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1 Introduction

We can approximate a periodic function by using Fourier series. This approximation en-
counters some problems whenever we try to approximate a discontinuous function. Namely,
whenever we approximate a discontinuous function, an over- or undershoot happens near
the jump discontinuities of this function. This over- or undershoot has a limit of about 9%
of the size of the jump. This phenomenon is called the Gibbs phenomenon and it can be
seen in some aspects of our daily life. Some of these aspects can be seen as a disadvantage
and some of them can be seen as an advantage. We will look at some examples of both
cases.

Example 1.1. Almost everyone has used an amplifier once in their life. These amplifiers
sometimes experience clipping. Clipping is the event where the amplifier tries to deliver a
voltage output that is higher than its maximum capacity. In doing so a waveform distortion
is created. In other words, the sounds produced by the amplifier are not as desired. This
clipping is one of the undesired results of the Gibbs phenomenon (Esqueda et al., 2016).

Example 1.2. The Gibbs phenomenon can also be used as an advantage. One of these
advantages is the use of the Gibbs phenomenon for so called edge detection (Jerri, 1998,
p. 80). In this edge detection we have an image with its contrasts that represent edges or
contours. These edges can be modeled as a jump discontinuity in a Fourier representation
and thus we are dealing with the Gibbs phenomenon. What stands out when using this edge
detection is that the presence of the Gibbs phenomenon, and thus the presence of an over-
or undershoot, results in clearer images. The improvement of the images is greater when
the overshoots have a steeper rise. Hence, we can use the Gibbs phenomenon in creating
clearer images. This result is of great importance in two applications. We will enlighten
both applications briefly.

1. Magnetic Resonance Imaging (MRI) uses images to detect defects or diseases. It
has been shown in the research of Roerdink and Zwaan that the Gibbs phenomenon
enhances the image of the cross section of the heart (Roerdink & Zwaan, 1993; Zwaan,
1990). In this specific case we can thus detect heart defects or heart diseases better.

2. If a signal with a shock is analyzed, we can use the Gibbs phenomenon to locate these
shocks. We can locate these shocks by locating the over-/undershoots. An estimate of
the location of the shocks is used to get an advantage in signaling (Jerri, 1998, p. 82).

These examples show us that the Gibbs phenomenon does not only appear as a problem,
but also as an aid in daily problems.

Since it is of importance to solve the problems and to achieve a bigger advantage from
the Gibbs phenomenon, we strive to understand it better. In this paper, we will do so by
looking at the Gibbs phenomenon for the Fourier approximation of two functions. However,
we will also look at the Gibbs phenomenon in other approximations. We will look at the
similarities and the differences for both approximations.
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2 Approximation in normed spaces

As we have stated in the introduction, the Gibbs phenomenon can be seen when approxi-
mating a function using Fourier series. This approximation is based on the theory of best
approximation. In this section, we will therefore focus on the theory of the best approxima-
tion. This theory is based on our findings in (De Snoo & Sterk, 2023; Shadrin, 2005).

Definition 2.1 (Best approximation). Let X be a normed linear space and let V ⊂ X be
a subset. A point v0 ∈ V is called a best approximation of x ∈ X if

||x− v0|| = d(x0, V ) := inf{||x− v|| : v ∈ V }.

Example 2.1. Let X = R2 and V = {(v, v) : v ∈ R}. If we take x = (0, 1), we can compute
the best approximation v0 ∈ V using the L1 norm. We compute

||x− v0||1 = inf{||x− v||1 : v ∈ V }
= inf{|x1 − v1|+ |x2 − v2| : v ∈ V }
= inf{|0− v1|+ |1− v1| : v1 ∈ R}
= inf{|v1|+ |1− v1| : v1 ∈ R}.

If we then take 0 ≤ v1 ≤ 1, we obtain that v0 = (v1, v1) is a best approximation with
||x− v0||1 = 1.
If we take v1 < 0, we obtain that v0 = (v1, v1) with ||x − v0||1 = 1 − 2v1 > 1. Hence, this
will not give us a best approximation.
If we take v1 > 1, we obtain that v0 = (v1, v1) with ||x − v0||1 = 2v1 − 1 > 1. Hence, this
will not give us a best approximation either.
In conclusion, we have infinitely many best approximations, namely the points v0 = (v1, v1)
with 0 ≤ v1 ≤ 1.

Example 2.2. Let X = R2 and V = {(v, v) : v ∈ R}. If we take x = (0, 1), we can compute
the best approximation v0 ∈ V using the L∞ norm. We compute

||x− v0||∞ = inf{||x− v||∞v ∈ V }
= inf{max{|x1 − v1|, |x2 − v2|} : v ∈ V }
= inf{max{|0− v1|, |1− v1|} : v1 ∈ R}
= inf{max{|v1|, |1− v1|} : v1 ∈ R}.

If we then take v1 = 1
2 , we obtain that v0 = (v1, v1) is a best approximation with ||x−v0||∞ =

1
2 .
If we take v1 < 1

2 , we obtain that v0 = (v1, v1) with ||x − v0||∞ = 1 − v1 > 1
2 . Hence, this

will not give us a best approximation.
If we take v1 > 1

2 , we obtain that v0 = (v1, v1) with ||x− v0||∞ = v1 > 1
2 . Hence, this will

not give us a best approximation either.
In conclusion, we have a unique best approximation, namely the point v0 = (v1, v1) = ( 12 ,

1
2 ).
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Figure 1: The unit spheres for respectively the L1 norm (green), the L∞ norm (red) and
the L2 norm (blue).

Example 2.3. Let X = R2 and V = {(v, v) : v ∈ R}. If we take x = (0, 1), we can compute
the best approximation v0 ∈ V using the L2 norm. We compute

||x− v0||2 = inf{||x− v||2 : v ∈ V }

= inf{
√
|x1 − v1|2 + |x2 − v2|2 : v ∈ V }

= inf{
√
|0− v1|2 + |1− v1|2 : v1 ∈ R}

= inf{
√
|v1|2 + |1− v1|2 : v1 ∈ R}

= inf{
√
2v21 − 2v1 + 1 : v1 ∈ R}

= inf{
√
2
(
v21 − 2 · 1

2
v1 +

1

4
+

1

4

)
: v1 ∈ R}

= inf{
√
2
(
(v1 −

1

2
)2 +

1

4

)
: v1 ∈ R}

= {
√
2
(
(v1 −

1

2
)2 +

1

4

)
: v1 =

1

2
}

=

√
1

2
.

Hence, we see that we have that v0 = (v1, v1) = ( 12 ,
1
2 ) is the best approximation with

||x− v0||2 =
√

1
2 .

We thus see, that using different norms, we obtain different best approximations. There-
fore, we can say that the existence and uniqueness depends on the choice of the norm.

Definition 2.2. (Strictly convex normed linear space) A normed linear space X is called
strictly convex if

||x|| = ||y|| = 1, x ̸= y =⇒ ||1
2
(x+ y)|| < 1

2
||x||+ 1

2
||y|| = 1 ∀x, y.

We can rephrase this definition such that a norm is strictly convex when given any two
distinct points x and y on the unit sphere, the line segment between these points is not
(partially) contained on the boundary itself. Looking at figure 1, we see that this is however
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the case for the L1 and the L∞ norms. Hence, these norms are not strictly convex. The
boundary of the L2 norm does not contain any line segments and thus we can say that the
L2 norm is strictly convex. We can also come to this conclusion using a lemma.

Lemma 2.1. Every norm that comes from an inner product space is strictly convex.

Proof. Let us set ||x|| = ||y|| = 1 and x ̸= y. Then by the parallelogram law and absolute
homogeneity we obtain

||1
2
(x+ y)||2 + ||1

2
(x− y)||2 = 2||1

2
x||2 + 2||1

2
y||2

= 2 · 1
4
||x||2 + 2 · 1

4
||y||2

=
1

2
· 12 + 1

2
· 12

= 1

and thus

||1
2
(x+ y)||2 = 1− ||1

2
(x− y)||2.

Since x ̸= y, this latter inner product will not be equal to zero and by definition of an inner
product it is nonnegative. Hence, we conclude

||1
2
(x+ y)||2 < 1,

and thus by definition 2.2 we can say that the norm is strictly convex.

Lemma 2.2. Let X be a strictly convex normed linear space and let V ⊂ X be a subspace.
Then, for each element x ∈ X, there is at most one element of best approximation.

Proof. Suppose that v1 and v2 are two distinct best approximations from V to x and ||x−
vi|| = α. Then we obtain

||x− 1

2
(v1 + v2)|| = ||1

2
(x− v1) +

1

2
(x− v2)|| <

1

2
||x− v1||+

1

2
||x− v2|| = α.

Then by definition v1 and v2 are not the best approximations. Thus, we obtain a contra-
diction and therefore we have that v1 = v2.

Since the L2 norm is strictly convex, as stated before, we can conclude that its best
approximations are always unique. Therefore, we will use the L2 norm in the rest of our
approximations.

Theorem 2.1. Let X be an inner product space and let V ⊂ X be a linear subspace with
dimV < ∞. Then there exists a unique best approximation v0 ∈ V for all x ∈ X. If
{e1, e2, . . . , en} is an orthonormal basis for V , this best approximation is given by

v0 =

n∑
j=1

< x, ej > ej

Proof. Let us set cj = ⟨x, ej⟩, then∣∣∣∣∣∣x−
n∑

j=1

λjej

∣∣∣∣∣∣2 = ||x||2 −
n∑

j=1

λjcj −
n∑

j=1

λjcj +

n∑
j=1

|λj |2

= ||x||2 +
n∑

j=1

|λj − cj |2 −
n∑

j=1

|cj |2,

where the minimum is attained if and only if λj = cj for all j.
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3 The Gibbs phenomenon for Fourier series

3.1 Fourier series

The concept of the Fourier series has been named after Joseph Fourier (1768-1830). The
Fourier series arose out of two physical problems, the heat conduction of solids and the
motion of a vibrating string. In his work Théorie Analytique de la Chaleur, which can be
translated to The Analytical Theory of Heat, Fourier looked at one of those physical prob-
lems. He stated that ’there is no function f(x), or part of a function, which cannot be
expressed by a trigonometric series’ in this work (Abbott, 2015; Angelidis, 1996).

Fourier initially looked at even functions. After a while, he stated that a function f(x)
can be formulated as

f(x) = a0 +

∞∑
n=1

an cos(nx) + bn sin(nx) (1)

given the suitable coefficients (an) and (bn), which we will define in this chapter. The
functions f(x) need not be even in this approximation, as long as f(x) is continuous. For
all of the deductions that will follow, we use information from (Abbott, 2015).

The first coefficient we want to define is a0. Before we will be able to define this coeffi-
cient, we consider the following integrals:∫ π

−π

cos(nx)dx = 0 (2)

and ∫ π

−π

sin(nx)dx = 0. (3)

These integrals hold for all n ∈ N. To be able to define a0, we will now integrate both sides
of our initial formulated function (1)∫ π

−π

f(x)dx =

∫ π

−π

[
a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)
]
dx

=

∫ π

−π

a0dx+

∫ π

−π

∞∑
n=1

an cos(nx) + bn sin(nx)dx.

Let us assume that

a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)

converges uniformly to f(x) on the interval [−π, π]. Then, we can continue with our deriva-
tion of a0. We can interchange the sum and integral, simply because of the assumption.
Then, taking the values of our integrals (2) and (3) we get∫ π

−π

f(x)dx =

∫ π

−π

a0dx+

∞∑
n=1

∫ π

−π

an cos(nx) + bn sin(nx)dx

= a0

∫ π

−π

dx+

∞∑
n=1

an

∫ π

−π

cos(nx)dx+ bn

∫ π

−π

sin(nx)dx

= a02π.

Hence, we can define

a0 =
1

2π

∫ π

−π

f(x)dx. (4)
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In the same way, we can derive an and bn. Let us start with the derivation of an. Before
we will be able to define this coefficient, we must calculate the following two integrals. By
using the sum and difference formula for cosine and by rewriting the square of cosine using
the double angle formula for cosine, we obtain the following two cases for the first integral∫ π

−π

cos(nx) cos(mx)dx =

{
0 ifn ̸= m

π ifn = m
∀n,m ∈ N. (5)

By rewriting cos(nx) as a form of sin(nx) we can define the second integral∫ π

−π

cos(mx) sin(nx)dx = 0 ∀n,m ∈ N. (6)

To be able to define an, we will look at the case where n = m and multiply both sides of
our function (1) with cos(mx), to get

f(x) cos(mx) = a0 cos(mx) +

∞∑
n=1

an cos(nx) cos(mx) + bn cos(mx) sin(nx).

Then by integrating both sides of this equation, we obtain∫ π

−π

f(x) cos(mx)dx =

∫ π

−π

[
a0 cos(mx) +

∞∑
n=1

an cos(nx) cos(mx) + bn cos(mx) sin(nx)
]
dx.

Still assuming that

a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)

converges uniformly to f(x) on the interval [−π, π], we can continue with our derivation of
an. We can interchange the sum and integral again and by taking the values of our integrals
(5) , (6) and n = m we get∫ π

−π

f(x) cos(mx)dx =

∫ π

−π

a0 cos(mx)dx+

∞∑
n=1

∫ π

−π

an cos(nx) cos(mx) + bn cos(mx) sin(nx)dx

= a0

∫ π

−π

cos(mx)dx+

∞∑
n=1

am

∫ π

−π

cos2(mx)dx+ bm

∫ π

−π

cos(mx) sin(mx)dx

= amπ.

Since we still look at the case where n = m, we can define

an =
1

π

∫ π

−π

f(x) cos(nx)dx. (7)

Note that this result can be seen as an application of theorem 2.1.
We will derive our last Fourier coefficient bn in the same way as we derived an. However,
instead of multiplying by cos(mx) we will now multiply by sin(mx). For this to work we
define one more integral first, namely∫ π

−π

sin(nx) sin(mx)dx =

{
0 ifn ̸= m

π ifn = m
∀n,m ∈ N. (8)

As stated before, we will now multiply by sin(mx) , which gives us

f(x) sin(mx) = a0 sin(mx) +

∞∑
n=1

an cos(nx) sin(mx) + bn sin(nx) sin(mx).
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Then, by integrating both sides of this equation, we obtain∫ π

−π

f(x) sin(mx)dx =

∫ π

−π

[
a0 sin(mx) +

∞∑
n=1

an cos(nx) sin(mx) + bn sin(nx) sin(mx)
]
dx.

Still assuming that

a0 +

∞∑
n=1

an cos(nx) + bn sin(nx)

converges uniformly to f(x) on the interval [−π, π], we can continue with our derivation
of bn. We can interchange the sum and integral again. Then, by taking the values of our
integrals (6) , (8) and n = m we get∫ π

−π

f(x) sin(mx)dx =

∫ π

−π

a0 sin(mx)dx+

∞∑
n=1

∫ π

−π

an cos(nx) sin(mx) + bn sin(nx) sin(mx)dx

= a0

∫ π

−π

sin(mx)dx+

∞∑
n=1

am

∫ π

−π

cos(mx) sin(mx)dx+ bm

∫ π

−π

sin2(mx)dx

= a00 +

∞∑
n=1

am0 + bmπ

= bmπ.

Since we still look at the case n = m, we obtain

bn =
1

π

∫ π

−π

f(x) sin(nx)dx. (9)

Note that this can be seen as an application of theorem 2.1 again.
Altogether, we see that the Fourier series gives us an expansion of a function f(x) of the
form (1) in which the Fourier coefficients a0, an and bn are defined as (4), (7) and (9).

3.2 The Gibbs-Wilbraham constant

Now we look into the Gibbs phenomenon. Let us define a function f to be a piecewise
smooth function that is defined on the interval [−π, π), extended to the real line via pe-
riodicity. Moreover, we let f have at most finitely many discontinuities on this interval,
where the discontinuities are all finite jumps. The Gibbs phenomenon then describes the
overshoot of the partial sum of the Fourier series near the discontinuity of this function
f . This phenomenon was first discovered by H. Wilbraham in 1848. The phenomenon was
then rediscovered by Gibbs in 1898. Since Wilbrahams discovery was unknown from 1848
till 1914, the phenomenon was named after Gibbs.

Taking x = c as one of the discontinuities of our function f as defined before, we define

δ = lim
x→c+

f(x)− lim
x→c−

f(x) (10)

and

µ =
1

2

[
lim

x→c−
f(x) + lim

x→c+
f(x)

]
, (11)

where we assume that δ > 0 without loss of generality. Moreover, let us denote the n-th
partial sum of the Fourier series of f as

Sn(f, x) =
a0
2

+

n∑
k=1

(ak cos(kx) + bk sin(kx)). (12)
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Using (10) and (11) we denote the first local maximum of Sn(f, x) to the left of the discon-
tinuity at the point x = c as xn < c such that

lim
n→∞

Sn(f, xn) = µ+
δ

π
G

and denote the first local minimum of Sn(f, x) to the right of the discontinuity at the point
x = c as ξn > c such that

lim
n→∞

Sn(f, ξn) = µ− δ

π
G.

In both the definition of xn and of ξn we see the Gibbs-Wilbraham constant, which is
denoted by G. This constant is defined in (Finch, 2003) as

G =

∫ π

0

sin(θ)

θ
dθ =

∞∑
n=0

(−1)nπ2n+1

(2n+ 1)(2n+ 1)!
= 1.8519370519...

=
π

2
(1.1789797444...).

Definition 3.1. (Sine integral function) We define the sine integral function as

Si(x) =

∫ x

0

sinu

u
du. (13)

This function can be represented by the series expansion

∞∑
k=1

(−1)k−1 x2k−1

(2k − 1)(2k − 1)!

(Havil, 2010, p. 106). If we approximate this sum, by taking k up till 100, we have

100∑
k=1

(−1)k−1 x2k−1

(2k − 1)(2k − 1)!
≈ 1.85193705198.

Note that this sum is thus the exact same as the one in the computation of the Gibbs-
Wilbraham constant. We can thus conclude that G = Si(π).

3.3 Two examples

This section will show the Gibbs phenomenon for some explicit functions.

3.3.1 Square wave

For this example, we used the work in (Jerri, 1998, p. 40-43). We take a look at the Gibbs
phenomenon in the square wave of unit amplitude on the interval (−π, π). We define this
function as

f(x) =

{
1 if 0 < x < π,

−1 if − π < x < 0,
(14)

where there is a jump-discontinuity at x = 0. We denote the n-th partial sum of the Fourier
series of this square wave as

Sn(f, x) =
4

π

n∑
k=1

1

2k − 1
sin((2k − 1)x). (15)
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Figure 2: The square wave function and its Fourier series on the interval (−π, π)

Graphing both (21) and (15) for n = 10, we obtain the plot in figure 2. Note that we see
the overshoots of Sn near the discontinuities of f(x). To be able to locate these overshoots
or extrema of Sn(f, x), we need to rewrite the partial sum. First, we note that

1

(2k − 1)
sin((2k − 1)x) =

∫ x

0

cos((2k − 1)t)dt. (16)

Then, by using (16), we can rewrite our partial sum as

Sn(f, x) =
4

π

n∑
k=1

1

2k − 1
sin((2k − 1)x)

=
4

π

n∑
k=1

∫ x

0

cos((2k − 1)t)dt

=
4

π

∫ x

0

[ n∑
k=1

cos((2k − 1)t)
]
dt.

Moreover, it follows that

2 sin t

n∑
k=1

cos((2k − 1)t) =

n∑
k=1

2 sin t cos((2k − 1)t)

=

n∑
k=1

[sin((2k − 1 + 1)t) + sin((1− 2k + 1)t)]

=

n∑
k=1

[sin 2kt− sin((2k − 2)t)]

= sin 2t+ sin 4t− sin 2t+ · · ·+ sin 2nt− sin((2n− 2)t)

= sin 2nt.

10



In other words, we have

n∑
k=1

cos((2k − 1)t) =
sin 2nt

2 sin t
. (17)

This fraction is not defined for t = 0. However, we note

lim
t→0

sin 2nt

2 sin t
= lim

t→0

2n cos 2nt

2 cos t
= n.

Then, by using (17) in our partial sum containing the integral, we obtain

Sn(f, x) =
4

π

∫ x

0

[ n∑
k=1

cos((2k − 1)t)
]
dt

=
4

π

∫ x

0

[ sin 2nt
2 sin t

]
dt

=
2

π

∫ x

0

[ sin 2nt
sin t

]
dt.

This partial sum has its extrema at the points xa = aπ
2n with a ∈ Z. The maximum that we

want to look at, namely the first maximum where x > 0 is xa = π
2n . This yields

Sn

(
f,

π

2n

)
=

2

π

∫ π
2n

0

[ sin 2nt
sin t

]
dt.

Note that if we take n → ∞, the interval
(
0, π

2n

)
that we are integrating over will get really

small. Moreover, our value of t will therefore get small enough to approximate sin t ∼ t.
This yields

Sn

(
f,

π

2n

)
∼ 2

π

∫ π
2n

0

[ sin 2nt
t

]
dt =

2

π

∫ π

0

[ sin y
y

]
dy

=
2

π
Si(π) =

2

π

π

2
(1.1789797444...) = 1.1789797444...,

where Si(π) is the sine integral function. Thus, we see that we have a maximum overshoot
of about 1.1789797444...−1

2 · 100% ≈ 8.9% of the jump as n → ∞.

3.3.2 Saw-tooth function

Moreover, we take a look at the Gibbs phenomenon in the saw-tooth function defined by

f(x) = x (18)

with −π < x < π and a period of 2π, where there is thus a jump-discontinuity at x = 2+4a
for a ∈ Z. We denote the n-th partial sum of the Fourier series of this saw-tooth function
as

Sn(f, x) = 2

n∑
k=1

(−1)k+1

k
sin(kx). (19)

Graphing both (18) and (19) for n = 10, we obtain the plot in figure 3.
Note that we see the overshoots of Sn near the discontinuities of f(x). To be able to locate
these overshoots or extrema of Sn(f, x), we need to rewrite the partial sum. First, we note
that

1

k
sin(kx) =

∫ x

0

cos(kt)dt. (20)

11



Figure 3: The saw-tooth function and its Fourier series on the interval (−3π, 3π)

Then, by using (20), we can rewrite our partial sum as

Sn(f, x) = 2

n∑
k=1

(−1)k+1

k
sin(kx)

= 2

n∑
k=1

(−1)k+1

∫ x

0

cos(kt)dt

= 2

∫ x

0

[ n∑
k=1

(−1)k+1 cos(kt)
]
dt.

Moreover, it follows that

n∑
k=1

(−1)k+1 cos(kt) =

n∑
k=1

(−1)k+1 e
ikt + e−ikt

2

= −1

2

n∑
k=1

(
(−eit)k + (−e−it)k

)
= −1

2

(
r − rn+1

1− r
+

r−1 − r−(n+1)

1− r−1

)

= −1

2

(
(r − rn+1)(1− r−1) + (r−1 − r−(n+1))(1− r)

(1− r)(1− r−1)

)

= −1

2

(
(r − 1− rn+1 + rn) + (r−1 − 1− r−(n+1) + r−n)

2− (r + r−1)

)

= −1

2

(
−2 + r + r−1 + rn + r−n − (rn+1 + r−(n+1))

2− (r + r−1)

)

= −1

2

(
−2− 2 cos(t) + 2(−1)n cos(nt)− 2(−1)n+1 cos((n+ 1)t)

2 + 2 cos(t)

)

=
1 + cos(t)− (−1)n cos(nt) + (−1)n+1 cos((n+ 1)t)

2 + 2 cos(t)
,

12



where we substitute r = −eit in our computation.
Then, by using this result, we obtain

Sn(f, x) = 2

∫ x

0

[ n∑
k=1

(−1)k+1 cos(kt)
]
dt

= 2

∫ x

0

1 + cos(t)− (−1)n cos(nt) + (−1)n+1 cos((n+ 1)t)

2 + 2 cos(t)
dt

=

∫ x

0

1 + cos(t)− (−1)n cos(nt) + (−1)n+1 cos((n+ 1)t)

1 + cos(t)
dt

=

∫ x

0

1 +
−(−1)n cos(nt) + (−1)n+1 cos((n+ 1)t)

1 + cos(t)
dt

=

∫ x

0

1 + (−1)n+1 cos(nt) + cos((n+ 1)t)

cos(0) + cos(t)
dt

=

∫ x

0

1 + (−1)n+1 cos((2n+ 1) t2 ) cos(−
t
2 )

cos( t2 ) cos(−
t
2 )

dt

=

∫ x

0

1 + (−1)n+1 cos((2n+ 1) t2 )

cos( t2 )
dt

We plot S′
n(f, x) for n = 5, n = 10 and n = 20. To find the x-value of the maximum

overshoot, we locate the intersection of the graph with the x-axis that is closest to the
jump-discontinuity at x = π. For our chosen n values, we find respectively x = 5π

6 , x = 10π
11

and x = 20π
21 . Hence, we see a pattern and we guess x = nπ

n+1 . Let us substitute this guess
into S′

n(f, x) to obtain

S′
n(f, x) = 1 + (−1)n+1 cos((2n+ 1)x2 )

cos(x2 )

= 1 + (−1)n+1
cos((2n+ 1) n

n+1
π
2 )

cos( n
n+1

π
2 )

= 1 + (−1)n+1
cos(nπ − n

n+1
π
2 )

cos( n
n+1

π
2 )

= 1 + (−1)n+1
cos(nπ) cos( n

n+1
π
2 )− sin(2π) sin( n

n+1
π
2 )

cos( n
n+1

π
2 )

= 1 + (−1)n+1
cos(nπ) cos( n

n+1
π
2 )

cos( n
n+1

π
2 )

= 1 + (−1)n+1 cos(nπ)

= 1 + (−1)n+1 · (−1)n

= 1− 1

= 0

Indeed, our guess is correct and we have found that the intersection of the graph with the
x-axis has x = nπ

n+1 . Hence, this is where the maximum overshoot takes place. Filling in
our x-value into (19) for large n, say n = 1000, gives us

S1000(f,
1000π

1001
) = 2

1000∑
k=1

(−1)k+1

k
sin(k · 1000π

1001
) = 3.70073512721 . . .

Thus, we see that we have an overshoot of about 3.70073512721···−π
2π · 100% ≈ 8.9% of the

jump.

13



4 The Gibbs phenomenon for Piecewise-Linear approx-
imation

Even though the Gibbs phenomenon focuses on Fourier series, the same effect can be seen
when using a Piecewise-Linear approximation. We will look at this approximation now.

4.1 An example: the square wave

In this section, we will focus on the square wave function again when using the Piecewise-
Linear approximation. This way we can compare the results and see if the Gibbs phe-
nomenon is also present in other approximations. For this example, we used the work of
(Foster & Richards, 1991). We take a look at the Gibbs phenomenon in the square wave of
unit amplitude on the interval (−1, 1). We define this function as

f(x) =

{
1 if 0 < x < 1,

−1 if − 1 < x < 0,
(21)

where there is a jump-discontinuity at x = 0. We will approximate the square wave function
by a unique periodic continuous function y(n). This function is linear on each interval
[ kn ,

k+1
n ], with n ∈ Z fixed and where we call k

n the nodes of y(n). Moreover, the function

y(n) is the function that approximates the square wave function best in the L2 norm on the
given interval [−1, 1]. Let us denote yk = y(n)( kn ), then we need to find yi for i ∈ {0, 1, . . . , n}
such that ∫ 1

−1

(
y(n)(x)− 1

)2
dx (22)

gets minimized. Using this definition of yk, we see that the yk are symmetric with respect
to the origin. Namely, we see that y−k = −yk. Moreover, we note that y−n = y0 = yn = 0,
due to periodicity of the square wave. All in all, this shows that it suffices to look at the
interval [0, 1] when integrating. Let us then take x ∈ [ kn ,

k+1
n ] to obtain

y(n)(x) = (nx− k)(yk+1 − yk) + yk. (23)

Note that for n = 1, we obtain y(n)(x) = xy1 = xyn = x · 0 = 0. Now, we will look at the
cases where n ∈ {2, 3}.

Example 4.1. We take n = 2, this gives us

y(2)(x) =

{
2xy1 if 0 ≤ x ≤ 1

2 ,

(2x− 1)(y2 − y1) + y1 if 1
2 ≤ x ≤ 1.

14



We substitute this into (22) to obtain

M2 =

∫ 1

0

(
y(2)(x)− 1

)2
dx

=

∫ 1
2

0

(
2xy1 − 1

)2
dx+

∫ 1

1
2

(
(2x− 1)(y2 − y1) + y1 − 1

)2
dx

=
[ 1

6y1
(2xy1 − 1)3

] 1
2

0
+
[ 1

6(y2 − y1)

(
(2x− 1)(y2 − y1) + y1 − 1

)3]1
1
2

=
(y1 − 1)3 + 1

6y1
+

(
(y2 − y1) + y1 − 1

)3
−
(
y1 − 1

)3
6(y2 − y1)

=
y31 − 3y21 + 3y1

6y1
+

(y2 − 1)3 − (y1 − 1)3

6(y2 − y1)

=
y21 − 3y1 + 3

6
+

(y2 − y1)
(
(y2 − 1)2 + (y2 − 1)(y1 − 1) + (y1 − 1)2

)
6(y2 − y1)

=
y21 − 3y1 + 3

6
+

(y2 − 1)2 + (y2 − 1)(y1 − 1) + (y1 − 1)2

6

=
y21 − 3y1 + 3

6
+

y22 − 2y2 + 1 + y2y1 − y2 − y1 + 1 + y21 − 2y1 + 1

6

=
2y21 + y22 − 6y1 − 3y2 + y1y2 + 6

6
.

Since y2 = yn = 0, we can reduce this to

M2 =
2y21 − 6y1 + 6

6
=

y21 − 3y1 + 3

3
. (24)

To minimize M2, we need

∂M2

∂y1
=

2y1 − 3

3
= 0.

In other words, we need 2y1−3 = 0. Hence, the integral is minimized for y1 = 3
2 and y2 = 0.

Thus, the overshoot happens at x = x1 with a size of 1
2 .

Example 4.2. We take n = 3, this gives us

y(3)(x) =


3xy1 if 0 ≤ x ≤ 1

3 ,

(3x− 1)(y2 − y1) + y1 if 1
3 ≤ x ≤ 2

3 ,

(3x− 2)(y3 − y2) + y2 if 2
3 ≤ x ≤ 1.
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We substitute this into (22) to obtain

M3 =

∫ 1

0

(
y(3)(x)− 1

)2
dx

=

∫ 1
3

0

(
3xy1 − 1

)2
dx+

∫ 2
3

1
3

(
(3x− 1)(y2 − y1) + y1 − 1

)2
dx

+

∫ 1

2
3

(
(3x− 2)(y3 − y2) + y2 − 1

)2
dx

=
[ 1

9y1
(3xy1 − 1)3

] 1
3

0
+
[ 1

9(y2 − y1)

(
(3x− 1)(y2 − y1) + y1 − 1

)3] 2
3

1
3

+
[ 1

9(y3 − y2)

(
(3x− 2)(y3 − y2) + y2 − 1

)3]1
2
3

=
(y1 − 1)3 + 1

9y1
+

(
(y2 − y1) + y1 − 1

)3
−
(
y1 − 1

)3
9(y2 − y1)

+

(
(y3 − y2) + y2 − 1

)3
−
(
y2 − 1

)3
9(y3 − y2)

=
y31 − 3y21 + 3y1

9y1
+

(y2 − 1)3 − (y1 − 1)3

9(y2 − y1)
+

(y3 − 1)3 − (y2 − 1)3

9(y3 − y2)

=
y21 − 3y1 + 3

9
+

(y2 − y1)
(
(y2 − 1)2 + (y2 − 1)(y1 − 1) + (y1 − 1)2

)
9(y2 − y1)

+
(y3 − y2)

(
(y3 − 1)2 + (y3 − 1)(y2 − 1) + (y2 − 1)2

)
9(y3 − y2)

=
y21 − 3y1 + 3

9
+

(y2 − 1)2 + (y2 − 1)(y1 − 1) + (y1 − 1)2

9

+
(y3 − 1)2 + (y3 − 1)(y2 − 1) + (y2 − 1)2

9

=
y21 − 3y1 + 3

9
+

y22 − 2y2 + 1 + y2y1 − y2 − y1 + 1 + y21 − 2y1 + 1

9

+
y23 − 2y3 + 1 + y3y2 − y3 − y2 + 1 + y22 − 2y2 + 1

9

=
2y21 + 2y22 + y23 − 6y1 − 6y2 − 3y3 + y2y1 + y3y2 + 9

9
.

Since y3 = yn = 0, we can reduce this to

M2 =
2y21 + 2y22 − 6y1 − 6y2 + y2y1 + 9

9
(25)

To minimize M3, we need

∂M3

∂y1
=

4y1 − 6 + y2
9

= 0

and

∂M3

∂y2
=

4y2 − 6 + y1
3

= 0.

Hence, we obtain the system of equations{
4y1 − 6 + y2 = 0

4y2 − 6 + y1 = 0
.
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Figure 4: The linear approximation of the square wave function for n = 1, 2, 3.

When solving this, we obtain that the integral is minimized for y1 = y2 = 6
5 . Thus, the

overshoot happens at x = x1 and x = x2 with a size of 1
5 .

We plot all three examples for our linear approximation in figure 4. We see that the
computed values for our yk are indeed correct.
Now, if we set zk = yk − 1 for simplicity later on, we get

y(n)(x)− 1 = (nx− k)(zk+1 − zk) + zk (26)

and moreover∫ k+1
n

k
n

(
y(n)(x)− 1

)2
dx =

∫ k+1
n

k
n

(
(nx− k)(zk+1 − zk) + zk

)2
dx

=
[ 1

3n(zk+1 − zk)

(
(nx− k)(zk+1 − zk) + zk

)3] k+1
n

k
n

=

(
(n(k+1)

n − k)(zk+1 − zk) + zk

)3
−
(
(nkn − k)(zk+1 − zk) + zk

)3
3n(zk+1 − zk)

=

(
zk+1 − zk + zk

)3
−
(
zk

)3
3n(zk+1 − zk)

=
z3k+1 − z3k

3n(zk+1 − zk)

=
(z2k+1 + zk+1zk + z2k)(zk+1 − zk)

3n(zk+1 − zk)

=
z2k+1 + zk+1zk + z2k

3n
.
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Taking 1 as our upper bound and 0 as our lower bound (since this is the integral we want
to minimize), this changes to

Mn =

∫ 1

0

(
y(n)(x)− 1

)2
dx

=

n−1∑
k=0

∫ k+1
n

k
n

(
y(n)(x)− 1

)2
dx

=

∑n−1
k=0(z

2
k+1 + zk+1zk + z2k)

3n

=

∑n−1
k=0 z

2
k+1 +

∑n−1
k=0 zk+1zk +

∑n−1
k=0 z

2
k

3n

=

∑n
k=1 z

2
k +

∑n−1
k=0 zk+1zk +

∑n−1
k=0 z

2
k

3n

=
2
∑n−1

k=1 z
2
k + z20 + z2n +

∑n−1
k=0 zk+1zk

3n

=
2
∑n−1

k=1 z
2
k + z20 + z2n +

∑n−2
k=1 zk+1zk + z0z1 + zn−1zn
3n

=
2
∑n−1

k=1 z
2
k +

∑n−2
k=1 zk+1zk + 2− z1 − zn−1

3n
.

To arrive at our last step we used the fact that y0 = yn = 0 gives that z0 = zn = −1. Let us
now take ∂Mn

∂zi
= 0 with i ∈ {1, 2, . . . , n− 1}. By solving these equations, we will be able to

derive the equations that minimize the sum of the square differences between the left and
right sides of this equation. The equations minimize the sum (and not maximize it) since
the sum of the square differences is unbounded above as the parameters grow to infinity
in magnitude. The sum of squares is always nonnegative, and hence has a minimum. We
compute that the equations for n ≥ 4 are given by

4z1 + z2 = 1 for k = 1, (27)

zk−1 + 4zk + zk+1 = 0 for 2 ≤ k ≤ n− 2, (28)

zn−2 + 4zn−1 = 1 for k = n− 1. (29)

We focus on the cases n ≥ 4 since we have already seen the cases where n ∈ {1, 2, 3}. We
note that our general equation in this system of our normal equations is a second-order linear
homogeneous equation. Therefore it has the general solution of the form zk = c1r

k
1 + c2r

k
2 .

Moreover, the characteristic equation is r2 + 4r + 1 = 0. This characteristic equation has
roots r1 = −2 +

√
3 and r2 = −2−

√
3. Then taking (27) and (29), we obtain

4z1 + z2 = 4(c1r1 + c2r2) + c1r
2
1 + c2r

2
2 = 1,

zn−2 + 4zn−1 = c1r
n−2
1 + c2r

n−2
2 + 4(c1r

n−1
1 + c2r

n−1
2 ) = 1.

From this, we can compute c1 and c2 in terms of r1 and r2.

c1 =
rn2 − 1

rn1 − rn2
,

c2 =
rn1 − 1

rn2 − rn1
.
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This gives us

zk = c1r
k
1 + c2r

k
2

=
rk1 (r

n
2 − 1)

rn1 − rn2
+

rk2 (r
n
1 − 1)

rn2 − rn1

=
−rk1 − rn−k

1

1 + rn1
.

Since r1 = −2 +
√
3, we have 0 < −r1 < 1. Using this together with the latter equation for

zk we can thus see that the following sequence is positive for 1 ≤ k < n
2

(−1)k+1zk =
(−r1)

k(rn−2k
1 + 1)

1 + rn1
(30)

Moreover, the sequence (−1)k+1zk is decreasing for 1 ≤ k < n
2 , since

(−1)k+1zk − (−1)k+2zk+1 =
(−r1)

k(r1 + 1)(rn−2k−1
1 + 1)

(1 + rn1 )
> 0. (31)

Therefore, we see that (−1)k+1zk > (−1)k+2zk+1. Then by putting (30) and (31) together,
we can conclude that (−1)k+1zk is a positive decreasing sequence for 1 ≤ k < n

2 . And thus
the maximum overshoot happens at k = 1. This then tells us that the maximum overshoot
is given by z1, since this is the difference between our computed value y1 and the actual
value of the square wave. If we then compute the limit of z1, we can compute the limit of
the overshoot. We compute

lim
n→∞

z1 = lim
n→∞

−r11 − rn−1
1

1 + rn1

= lim
n→∞

−(−2 +
√
3)1 − (−2 +

√
3)n−1

1 + (−2 +
√
3)n

=
−(−2 +

√
3)− 0

1 + 0

= 2−
√
3

= 0.26794919243...

Thus, we see that we have a maximum overshoot of about 0.26794919243...
2 · 100% ≈ 13%

of the jump when using the Piecewise-Linear approximation. We thus see that the Gibbs
phenomenon also appears when using the Piecewise-Linear approximation, but the error of
the overshoot is larger in this case.
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5 Concluding remarks

As stated before, the Gibbs phenomenon is usually linked to the Fourier series. However,
as we have seen, this phenomenon can be seen in multiple approximations using the same
norm. The Gibbs phenomenon is thus dependent on the norm and not on the approxima-
tion. However, the way of approximating does have an impact on the error percentage.

In this paper, we looked at two ways of approximating a function, namely using Fourier
series and the Piecewise-Linear approximation. During this research, we have also come
across the Gibbs phenomenon in wavelets (Jerri, 1998). However, since this implementation
requires a lot of involvement in this field, this could not be included in this research. For
further research, this could be interesting to look at.
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