z, x)K(x,w)

K(x, x)
, z, w ∈ Rd, (12)

whenever K(x, x) > 0

The next theorem we will state is that ξx! stochastically dominated by ξ .

Theorem 3.28. Let ξ be a DPP on Rd, and a point x ∈ Rd, then the reduced
Palm process ξx! is stochastically dominated by ξ which means that:

E[F (ξx!)] ≤ E[F (ξ)] (13)

for each measurable F : N → R which is bounded and increasing, and denoted
by ξx! ≤ ξ.

We mean be increasing that for all F (ω1) ≤ F (ω2) if ω1 ⊂ ω2

Now we can use the refined Campbells Theorem. We can write for x ∈ Rd

let ξx be a Palm process of ξ at x and ξx,Ξ a Palm process of ξ with respect to
Ξ at x. Then we get :

E[
∫

f(x, ξ)Ξ(dx)] = E[
∫

f(x, ξ)g(x, ξ)ξ]dx =

∫
E[f(x, ξx)g(x, ξx)]ρ(x)λdx

=

∫
E[f(x, ξx,Ξ]E[g(x, ξx)]ρ(x)λdx (14)

Now we defined the four point processes we will talk about in this paper.

15



3.6 Kantorovich-Rubinstein distance

The Kantorovich-Rubinstein distance is a distance that measures the close-
ness between point processes. we are going to use it to show that the the Ξ
approximated the Poisson processes ζ. First, we need to look back at some
basic notations, such as total variation. Total variation distance is defined as
follow: let (Ω,F) be a probability space, and let P and Q be two probability
measures. Then the total variation distance is:

dTV (P,Q) := supA∈F |P(A)−Q(A)| (15)

The second distance we have to denote is called the wasserstein distance
with a Lip(1) as the set of all h : R → R whose Lipschitz constant is at most 1.
Then for two real valued random variable Y1 and Y2 by:

dW (Y1, Y2) := suph∈Lip(1)|E(h(Y1))− E(h(Y2))|. (16)

With the two distances above we can define the Kantorovich-Rubinstein
(KR) distance as:

Definition 3.29. For finite point processes ζ and ξ on Rd the KR distance is
given by,

dKR(ζ, ξ) := suph∈Lip|Eh(ζ)− Eh(ξ)|

where Lip is defined as the set of all measurable 1-Lipschitz functions h : N̂ → R
with respect to the total variation between the measure ω1, ω2 on Rd given by:

dTV (ω1, ω2) = supA∈Bd |ω1(A)− ω2(A)|,

where ω1(A), ω2(A) < ∞

The set Lip is then defined as the set where, the map h : N̂ → R is 1-lipschitz
with respect to total variation. This means:

|h(ω1)− h(ω2)| ≤ dTV (ω1, ω2) for all ω1, ω2 ∈ N̂ .

The question is when can we can say that two point process are convergence
to eachother.

Proposition 3.30. [6] Assume that (ξn)n∈N is a sequence of locally finite point
processes on Rd such that dKR(ξN , ζ) → 0 as n → ∞. Then ξn converges in
distribution to ζ, as n goes to ∞.

16



4 Main theorem

In this part, we want to explain the main theorem of this paper. We are going
to show that for a stationary determinantal point processes ξ, with appropriate
conditions on ξ and g (the thinning function), we can prove that the functionals
Ξ in equation (9) can be approximated by the Poisson processes. In this section,
we will explain which conditions we need, and we look at the main theorem.

4.1 Main theorem

We first need to give some conditions for the determinantal point process
ξ and for Ξ as in equation (9). We first want to put some assumptions on
the thinning function g. Suppose that there exist α ∈ (0,∞) such that for all
A ∈ Bd and for all counting measures ω ∈ N ,∑

x∈W∩A

g(x, ω) < α|A| (17)

where |A| denotes the Lebesgue measure as in (1) of the set A.
We also want to assume that g is monotonic in the sense that for all x ∈ W ,

it holds that

g(x, ω1) ≤ g(x, ω2) or g(x, ω1) ≥ g(x, ω2), ω1 ⊂ ω2. (18)

We also want g to be stabilizing, by which we mean that there is a measurable
function S : Rd ×N → F such that

g(x, ω) = g(x, ω ∩ S(x, ω)) (19)

where for any ω ∈ N and any x ∈ Rd, where F is the set of closed subsets in
Rd. Further suppose that S is a stopping set which says that

{ω ∈ N : S(x, ω) ⊂ S} = {ω ∈ N : S(x, ω ∩ S) ⊂ S} (20)

where S ⊂ Rd.
The last assumption we have to talk about the determinantal point process

and look at the kernel K : (Rd)2 → C satisfies:

|K(x, y)| ≤ ϕ(||x− y||), x, y ∈ Rd, (21)

for some decreasing function ϕ : R+ → R+ with limr→∞ϕ(r) = 0. With the
absolute value of the K(x, y) value. This makes the correlation decreasing over
a distance between points

Now we finally have all the information needed to look at the main theorem

Theorem 4.1. Main theorem
Let ξ be a stationary determinantal point process with kernel K satisfying

(21) and intensity ρ ∈ (0,∞). Let Ξ be defined as in (9) with intensity measure
L and suppose that g satisfies (17) and (18) and is stabilizing with respect to the
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stopping set S. Let S and T be Borel sets with 0 ∈ S ⊂ T . Set Sx := x+S and
Tx := x+ T , x ∈ W , and define

g̃(x, ω) := g(x, ω)1{S(x, ω) ⊂ Sx}, x ∈ Rd, ω ∈ N .

Let ζ be a finite Poisson process on Rd with intensity measure M . Then ,

dKR(Ξ, ζ) ≤ dTV (L,M) + 2(E1 + E2 + E3) + F,

where

E1 := ρ

∫
W

P(S(x, ξx) ̸⊂ S)dx,

E2 := ρ2
∫
W

∫
W∩Tx

E[g̃(x, ξx)]E[g̃(y, ξy)]dydx,

E3 :=

∫
W

∫
W∩Tx

E[g̃(x, ξx,y)g̃(y, ξx,y)]ρ(2)(x, y)dydx,

F := c∥K∥max(|S|, 1)|W ⊕ S|2ϕ(d(T, S)),

where ||K|| = supx,y∈Rd |K(x, y)|, W ⊕ S := {x + s : x ∈ W, s ∈ S} is the
Minkowski sum of W and S, d(T, S) := max{supt∈T d(t, S), sups∈Sd(T, s)} is
Hausdorff distance of T and S and the constant c > 0 does not depend on
K, g,W, S and T

Now we want to look at the theorem that is an application of theorem above.
This will look at the Ginibre process. This theorem is a application of the study
of the largest nearest neighbor balls. In this project we generalize the Borel sets
as a closed ball at the origin in dimension 2. We can define this as Bn := Bn(0)
the closed ball with radius n. Additionally, we want that |K(z, w)| ≤ ϕ(∥z−w∥)
with ϕ(r) := π−1exp(−r2

2 ) Now we want to define a process needed for the proof:

Definition 4.2. let ξ be a Ginibre point process on R2. Let Bn := Bn(0)
the closed ball with radius n > 0 in Rd on the origin. We consider then the
functional process as:

Ξn :=
∑

x∈ξ∩Bn

1{ξ(Bn(x) \ {x}) = 0}δx.

We also define the scaled Functional processes:

Ψn :=
∑
y∈Ξ

δy/n =
∑

x∈ξ∩Bn

1{ξ(Bn(x) \ {x}) = 0}δx/n (22)

This scales the point x/n what changes the point place. This will be the
theorem.
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Theorem 4.3. Let take the scaled functional process Ψn and let v be a station-
ary Poisson process on Rd with intensity λ > 0. There exist a sequence (vn)n∈N
with v4n ∼ 8log(n) as n → ∞ such that for all n ∈ N and any ϵ > 0 and C ∈ R+,

dKR(Ψn, v ∩B1) ≤ Cnϵ− 1
8 .

We can also define the largest nearest neighbor (nn) for any ξ ∈ R2 and for
point process ξ such that we get:

nn(x, ξ) := argminy∈ξ\{x}|x− y| (23)

Now we want this largest neighbor convergence

Corollary 4.4. [19, Corollary 4.2] We have as n → ∞,

1

2π
√

log(n)
maxx∈ξ∩Bn |Bnn(x, ξ)|

P→ 1.

These are the three statements we will prove in this paper.
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5 Preliminaries

Here we will talk about the some bounds that we will need to bound the
statement 4.1. For the first bound we have to look back at the determinantal
point process and its Palm distribution and version. Also recall the definition
of stochastically dominated, in equation (13) to get this properties.

Proposition 5.1. Let’s take ξ as a DPP holding to the assumptions in section
3.2 and Ξ as in equation (9). Let F : N → R be bounded and increasing, then
we have for almost all x ∈ Rd that ,

ξx,Ξ ≤ ξx if g is increasing.

ξx ≤ ξx,Ξ if g is decreasing

Proof. The first step is to write the left hand side of 1 and 2 from a Palm process
in the function F such that it is a Palm version at only x. For this we can use
(14) (look at the last equations signs and use it the opposite direction). We
then get this,

E[F (ξx,Ξ)]E[g(x, ξx)] = E[F (ξx)g(x, ξx)]

Now we want to use the statement that ξ and ξx are determinantal point pro-
cess and use theorem 3.18 and the definition3.15. We can write the covariance
for ξx as,

cov(F (ξx), g(x, ξx)) ≤ 0

Now we have to make two case distinction one for g increasing and decreasing.

• Now assume g is increasing. We can write the covariance as in expected
value,

E[F (ξx)g(x, ξx)]− E[F (ξx)]E[g(x, ξx)] ≤ 0.

Now take the right hand side to the right we get,

E[F (ξx)g(x, ξx)] ≤ E[F (ξx)]E[g(x, ξx)]

Now we can write the left hand side as the equation above as in (14) we
have written above,

E[F (ξx,Ξ)]E[g(x, ξx)] ≤ E[F (ξx)]E[g(x, ξx)]

Now divide by E[g(x, ξx)] we get

E[F (ξx,Ξ)] ≤ E[F (ξx)]

What proves statement 1.
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• Now assume g is decreasing. Now we can rewrite as −g. Because for the
definition 3.15 to hold g has to be increasing.Take the expected value of
the covariance,

E[−F (ξx)g(x, ξx)]− E[F (ξx)]E[−g(x, ξx)] ≤ 0.

The minus sign can be put out of the expected values so we get,

−E[F (ξx)g(x, ξx)] + E[F (ξx)]E[g(x, ξx)] ≤ 0.

Now the left side we can rewrite this with (14) as above and take away
the negative sign,

E[F (ξx)g(x, ξx)] ≥ E[F (ξx)]E[g(x, ξx)]

Now we want to write the first equation with the left hand side.

E[F (ξx,Ξ)]E[g(x, ξx)] ≥ E[F (ξx)]E[g(x, ξx)].

Then divide by E[g(x, ξx)] then we get,

E[F (ξx,Ξ)] ≥ E[F (ξx)].

Now we have proven the statement above.

We want one last theorem to be stated:

Theorem 5.2. [14] Let take two distribution P and P ′ and P ≤ P ′ (stochas-
tically dominated) respectively, on (Ω,F ,P), Then there exist a ξ and ξ′ :
(Ω,F ,P) → (N ,N ), with distribution P and P ′ such that ξ(ω) ⊂ ξ′(ω)

5.1 Fast decay of correlation

The theorem that states that we can let the covaraince kernel decays fast.

Lemma 5.3. [2, lemma 3.1] Let ξ be a stationary Determinantal process on
Rd with covariance kernel K that satisfies the condition in section 3.2 and
|K(x, y)| ≤ ϕ(||x − y||) for some expontially decreasing function ϕ as seen in
(21). Then we have that the correlation functions ρ(m),m ∈ N of ξ satisfy,

|ρ(p+q)(x1, . . . , xp+q)−ρ(p)(x1, . . . , xp)ρ
(q)(xp+1, . . . , xp+q| ≤ m1+m

2 ϕ(s)||K||m−1

(24)
where,

s := d({x1, . . . , xp}, {xp+1, . . . xp+q}) = infi∈{1,...,p},j∈{p+1,...p+q}|xi − xj |,

||K|| := supx,y∈Rd |K(x, y)| and m := p+ q .
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Now we want to state another lemma:

Lemma 5.4. [20, Lemma 6.4] Let ξ be a DPP as in section 3.2 with distribution
P. Let the correlation kernel {ρn}n≥1. For x ∈ Rd, the Palm measure ξx admits
the correlation function{ρnx}n≥1. We get:

ρ(x) · ρ(n)x (y1, . . . , yn) = ρ(n+1)(y1, . . . , yn, x)

holds for all y1, . . . , yn ∈ Rd\{x}.

5.2 Poisson process approximation

We want to bound the Kantorovich-Rubinstein distance for the Ξ as seen
in (9) and the finite Poisson process. We just need to define what a symmetric
difference is. We can define this as A∆B = (A ∩ Bc) ∪ (Ac ∩ B). This will be
used in the next theorem.

Theorem 5.5. [4, Theorem 3.1] Let L be the (finite) intensity measure of the
point process Ξ as defined at (9). Suppose for x ∈ W that Ξx is a Palm version

of Ξ at x. Take the coupled point process Ξ and Ξ̃ such that Ξ
d
= Ξx and

Ξ̃x d
= Ξx!. Then the Kantorovich distance of Ξ and a finite Poisson process ζ

with intensity measure M is bounded by :

dKR(Ξ ∩W, ζ) ≤ dTV (L,M) + 2

∫
W

E[(Ξx∆Ξx!)(W )]L(dx) (25)

For the proof of 4.1 note that if ξx,Ξ is a Palm version of ξ at x with respect
to Ξ, then the reduced Palm version of Ξ is Ξ[ξx,Ξ] − δx. This means we can
reduce the coupling of Ξ and it reduced Palm measure to construct a coupling
of ξ and its Palm measure with respect to Ξ. We can now split the expected
symmetric difference E[(Ξx∆Ξ̃x)(W )] for all x ∈ W and W ∈ Rd into a part
that represent the local points around x and the rest. Now, we can split this to
get a better bound, written out as follows:

Proposition 5.6. Let ξ be a DPP such in section 3.2 and let L be the finite
intensity measure of the point process Ξ defined as (9), and a finite Poisson
process ζ with intensity measure M bounded. Then For x, y ∈ W let Ξx be a
Palm version of ξ at x, let ξx,y be a Palm version of ξx at y and let ξx,Ξ be a
Palm process of ξ with respect to Ξ at x then we have for some Tx defined such
that x ∈ Tx, Tx ⊂ W and Tx ∈ Bd we get this,

dKR(Ξ ∩W, ζ) ≤ dTV (L,M) + 2(T1 + T2 + T3 + T4),
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where

T1 :=

∫
W

∫
Tx

E[g(x, ξx)]E[g(y, ξy]ρ(x)ρ(y)dydx,

T2 :=

∫
W

∫
Tx

E[g(x, ξx,y)g(y, ξx,y)]ρ(2)(x, y)dydx,

T3 :=

∫
W

E[ξx∆ξx,Ξ)(W\Tx)]ρ(x)dx,

T4 := ρ

∫
W

E[
∑

y∈ξx∩ξx,Ξ∩W\Tx

|g(y, ξx)− g(y, ξx,Ξ)|]ρ(x)dx

Where ρ(x) := ρ(1)(x) = K(x, x), x ∈ Rd.

Proof. We can start with the Theorem as in 5.5. This then only rewritten in
Ξ[ξ], ξ[ξx,Ξ] such we get this.

dKR(Ξ, ζ) ≤ dTV (L,M) + 2

∫
W

E[(Ξ[ξ]∆(Ξ[ξx,Ξ]− δx))(W )]L(dx).

Now for x ∈ W recall that Tx is a Borel set with x ∈ Tx. Then we can split
the set in the set with Tx and W\Tx,

(Ξ[ξ]∆(Ξ[ξx,Ξ]−δx))(W ) = (Ξ[ξ]∆(Ξ[ξx,Ξ]−δx))(Tx)+(Ξ[ξ]∆(Ξ[ξx,Ξ]−δx))(W\Tx).

We can bound the symmetric difference of the set of Tx as the sum of all
points in Tx.

(Ξ[ξ]∆(Ξ[ξx,Ξ]− δx))(Tx) ≤ Ξ[ξ](Tx) + (Ξ[ξξ,Ξ]− δx)

a.s.
We can bound the symmetric difference with the set ofW\Tx.we have to look

back at equation (9) and we can say that if we take the symmetric difference of
the ξ and ξx,Ξ, but by using the thinning function g there are point that are in
both ξ and ξx,Ξ that will dissapear in one of the point sets. We will write this
points as the sum

∑
y∈ξ∩ξx,Ξ∩W\Tx

|g(y, ξ)− g(ξx,Ξ)| . Using this we can write
a full bound for this set.

(Ξ[ξ]∆Ξ[ξx,Ξ])(W\Tx) ≤ (ξ∆ξx,Ξ)(W\Tx) +
∑

y∈ξ∩ξx,Ξ∩W\Tx

|g(y, ξ)− g(ξx,Ξ)|

We finally can rewrite (25) and change the symmetric difference with the
four bounds we found we can now take four expectation of this four different

23



sets and get T1, T2, T3, T4 We also know that L(dx) = E[g(x, ξx)]ρ(x)dx then
we get for

T1 =

∫
W

E[Ξ[ξ](T1)]L(dx)

=

∫
W

∫
Tx

E[g(y, ξy)]ρ(y)dyL(dx) by using (3.9)

=

∫
W

∫
Tx

E[g(x, ξx]E[g(x, ξy]ρ(y)ρ(x)dydx by using the definition of L(dx)

Now we can write T2

T2 =

∫
W

E[Ξ[(ξx,Ξ − δx)(Tx)]L(dx)

=E[
∫
W

(Ξ[ξ]− δx)(Tx)Ξdx] by Definition 3.23

=

∫
W

∫
Tx

E[g(x, ξx,y)g(y, ξx,y)]ρ(2)(x, y)dydx

Now we can use the fact that we can bound E[g(x, ξx)] ≤ 1. So we can write
T3 as,

∫
W

E[(ξ∆ξx,Ξ)(W\Tx)]L(dx)

≤
∫
W

E[(ξ∆ξx,Ξ)(W\Tx)]ρ(x)dx = T3

Now we can write T4 as,

∫
W

E[
∑

y∈ξ∩ξx,Ξ∩W\Tx

|g(y, ξ)− g(ξx,Ξ)|]L(dx)

≤
∫
W

E[
∑

y∈ξ∩ξx,Ξ∩W\Tx

|g(y, ξ)− g(ξx,Ξ)|]ρ(x)dx = T4
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6 Proof

6.1 Proof Theorem 4.1

Proof. theorem 4.1 Let x ∈ W let Sx := x + S and Tx := x + T . We let
g̃(x, ω) := g(x, ω)1{S(x, ω) ⊂ Sx}, ω ∈ N , and consider a truncated function
of (9). This mean we restricted the domain to the stopping set S(x, ω) to be
inside the subset Sx such we get:

Ξtr :=
∑

x∈ξ∩W

g̃(x, ξ)δx. (26)

Note that because of the stopping set property of S(x, ω) of the g̃ is measurable
with respect to ξ ∩ Sx.

we start with step 1: Here we assume that g = g̃ and therefore we get
Ξ = Ξtr. Let L be the intensity measure of Ξ. We then use Proposition 5.6.
This immediately gives me that T1, T2 from Proposition 5.6 are equal to E2, E3

from the Theorem 4.1. So we just have to bound T3 and T4. Thus we start By
first bounding T3. Let take P as the distribution of ξ with correlation kernel
K, Then also take P x is it Palm measure for ξx and take P x,Ξ a Palm measure
with respect to Ξ. The idea of the this construction a coupling of (ξ, ξx,Ξ) of
the distribution P and P x,Ξ for each x ∈ W such that the symmetric difference
(ξ∆ξx,Ξ)(W\Tx) becomes small. We first have to look at the score function g
is increasing and decreasing

• Increasing score function means that g(x, ω1) ≤ g(x, ω2) for ω1 ⊂ ω2, by
(13) we get P x! ≤ P and take the Proposition (5.1) we get P x!,Ξ ≤ P x!

with this we can imply that P x!,Ξ ≤ P where P x! and P x!,Ξ are the Palm
measures P x and P x,Ξ reduced by the point at x. Now using Theorem
5.2 this implies that the random element ξ from distribution P and then
their exist a random element ξx!,Ξ from distribution P x!,Ξ, such that we
can conclude that ξx!,Ξ ⊂ ξ a.s. now we can write T3 as,

E[(ξ∆ξx,Ξ)(W\Tx)] =E[ξ(w\)Tx]− E[ξx!,Ξ(W\Tx)]

=E[ξ(W\TX)]− E[ξx!(W\Tx)] + E[ξx!(W\Tx)]− E[ξx!,Ξ(W\Tx)].

(27)

The term E[ξ(W\TX)] − E[ξx!(W\TX)] by using (12) we can write the
correlation of both sides and use the fact that K(x, x) = ρ for all x ∈ Rd,
correlation of K(y, y) for y ∈ Rd.

∫
W\Tx

K(y, y)−Kx(y, y)dy =

∫
W\Tx

K(y, y)−K(y, y) +
k(y, x)K(x, y)

K(x, x)
dy

=ρ−1

∫
W\Tx

|K(x, y)|2dy.

(28)
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The equation above we can bound by using (21) This gives us.

ρ−1

∫
W\Tx

|K(x, y)|2dy ≤ ρ−1

∫
W\Tx

ϕ(∥x−y∥)2dy ≤ ρ−1|W |supy∈Tϕ(∥y∥)2

(29)

Now we look at the right-hand side above of (27). If we multiply this
element with the E[g̃(x, ξx)] and using equation (14) we can write this out
like this for reduced Palm process,

E[g̃(x, ξx)](E[ξx!(W\TX)]− E[ξx!,Ξ(W\TX)])

=E[ξx!(w\Tx)]E[g̃(x, ξx)]− E[ξx!(W\Tx)g̃(x, ξ
x)]

=− Cov(ξx!(W\Tx), g̃(x, ξ
x))

(30)

We know the reduced Palm process ξx! is a determinantal process itself
and therefore negatively associated. For k ∈ N we consider the auxiliary
functions

f (k)(ω) := min{k, ω(Sx)− g̃(x, ω)}, f(ω) := ω(Sx)− g̃(x, ω), ω ∈ N . (31)

It is easy that f (k), k ∈ N and f are bounded and increasing. This gives
us we can say:

Cov(min{k, ξx!(W\Tx)}, f (k)(ξx!)) ≤ 0 (32)

By monotone convergence we can write :

limk→∞Cov(min{k, ξx!(W\Tx)}, f (k)(ξx!)) = Cov(ξx!(W\TX), f(ξx!))

= Cov(ξx!(W\Tx), ξ
x!(Sx))− Cov(ξx!(W\Tx), g̃(x, ξ

x)) ≤ 0

Now we can bound (30) by the statement above,

−Cov(ξx!(W\Tx), g̃(x, ξ
x)) ≤ −Cov(ξx!(W\Tx), ξ

x!(Sx))

Now we can write the definition of covariance down we get this

−Cov(ξx(W\Tx), ξ
x!(Sx))

=E[ξx!(W\Tx)]E[ξx!(Sx)]− E[ξx!(W\Tx)ξ
x!(Sx)]

=E[ξx!(W\Tx)]E[ξx!(Sx)]− E[ξx!(W\Tx)ξ
x!(Sx)]

+E[ξ(W\Tx)]E[ξx!(Sx)]− E[ξ(W\Tx)]E[ξx!(Sx)]

≤|E[ξx!(W\Tx)]− E[ξ(W\Tx)]|E[ξx!(Sx)] + |E[ξx!(W\Tx)ξ
x!(Sx)]− E[ξ(W\Tx)]|

(33)
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We want to bound this part of the equation above, |E[ξx!(W\Tx)] −
E[ξ(W\Tx)]|E[ξx!(Sx)]|. The part in absolute value is the same as in (29)
and we can bound E[ξx!(Sx)] ≤ E[ξ(Sx)] by knowing that it is stochasti-
cally dominated. We also know that E[ξ(Sx)] = ρ|S| the equal sign holds
because it is a stationary determinantal process and we know that Sx is
only a translation from the original S, means we can write it like this,

|E[ξx!(W\Tx)]−E[ξx(W\Tx)]|E[ξx!(Sx)]| ≤ |W ||S|supy∈T (ϕ(∥y∥))2 (34)

Now we want to bound the other side of (33). We write ρ
(m)
x for the m-th

correlation function of ξx! and by using Lemma 5.4 and Lemma 5.3 we
can get this,

ρ

∫
W

(E[ξx!(W\Tx)ξ
x!(Sx)]− E[ξ(W\Tx)]E[ξx!(Sx)])dx

=ρ

∫
W

∫
Sx

∫
W\Tx

(ρ(2)x (y, z)− ρx(y)ρ)dzdydx

=

∫
W

∫
Sx

∫
W\Tx

(ρ(3)(x, y, z)− ρ(2)(x, y)ρ)dzdydx

≤3
5
2 ∥K∥2

∫
W

∫
Sx

∫
W\Tx

ϕ(d({x, y}, {z}))dzdydx

≤3
5
2 ∥K∥|W |2|S|ϕ(d(T, S)).

(35)

Thus we can finally take (29), (34) and take the integral over W and
multiply by ρ and (35) we can finally bound T3

T3 =

∫
W

E[(ξ∆ξx,Ξ)(W\Tx)]ρ(x)dx ≤ (1+ρ|S|)|W |2supy∈Tϕ(∥y∥)2+3
5
2 ∥K∥|W |2|S|ϕ(d(T, S)).

(36)

• decrease scores. If g(x, ω1) ≥ g(x, ω2) for ω1 ⊂ ω2 we get P x! ≤ P , and
by Proposition 5.1 we get that P x! ≤ P x,Ξ. Then using theorem 5.2 their
exist a ξ and ξx,Ξ such that ξx! ⊂ ξ and ξx! ⊂ ξx!,Ξ, This with [10] gives
us

E[(ξ∆ξx!,Ξ)(W\Tx)] ≤ E[(ξ\ξx!)(W\Tx)] + E[(ξx!,Ξ\ξx!)(W\Tx)]

= E[ξ(W\Tx)]− E[ξx!(W\Tx)] + E[ξx!,Ξ(W\Tx)]− E[ξx!(W\Tx)]

(37)

Now if we look at the last eqaution above on the left side element E[ξ(W\Tx)]−
E[ξx!(W\Tx)] This is the same as we used in (27). This means we can write
this as (29) as in the increased section.
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Now we take the same step with the right hand side by multiplying it
with,

E[g̃(x, ξ)](E[ξx!,Ξ(W\Tx)]− E[ξx!(W\Tx)])

= E[ξx(W\Tx)g̃(x, ξ
x)]− E[ξx(W\Tx)]E[g̃(x, ξx)]
= Cov(ξx(W\Tx), g̃(x, ξ

x)).

(38)

Now we use that a reduced palm process ξx! is a determinantal process
itself therefore negatively associated by Proposition 3.15. we want to
consider a auxiliary function as in (31) We also know that

Cov(min{k, ξx!(W\Tx))}, f (k)(ξx!) ≤ 0

Hence by monotone convergence we have,

limk→∞Cov(min{k, ξx!(W\Tx))}, f (k)(ξx!)

= Cov(ξx!(W\Tx), f(ξ
x!))

= Cov(ξx!(W\Tx), ξ
x!(Sx) + Cov(ξx!(W\Tx), g̃(x, ξ

x!))

This means that we can bound (37) by−Cov(ξx!(W\Tx), ξ
x!(Sx)) Therfore

we can proceed as in the increasing part and get the same bound as in
(36)

BoundingT4. For each x ∈ W we have

E[
∑

y∈ξx,Ξ∩ξ∩W\Tx

|g̃(y, ξx,Ξ)− g̃(y, ξ)|]

= E[
∑

y∈ξx,Ξ∩ξ∩W\Tx

1{(ξx,Ξ∆ξ) ∩ Sx ̸= ∅}|g̃(y, ξx,Ξ)− g̃(y, ξ)|]

≤ E[
∑

z∈(ξx,Ξ∆ξ)∩(W⊕Sx)\TX

∑
y∈ξx,Ξ∩ξ∩SZ

|g̃(y, ξx,Ξ)− g̃(y, ξ)|]

≤ E[
∑

z∈(ξx,Ξ∆ξ)∩(W⊕Sx)\TX

max{ω∈{ξx,Ξ},ξ}
∑

y∈ω∩Sz

g̃(y, ξx,Ξ)− g̃(y, ξ)|]

(39)

Here we can use equation (17) to bound the sum inside we bound it by,

α|S|E[(ξx,Ξ)((W ⊕ S)\Tx)].

Hence if we use (36) with the change W by W ⊕ S this gives us,

T4 := ρ

∫
W

E[
∑

y∈ξx∩ξx,Ξ∩W\Tx

|g(y, ξx)− g(y, ξx,Ξ)|]ρ(x)dx

≤α|S|(1 + ρsupx∈W |S|)|W ⊕ S|2supy∈Tϕ(∥y∥)2 + 3
5
α 2∥K∥|W ⊕ S|2|S|2ϕ(d(T, S))

(40)
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Now we can take step 2: We will complete the proof in the last step. Let L
and Ltr denote the intensity measures of the truncated process Ξtr from Ξ and
and Ξtr. by (11) we can write the truncated intensity measure,

Ltr(A) = ρ

∫
A∩W

E[g(x, ξx)1{S(x, ξx) ⊂ Sx}]dx,A ∈ Bd.

Let ζtr be a Poisson process with intensity measure Ltr we can use the
triangle inequality to write the KR- distance of Ξ and ζ ,

dKR(Ξ, ζ) ≤ dKR(Ξ,Ξtr) + dKR(Ξtr, ζtr) + dKR(ζtr, ζ)

From section 3.6 we know that dKR(ζtr, ζ) ≤ dTV (L,Ltr) and dKR(Ξ,Ξtr) ≤
dTV (Ξ,Ξtr), where

dTV (Ξ,Ξtr) = E[Ξ(W )]− E[Ξtr(W )] = dTV (L,Ltr)

and

dTV (L,Ltr) = ρ

∫
W

E[g(x, ξx)1{S(x, ξx) ̸⊂ Sx}]dx

This gives us that,

dKR(Ξ, ζ) ≤ dKR(Ξtr, ζtr) + 2ρ

∫
W

E[g(x, ξx)1{S(x, ξx) ̸⊂ Sx}]dx. (41)

Combining (41) with (36) and (40) proof statement above.

6.2 Proof Theorem 4.3

In the proof we gonna use Theorem 3.21 This implies that the mapping
r 7→ P(ξ(Br) = 0) is continuous such that P(ξ(Br) = 0) ↓ 0 as r → ∞. Now
we can write the Definition 3.9 and Definition 4.2 knowing that the intensity of
Ginibre process is π−1 , then for all τ > 0 there exist an increasing sequence
(vn)n∈N such that:

Ln(A) := E[Ξn(A)] =
|A ∩Bn|

π
P(ξ0!(BVn

) = 0) =
τ |A ∩Bn|

πn2
, n ∈ N, A ∈ B2

(42)
To determine the asomptotic behavior of vn as n → ∞, we use that by [1,

theorem 26]

P(ξ0!(Bvn) = 0) = ev
2
nP(ξ(Bvn) = 0) (43)

Also by [1, proposition 7.3.1],

limr→∞
1

r4
logP(ξ(Br) = 0) = −1

4
(44)
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Here we can re-write log(P(ξ(Bvn) = 0))as

log(n2ev
2
nP(ξ(Bvn) = 0))− 2logn− v2n

From (42) and (43) we can write the the equation as,

log((P(ξ(Bvn) = 0)) = log(τ)− 2logn− v2n.

Now multiply both sides with 1
v4
n
. We get,

1

v4n
log((P(ξ(Bvn) = 0)) =

1

v4n
log(τ)− 2logn

v4n
− 1

v2n
.

Take the limit where we let n → ∞ we know that vn also goes to infinity
then, this will look like this,

limn→∞
1

v4n
log((P(ξ(Bvn) = 0)) = limn→∞(

1

v4n
log(τ)− 2logn

v4n
− 1

v2n
)

use equation (44) for the left hand side and the idea limn→∞
1
v2
n
→ 0 holds,

−1

4
= 0− limn→∞

2logn

v4n
− 0

v4n
logn

→ 8 as n → ∞

With this statement we can start the proof of 4.3

Proof. We first look back at the Theorem 4.1, and write Given n ∈ N, we choose
ξ as the Ginibre process, let g(x, ω) := 1{ω(Bvn\{x}) = 0} what means that we
look around if there are no point in a radius vn around the point, Sx := Bvn(x)
and Tx := Blogn, x ∈ R2. We can easily say that g is stabilizing with respect to
the stopping set S(x, ω) := Sx, ω ∈ N . Now apply Theorem 4.1 to the process
Ξn as in 4.2, where we choose ζ as a stationary Poisson process with intensity
τ

πn2 . Then we can define the intensity measure of ζ ∩ Bn as Ln given as (42).
We have to first check conditions (17) and (18). Note that for all ω ∈ N and
n ∈ N, ⋂

x∈Ξn[ω]

Bv2/2(x) = ∅.

If we take α := Kd2
−dv−d

n ≤ Kd2
−dv−d

1 for Kd ∈ R, d ∈ N we now it holds for
(17), also it is clear that g(x, ω1) ≥ g(x, ω2) for ω1 ⊂ ω2. Because ω2 has more
points such that there are more points such that the distance between points
get smaller.

Since g is deterministically stabilizing, we have that E1 = 0 because we have
no elements in the stopping set outside the ball around x. We will also know
that if we look at E2 we can bound this by taking the E[g(x, ω)] ≤ 1 so bound
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this by 1. this means we can take a integrate 1 over the two set times the
intensity τ

πn2 . this is just a constant value determined by n , so we can bound

this by a constant multiplied by (logn)2

n . This can also be done for the element
in F . Now we can by contractivity property of the KR distance and use 4.1
we can also say that their intensity is the same makes them total variation also
zero, we have

dKR(Ψn, ν ∩B1) ≤dKR(Ξn, ζ ∩Bn)

≤
∫
Bn

∫
Tx

P(ξx!,y!(Bvn(x) ∪Bvn(y)) = 0)ρ(2)(x, y)dydx+ β
(logn)2

n
,

(45)

for some β > 0. Thus we have to bound the integral above. By Theorem
3.27 we know the reduced Palm process ξx!,y! is a determinantal process it-
self. With this we can conclude with Theorem 3.15 that this is also nega-
tively associations. Recall that a point process ζ has negative associations if
E[f(ζ)g(ζ)] ≤ E[f(ζ)]E[g(ζ)] for every pair f, g of a real bounded increasing or
decreasing functions that are measurable with respect to complementary sub-
sets A,Ac of Rd, meaning that a function is measurable with respect to A if it
is measurable with respect to NA. We will apply this with a specific decreasing
function f(µ) = 1{µ(Bvn(x) = 0)} and f(µ) = 1{µ(Bvn(y)\Bvn

(x) = 0)}.. If
we fill this in the definition of the negative associations with the idea that the
expected value of a indicator function is a probability of the set happening, this
gives us,

P(ξx!,y!(Bvn(x)∪Bvn(y)) = 0) ≤ P(ξx!,y!(Bvn(x)) = 0)P(ξx!,y!(Bvn(y)\Bvn(x)) = 0).
(46)

To bound the first probability on the right side we look at [8, Theorem 3] This
states that for a reduced Palm process ξx! of ξ such that their exist a ξx!,y! ⊂ ξx!

and |ξx!\ξx!,y!| ≤ 1 a.s. This tells us that their can only be one extra point in
this specific set ξx!.This gives,

P(ξx!,y!(Bvn(x)) = 0) ≤ P(ξx!(Bvn) ≤ 1)

Now we can use the same to the determinantal process ξx! and obtain the
bound

P(ξx!(Bvn(x)) ≤ 1) ≤ P(ξ(Bvn(x)) ≤ 2) = P(ξ(Bvn
) ≤ 2),

where the last equation holds by stationary distribution of ξ. As we know from
the begining of the proof we talked about that, the set of absolute values of
the points of the Ginibre process ξ has the same distribution as the sequence
(Xi)i∈N of independent random variables with X2

i ∼ Gamma(i, 1). This gives
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us,

P(ξ(Bvn) ≤ 2) =P(#{j ∈ N : Xj ≤ vn} ≤ 2)

≤P({j ∈ {1, . . . , v2n} : Xj ≤ vn} ≤ 2)

=P(
v2
n⋃

i=1

v2
n⋃

j=1j ̸=i

{∀k ∈ {1, . . . , v2n}\i, j : Xk > vn})
(47)

we have put slight abuse of notation because v2n has to be written down as
⌊
v2n

⌋
.

But with this we can write the union as a sum so we get:

v2
n∑

i=1

v2
n∑

j=1,j ̸=i

P(∀k ∈ {1, . . . , v2n\i, j : Xk > vn}) =
v2
n∑

i=1

v2
n∑

j=1,j ̸=i

v2
n∏

k=1,k ̸=i,j

P(x2
k > v2n).

Let t < 1. The moment generating function Mx2
k
(t) = E[e−tr2 ] = (1 − t)−k of

X2
k exists and we obtain from the Chernoff bound that,

P(x2
k > r2) ≤ e−tr2(1− t)−k.

For k < r2, this bound is maximized for t = 1− k
r2 , which gives

P(ξ(Bvn) ≤ 2) ≤
v2
n∑

i=1

v2
n∑

j=1,j ̸=i

v2
n∏

k=1,k ̸=i,j

e
−(1− k

v2
n
)v2

n−klog( k
v2
n
)
=

v2
n∑

i=1

v2
n∑

j=1,j ̸=i

v2
n∏

k=1,k ̸=i,j

e
−(v2

n−k−klog( k
v2
n
)
.

Using here that u 7→ u− ulog( u
r2 ) is increasing for u ≤ r2, we find this,

P(X2
k > r2) ≤

v2
n∑

i=1

v2
n∑

j=1,j ̸=i

v2
n∏

k=1,k ̸=i,j

e
−(v2

n−k−klog( k
v2
n
)

≤v4n

v2
n∏

k=3

e
−(v2

n−k−klog( k
v2
n
)

=v2ne
− 1

2 (v
2
n−3)(v2

n−2)−v4
n

∫ 1
3/v2

n
ulog(u)dx+O(v2

nlogv
2
n)

=e−
1
4 v

4
n(1+o(1))(1 + o(1))

(48)

as n → ∞ where we have that
∫ 1

0
ulog(u)dx = − 1

4 . Next we bound the right
side in probability (46). By coupling with the same argument above,

P(ξx!,y!(Bvn(y)\Bvn(x)) = 0) ≤ P(ξ(Bvn(y)\Bvn(x)) ≤ 2).

Next we note that Bvn/2
(y + vn(y−x)

2|y−x| ) ⊂ Bvn(y)\Bvn
(x) holds this only works

because we know that x is not a point in Bvn(y). Hence the last probability is
bounded by,

P(ξ(Bvn/2
(y +

vn(y − x)

2|y − x|
)) ≤ 2) = P(ξ(Bvn ≤ 2) ≤ e−

1
4 (vn/2)

4(1+o(1))
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By the stationary distribution and the argument above. Using the estimates as
above with vn/2 instead of vn. also we know that the correlation function can
be bounded by the two intensity p2(x, y) ≤ 1/π2 for all x, y ∈ R, we then can
for all ε > 0 at the bound,

∫
Bn

∫
Tx

P(ξx!,y!(Bvn(x)∪Bvn(y)) = 0)ρ(2)(x, y)dydx+β
(logn)2

n
≤ n(logn)2)

π
e−

1
4 v

4
ne−

1
64v

4
n ,

We used (42) to bound it to the intensity measure, also We can rewrite the a
small part above like this ,

ne−
1
4 v

4
ne−

1
64v

4
n =nlogn(n)e−

1
4 v

4
ne−

1
64v

4
n

=nlogn(n)n− 1
4 v

4
n logn(e)n− 1

64 v
4
n logn(e)

=nlogn(n)− 1
4 v

4
n logn(e)− 1

64v
4
n

log(e)
log(n)

=nlogn(n)− 1
4 v

4
n logn(e)− 1

64

v4
n

log(n)

(49)

We know that
v4
n

log(n) → 8 as n → ∞, hence we can bound the statement above

by a ε > 0 we get,

nlogn(n)− 1
4 v

4
n logn(e)− 1

64

v4
n

log(n) ≤ nε− 1
8 ,

Put it all together we get,

∫
Bn

∫
Tx

P(ξx!,y!(Bvn(x)∪Bvn(y)) = 0)ρ(2)(x, y)dydx+β
(logn)2

n
≤ (log(n))2

π
nε− 1

8 .

What finish the proof such we can finally write (45) as

dKR(Ψn, ν ∩B1) ≤ β
(log n)2

n
+

(log(n))2

π
nε− 1

8 = Cnε− 1
8

For some constant C > 0.
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7 Conclusion

In this thesis we proved the theorem 4.1 and 4.3. The first proof states
that the Kantorovich-Rubinstein distance for a stationary Poisson process with
a functional of a determinantal point process, as we defined in section 3, Also
we want the correlation kernel K to decay fast and the thinning function being
stable. This distance is comparable to other distances between point processes.
The proof mainly utilizes the idea that the Palm distribution of a DPP is a
DPP with different correlation function. Also we utilizes the idea that a DPP
is negatively associated property.

The second proof states that the Kantorovich-Rubenistein distance between
the Poisson process and the Ginibre process, under the conditions specified
in theorem 4.1, can be bounded.Here, the thinning function is taken to be a
deterministic function that removes all points having a neighbor closer than
1 unit away. We scale the functional of the Ginibre process by a factor n,
Then consider the limit as n → ∞. Then the distance can asymptotically get
bounded. With this proof we can explore application such as the largest distance
to the nearest neighbor. By Corollary 4.4 states that as n → ∞ we know the
maxx∈ξ∩B |Bnn(x, ξ)| → 2π

√
logn.

The thesis was not possible without the paper from Morritz Otto [19], and
the help from my supervisor Gilles Bonnet.
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