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Abstract
This paper provides an overview of warm inflation, an alternative to the standard cold inflationary
model. Unlike cold inflation, warm inflation includes radiation during the inflationary period, main-
taining a thermal bath, and eliminating the need for a separate reheating phase. The study examines
the dynamics of warm inflation, focusing on the equations of motion of the inflaton field, energy
scales, and the derivation of the primordial power spectrum, where thermal fluctuations dominate
over quantum ones. The scalar dissipation function G(Q) from the literature is presented, enhanc-
ing the accuracy of power spectrum calculations and facilitating comparisons with empirical data.
Various inflation models are reviewed for their compatibility with warm inflation and observational
constraints, aiming to align theoretical predictions with cosmological observations.
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1 Introduction
What is the origin of the universe?

This is a timeless question, inherent to human nature. To answer it, a countless number of ideas
have been proposed across the ages, always intertwining belief, philosophy and science [1]. Nowa-
days, one of the most compelling scientific answers is the Hot Big Bang theory [2], supported by
numerous empirical observations from the cosmic microwave background (CMB) [3]. However,
the theory still faces significant challenges that have long beset cosmologists, notably the horizon,
flatness, and monopole problems. Addressing these issues within the Hot Big Bang framework is
possible, but requires a great level of fine-tuning of the theory.

Inflation emerged as an alternative and more elegant solution, as it does not require fine-tuning [4].
Inflation posits an epoch of accelerated expansion before the Big Bang, driven by vacuum energy
dominance, causing the scale factor to grow exponentially. The inflationary expansion would have
allowed for the universe to be sufficiently flat, homogeneous and isotropic on the largest observable
scales [5].

Initially, the application of particle physics to the early universe in this theory was revolutionary
[6]. Not only does it address the shortcomings of the Hot Big Bang theory, it also introduces the
concept of primordial fluctuations [7]. These fluctuations can manifest as perturbations in the met-
ric, tensor perturbations, or density perturbations within the homogeneous background universe. In
this paper, we will focus on the density perturbations, which are responsible for the formation of the
large-scale structures observable today. A robust early universe model must include a source of these
primordial perturbations, often explained by homogeneous scalar fields. In most inflation theories, a
specific type of scalar field, denoted as the inflaton is the driver of the inflationary expansion [8].

The standard inflation scenario, known as cold inflation, involves a single scalar field slowly rolling
down an almost flat potential, generating a quasi-de Sitter phase 1 through which the universe expands
superluminally. Once the field reaches the potential minimum, vacuum energy converts to radiation,
thereby reheating the universe [10]. An alternative to cold inflation is warm inflation, first introduced
by Arjun Berera in 1995 [11]. Warm inflation includes radiation during the inflationary period. Due
to the presence of radiation, the inflaton can interact with other fields and decay into radiation and
matter. This process consistently supplies radiation, supporting a thermal bath during inflation, which
will make the temperature of the universe not go to zero. The emerging radiation bath invokes a dis-
sipation term in the equation of motion of the inflaton [12], revoking the need for a separate reheating
phase at the end of inflation [13]. The presence of this thermal bath requires a different formalism
than cold inflation with regards to the primordial perturbations, as fluctuations would be primarily
thermal in origin.

1The de Sitter universe is a spacetime characterized by a positive constant four-curvature, maintaining uniformity and
symmetry in spatial and temporal dimensions [9].
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Warm inflation is a relatively new concept that still requires further investigation. This paper
introduces the topic of warm inflation and examines how the evolution of the power spectrum differs
in this paradigm compared to cold inflation. Chapter 2 explores the limitations of the Hot Big Bang
theory and introduces the fundamentals of inflation, particularly how it addresses the horizon and
flatness problems. Chapter 3 focuses on warm inflation, detailing its dynamics, energy scales, and
the derivation of the primordial power spectrum, with an emphasis on the dominance of thermal
fluctuations and the scenario in which the inflaton field couples with radiation, using the function
G(Q). Chapter 4 critically examines various models of warm inflation, evaluating their compatibility
with observational data and theoretical constraints. Finally, the paper summarizes the theory and
assesses the viability of warm inflation, highlighting its potential advantages over cold inflation and
suggesting directions for future research.
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2 An introduction to inflation

2.1 Big Bang shortcomings
As mentioned in the introduction, the Hot Big Bang theory is a widely accepted framework for under-
standing the origin of the universe. However, this theory presents certain challenges, which we will
discuss in the following sections. To address these challenges, the theory of inflation was proposed.
Although this might appear to be circular reasoning, as the resolution of these issues is a postdiction
rather than a prediction of inflationary expansion, the theory of inflation does make testable predic-
tions, such as the imprint of density perturbations in the cosmic microwave background. In this paper,
we will explore the horizon and flatness problems associated with the Hot Big Bang theory. The
monopole problem, however, is outside the scope of this discussion. For a detailed summary of the
monopole problem, refer to Barbara Ryden’s introductory book on cosmology [4].

2.1.1 The horizon problem

The first shortcoming of the Hot Big Bang model to be discussed is the horizon problem. The horizon,
or particle horizon, is defined as the largest distance that a signal can travel from the time correspond-
ing to the initial singularity (τi) to a later time (τ) [10]. It is given by the following equation:

χp(τ) = τ− τi =
∫

τ

τi

dt ′ =
∫ a

ai

Ha2

a(t ′)
∼ a(1+3w)/2 −a(1+3w)/2

i . (1)

This equation gives an expression for the comoving 2 distance χp(τ) at conformal time τ. H is the
Hubble parameter, a is the scalar factor, and ai is the initial scalar factor. w is a constant that signifies
the type of matter that dominates in the universe.

As the universe expands, the horizon does as well, and equation 1 will be dominated by the con-
tribution of the latest time when w is greater than −1

3 . This constraint for w is further explained in
section A of the appendix. This results in regions of space that were never in causal contact, com-
ing into contact for the first time. If the universe was not initially homogeneous, these regions should
look different from each other, according to the special theory of relativity. However, causally discon-
nected regions in the CMB are remarkably similar. How is this possible? This is known as the horizon
problem. We will discuss in section 2.2.1 how inflation offers a plausible answer to this question.

2.1.2 The flatness problem

The second shortcoming of the Hot Big Bang theory to be discussed is the flatness problem. The
curvature of the universe is not predicted by the theory of inflation. The Friedmann-Robertson-Walker
metric (FRW), further explained in section A of the appendix is used in inflation and is a solution for
three different geometric scenarios; an open, a closed and a flat universe. Therefore, it does not give a
definite answer about the flatness of the universe. It is then better to study the flatness of the universe
in terms of its energy content. To do that, we can look at the energy fraction Ωk(a) in the following
form:

Ωk(a) =− k
a2H2(a)

, (2)

2A comoving coordinate system is one in which the frame we use as reference grows along with the expansion of the
universe [14].
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where k is the curvature parameter of the universe. When w > −1
3 , the solution Ωk = 0 becomes an

unstable point. Notably, Ωk can reach at most ±1; in such cases, w approaches −1
3 if k < 0, while for

k > 0, the universe would collapse [10]. Interestingly, current observations show that Ωk is smaller
than 10−3 [3]. This means that the geometry of our universe now is relatively close to being flat. Such
flatness would require very specific conditions for the early universe, so what causes this flatness?

2.2 Inflation formalism

Before solving the two problems of the Hot Big Bang theory previously introduced, we need to un-
derstand what is meant by inflation. In this section, an overview of the framework of inflation is
offered, as well as a description of its mathematical formalism. This is mainly based on the following
literature [4, 5, 8, 10, 15].

The first empirical evidence of the expansion of the universe was discovered by Edwin Hubble. He
found that the redshift of galaxies was directly proportional to the their distance from Earth. This can
be seen in Figure 1, created by Hubble himself in his paper from 1929 [16]. His measurements led
him to conclude that galaxies farther away from Earth, were moving away at a rate faster than the ones
closer to us. He stated that the universe must be expanding. This idea had been introduced by Lemaitre
a few years earlier, who was quite ahead of his time, since his proposition was that if the universe is ex-
panding now, it must have been smaller in the past [17].

Figure 1: Velocity-distance relation among extra galactic nebulae
Edwin Hubble 1929 [16].

It was not until much later, that
this idea of inflation was applied to
the early universe as a solution to the
limitations of the Hot Big Bang the-
ory. Even though the shortcomings
mentioned in the previous section can
be avoided by fine-tuning of the ini-
tial state of the universe, there is no
reason why there could not be another
solution to the problem. A far more
elegant approach is inflation. The
idea of an inflationary expansion in the
early universe was first proposed in the
1960s [18, 6]. While several earlier

papers had touched on this concept, it was Guth’s work in 1981 that became the most cited. Guth’s
paper was the first to argue convincingly that inflation could resolve both the horizon and flatness
problems [19].

The standard theory of inflation suggests an exponential expansion phase that occurred before the Hot
Big Bang. In this phase, the universe’s scale factor grew exponentially, while the Hubble radius de-
creased. More information about the Hubble radius can be found in section A of the appendix. During
inflation, the universe’s energy density was dominated by a vacuum energy similar to a cosmological
constant. At the end of the inflationary period, before the Hot Big Bang, this energy transformed into
radiation and matter through a reheating process, both elements occupying the universe today [4, 20].
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2.2.1 Inflation as a solution to the horizon and flatness problems

For a clear and comprehensive explanation of how inflation addresses the horizon and flatness prob-
lems, some analogies can be presented. The horizon problem questions why two points that are
non-causally connected in the cosmic microwave background have the same properties, i.e. the same
temperature. To understand how inflation solves the problem, we can visualize an Olympic-sized
swimming pool with two dyes of different colors dropped at opposite edges. The time it takes for the
dyes to completely mix represents the horizon problem. Now, consider a shot glass with two dyes
dropped at the edges. The dyes in the shot glass mix faster than in the pool. This analogy illustrates
that for the vast size of the universe observed in the CMB, it would take an impossibly long time
for distant points to reach the same temperature. However, if these points started in a much smaller
region (like the shot glass) and then underwent rapid expansion, they could have the same properties.

The solution to the horizon problem is represented as well in Figure 2, where we see how two points
denoted as P and Q are not in causal contact now, but they were in the past in some region of space
that expanded exponentially. As they were connected in the past, they can have the same properties
in the present.

Figure 2: Conformal time versus space diagram representing the horizon problem. P and Q are causally dis-
connected in the CMB, but were causally connected in the past due to an inflationary period [21].
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The solution to the flatness problem can be effectively illustrated by picturing a very small ob-
server, often depicted as an ant, on an inflatable surface like a balloon. This can be seen in Figure 3.

Figure 3: An ant on a balloon, illustration of the flatness problem.

Initially, the ant perceives the balloon’s surface as curved. However, if the balloon inflates rapidly,
the surface appears locally flat to the ant. This analogy can be extrapolated to our universe: with
the balloon’s inflation representing the expansion of the universe, with rapid inflation smoothing out
initial curvature, making the universe appear flat on a large scale despite its initial state [15].

Inflation provides a solution to the shortcomings of the Hot Big Bang theory without needing fine-
tuning and can be considered as a viable model for the early universe. In the following section, we
will examine the standard inflation scenario.
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2.2.2 The inflaton field

In particle physics, spin zero particles are modelled by scalar fields. These are conserved under co-
ordinate transformations and are often associated with symmetry breaking mechanisms, such as the
Higgs mechanism or the ones present in Grand Unified Theories [20] . These fields are thought of as
being relevant to numerous physical processes, including inflation.

In most scenarios for inflation, a scalar field is chosen to drive this process of expansion, the in-
flaton field φ. The most common models for the evolution of the scalar field are denoted as “slow
roll” models of inflation, because the scalar field slowly rolls down to the lowest value of the poten-
tial. If the field rolls slow enough, we can disregard the time derivative of the field in comparison with
the value of the potential V (φ). At this point, the scalar field acts as a cosmological constant and the
universe experiences a period of expansion [5]. This process can be seen in Figure 4.

Figure 4: Potential for slow-roll inflation. [22]

For inflation to occur, there needs to exist a negative pressure to initiate the process. The scalar
field is initially in a state denoted as a “false vacuum”, which occurs as a result of large negative
pressure. This is the reason why the potential energy V (φ) needs to dominate in the universe during
inflation [19]. The scalar field stays in a potential plateau, and then rolls down a potential energy hill.
Whenever the rolling speed of the field is much slower than the expansion of the universe, inflation
occurs. The field approaches the potential minimum value (true vacuum) and when the hill is steeper
again inflation ends and a process called reheating starts.

Due to the exponential expansion during inflation, radiation and matter become diluted, making any
other sources of energy density negligible as they scale with a negative power of a(t). This acceler-
ated expansion results in an almost empty universe with no radiation, meaning the temperature during
inflation is zero in the standard cold inflation model. At the end of the inflationary period, the field
begins to oscillate around the minimum of its potential. These oscillations cause the field’s kinetic
energy to decay into radiation and matter through interactions with other fields. This phase, known
as reheating, occurs only after the inflationary period has ended and is not considered part of it. [5].

In this paradigm, the inflaton field is isolated during inflation and does not interact with other fields.
In the next section, another aspect of the standard inflation scenario will be discussed, primordial
fluctuations.
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2.2.3 Introduction to perturbations in the cold early universe

The universe is currently described as homogeneous and isotropic. However, when examining the
Cosmic Microwave Background (CMB), anisotropies are observed [23]. These anisotropies pose a
puzzling question that has led cosmologists to a compelling idea. The initial hypothesis suggested that
the universe’s initial conditions were not perfectly homogeneous and that gravitational clumping was
responsible for structure formation. However, a period of inflation would smooth out these inhomo-
geneities, making this explanation unlikely. This raises the question: how did these anisotropies form?

The answer lies in the nature of inflation, which is driven by a scalar field governed by the prin-
ciples of quantum mechanics. According to Heisenberg’s uncertainty principle, we cannot precisely
determine the value of the inflaton field and its conjugate momentum simultaneously [24]. As a result,
there are small quantum fluctuations or perturbations in the field. To understand how these quantum
fluctuations affect the inflaton field, we can divide the field into two parts, as shown in the following
equation:

φ = φ̄(t)+δφ(t,x). (3)

The first term is the background field, which is not dependent on space, homogeneous and it obeys
classical laws. The second term is the primordial density fluctuations. These can be quantized and
included in the equations of motion of the field. To understand their behaviour we will look at their
power spectrum in section 3.3.3. First, we will discuss these perturbations and what their effects are
on the universe.

These density fluctuations lead to the small anisotropies in the CMB [4]. These anisotropies are
the temperature fluctuations observed in the CMB and are thought to be responsible for formation of
structures, such as galaxies in the universe [25]. This is due to the quantum nature of the field. Quan-
tum properties cause inflation to end at slightly different times in different points of space, so there
will be regions denser than others at the end of inflation. Small fluctuations get augmented during
inflation and increase in size by the gravitational attraction after inflation.

During inflation there exists as well other types of perturbations, such as metric perturbations. If
we are to measure the polarization of the photons in the CMB we would find that there were fluctu-
ations in the metric caused by gravitational waves generated during inflation. These are also called
tensor perturbations. We will not focus on them in this paper, but it is to be noted that they are quite
fascinating. For further information on tensor perturbations see [26]. The ratio of the amplitude of
these tensor perturbations to the amplitude of scalar perturbations, which are another type of metric
perturbations, is denoted as the tensor-to-scalar ratio r and it is relevant for observational constraints
in inflation models [27].
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2.3 Inflation dynamics
2.3.1 Equations of motion of the inflaton field

To understand the dynamics of the inflaton field, we define a Lagrangian density of the form:

L = Ls +LR +LI, (4)

where Ls is the inflaton system Lagrangian, LR is the Lagrangian for radiation fields, and LI is
the Lagrangian describing the interaction between the inflaton field and other fields. The simplest
Lagrangian is defined as L= T −V , with T being the kinetic energy contribution and V the potential.
In the cold inflation scenario, there is no radiation present during inflation so the inflaton is an isolated
field, as we discussed previously. To understand its dynamics we can model it with the Lagrangian
density equation for a real scalar field, given by:

Ls =
1
2

φ̈
2 − 1

2
(∇φ)2 −V ′(φ). (5)

The first term accounts for the kinetic energy, the second for the gradient energy, and the third for the
potential energy of the scalar field [6]. To derive the equations of motion of the field, we will use the
action of a real scalar field:

S =
∫

d4x
√
−g
(
−1

2
∂µφ∂

µ
φ−V ′(φ)

)
. (6)

As we are treating a homogeneous and isotropic universe, we will use the Friedmann-Robertson-
Walker metric described in section A of the Appendix. Hence, the metric will be given by

√
−g ≡√

−|(gµν)| = a3. Note that 1
2∂µφ∂µφ = 1

2 φ̇2 − 1
2(∇φ)2, and that V ′(φ) = ∂V (φ)

∂φ
[10]. By applying the

previous conditions on the real scalar field, we can vary its action to find:

δS =
∫

d4xa(t)3 (−gµν
∂µφ∂νδφ−V ′(φ)δφ

)
=

∫
d4x
[
∂ν

(
a(t)3gµν

∂µφ
)
−a(t)3V ′(φ)

]
δφ

=
∫

d4x
[
−∂t

(
a(t)3

φ̇
)
+∂i

(
a(t)ϒi j

∂ jφ
)
−a(t)3V ′(φ)

]
δφ

=
∫

d4x
[
−3ȧ(t)a(t)2

φ̇−a(t)3
φ̈+a(t)∇2

φ−a(t)3V ′(φ)
]

δφ

=
∫

d4x
(
−a(t)3)[

φ̈+3
ȧ(t)
a(t)

φ̇− ∇2φ

a(t)2 +V ′(φ)

]
δφ.

(7)

From the previous expression, one can obtain the equation of motion for the inflaton field background:

φ̈+3Hφ̇+V ′(φ) = 0. (8)

The Hubble parameter H is the rate of expansion of the universe
( ȧ

a

)
. In this paper the term Hubble

scale is used for this value as well. For more information see section A in the appendix.

Equation 8 is the equation of motion for the inflaton in the scenario that there are no dissipation
effects and that radiation is not emitted during inflation. It is the first approximation in which the
density perturbations are not included in the equation, and therefore, we do not have a noise term
from the quantum density perturbations in cold inflation.
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2.3.2 Reheating

During inflation, the inflaton field gradually moves toward the minimum value of its potential. Upon
reaching this minimum, the inflaton oscillates around it. In this process, the kinetic energy of the in-
flaton decays into radiation and matter, marking the end of inflation and the beginning of the reheating
period [28]. Subsequently, the temperature of the universe is no longer zero, and the inflaton field can
couple to other fields. To account for the dissipation effects of this process an additional term needs
to be added to the equations of motion of the inflaton [5],

φ̈+3Hφ̇+ϒφ̇+V ′(φ) = 0. (9)

The additional term ϒ is the dissipation term, which accounts for the interaction of φ with other fields.
For inflation to happen, we need H >> ϒ. At the end of inflation H decreases, so ϒ is the relevant
parameter for the reheating process.

The cold inflation model proposes that if the inflaton interacts with certain Standard Model parti-
cles, these interactions will establish the initial conditions needed for all Standard Model particles to
reach thermal equilibrium. This scenario sets the stage for the occurrence of the Hot Big Bang [29].

The reheating temperature is bounded by the energy density at the end of inflation but is not nec-
essarily the same. The exact expression for the temperature is dependent on the chosen model [30].
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3 Warm inflation

The previously discussed theory and formalism correspond to the standard view on inflation. How-
ever, this is not the only model that can drive the inflationary process. The idea that we wish to discuss
is warm inflation. The main difference between warm and cold inflation, lies, as the names suggest,
in the temperature during the inflationary process.

There are numerous cosmological models for inflation, yet this paper introduces a new one. The
obvious question arises: why should we consider this model? The warm inflation model originated
from an idea by Berera in 1995, inspired by a talk on cosmological inflation [11]. Berera proposed
that since almost all dynamical systems involve a dissipation term, the inflaton field during the infla-
tionary period should be no different. This dissipation term is negligible in the cold inflation scenario
because it is assumed that the process is too fast for any microphysical processes to take place, result-
ing in a zero temperature state [31]. In this scenario, radiation would be neglected, and the inflaton
would not interact with other fields. However, is possible that there is enough time for microphysical
processes to occur and for radiation and dissipative terms to be significant [12, 29]. Consequently, it
is possible to have a scenario in which the scalar field is not isolated but interacts with other fields
during the inflation period. These interactions would result in particle production and radiation during
inflation, thereby eliminating the need for a separate reheating phase [32].

This model is drastically different from the cold inflation paradigm and leads to a very interesting
conclusion: the density perturbations in the early universe could be of a classical nature, instead of a
quantum nature due to their thermal nature [26]. As microphysical processes are permitted in this new
paradigm, there would be a suitable dynamical range during the inflation period for these processes to
generate statistical states such as thermalization, making the thermal perturbations of classical nature
predominant in the universe [12].

In this chapter, we discuss the formalism of warm inflation, its dynamics (3.1), its conditions (3.2),
and its density perturbations (3.3). The density perturbations have a special focus to provide an ac-
cessible but thorough interpretation of the power spectrum and its derivation in the warm inflation
scenario. This is extremely relevant, as understanding it will be essential to contrast this theory with
observational data [6].

3.1 Dynamics of warm inflation

In this section, a derivation of the dynamics of the inflaton field in the warm scenario is shown along
with an explanation of the implications of this new idea.

The Lagrangian considered for most inflation scenarios is of the form of equation 4, which contains
a term accounting for the interaction of the scalar field with other fields LI and for the interaction
of the inflaton field with radiation fields LR. In the cold inflation scenario, both of these terms were
neglected and did not contribute to the equation of the Lagrangian density of the inflaton during in-
flation, since the inflaton field was isolated. However, in the warm inflation scenario, these terms are
not neglected. The Lagrangian density describing the field has a dissipation term that arises from the
interaction between the inflaton field and other fields.



16 Chapter 3 WARM INFLATION

The equation of motion of the inflaton field in the warm inflation scenario is therefore a Langevin
type equation 3 of the form:

φ̈+3Hφ̇+ϒφ̇+V ′(φ) = ζ. (10)

This is the same equation as the inflaton equation in the reheating period, equation 9, but it includes
a term, that accounts for the density perturbations and their noise in the right hand side. We will
elaborate further on the noise term in section 3.3. This is no coincidence, as in the reheating period
the inflaton is interacting with other fields and radiation is present. This also shows that for the warm
inflation scenario, a separate reheating period is not needed, since matter and radiation are being pro-
duced during inflation.

During the inflationary period in warm inflation, the inflaton field is also conditioned by slow roll
motion, the slow roll parameters of warm inflation are described in section B of the appendix. As
radiation is present, the value of the energy densities in the warm inflation scenario is different than
in the standard cold one. For the warm inflation paradigm, the general relativity cosmological energy
conservation equation4, gives the derivative of the radiation energy density ρr, as:

ρ̇r =−4Hρr +ϒφ̇
2. (11)

We can see that the first term on the right hand side is a sink term that depletes radiation energy
density, but the second term sources energy density. This means that radiation energy cannot be ne-
glected because it will not go to zero. In warm inflation models, it is assumed that the radiation energy
density is finite when inflation starts [36]. This does not happen in the standard cold inflation model,
where radiation and matter only become present in the reheating process. At long enough times, the
radiation present in our universe will be independent of the primordial conditions because it will only
depend on the rate at which it is being produced by the source term. It is worth highlighting that the
vacuum energy is still the dominant energy in the universe in warm inflation. This agrees with general
relativity and the initial idea for inflation [19].

In the warm inflation paradigm there is no reheating period, but inflation still needs to end. The
end of the inflationary period in this model occurs when the radiation energy density exceeds the vac-
uum energy density [11]. This transition signifies the universe moving from an inflationary phase to
a radiation-dominated phase, leading to a smooth exit from inflation without the need for a reheating
period.

3A Langevin type equation is a stochastic differential equation describing the evolution of some degrees of freedom
dependent on time. These equations have frictional and random forces. For a further analysis on Langevin equations, see
[33] and for more information about stochastic processes see [34].

4The general relativity cosmological energy equation is given by ∂I µν

∂xν = 0, where I µν ≡
√
−gT µν defines the total

energy, momentum, and stress. For an exhaustive explanation, and the definition of the parameters in these equations, see
[35].
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3.2 Energy scales in inflation
For a comprehensive conceptual understanding of warm inflation, it is useful to examine the rela-
tionships between the different energy scales. In inflation models we often encounter the following
energy scales: the vacuum energy Ev, the radiation energy Er, the Hubble scale H, the mass of the
inflaton field mφ, and in the case of warm inflation, the dissipative coefficient ϒ. In the context of cold
inflation, the vacuum energy is significantly larger than the radiation energy, the Hubble scale is larger
than the mass of the inflaton, which in turn surpasses the radiation energy. Additionally, the Hubble
scale greatly exceeds the dissipative coefficient, thereby making dissipative effects are negligible in
this context.

In the context of warm inflation, the vacuum energy exceeds the radiation energy, creating a negative
pressure that initiates inflation. However, the radiation energy will surpass the mass of the inflaton
field, making a zero temperature state impossible. In warm inflation, there are two regimes: one
where ϒ > 3H and another where ϒ ≤ 3H. These are referred to as the strong, and weak dissipative
regime respectively. The dominating term controls the damping evolution of the field during inflation
[32, 37]. Table 1 summarizes the relationships between different energy scales in the cold and warm
inflationary scenarios.

Table 1: Comparison of Energy Scales in Cold and Warm Inflation

Cold Inflation Warm Inflation

Ev >> Er Ev > Er

H > mφ H < mφ (Strong)

mφ > Er mφ < Er

H >> ϒ ϒ > H (Strong)

ϒ ≤ H (Weak)

One of the most important outcomes of the warm inflation theory is the possibility of an inflaton
mass greater than the Hubble parameter in the strong dissipative regime (coloured in blue in table 1).
This is a great difference in comparison with the standard inflation model. In the latter, the inflaton
mass is very small and strictly less than the Hubble scale [38]. This affects "The η problem" in cos-
mology, and the swampland conditions in string theory [39]. Gravity guides the mass of the inflaton
to be close to the value of H, but for inflation to occur, they cannot be equal [39, 40]. In the case
of warm inflation, this problem disappears, since the mass can be even greater than the Hubble scale
[37]. This is one of the main advantages of the use of the warm inflation framework.

There exists another significant energy scale that warrants discussion, namely, the quantum gravity
scale. In cosmology, the influence of quantum gravity becomes important at energy levels approach-
ing the Planck scale [23]. During cold inflation, the amplitude of the inflaton field is damped solely
by the Hubble parameter, 3H, as seen in equation 8. It is greater than the Planck scale, which makes
it be in the quantum gravity scale regime. In contrast, during warm inflation, the amplitude of the
inflaton field is further reduced due to dissipation effects by 3H +ϒ. Thermal fluctuations impose a
limit on the perturbation amplitude in the field, as they surpass quantum effects in magnitude [37].
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Additionally, during the strong regime of warm inflation, in which ϒ > 3H, the dissipation further
reduces the amplitude of the inflaton field. This damping effect in the strong regime is governed by
the factor 3H +ϒ, as depicted in equation 10. This makes the amplitude of the inflaton field be below
the Planck scale. Consequently, the inflaton field amplitudes differ between the two scenarios, with
the amplitude in warm inflation being below the Planck scale, thereby mitigating potential quantum
gravity effects [6]. Avoiding the complexities of quantum gravity effects facilitates a clearer and more
comprehensive understanding of the theory, given that the field of quantum gravity is still under de-
velopment and remains largely unexplored.

We have observed that the relationships between different energy scales of inflation vary between
the two models in certain cases. The primary advantages of the warm inflation model over the cold
inflation model includes an inflaton mass greater than the Hubble scale in the strong regime, and an
inflaton amplitude below the Planck mass, thus evading the influence of quantum gravity.

3.3 Density perturbations in warm inflation
In the warm inflation scenario, the temperature T of the thermal bath present during inflation is greater
than the mass of the inflaton and particularly larger than the Hubble parameter in the strong regime.
In this case, thermal fluctuations of the scalar field will be dominant in comparison with the quantum
fluctuations [12]. This contrasts the cold inflation scenario, where quantum fluctuations are dominant
and thermal fluctuations are neglected.

3.3.1 Derivation of the primordial power spectrum

To understand the evolution of the density perturbations, we will derive its power spectrum. It is
essential to be able to derive this quantity in most of the theories of inflation, since it also allows us
to compute the tensor-to-scalar ratio r, and the spectral tilt ns

5. These two quantities are crutial to
compare models to experimental data [41]. And it is expected that due to the influence of thermal
fluctuations on the scalar perturbations, the tensor-to-scalar ratio value will be significantly lower in
the warm inflation scenario, in comparison with the standard one [42]. This is one of the most im-
portant differences between the cold and warm scenarios of inflation, and a difference that can be
experimentally tested. The spectral tilt value is model dependent within both scenarios [42].

The power spectrum is defined as the statistical average of the distribution of power among the fre-
quency components that make up a signal. This is achieved through Fourier analysis, as any physical
signal can be decomposed into discrete frequencies over a continuous range [43]. In this section, we
will derive the primordial power spectrum of density perturbations, focusing on the thermal noise
present in the warm inflation scenario. We will follow a similar approach to that used by Ramos and
Silva [44]. In the mentioned literature, the power spectrum is derived for inflation models covering
regimes from cold inflation to warm inflation. The results of the paper were also consistent with
CMB data from the Wilkinson Microwave Anisotropy Probe (WMAP) [45]. Our focus, as previously
mentioned, is on deriving the contributions to the power spectrum from thermal perturbations.

5The spectral tilt, denoted as ns, is a crucial parameter in cosmology that characterizes the distribution of primordial
density fluctuations generated during the inflationary period. It measures the deviation from a perfectly scale-invariant
spectrum, where ns = 1, which would indicate no tilt.
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In section 3.1, the equation of motion for the inflaton field in the warm inflation regime was de-
rived, and it is given by equation 10, which is a Langevin-type equation. The equation includes a term
that describes the dissipation of energy from the field to the radiation bath and a term accounting for
the backreaction of the thermal perturbations in the radiation bath on the inflaton field. This latter
term is a stochastic noise term, which can be of thermal or quantum nature depending on whether the
warm or cold regime is being studied, respectively.

There is a relevant contribution from the radiation bath to the power spectrum and as previously
stated, a domination of thermal fluctuations δϕt over the quantum inflaton field fluctuations δϕq when
T > H, since δϕq ∼ H [12]. We have also introduced that there exists two regimes of warm inflation,
the strong dissipative regime when ϒ > 3H and the weak dissipative regime when ϒ ≤ 3H [6]. In the
strong dissipative regime the dissipation caused by the radiation production dominates over the fric-
tion of the metric expansion in the equations of motion. The strong dissipative regime offers a more
interesting theoretical framework, this is also why we encounter more literature on the dynamics of
the inflaton field within this regime [6].

To study the density perturbations in warm inflation we will take equation 10 and perform a coarse-
graining 6 on the inflaton field following a similar procedure as previous literature has used for the
perturbations in cold inflation [46]. This procedure is denoted as the stochastic inflation approach and
it consists on reducing the number of degrees of freedom of the complex system by splitting the field
in a long wavelength part and a short wavelength part.

Φ(x, t)→ Φ>(x, t)+Φ<(x, t). (12)

The short wavelength term represents the field modes with a wavelength smaller than the horizon and
describes quantum vacuum fluctuations, high momentum modes of φ with k ≳ k̇h ≈ aH, where k is
the comoving coordinate wave-vector, Kh is its value at the horizon and k ≡ |k|. The separation of
modes is also done through a window filter function often constructed as a Gaussian function in the
literature [47, 48].

The long wavelength modes are decomposed according to [44] as:

φ<(x, t)≡ φq(x, t) =
∫ d3k

(2π)3/2W (k, t)
[
φk(t)e−ik·xâk +φ

∗
k(t)e

ik·xâ†
k

]
. (13)

The functions φk(t) are the field modes in momentum space, â†
k and âk are the creation and annihila-

tion operators respectively, and W (k, t) is the window filter function.

6Coarse-graining is a method used in complex mathematical and physical systems to simplify its study by dividing
them into smaller parts, easier to evaluate, for more information on the use of this method see the paper by Ramos and
Silva [44].
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The most common microscopic mechanism for generating radiation in warm inflation involves
the transfer of energy from the inflaton field to various other fields through field interactions. In a
quasi-equilibrium thermal state where the radiation is rapidly thermalized, allowing the state to be
maintained, and by applying the Friedmann-Robertson-Walker metric, equation 10 can be written as:

∂2Φ

∂t2 +(3H +ϒ)
∂Φ

∂t
− 1

a2 ∇
2
Φ+

∂Ve f f ,r(Φ)

∂Φ
= ξT . (14)

Ve f f ,r is the renormalized effective potential for the inflaton field. The term in the right hand side is
the noise component that describes thermal fluctuations in the local approximation for the equation
of motion in warm inflation. The connection of this noise term with the dissipation coefficient ϒ pre-
viously mentioned is given by a Markovian fluctuation dissipation relation 7, given by the following
equation in Ramos and Silva paper [44]:

⟨ξT (x, t)ξT (x′, t ′)⟩= 2ϒTa−3
δ(x− x′)δ(t − t ′). (15)

The average is done over a statistical ensemble. The dissipation term is found to be dependent on the
amplitude of the inflaton, the temperature T and the mass of the fields coupled to the inflaton. In this
paper we will study the model presented by Gabriele Montefalcone on his 2024 paper because of its
relevance as the only known paper presenting a model able to give a numerical solution to the power
spectrum of the thermal density perturbations accounting for coupling effects between the inflaton
and the radiation field [50].

ϒ(φ,T ) =CϒM1−c+m T c

φm . (16)

Cϒ is a dimensionless constant, which is model dependent, M is a mass scale for the model, and c and
m are integers corresponding to the coupling of the inflaton with other fields. We will expand further
on the work done by Montefalcone in section 3.3.3, where we will also see how the power spectrum
changes if the coupling between the inflaton field and the radiation field denoted as c is not zero. The
strength of the dissipative term is parametrized by the following equation [50]:

Q =
ϒ

3H
. (17)

To obtain the total power spectrum for the perturbations we will follow the stochastic approach in-
troduced by Starobinsky as cited before in the warm inflation scenario. We will describe the inflaton
field in equation 14 split into the quantum fluctuation part for sub-horizon modes as φq(x, t) and in a
super horizon term behaving as the classical inflaton mode, which is divided into the homogeneous
inflaton field φ(t) and the fluctuations δϕ(x, t), so:

Φ(x, t) = φ(t)+δϕ(x, t)+φq(x, t). (18)

If we are to substitute this equation in equation 14 and expand on the classical and quantum perturba-
tions to first order, we can obtain the equations for the background field and the classical fluctuations.
The equation for the latter δϕ(x, t) is given by:(

∂2

∂t2 +[3H +ϒ(φ)]
∂

∂t
− 1

a2 ∇
2 +ϒ(φ)φ̇+Vφφ(φ)

)
δϕ = ξ̃q +ξT . (19)

7For more information on Markovian perturbations and the Fluctuation Dissipation Theorem in statistical physics see
[49].
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Vφφ(φ) represents the average value of the potential in the long-wavelength regime with respect to the
de Sitter vacuum. For more information on its derivation, refer to [44]. ξ̃q is the quantum noise term
that accounts for the quantum modes in the inflaton field, as understood in the standard scenario of
cold inflation, and ξT is the thermal noise term described previously. Since this paper works with the
local approximation of the Langevin equation, these terms are understood as Markovian stochastic
noises 8.

The dynamics can be better understood by writing equation 19 in momentum space. For that we
can use the variable z ≡ k/aH. If we also substitute the values of the slow roll coefficients (ε,η,β)
appended to this paper in section B and obtained in [54], we will get:

δϕ
′′(k,z)− 1

z
(3Q+2)δϕ

′(k,z)+
(

1+3
z2

)
η− βQ

1+Q
δϕ(k,z) =

1
H2z2

(
ξT (k,z)+ ξ̃q(k,z)

)
(20)

The primes indicate derivatives with respect to the variable z. The general solution for the equation is
obtained through a Green function, and can be expressed as:

δϕ(k,z) =
∫

∞

z
dz′G(z,z′)

(z′)1−2ν

z′2H2

(
ξ̃q(z′)+ξT (z′)

)
. (21)

At the same time, and for the sake of simplicity, the Green function can be presented in terms of
Bessel functions:

G(z,z′) =
π

2
z′ν[Jα(z)Yα(z′)− Jα(z′)Yα(z)], (22)

with z′ > z, ν = 3(1+Q)/2 and α =
√

ν2 + 3βQ
1+Q −3η.

Finally, the following equation is derived, where thermal and quantum noise terms are uncorrelated
[44]. This enables a separate study of thermal and quantum noises.

⟨δϕ(k,z)δϕ(k′,z)⟩= 1
H4

∫
∞

z
dz2

∫
∞

z
dz1G(z,z1)G(z,z2)

(z1)
1−2ν

z12
(z2)

1−2ν

z22 ⟨ξ̃q(k,z1)ξ̃q(k′,z2)⟩

+
1

H4

∫
∞

z
dz2

∫
∞

z
dz1G(z,z1)G(z,z2)

(z1)
1−2ν

z12
(z2)

1−2ν

z22 ⟨ξ̃T (k,z1)ξ̃T (k′,z2)⟩.
(23)

It is possible then to evaluate the thermal noise contribution to the density perturbations in equation
18. Since we are focusing on the study of the warm inflation dynamics, we will not derive the quantum
noise component for the power spectrum. However, interested readers can refer to chapter IV, section
A in the paper by Ramos and Silva [44].

8A Markov process occurs when an stochastic process has a finite number of possible stage outcomes and the outcome
of any stage depends only on the outcome of the previous stage. Further information on Markov processes can be found
in the following literature [51]. For more information on the non-Markovian case, refer to [52]. Additionally, the work by
Jacob Barandes on stochastic processes and causal locality provides a different understanding of the theory and a possible
new approach to the quantum paradigm [53].
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3.3.2 Thermal noise component for the power spectrum

The definition of the power spectrum of the inflaton in terms of the two-point correlation function is
described in the book by Liddle and Lyth [25] as:

Pδϕ =
2π2

k3

∫ d3k′

(2π)3 ⟨δϕ(k,z)δϕ(k′,z)⟩ (24)

To derive the term of the spectrum associated with thermal noise, equation 15 can be expressed in
terms of momentum space and using the z variable. This gives:

⟨ξ̃T (k,z1), ξ̃T (k′,z2)⟩=
2ϒT
k2k′

H4z3
1z2δ(z1 − z2)(2π)3

δ(k+k′). (25)

Substituting the previous equation in the power spectrum from equation 24, the thermal contribu-
tion to the power spectrum is given by:

P(th)
δϕ

≡ k3

2π2H4

∫ d3k′

(2π)3

∫
∞

z
dz2

∫
∞

z
dz1G(z,z1)G(z,z2)

(z1)
1−2ν

z2
1

(z2)
1−2ν

z2
2

⟨ξ̃T (k,z1)ξ̃T (k′,z2)⟩

=
ϒT
π2

∫
∞

z
dz′z′2−4νG(z,z′)2.

(26)

The argument z in the equation can be approximated to zero in the late stages of inflation, which
are the observable ones. Using the gamma function Γ(z) =

∫
∞

0 tz−1e−t dt and the asymptotic form of

the Bessel functions given by Yα(z) ≃ −Γ(α)
2

√
αz
π

following the derivation in [44], we get that if we
neglect terms proportional to the slow-roll coefficients such that α ≃ ν = 3(1+Q)/2 and consider a
spatially flat gauge, the power spectrum can be approximated as:

Pδφ(z)th ≃ z2ν−2α

16π2
[2νΓ(ν)]2Γ(ν−1)ϒT

Γ(2ν−1/2)Γ(ν−1/2)

= z2η−2βQ/(1+Q)
HT 3Q8Q

[
Γ

(
3
2 +

3Q
2

)]3

π2(1+3Q)Γ
(5

2 +3Q
)

Γ

(
1+ 3Q

2

) . (27)

By incorporating the quantum noise derived by Ramos and Silva with the thermal noise, the total
power spectrum is given by:

Pδϕ(z) =
HT
4π2

[
3Q

2
√

π
22αz2ν−2α Γ(α)2Γ(ν−1)Γ(α−ν+3/2)

Γ(ν−1/2)Γ(α+ν−1/2)
+

H
T

coth
(

zH
2T

)
z2η

]
. (28)

The power spectrum described in the previous equation takes into account the thermal and quan-
tum noises and describes the distribution of the primordial perturbations into different frequencies at
horizon crossing, i.e, when the wavelength of the mode is equal to the horizon size, z ≡ k

aH = 1 [44].
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3.3.3 Evolution of the perturbations

However, the power spectrum is not constant on scales well outside the horizon [25]. This raises the
question: how can observations from the present epoch be compared to conditions during inflation?

Deriving a transfer function is then crucial to determine the initial density perturbations, and rep-
resent them in the present epoch. It is noteworthy that this is possible because different regions of
the universe that are not locally connected can be treated as independent, unperturbed evolutions on
scales far outside the horizon [25]. These different regions are considered identical up to the synchro-
nization of their clocks. Rather than examining the density of species in the universe, this study will
focus on their density contrast, defined by δ ≡ δρ/ρ . At the initial epoch, each density contrast is
related to the total density contrast δk, due to the radiation dominated period. This relation is defined
as the adiabatic condition and a set of density contrasts satisfying it is known as an adiabatic density
perturbation [10].

To derive the transfer function, it is essential to introduce a new perturbation, denoted as the cur-
vature perturbation R(x, t). The crucial characteristic of this new parameter is its constancy over time
[25]. It maintains consistent values from the initial to the present epoch and is related to the inflaton
perturbation. If we select the FRW metric with a flat gauge, it is given by R = Hδφ/φ̇ Under this
metric, the comoving curvature 9 and the amplitude of the curvature perturbation are equal according
to the derivations in [50] to:

∆
2
R =

H2

φ̇2
Pδϕ =

(
H2

2πφ̇

)2

1+2n∗+
T
H

2
√

3πQ√
3+4πQ

, (29)

where n∗ is the inflaton statistical distribution caused by the presence of the radiation bath. This is
generally assumed to be the equilibrium Bose-Einstein distribution, n∗ = [exp(H/T ))−1]−1.

It is evident that to reach this point multiple approximations and assumptions were made. That is
why we denote this result as an analytical estimate. The principal constraints considered were that
the temperature power of the dissipation rate is zero (c = 0) in equation 16, and that the metric per-
turbations mentioned in the theory (2.2.3) are neglected, and not addressed. Other restrictions were
that: (1) H and T are constant with respect to the z parameter to put them outside of the integral in
equation 26; (2) the η slow-roll coefficient described in appendix B is ignored so α ≈ ν.

According to Montefalcone in his paper [50], the only relevant assumption that can change the fi-
nal result substantially is the deviation from a temperature power zero in the dissipation rate. In the
case that c , 0, the scalar power spectrum will be significantly affected, particularly in the strong
dissipation regime in warm inflation.

This complication drove the research of Montefalcone to introduce a function addressing the dis-
sipation strength G(Q), which multiplies the already derived analytical expression. This factor G(Q)
can only be solved numerically. To this end, Montefalcone developed an open-source code explained
in the aforementioned paper [50]. In the following section we will gain some insight in the function-
ing of the code and the numerical method to find the dissipation strength function. This is particularly
relevant since it is the first paper known to the author, that has explored this area. A calculation in a
similar direction but working with Fock space appears in a paper by Ballesteros from 2023 [55].

9For more information on the comoving curvature parameter see [25].
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3.3.4 Numerical determination of the scalar dissipation function G(Q)

In recent literature on warm inflation, the power spectrum is given as an expression similar to equa-
tion 24. However, this expression is only an analytical estimate. To include the coupling between the
inflaton and radiation perturbations, where the power in the dissipation rate c , 0, numerical calcula-
tions are required. In order to do so, the power spectrum is multiplied by a function describing the
dissipation strength G(Q). The function G(Q) is determined by dividing the numerically computed
value by its analytical counterpart:

G(Q)≡
∆2

R,numerical|c , 0

∆2
R,analytic

. (30)

Understanding the differences in observations between warm and cold inflation is crucial. A precise
numerical fit for G(Q) for various dissipation rates and potentials is essential for calculating observ-
able parameters, such as the spectral tilt ns or the tensor-to-scalar ratio r.

The detailed derivation and explanation of these concepts are beyond the scope of this paper, however,
a brief introduction to the tensor-to-scalar ratio will be provided for context. The tensor-to-scalar ra-
tio is the ratio of the amplitude of tensor perturbations (metric perturbations, i.e., gravitational waves)
to the amplitude of scalar perturbations. This variable is crucial for distinguishing between the cold
and warm inflation regimes. According to the literature [6, 41, 56], the curvature power spectrum is
significantly affected by the dissipation term in warm inflation, which dramatically alters the tensor-
to-scalar ratio compared to cold inflation. This is the motivation for a numerical derivation of the
dissipation function. The code for the numerical calculation of G(Q) in Montefalcone’s paper [50]
can be found here.

The code is thoroughly discussed in Montefalcone’s paper, which includes a review of the code, a
summary of its functions, and an explanation of its working mechanism. For further details, please
refer to Montefalcone’s paper.

Here, a review and summary of the paper are provided to give an overview of the code’s functionality
and future implementation. First, it is important to consider that obtaining the dissipation function
requires other parameters, which depend on the inflaton model used. The body of the code is written
in the Python script WI_Solver_utils.py. It is divided into four modules: (1) inflaton_Model,
(2) Background, (3) Perturbations, and (4) Scalar_Dissipation_function.

1. inflaton_Model

In this module, the model chosen for the inflaton field is defined. This is not related to the
type of field we are to treat, since this one will always be a scalar field, but rather the type of
potential of the field. In this block, all the required parameters dependent on the potential are
defined. In the literature, numerous potentials have been presented [57, 58, 59, 60, 61], some
of which will also be discussed in section 4. In this code, the author proposes four potentials
for the definition of the model. These are the Monomial potential, the Hilltop-like potential, the
potential associated with Natural inflation and the β-exponential potential.

https://github.com/GabrieleMonte/WarmSPy
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We will focus on the Monomial and Hilltop potential for our discussion due to its simplicity
and popular use for the discussion of the dynamics of the scalar field. The Monomial potential
is given by:

V (φ) =
λ

n!
φ

n, (31)

λ depicts the coupling of the inflaton field with itself when n = 4, being n the steepness of the
potential. This inflaton model does not agree with the new observational data offered by BAO
and BICEP2/Keck Array data for the cold inflation scenario. However, this model agrees with
the observations for a good amount of parameters in the warm inflation scenario [55].

The Hilltop potential is given by:

V (φ) =V0

[
1−
(

φ

φ f

)2n
]2

. (32)

In this case n ≥ 1 and φ << φ f initially, because φ f is assumed to be large enough for the
inflation to end before arriving to the inflection point of the potential. This potential is suitable
for an effective field theory and it was found to agree with the data in warm and cold inflation
regimes [62].

2. Background

This module is responsible for solving the background evolution based on the number of e-
folds, Ne. Initial conditions are set so that inflation ends when the initial number of e-folds
equals the number of e-folds at the end of inflation, which is zero. According to observations
Ne between horizon crossing and inflation is 60 [63]. For more information on the calculation
of the background evolution see [50] .

The most important aspect of Montefalcone’s approach for solving the background dynam-
ics is the assumption of a constant dissipation strength Q during the expansion. This implies
that the background dynamics are no longer dependent on the temperature or the power-law ex-
ponents of the inflaton field’s dissipation rate ϒ (specifically, c and m). This assumption limits
the code’s use for studying background evolution in warm inflation. However, it can still be ap-
plied to interpret dissipation effects given a specific background model. Future work focusing
on the background dynamics would greatly enhance the code, enabling precise solutions for the
background evolution in warm inflation. Montefalcone mentions in his paper that he plans to
address this issue in the future.

3. Perturbations

Taking the background evolution computed in the previous module for a specific inflaton po-
tential, and the values for c and m, the module solves numerically the perturbations that are
obtained from equation 23. The Perturbations module gives the scalar power spectrum at
horizon crossing, as well as the standard deviation, which is dependent on Q.
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4. Scalar Dissipation function G(Q) is computed by taking the previous modules results as
well as the appropriate values for c, m and the parameters dependent on the inflaton potential
choice. This is done according to equation 30. This module is in charge of calculating the func-
tion that fits best G(Q) using the method of least squares. In the literature, the most common
fitting functions are given by [61, 64]

Gpol(Q) =

{
1+AQα +BQβ, if c > 0
(1+AQα)(1+BQβ)−γ, if c < 0.

(33)

However, the polynomial function does not provide a satisfactory result for positive values of c,
i.e, it does not fit the data in Montefalcone’s paper well when the dissipation rate is proportional
to the temperature. That is something to keep in mind when referring to the paper. They
resolved the issue by using a logarithmic fitting function instead of a polynomial one, which
perfectly fits their data. The differences between the fitting function and the computed values
for c can be observed in Figure 5. The logarithmic fit is given by:

Glog(Q) = 10
4

∑
n=1

anxn, x ≡ log10(1+Q). (34)

The WarmSPy program by Montefalcone was executed for the Monomial potential, and the fits for
the dissipation function G(Q) were plotted using these resources.

Figure 5: Solutions computed numerically for the function G(Q) with a Monomial potential depending on the
temperature power dependence of the dissipation rate. Values of c = 3,1,−1 were chosen to be coherent with
Montefalcone’s results. Lower frame: the fractional residuals between the computed result for G(Q) and the
different fit choices are displayed.
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Figure 5 provides an illustrative analysis of the behavior of the dissipation function for the Mono-
mial potential scenario across different values of c, along with an evaluation of the quality of the fits.
These results can guide future research in appropriately selecting fits for dissipation functions in the
warm inflation scenario.

The results were obtained under the following limitations: no inflaton field dependence in the dissi-
pation rate (m = 0), 60 e-folds after horizon crossing, and neglecting metric perturbations. According
to Montefalcone’s study, these assumptions do not affect the validity of the results, as the fits for the
scalar dissipation function G(Q) exhibit broader applicability, extending beyond the constraints of the
mentioned assumptions [50].

The polynomial fitting function better represents a negative temperature dependence of the inflaton
field with the radiation bath, whereas, the logarithmic fitting function, is more suitable for a positive
temperature dependence. This discrepancy arises because the magnitude of G(Q) cannot be fully
captured by simple polynomial fitting functions. Additionally, the accuracy of the polynomial fit is
highly dependent on the range of Q values to which it is applied. For precise calculations, a narrow
range of Q is preferred.

Obtaining the function G(Q) is crucial for calculating the power spectrum of primordial density per-
turbations in the warm inflation scenario. This function accounts for the effects of thermal fluctua-
tions, which distinguish warm inflation from the cold inflation scenario. While the specific calcula-
tion of the power spectrum depends on the chosen warm inflation model, the method is universally
applicable to all warm inflation cases. An accurate calculation of the power spectrum, enabled by de-
termining G(Q), is essential for testing warm inflation models against current and future CMB data.
This calculation allows for the determination of experimental constraints, such as the tensor-to-scalar
ratio r and the spectral tilt ns.
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4 Selecting warm inflation models
As outlined in section 3.3.4, the investigation of warm inflation is dependent on the choice of potential
for the inflaton field. Previously, the Monomial and Hilltop potentials were analyzed, with the Mono-
mial potential utilized to derive the dissipation function G(Q). In this section, we will explore more
recent potentials introduced in literature, evaluating their suitability for describing inflaton dynamics
within the warm inflation framework. This discussion follows Arjun Berera’s proposition in his 2023
paper [6].

In cosmology, the greatest difficulty is to prove theories against observations, as these observations
are extremely difficult to achieve. The empirical information available to test theoretical cosmological
theories is very limited. Whilst this poses a challenge to theorists, it is also a motivation to do a thor-
ough evaluation of the different models available. In the context of inflation, the cosmological data
results in an upper bound on the tensor-to-scalar ratio, on the amplitude of the scalar perturbations,
and on the spectral tilt. The goal is to have a model that adequately fits these parameters; while some
other conditions are met, such as the temperature at the end of inflation and the specific theoretical
constraints of the model presented.

According to Berera [6], a constructive way of evaluating different potential models is to under-
stand how speculative they are. Berera considers models that include theories and ideas significantly
different from the Standard Model to be very speculative. He asserts that while the Standard Model is
insufficient to describe all cosmological theories, it can serve as the foundation for constructing a ro-
bust theory of inflation, particularly, for warm inflation. Berera distinguishes between two speculative
features in cosmological models, fundamental and technical. The table that he introduces defining the
features of the fundamental and the technical category is shown below:

Table 2: Range of speculative features in cosmological models

Category Features

Fundamental
[F]

Quantum gravity, additional spacetime dimensions above four, modifications to gravity beyond
general relativity, sub-Hubble mass scalar fields and supersymmetry/other new spacetime sym-
metries or adjustments to them

Technical [T] Effective field theory methods with cutoff scale below mp, symmetries included in the model
not of the type in the Standard Model and excluding new spacetime symmetries, symmetries
included in the model, extra fields added beyond the Standard Model and not attributed to any
symmetry and model building beyond the Standard Model

The fundamental category involves theories with unknown unknowns and the technical category
presents theories with known unknowns as Berera describes. All the elements in the technical cate-
gory have been tested to some extent, making it possible to use them to create a robust theory that
could potentially be tested as well. However, if a theory relies on the fundamental category, making
empirical progress is challenging. This is not to suggest that some models are superior to others, but
to highlight the challenges associated with models in theoretical cosmology. In his paper, Berera anal-
yses models from a purely theoretical aspect to analyse their "degree of speculation". This discussion
is valuable not only to see what models are more easily testable, but also for reviewing the constraints
and paradigms of each model presented. Three of the models presented by Berera will be reviewed:
the D-Brane inflation model. The R2 Starobinsky model and the Warm Little inflaton model. The
latter was also proposed by Arjun Berera et al. in their article from 2016 [61].
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1. D-brane inflation model

This is a model within the string theory paradigm. In it, there exists an interaction energy
between two parallel brane and anti-branes10, which are solutions arising from string theory.
Their potential energy would drive inflation. The potential for the inflaton would have the
form:

VD−brane(φ) = M4
(

1− α

φ4

)
. (35)

This model has as fundamental speculations: quantum gravity, higher dimensions, inflaton mass
under the Hubble scale, and supersymmetry. In the technical category, it contains symmetries
outside of the Standard Model and model building beyond the Standard Model. This gives the
model a very high count of fundamental speculations. For more information on this model, see
[66].

2. R2 Starobinsky model

This model proposes a modification in the curvature by adding R2/(6M)2 to the action of the
field. R is the Ricci scalar and M > mp. This is essentially a model with modified gravity that
poses a potential of the form:

VR2(φ) = Λ
4

(
1− exp

(
−
√

2
3

φ

mp

))2

. (36)

This model has as fundamental speculations: quantum gravity, modifications in general relativ-
ity, and a mass of the inflaton field below the Hubble scale. As technical challenges, it includes
symmetries outside of the Standard Model and model building also outside of the Standard
Model. Further information about this model can be found in the following literature [67].

10A brane is an object extended in one or more dimensions in space. These arise in string theory. For a further analysis
the following literature is recommended [65].
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3. Warm Little inflaton model

In this model two complex Higgs fields are present. The expectation value of the vacuum
for both fields is nonzero, giving rise to two bosons. The relative phase of the two fields gives a
singlet, the inflaton. The potential for the inflaton in this case is a monomial potential given by:

Vwarm little(φ) =
λ

4!
φ

4 , or
1
2

m2
φ

2. (37)

This model does not contain fundamental speculations, but has technical challenges, such as
effective field theory methods, fields beyond the Standard Model not attributed to any symme-
tries, and model building outside the Standard Model. Futher information about the model can
be found in [61].

Among the models presented, the Little inflaton model stands out as particularly interesting according
to Berera’s discussion. This is because it does not depend on altering fundamental theories. While
further study is needed to fully understand its behavior in both the weak and strong regimes of warm
inflation, its lack of fundamental speculation makes it a promising candidate for comparison with
CMB data.
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5 Discussion and Conclusion
In this paper, we introduced the topic of warm inflation, a theoretical framework for inflation that
differs from the standard cold inflation model. We examined the differences between the warm and
cold inflation scenarios, particularly focusing on the radiation and dissipation effects in the equations
of motion of the inflaton field and the differences between the primordial density fluctuations in the
two scenarios. One of the most interesting outcomes of warm inflation is the impact of the dissipation
term in the inflaton field equation. In warm inflation, this term introduces friction due to interactions
of the inflaton field with other fields, resulting in a scenario where radiation and matter are continu-
ously produced during inflation, eliminating the need for a separate reheating phase. This continuous
production of radiation prevents the radiation energy density from being neglected, in contrast with
the cold inflation scenario. Therefore, there exists a thermal bath maintained by the continuous pro-
duction of radiation. This thermal bath also influences the perturbations in the early universe.

The power spectrum for the density perturbations was derived, taking into account the thermal noise
present in warm inflation. This was crucial, as the literature on warm inflation argues that thermal
fluctuations dominate over quantum fluctuations when the temperature is higher than the Hubble pa-
rameter, in the strong dissipative regime of warm inflation. This dominance of thermal fluctuations
leads to a different contribution to the power spectrum than in the cold inflation case. The power
spectrum can be calculated analytically without considering the contribution of the coupling between
the inflaton field and the radiation. However, if this coupling is present, the power spectrum can only
be calculated numerically. In this paper, we presented a summary of the numerical calculation of the
power spectrum using the code introduced by Montefalcone in his 2024 paper [50]. To successfully
derive the power spectrum accounting for thermal fluctuations and the coupling between the inflaton
field and the radiation, the function G(Q) introduced by Montefalcone was presented.

The calculation of this power spectrum can also be used to determine the tensor-to-scalar ratio
and the spectral tilt. In the warm inflation scenario, due to the presence of thermal perturbations,
the tensor-to-scalar ratio is expected to be significantly smaller than in the cold inflation case. The
spectral tilt depends on which model of warm or cold inflation is considered and serves to disregard
models that do not agree with the experimental data from the CMB.

This paper confirms that the warm inflation model can address several issues present in the cold in-
flation paradigm. For instance, the presence of a thermal bath allows for a inflaton mass even greater
than the Hubble parameter. This remedies the η-problem is cosmological theories, and swampland
conditions associated with the cold inflation scenario in string theory. Additionally, the amplitude
of the inflaton field remains below the Planck scale in warm inflation, reducing potential quantum
gravity effects that could complicate the study of inflation.

Finally, some models for warm inflation were explored, providing an overview of the current
research landscape on warm inflation. These models were evaluated according to the criteria presented
by Berera in [6], which can serve as a guideline for which warm inflation models to choose in the
future.
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This paper aimed to demonstrate the viability of warm inflation as an alternative to the standard
cold inflation models and to provide an introduction to the subject. Future research should focus on
developing models that accurately represent dissipative processes during inflation, both in thermal
and non-thermal equilibrium, and rigorously compare these models with experimental data. That is
why identifying data capable of falsifying specific warm inflation models should be a priority. Ad-
ditionally, it is crucial to investigate the potential effects of the coupling of the inflaton field with
other fields, as this could provide significant insights into particle production in the early universe.
An extensive examination of inflaton decay channels and interactions with other fields is essential.
Furthermore, exploring the impact of thermal perturbations on other cosmological parameters and the
implications of warm inflation for various areas of cosmological research is crucial. Warm inflation
has the potential to offer solutions to several cosmological puzzles, including dark energy, baryogen-
esis, and black hole formation.
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Appendix

A Friedmann-Robertson-Walker Metric and important parameters
In this section an introduction to Friedman-Robertson-Walker (FRW) cosmology is presented, along
with some relevant parameters.

FRW Cosmology
In this paper we are working with a homogeneous and isotropic universe described by the Friedmann-
Robertson-Walker metric. This is given by:

ds2 = c2dt2 −a2(t)
[

dr2

1− kr2 + r2 (dθ
2 + sin2

θdφ
2)] (38)

Where ds2 represents the spacetime interval, c is the speed of light in a vacuum, a(t) is the scale
factor, which describes how the size of the universe changes as a function of time t, r is the comoving
radial coordinate in this equation, k is the curvature parameter. The angles are given by performing
the calculations in spherical coordinates and are also comoving with the expansion of the universe.

Friedmann equations
The expansion rate of the universe is determined by its content, which is characterized by the en-
ergy density ρ and pressure p. By substituting the Friedmann-Robertson-Walker (FRW) metric into
Einstein’s field equations, and neglecting the cosmological constant, we can derive the Friedmann
equations for a perfect fluid, which describe the dynamics of the universe’s expansion. In this section
we follow derivations from [5].

The first Friedmann equation is expressed as:

H2 =

(
ȧ
a

)2

=
8πG

3
ρ− kc2

a2 , (39)

where H = ȧ
a denotes the Hubble parameter, reflecting the rate of expansion. Here, G is the gravita-

tional constant, k is the curvature parameter, and c is the speed of light. This equation connects the
expansion rate with the energy density and spatial curvature of the universe.

The second equation or acceleration equation, is given by:

Ḣ +H2 =
ä
a
=−4πG

3

(
ρ+

3p
c2

)
. (40)

This equation describes how the acceleration of the universe’s expansion is influenced by its energy
density and pressure.

For the universe to be accelerating or at least not decelerating too rapidly, the term inside the parenthe-
ses must not be too negative. If ω ≤−1

3 , the pressure term 3p
c2 becomes sufficiently negative to make

the acceleration negative, leading to a decelerating universe. For a positive expansion rate, ω > −1
3

ensures that the combined effect of density and pressure does not decelerate the universe excessively.
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The constraint on w also ensures that in the early universe, matter and radiation dominated the
energy content. For non-relativistic matter, w≈ 0 and for radiation (relativistic matter), w= 1

3 . Hence,
both cases satisfy w >−1

3 . Dark energy on the other hand, would have w ≈−1 [5].
From these equations, we can derive the continuity equation, which governs the time evolution of

the energy density:
dρ

dt
=−3H

(
ρ+

p
c2

)
. (41)

Solving this yields:
ρ ∝ a−3(1+ω), (42)

where ω = p
ρc2 is the equation of state parameter.

Utilizing the first Friedmann equation, the comoving Hubble radius, which is explained later, is
derived as:

1
Ha

=
1
ȧ
=

(
H2

0 a−(1+3ω)− kc2

a2

)− 1
2

, (43)

where H0 represents the Hubble constant. In the case of a flat universe (k = 0), this simplifies to:

1
aH

=
1

H0
a

1
2 (1+3ω). (44)

Hubble Parameter
The Hubble parameter is defined as:

H =
ȧ
a
, (45)

where ȧ is the time derivative of the scale factor a. It measures the rate of expansion of the universe.

B Slow roll parameters for Warm Inflation
The warm inflation slow roll parameters have to also account for the presence of the dissipation term
ϒ. According to Hall, Moss and Berera in their 2003 paper [54], the slow roll parameters for warm
inflation are given by:

ε =
1

16πG

(
Vφ

V

)2

(46)

η =
1

8πG

(
Vφφ

V

)
(47)

β =
1

8πG

(
ϒφVφ

ϒV

)
(48)

The slow roll approximation is valid when all of the slow-roll parameters are smaller than 1+Q, Q
denoted the strength of the dissipative parameter ϒ and is given in equation 17. In cold inflation, they
have to be smaller than 1.
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