
Stommel's Box Models
A Numerical Analysis

Bachelor’s Project Mathematics

July 2024

Student: Rick Ploeg (S3207269)

First supervisor: Dr. A.E. Sterk

Second assessor: Dr. H. Jardon Kojakhmetov

1

Abstract

This thesis is dedicated to analyze, implement and explain different methods of finding equilib-
ria in dynamical systems. This is done through the lens of Stommel’s Box Models of thermohaline
circulation. These Stommel’s Box Models are introduced, their relevancy is explained and the
model is explicitly defined. Then, two different methods of equilibria computation are introduced:
pseudo-arclength continuation and polynomial reduction after which a guidance is provided regard-
ing the process of implementing these methods. The methods are implemented in a MATLAB
framework and the developed code is provided along a recommendation of use cases, possible
further development and further research.

2

Contents

1 Introduction 4

2 Stommel’s box models 5
2.1 The Two-Box Model . 5

2.1.1 Model construction . 5
2.2 The Three-Box Model . 8

2.2.1 Model construction . 8
2.3 Equilibria . 9

2.3.1 Introduction and problem statement . 9
2.3.2 Modes of Equilibria . 10

3 Finding Equilibria 10
3.1 Polynomial Reduction . 11

3.1.1 Introduction . 11
3.1.2 Implementation . 11
3.1.3 Properties . 12

3.2 Pseudo-arclength continuation . 13
3.2.1 Introduction . 13
3.2.2 Implementation . 14
3.2.3 Properties . 14

3.3 Comparison Polynomial Reduction and Pseudo-arclength Continuation 14

4 Conclusion and Further Research 15

5 Appendix: Matlab Code 16
5.1 Code for Pseudo-arclength Continuation . 16
5.2 Code for Polynomial Reduction Root Finding . 21
5.3 Code for calling the Polynomial Reduction Root Finding 24
5.4 Code for Absolute Value-approximation . 26

3

1 Introduction

The currents of our oceans are one of the greatest forces of nature on our earth. They heavily impact
many aspects of the planet’s climate; from temperature and humidity to precipitation on all corners
of all the continents. It is thus hard to imagine an ecosystem on our earth that is not acted on by
the characteristics of the ocean currents. Indeed, many studies are dedicated to understanding causes,
effects and mechanisms of changes in our ocean’s characteristics [vA07].

This interest has given rise to a variety of different models in an attempt to better understand
and predict the behaviour of the ocean and it’s influences. These models vary greatly in purpose,
complexity and resolution. High-resolution state of the art models are computationally expensive and
typically reserved for large institutions. In contrast, this thesis is dedicated to a particular lightweight,
low-resolution type of model: Stommel’s box models. These models are implemented and its abilities
and constraints are analysed in this thesis. Attention will be given to the challenge of numerically
obtaining equilibria of the models for which multiple approaches will be implemented and compared.

4

2 Stommel’s box models

2.1 The Two-Box Model

2.1.1 Model construction

Stommel introduced their model in 1961 in which they approached the modeling of ocean currents by
imagining two connected volumes of water with different temperature and salinity [Sto61]. What later
would be called Stommel’s two-box model is a model that describes the flow of water between two
volumes of water due to thermohaline forcing: A flow of water induced by a temperature and salinity
gradient. Specially, it models changes over time of thermohaline properties between two volumes of
water, each with their own forcing conditions.

Stommel’s two-box model can be assembled by first introducing only a single box B1 which is to
be understood as a reservoir of water with a temperature T1 and salinity S1. In physical terms, these
quantities of course have specific dimensions and values. However for the purposes of analysing the
behaviour of the model they can be made to be dimensionless and for now have initial value 0.

Then, the box is expanded to include an ambient source of heat first set to an arbitrary value
aT1 := 1. Similarly, an ambient source of salination aS1 := 1 is included. These represent the average
influx over time of the sun’s energy and the accumulation of salt into the water (see figure 1). To
incorporate these into the model, the first differential equations are introduced:

dT1

dt
= νT (aT1 − T1), (1a)

dS1

dt
= νS(aS1 − S1). (1b)

Figure 1: A Single Box B1 with a temperature T1, a salinity S1 an ambient temperature aT1, and
ambient salinity aS1.

Here νT and νS are constants characterizing the speed of heat and salinity conducting into the
water. At this point, the differential equations already form a functioning model. The current model
simulates a reservoir of water being subjected to an ambient source of heat and salination. Perhaps

5

unsurprisingly, the temperature T1 and salinity S1 both converge to their respective ambient values
(figure 2).

Figure 2: Values of T1 and S1 converging to aT1 and aS1 both set equal to 1 with equidistant points
in time highlighted.

To continue the construction of the Stommel’s models, a second box B2 is defined symmetrically to
B1 just differing in the value of their ambient temperature and salinity (3). The set of differential
equations is thus expanded with:

dT2

dt
= νT (aT2 − T2), (2a)

dS2

dt
= νS(aS2 − S2). (2b)

At this point, the properties of each box both converge independently to their respective ambient
values; Their values are not yet ’linked’. To finish the classic two-box model, the boxes are connected
by a set of two tubes which allow water to flow in and out of the reservoirs to the other. One tube
is classically imagined to allow a flow of deep water the second tube allows water to flow back at
the surface. After all, the surface level of equatorial and polar waters is preserved when considering
underwater flow patterns. Stommel’s two-box model considers thermohaline induced flows implying
that the flow is assumed to be solely dependant on the difference of the density due to temperature
and salinity.

Indeed, flow ϕ will be encapsuled into the model after first defining a density:

ρx = ρ0 + ρ0ϵS(Sx − S0)− ρ0ϵT (Tx − T0),

where ρ0, T0, S0 are reference values for a density, temperature and salinity respectively. And cT and
cS are waters’ contraction coefficients for temperature and salinity.
Now it is possible to write:

ϕ = γ · ρ1 − ρ2
ρ0

,

where γ is a constant describing the viscosity of water.
Note how ϕ can take on both positive and negative values. A positive value for ϕ indicates a higher
density in B1 and ϕ would hence be interpreted as an underwater flow from B1 to B2. That being said,
the model values are actually invariant to the sign of ϕ. This is due the overflow-tube ensuring any
underwater flow is countered equally at the surface. With the flow ϕ having been properly defined, it

6

Figure 3: A Second Box B2 with temperatures T1 and T2, salinities S1 and S2 ambient temperatures
aT1 and aT2, and ambient salinities aS1 and aS2.

is now possible to construct the following:

dT1

dt
= νT (aT1 − T1) + (T2 − T1) · |ϕ|, (3a)

dT2

dt
= νT (aT2 − T2) + (T1 − T2) · |ϕ|, (3b)

dS1

dt
= νS(aS1 − S1) + (S2 − S1) · |ϕ|, (3c)

dS2

dt
= νS(aS2 − S2) + (S1 − S2) · |ϕ|. (3d)

The model is then typically condensed by defining T := T1 − T2 and S := S1 − S2. This action
results in a system with fewer degrees of freedom at the expense of losing information on the absolute
values of the temperature and salinities. This does not influence any relative behaviour of the system
nor does it impact e.g. the amount of equilibria. It does deserve to be mentioned, however, that
it is possible to construct conditions in which e.g. T1 and T2 might not converge or converge much
slower than T1 − T2 does. These were specifically prevalent when implementing periodic (seasonal)
perturbations in the system’s parameters.

Finally, the mentioned condensation results in the following:

dT

dt
=

dT1

dt
− dT2

dt
= νT (aT1 − aT2 − T)− 2T · |ϕ|, (4a)

dS

dt
=

dS1

dt
− dS2

dt
= νS(aS1 − aS2 − S)− 2S · |ϕ|. (4b)

While this model is fully functioning, the model does contain a handful parameters which effectively
only scale the model and not influence inherent behavior of the system. The dimension of temperature

7

Figure 4: An illustration of Stommel’s two-box model.

can e.g. be rescaled with a factor 1
νT

. Similarly, S, t, and ϕ are rescaled to obtain the simplified:

dT

dt
= p1 − T (1 + |T − S|), (5a)

dS

dt
= p2 − S(p3 + |T − S|), (5b)

where ϕ has been reduced to ϕ = T −S and p1, p2 and p3 are the remaining parameters in the system.
Here p1 and p2 contain information on thermal and saline forcing while p3 is a factor correcting for
the originally different impacts of temperature and salinity on density.

2.2 The Three-Box Model

Stommel’s two-box model models the interaction between two volumes of water: an equatorial and
a polar volume. A natural expansion to the model would then be to include a third volume making
it possible to separately model the north and south polar waters. This expansion enables a variety
of intuitive properties of the real world to be reflected in the model: The expanded model allows the
north and south waters to adhere to their own ambient temperature- and salinity. And indeed, the
flow from equatorial to northern waters need not be symmetric to the flow from southern to equatorial
waters.

2.2.1 Model construction

A couple of clarifications to construct the differential equations of the three-box model need to be
established. In the equations of the two-box model there exists an implicit assumption that the
volume of water in each box is equal, or more precisely, the model values of both boxes are influenced
equally under equal flow-conditions. The impact of an incoming flow can, however, certainly be scaled
to one’s wishes. Indeed, the ratio of volumes of water in the boxes can to be chosen, analogous to
the choice where on the globe to draw the imaginary lines that define the boundaries between the
volumes of water. In the two-box model, this was implicitly chosen to be 1 : 1. However here, a ratio

8

Figure 5: Illustration of Stommel’s three-box model.

of 1 : 2 : 1 is chosen to reflect the natural idea that the sum of volumes of the polar regions is equal
to the equatorial region. This choice is largely arbitrary as any positive ratios are equal up to scaling
but the specific choice is worth mentioning for clarity on the construction of the model’s equations.

Indeed, the model now consists of three connected boxes: B1, B2 and B3 (5 which, similarly to the
two-box model each consist of a volume of water with temperatures and salinities. Once again, it is
chosen to exclusively work with differences of these values with boxes:

Ts := T1 − T2,

Tn := T2 − T3,

Ss := S1 − S2,

Sn := S2 − S3,

where the subscripts s and n refer to north and south respectively.
The equations of motion are then, analogously to the two-box model, derived and simplified result-

ing in the following:

dTs

dt
= p1,s − Ts(1 +

3

4
|Ts − Ss|)− Tn(

1

4
|Tn − Sn|), (7a)

dTn

dt
= p1,n − Ts(1 +

3

4
|Tn − Sn|)− Ts(

1

4
|Ts − Ss|), (7b)

dSs

dt
= p2,s − Ss(p3,s +

3

4
|Ts − Ss|)− Sn(

1

4
|Tn − Sn|), (7c)

dSn

dt
= p2,n − Ts(p3,n +

3

4
|Ts − Ss|)− Ss(

1

4
|Ts − Ss|), (7d)

where p1,s, p2,s and p3,s are typically approximately equal to p1,n, p2,n and p3,n respectively. A true
equality would reflect a symmetry in ambient temperature and salinities in northern and southern
waters. The symmetric case will later be used as a starting point to analyse the asymmetric case.

2.3 Equilibria

2.3.1 Introduction and problem statement

When analyzing a dynamical system, one classic topic of interest is regarding the existence of equilibria.
That is, in a system df

dt = f(x̄) it is of interest to find the zeros of f ; the points that satisfy f(x̄) = 0.
These are the points at which the system experiences no further change. For example, in the case of

9

Stommel’s two-box model the following equations would be derived from 5.

dT

dt
= p1 − T (1 + |T − S|) = 0, (8a)

dS

dt
= p2 − S(p3 + |T − S|) = 0. (8b)

Finding the equilibria of the two-box model would equate to solving these equations for T and S.
Occasionally, for some systems, this can be done analytically by hand or via symbolic programming.
In this thesis however, the focus lies on numerical approaches in the spirit of finding more generalizable
insights.

The equations as given could be fed into established numerical solvers like Matlab’s root-finder.
This will typically at least partially function as the algorithm often returns at least one root. It is
however not guaranteed and typically unlikely that all roots are found. The solver first tries (and
in this case, fails) to solve the equations symbolically after which it then tries find solutions based
on different numerical root-finding methods. These methods suffer from possibly failing to find all
roots due to e.g. a lack of a method to determine the amount of expected roots. It is key to realise
that these issues are intimately connected to the existence of the |T − S| terms and the critical points
where T − S would otherwise changes sign. These absolute values introduce areas in the state-space
where the model equations are not differentiable. A property that prevents typical solving methods of
converging efficiently to a solution.

Dijkstra addressed this problem in [Dij05] by introducing an approximation to the absolute-value
function that is differentiable and hence improves root-finding behaviour around points in the state-
space where T ≈ S. This approach is implemented and compared to a different approach. For this
second approach, it is key to realise that the equations in Stommel’s box models are ’quite close’ to
being a multivariate polynomial. Specifically, it is possible to split the system in cases where T∗ > S∗
and cases where T∗ < S∗. The system then reduces to sub-systems each defined by a relatively simple
polynomial function. These polynomials can be solved with more efficient tools with the crucial insight
that it is known from polynomials how many solutions one expects. The constructed subsystems then
return their solutions which can then get checked for their validity.

These approaches are implemented, discussed further and compared in section 3.

2.3.2 Modes of Equilibria

Both the two- and three-box model contain a variety of equilibria. One natural way to classify the
equilibria in the models is to recognize the different modes of ocean circulation they represent. This
can be done for both the two- and three-box model of which here the three-box model is presented
as this reflects the earth’s oceans more accurately. When working with the three-box model, four
modes of ocean flow can be recognized: The flows between the boxes can each be either positive or
negative resulting in the total of four combinations of possible modes (6). For practical purposes, these
different modes are of impressive importance; an overturning of ocean currents would have catastrophic
consequences on ecosystems on the planet. For example, the up-welling of deep waters provide surface
waters with nutrients with a regularity that many species rely on.

3 Finding Equilibria

Stommel’s two-, and three-box models contain equations that are not typically well-behaved: The term
|T∗−S∗| is prevalent in the model and is not differentiable in either T∗ or S∗. Many numerical solving
methods do not exhibit convergent behaviour when supplied with such terms. Hence, it is of great
benefit to address this before attempting to solve the relevant equations. The challenge to transform
these ill-behaved terms was addressed in two ways during this project.

The first approach discussed involved reducing the model to several well-behaved sub-models of
which the results could then be combined and re-interpreted to obtain the desired solutions.

The second approach involved addressing the absolute value-signs by implementing a differentiable
approximation of |T∗ − S∗|. There exist many a potential approximation that could be used which
was experimented with. In the results of this project it can be assumed that it was opted to use
|x| ≈

√
x2 + ϵ2 − ϵ for some small ϵ (7). This is a relatively simple approximation which comes with

10

Figure 6: The four main modes of equilibria in Stommel’s three-box model.

the advantage that it allows for a rather approachable method of controlling the ’sharpness’ of its
values near x = 0 by simply adjusting ϵ.

Both approaches are of use for both Stommel’s two-, and three-box models. It was chosen to
analyze both methods primarily through the lens of the three-box model as it is the more complex
model of the two. All used methods are of course also applicable to the two-box model.

3.1 Polynomial Reduction

3.1.1 Introduction

The method of polynomial reduction rests on the fact that, if one were to ignore the absolute-value
signs, all the equations in Stommel’s box models are multivariate polynomials. This sparks an interest
as polynomial functions are rather well documented and highly optimised solving methods are readily
available. And indeed, it can therefore be beneficial to reduce the model to one that constitutes of
only polynomials and using the obtained results to reconstruct solutions to the original equations.

3.1.2 Implementation

The implementation was started by dropping the absolute value-signs in the model in exchange for an
explicit case distinction. See that in general:

|x| =

{
x, for x > 0

−x, for x ≤ 0

}

This explicit case distinction can then be extended to the equations of the three-box model leading
to the following from e.g. dTs

dt in 7:

dTs

dt
=

p1,s − Ts(1 +

3
4 (Ts − Ss))− Tn(

1
4 (Tn − Sn)), for Ts > Ss and Tn > Sn

p1,s − Ts(1− 3
4 (Ts − Ss))− Tn(

1
4 (Tn − Sn)), for Ts ≤ Ss and Tn > Sn

p1,s − Ts(1 +
3
4 (Ts − Ss)) + Tn(

1
4 (Tn − Sn)), for Ts > Ss and Tn ≤ Sn

p1,s − Ts(1− 3
4 (Ts − Ss)) + Tn(

1
4 (Tn − Sn)), for Ts ≤ Ss and Tn ≤ Sn

 (9)

Notice that each individual case in 9 is indeed just a multivariate polynomial for which highly
optimized solving methods exist.

Define
dTs

dt ++
:= p1,s − Ts(1 +

3

4
(Ts − Ss))− Tn(

1

4
(Tn − Sn)),

11

Figure 7: Figure illustrating the approximation of |x| with
√
x2 + ϵ2 − ϵ.

where the subscript ++ denotes the sign of Ts − Ss and Tn − Sn i.e. in this case both Ts > Ss and
Tn > Sn. This is then done with each of equation of 7 allowing for the construction of four new systems
of equations: one for each combination of signs i.e. ++, +−, −+ and −−. The equations relating to
++ are written out explicitly:

dTs

dt ++
= p1,s − Ts(1 +

3

4
(Ts − Ss))− Tn(

1

4
(Tn − Sn)), (10a)

dTn

dt ++
= p1,n − Ts(1 +

3

4
(Tn − Sn))− Ts(

1

4
(Ts − Ss)), (10b)

dSs

dt ++
= p2,s − Ss(p3,s +

3

4
(Ts − Ss))− Sn(

1

4
(Tn − Sn)), (10c)

dSn

dt ++
= p2,n − Ss(p3,n +

3

4
(Tn − Sn))− Ss(

1

4
(Ts − Ss)). (10d)

These form a system of second-order polynomials of which efficient solving methods are readily
available. These solutions are then verified if they are also solution to the original problem. In this
case, this can be done rather easily by simply checking validity of the conditions in 9. In a more general
case, even with implicit conditions, it is typically computationally more efficient to check the validity
of a given solution than it is to generate it.

This procedure of generating solutions is then repeated for the other cases resulting in a combined
set of solutions which are the desired equilibria.

3.1.3 Properties

The method of polynomial reduction is a robust approach, one can be ensured that all possible equilibria
will be found. This can be seen due to the fact that any solution of the equations in 7 is also a solution
of at least one system of equations e.g. +−. This fact allows these solutions to be seen as ’true’
solutions up to numerical precision.

Here an example is presented of equilibria for a fixed p1 and p3 while varying p2.

12

Figure 8: Scatter of values of Ts − Tn over p2 with fixed p1,n = 1.5 = 1.01p1,s, and p3,n = p3,s = 0.3
.

On the efficiency of the algorithm: it performs reliably on the given model as it relies on the
established efficient solving methods for systems of polynomials. The method computes the equilibria
for a given set of parameters. This also means that the method requires a fine step-size to accurately
compute solutions near turning points of the branch.

Since the method computes equilibria without using any information about previous solutions, it
is easily implemented to adopt parallel programming. This provides a significant gain in efficiency on
systems that otherwise only allocate one core to the computations. This parallel computing has been
implemented during the project and the method was allowed to use all available cores. In addition
to the above, it is worth mentioning that this method scales poorly with the amount of boxes in the
model. In particular, every connection between boxes adds an additional required case distinction
doubling the amount of systems of equations. The three-box model contains two connections between
boxes resulting in a total of four systems of equations but this rises exponentially with the amount
of connections between boxes. If one were to expand on the model e.g. by including a box-network
resembling the earth’s different large oceans then this exponential growth becomes an issue.

3.2 Pseudo-arclength continuation

3.2.1 Introduction

In the general sense, arclength continuation is a method of computing zeros of a differentiable function
along a smooth branch [Dij05]. Given a function f(x, λ) of x and λ arclength continuation seeks to solve
for the values of x and λ such that f(x, λ) = 0. A classical struggle with numerical methods consists of
dealing with and around bifurcations. Pseudo-arclength continuation offers a robust method capable
of dealing with a plurality of types of bifurcations. This is approached by parameterizing solution
values of x and λ i.e. x(t) and λ(t) with f(x(t), λ(t)) = 0. The introduction of this parameter t is
done such that the arclength of the resulting curve is fixed, it is typically set to be equal to 1. This
translates to the restriction

ẋT ẋ+ λ̇2 = 1 (11)

where ẋ denotes differentiation with respect to t. This restriction does, however, introduces a hurdle
as the derivatives ẋ and λ̇ are not generally numerically available and hence a different approach is
required in numerical settings. Indeed, given a solution-pair (xi−1, λi−1) a suitable approximation to
11 can be made which does not require ẋ nor λ̇:(

xi − xi−1

∆t)

)T

(xi − xi−1) +
λi − λi−1

∆t
(λi − λi−1) = ∆t (12)

13

The value of ∆t defines the step-size of the method and allows for control over accuracy of the com-
putations. This accuracy of the method grows as ∆t shrinks to 0 and this estimation to arclength is
where pseudo-arclength continuation gets its name.

3.2.2 Implementation

As is not uncommon in numerical mathematics, pseudo-arclength continuation uses information about
a previous point (xi−1, λi−1) to compute a next point (xi, λi). Indeed, it is possible to write:

f(xi, λi) = 0 (13a)(
xi − xi−1

∆t)

)T

(xi − xi−1) +
λi − λi−1

∆t
(λi − λi−1) = ∆t. (13b)

While this system of equations could be solved for xi, λi as is, many methods of solving 13a benefit
from being supplied a ’smart’ initial condition. For this purpose, a linear extrapolation of previous
solutions was used i.e.:

xi ≈ xi := xi−1 + (xi−1 − xi−2) , (14)

λi ≈ λi := λi−1 + (λi−1 − λi−2) , (15)

where x and λ are the initial conditions supplied to the solver. Since these extrapolations depend on
previously found solutions, a different approach is needed for the first two solutions i.e. for i = 1 and
i = 2. This addressed by exploiting the fact that, for this specific case, solutions to trivial cases are
analytically available as are their derivatives. This makes it so that x0 is analytically available and
x1 = x0 + ẋ∆t can be used as an efficient initial condition.

3.2.3 Properties

Pseudo-arclength continuation performs well on the given model. More specifically, it performs well
on any given branch of the model. The extrapolation of previous solutions provides a strong initial
condition which typically requires less than four iterations of the solver to converge confidently to a
solution (|∆x| ≈ 10−6). Furthermore, the step-size ∆t can made dynamic to increase precision when
encountering a solution path with high curvature. A different significant feature of the method is the
fact that it can avoid certain problems arising around bifurcation with classical methods. A method
simply tracing the equilibria as a function of x and λ will fail when the solution path encounters a
turning point, introducing multiple solutions for a single combination of x and λ. The restriction that
the method only finds a single branch is a notable one; many systems exhibit equilibria on disconnected
branches in the state-space. In addition to this, the method does not inherently detect the existence
of disconnected branches. If one were to implement a method of detecting disconnected branches then
this would allow pseudo-arclength continuation to provide a more complete set of solutions.

3.3 Comparison Polynomial Reduction and Pseudo-arclength Continuation

When comparing the methods of polynomial reduction and pseudo-arclength continuation it becomes
apparent that they both provide satisfactory results in the context of small projects. The more one seeks
to scale up the given model the more pseudo-arclength continuation increases in appeal. It computes
equilibria with a significantly higher efficiency; any single iteration is completed approximately 5 times
quicker. Do however note that polynomial reduction is easier adapted to perform computations in
parallel to optimize any allocated computing power.

On the accuracy of the methods, polynomial reduction effectively has near-perfect accuracy as no
approximations in the model are required and all operations can be done up to machine precision. This
is in contrast to the provided implementation of pseudo-arclength continuation as that does inherently
requires approximations of the model to be made.

And finally, polynomial reduction is argued to be more approachable to be implemented which
definitely is an aspect to be considered depending on the use case.

14

Figure 9: Values of Ts − Tn over p2 with fixed p1,n = 1.5 = 1.01p1,s, and p3,n = p3,s = 0.3.

4 Conclusion and Further Research

This thesis considered different methods of finding equilibria through the lens of Stommel’s box mod-
els. It can be concluded that both polynomial reduction and pseudo-arclength continuation are valid
approaches to be implemented to compute equilibria of the models. Their use cases differ when one’s
project becomes more complex favoring arclength continuation. One feature that was not implemented
in a general-use script is to combine the methods in a single algorithm. The overall efficiency of pseudo-
arclength continuation can be utilized on single branches in the solution space. Polynomial reduction
can then be used in parallel to aid detecting separate branches and computing solutions to seed the
pseudo-arclength continuation method with.

This project was limited to implementing the described models and methods and explaining them
to an undergraduate level audience. In particular, this thesis was written to complement Dijkstra’s
book [Dij05] on oceanography and hopes to provide some insight on which methods one could use when
working with these or more complex and realistic models. That being said, the discussed methods are
of course not bound to specifically oceanographic models, the methods can find a wide variety of use
wherever the computation of equilibria is desired.

15

Figure 10: A zoomed in view of a corner comparing arclength continuation (ϵ = 0.01) in orange and
the scatter of polynomial reduction in blue.

5 Appendix: Matlab Code

A variety of scripts and functions were developed during this project. A selection of core scripts was
selected and is presented here. A variety of additional scripts concerning edge-cases and niche analyses
are available upon request.

5.1 Code for Pseudo-arclength Continuation

Arclength1.m:
Main script for pseudo-arclength continuation over p2 in Stommel’s three-box model. This was used
to generate figure 10 and 9.

1 syms t tprev yprev dp Tz Tn Sz Sn y dy dTz dTn dSz dSn p pprev Tzprev

Tnprev Szprev Snprev mod1 mod2 real

2 %p=p2, p1,p3 fixed

3 tic

4 N=20000; %amount of steps

5 dt =1/400; %stepsize

6 %preallocate

7 Tzsol=zeros(N,1); %y=[Tz ,Tn ,Sz ,Sn];

8 Tnsol=zeros(N,1);

9 Szsol=zeros(N,1);

10 Snsol=zeros(N,1);

11 psol=zeros(N,1);

12 tsol=zeros(N,1);

13
14 dTzsol=zeros(N,1); %y=[Tz,Tn,Sz,Sn];

15 dTnsol=zeros(N,1);

16 dSzsol=zeros(N,1);

17 dSnsol=zeros(N,1);

18 dpsol=zeros(N,1);

19
20
21 %fix p1, p3 if iterate over p2 (aSs , aSn).

22 p1=1.5;

16

Figure 11: An illustration on how one could combine both methods to compute multiple branches with
pseudo-arclength continuation.

23 p3=0.3;

24 aTs=p1;

25 aTn=p1 *1.01;

26 % (aSz ,aSn=p2)

27
28
29
30 %Determine tangent (first analytically available)

31 dpsol (1)=1;

32 dTzsol (1) =0.3;

33 dTnsol (1) =0.3;

34 dSzsol (1) =1;

35 dSnsol (1) =1;

36
37 %setup equations

38 eq11=aTs -Tz .*(1+3/4* cabs(Tz -Sz))-Tn .*(1/4* cabs(Tn -Sn))==0;

39 eq12=aTn -Tn .*(1+3/4* cabs(Tn -Sn))-Tz .*(1/4* cabs(Tz -Sz))==0;

40 eq13=p-Sz.*(p3 +3/4* cabs(Tz -Sz))-Sn .*(1/4* cabs(Tn -Sn))==0;

41 eq14=p-Sn.*(p3 +3/4* cabs(Tn -Sn))-Sz .*(1/4* cabs(Tz -Sz))==0;

42 eq1test=p==psol (1);

43 testsolve=vpasolve ([eq11 ,eq12 ,eq13 ,eq14 ,eq1test]);

44
45 eq2=[dTz ,dTn ,dSz ,dSn]*([Tz ,Tn ,Sz ,Sn]-[Tzprev ,Tnprev ,Szprev ,Snprev]) '+

dp*(p-pprev)-(t-tprev)==0;

46 %eq2=[dTz ,dTn ,dSz ,dSn]*([Tz,Tn,Sz,Sn]-[Tzprev ,Tnprev ,Szprev ,Snprev])

'+(p-pprev)/(t-tprev)*(p-pprev)-(t-tprev)==0;
47 eq3=t-tprev==dt;

48

17

49 %initial conditions (analatically/numerically available)

50 psol (1)=testsolve.p;

51 tsol (1) =0;

52 Tzsol (1)=testsolve.Tz; %Tz

53 Tnsol (1)=testsolve.Tn; %Tn

54 Snsol (1)=testsolve.Sn; %Sz

55 Szsol (1)=testsolve.Sz; %Sn

56 tsol (1) =0;

57
58 eq11mod=aTs -Tz .*(1+3/4* mod1*(Tz -Sz))-Tn .*(1/4* mod2*(Tn -Sn))==0;

59 eq12mod=aTn -Tn .*(1+3/4* mod2*(Tn -Sn))-Tz .*(1/4* mod1*(Tz -Sz))==0;

60 eq13mod=p-Sz.*(p3 +3/4* mod1*(Tz -Sz))-Sn .*(1/4* mod2*(Tn -Sn))==0;

61 eq14mod=p-Sn.*(p3 +3/4* mod2*(Tn -Sn))-Sz .*(1/4* mod1*(Tz -Sz))==0;

62
63
64 ttest1 =0;

65 ttest2 =0;

66 for i=1:N

67 %prepare equations by subbing in previous values

68 eq11s=eq11;

69 eq12s=eq12;

70 eq13s=eq13;

71 eq14s=eq14;

72 %eq13s=subs(eq13 ,p,psol(i));

73 %eq14s=subs(eq14 ,p,psol(i));

74 eq2s=subs(eq2 ,[pprev ,Tzprev ,Tnprev ,Szprev ,Snprev ,tprev ,dp ,dTz ,dTn ,

dSz ,dSn],[psol(i),Tzsol(i),Tnsol(i),Szsol(i),Snsol(i),tsol(i),

dpsol(i),dTzsol(i,:),dTnsol(i,:),dSzsol(i,:),dSnsol(i,:)]);

75 %eq3s=subs(eq3 ,tprev ,tsol(i));

76 %precision increase attempt

77 eq3s=subs(eq3 ,[tprev ,dt],[tsol(i),min(dt ,max(min(abs(Tzsol(i)-

Szsol(i))/3,abs(Tnsol(i)-Snsol(i))/3) ,1e-6))]);

78 ttest1=ttest1+min(dt , max(min(abs(Tzsol(i)-Szsol(i)), abs(Tnsol(i)

-Snsol(i))) , 1e-6));

79 %solve for next values

80 [ptemp ,Tztemp ,Tntemp ,Sztemp ,Sntemp ,ttemp]= vpasolve ([eq11s ,eq12s ,

eq13s ,eq14s ,eq2s ,eq3s],[p, Tz , Tn , Sz , Sn ,t],[psol(i),Tzsol(i),

Tnsol(i),Szsol(i),Snsol(i),tsol(i)]); %temporary storing of

values. Also , maybe different solver

81 if isempty(Tztemp)

82 %If solutionfinding fails , try with loosened conditions and

find

83 %nearest

84 i

85 break

86 sign1 =1;

87 sign2 =1;

88 if Tzsol(i)-Szsol(i)<0

89 sign1=-1;

90 end

91 if Tnsol(i)-Szsol(i)<0

92 sign2=-1;

93 end

94 eq11smod=subs(eq11mod ,[mod1 ,mod2],[sign1 ,sign2]);

95 eq12smod=subs(eq12mod ,[mod1 ,mod2],[sign1 ,sign2]);

96 eq13smod=subs(eq13mod ,[mod1 ,mod2],[sign1 ,sign2]);

18

97 eq14smod=subs(eq14mod ,[mod1 ,mod2],[sign1 ,sign2]);

98 [ptemp ,Tztemp ,Tntemp ,Sztemp ,Sntemp ,ttemp]= vpasolve ([eq11smod ,

eq12smod ,eq13smod ,eq14smod ,eq2s ,eq3s],[p, Tz , Tn , Sz , Sn ,t

])

99 %[ptemp ,Tztemp ,Tntemp ,Sztemp ,Sntemp ,ttemp]= vpasolve ([eq11s ,

eq12s ,eq13s ,eq14s ,eq2s ,eq3s],[p, Tz , Tn , Sz , Sn ,t],'random
',true);

100 end

101 id=1;

102 if length(Tztemp) >1

103 idtemp =1;

104 dist =100;

105 %linear estimate:

106 est=[psol(i),Tzsol(i),Tnsol(i),Szsol(i),Snsol(i),tsol(i)]+[

dpsol(i),dTzsol(i),dTnsol(i),dSzsol(i),dSnsol(i) ,1]*(tsol(i

)-tsol(i-1));

107 %for i2=1: length(Tztemp)

108 [idtemp ,disttemp]= dsearchn ([ptemp ,Tztemp ,Tntemp ,Sztemp ,

Sntemp ,ttemp],est);

109 %[idtemp ,disttemp]= dsearchn ([ptemp(i2),Tztemp(i2),Tntemp(

i2),Sztemp(i2),Sntemp(i2),ttemp(i2)],[psol(i),Tzsol(i),

Tnsol(i),Szsol(i),Snsol(i),tsol(i)]);

110 % if disttemp <dist

111 % dist=disttemp;

112 % id=idtemp;

113 % end

114 %end

115 end

116 if mod(i,100) ==0

117 i

118 ttest1

119 end

120
121 psol(i+1)=ptemp(id);

122 Tzsol(i+1)=Tztemp(id);

123 Tnsol(i+1)=Tntemp(id);

124 Szsol(i+1)=Sztemp(id);

125 Snsol(i+1)=Sntemp(id);

126 tsol(i+1)=ttemp(id);

127 ttest2=ttest2+tsol(i+1);

128 psol(i+1)-psol(i);

129 dpsol(i+1)=(psol(i+1)-psol(i))/(tsol(i+1)-tsol(i));

130 dTzsol(i+1)=(Tzsol(i+1)-Tzsol(i))/(tsol(i+1)-tsol(i));

131 dTnsol(i+1)=(Tnsol(i+1)-Tnsol(i))/(tsol(i+1)-tsol(i));

132 dSzsol(i+1)=(Szsol(i+1)-Szsol(i))/(tsol(i+1)-tsol(i));

133 dSnsol(i+1)=(Snsol(i+1)-Snsol(i))/(tsol(i+1)-tsol(i));

134 % pold=pnew;

135 % yold=ynew;

136 % told=tnew;

137
138 %equations lol again

139 % eq1=x^2+y^2 -1==0;

140 % eq2=dy*(y-yold)+dx*(x-xold) -(t-told)==0;

141 % eq3=t-told==dt; %gonna need derivatives?

142 if psol(i) >1

143 break

19

144 end

145 end

146 % funcheck1 =@(Tz,Tn,Sz,Sn) aTs -Tz .*(1+3/4* abs(Tz-Sz))-Tn .*(1/4* abs(Tn-

Sn));

147 % funcheck2 =@(Tz,Tn,Sz,Sn) aTn -Tn .*(1+3/4* abs(Tn-Sn))-Tz .*(1/4* abs(Tz-

Sz));

148 % funcheck3 =@(Tz,Tn,Sz,Sn,aSs) aSs -Sz.*(p3+3/4* abs(Tz-Sz))-Sn .*(1/4*

abs(Tn -Sn));

149 % funcheck4 =@(Tz,Tn,Sz,Sn,aSn) aSn -Sn.*(p3+3/4* abs(Tn-Sn))-Sz .*(1/4*

abs(Tz -Sz));

150 %

151 % funcheck1(Tzsol (14),Tnsol (14),Szsol (14),Snsol (14))

152 % funcheck2(Tzsol (14),Tnsol (14),Szsol (14),Snsol (14))

153 % funcheck3(Tzsol (14),Tnsol (14),Szsol (14),Snsol (14),psol (14))

154 % funcheck4(Tzsol (14),Tnsol (14),Szsol (14),Snsol (14),psol (14))

155
156 K=i;

157 hold on

158 plot(psol (2:K),Tzsol (2:K)-Tnsol (2:K))

159 %plot(psol (2:K),Tzsol (2:K)-Szsol (2:K))

160 %plot(psol (2:K),Tnsol (2:K)-Snsol (2:K))

161
162 hold off

163 toc

164
165 % hold on

166 % plot(psol (2:i),Tzsol (2:i)-Tnsol (2:i))

167 % hold off

168 % toc

20

5.2 Code for Polynomial Reduction Root Finding

Vparoot01.m:
Basic rootfinder for polynomial reduction method. This was used to generate figure 8 and 10.

1 function rootlist=vparoot01(aTs ,aTn ,aSs ,aSn ,p3)

2 syms Tz Tn Sz Sn %initiate symbol temperature and zinity (differences)

for north and south

3 assume(Tz ,'real')
4 assume(Tn ,'real')
5 assume(Sz ,'real')
6 assume(Sn ,'real')
7 funcheck1 =@(Tz,Tn,Sz,Sn) aTs -Tz .*(1+3/4* abs(Tz-Sz))-Tn .*(1/4* abs(Tn-Sn

));

8 funcheck2 =@(Tz,Tn,Sz,Sn) aTn -Tn .*(1+3/4* abs(Tn-Sn))-Tz .*(1/4* abs(Tz-Sz

));

9 funcheck3 =@(Tz,Tn,Sz,Sn) aSs -Sz.*(p3+3/4* abs(Tz-Sz))-Sn .*(1/4* abs(Tn-

Sn));

10 funcheck4 =@(Tz,Tn,Sz,Sn) aSn -Sn.*(p3+3/4* abs(Tn-Sn))-Sz .*(1/4* abs(Tz-

Sz));

11
12 %Seperate absolute value piecewise

13 %constants taken from Dijkstra

14 dTspospos= aTs -Tz .*(1+(3/4) *(Tz-Sz))-Tn .*((1/4) *(Tn-Sn))==0;

15 dTnpospos= aTn -Tn .*(1+(3/4) *(Tn-Sn))-Tz .*((1/4) *(Tz-Sz))==0;

16 dSspospos= aSs -Sz.*(p3 +(3/4) *(Tz-Sz))-Sn .*((1/4) *(Tn-Sn))==0;

17 dSnpospos= aSn -Sn.*(p3 +(3/4) *(Tn-Sn))-Sz .*((1/4) *(Tz-Sz))==0;

18 dTsnegpos= aTs -Tz .*(1 -(3/4) *(Tz-Sz))-Tn .*((1/4) *(Tn-Sn))==0;

19 dTnnegpos= aTn -Tn .*(1+(3/4) *(Tn-Sn))-Tz.*(-(1/4)*(Tz-Sz))==0;

20 dSsnegpos= aSs -Sz.*(p3 -(3/4) *(Tz-Sz))-Sn .*((1/4) *(Tn-Sn))==0;

21 dSnnegpos= aSn -Sn.*(p3 +(3/4) *(Tn-Sn))-Sz.*(-(1/4)*(Tz-Sz))==0;

22
23 dTsposneg= aTs -Tz .*(1+(3/4) *(Tz-Sz))-Tn.*(-(1/4)*(Tn-Sn))==0;

24 dTnposneg= aTn -Tn .*(1 -(3/4) *(Tn-Sn))-Tz .*((1/4) *(Tz-Sz))==0;

25 dSsposneg= aSs -Sz.*(p3 +(3/4) *(Tz-Sz))-Sn.*(-(1/4)*(Tn-Sn))==0;

26 dSnposneg= aSn -Sn.*(p3 -(3/4) *(Tn-Sn))-Sz .*((1/4) *(Tz-Sz))==0;

27 dTsnegneg= aTs -Tz .*(1 -(3/4) *(Tz-Sz))-Tn.*(-(1/4)*(Tn-Sn))==0;

28 dTnnegneg= aTn -Tn .*(1 -(3/4) *(Tn-Sn))-Tz.*(-(1/4)*(Tz-Sz))==0;

29 dSsnegneg= aSs -Sz.*(p3 -(3/4) *(Tz-Sz))-Sn.*(-(1/4)*(Tn-Sn))==0;

30 dSnnegneg= aSn -Sn.*(p3 -(3/4) *(Tn-Sn))-Sz.*(-(1/4)*(Tz-Sz))==0;

31 rootspospos=vpasolve(dTspospos ,dTnpospos , dSspospos ,dSnpospos);

32 rootsnegpos=vpasolve(dTsnegpos ,dTnnegpos ,dSsnegpos ,dSnnegpos);

33
34 rootsposneg=vpasolve(dTsposneg ,dTnposneg , dSsposneg ,dSnposneg);

35 rootsnegneg=vpasolve(dTsnegneg ,dTnnegneg ,dSsnegneg ,dSnnegneg);

36
37
38
39
40 for i=length(rootspospos.Tz):-1:1

41 if (rootspospos.Tz(i,1)<rootspospos.Sz(i,1) || rootspospos.Tn(i,1)

<=rootspospos.Sn(i,1))

42 rootspospos.Tz(i)=[];

43 rootspospos.Sz(i)=[];

44 rootspospos.Tn(i)=[];

45 rootspospos.Sn(i)=[];

46 end

21

47 end

48
49 for i=length(rootsposneg.Tz):-1:1

50 if (rootsposneg.Tz(i,1)<rootsposneg.Sz(i,1) || rootsposneg.Tn(i,1)

>=rootsposneg.Sn(i,1))

51 rootsposneg.Tz(i)=[];

52 rootsposneg.Sz(i)=[];

53 rootsposneg.Tn(i)=[];

54 rootsposneg.Sn(i)=[];

55 end

56 end

57
58 for i=size(rootsnegpos.Tz ,1):-1:1

59 if (rootsnegpos.Tz(i,1)>rootsnegpos.Sz(i,1) || rootsnegpos.Tn(i,1)

<=rootsnegpos.Sn(i,1))

60 rootsnegpos.Tz(i)=[];

61 rootsnegpos.Sz(i)=[];

62 rootsnegpos.Tn(i)=[];

63 rootsnegpos.Sn(i)=[];

64 end

65 end

66
67 for i=size(rootsnegneg.Tz ,1):-1:1

68 if (rootsnegneg.Tz(i,1)>rootsnegneg.Sz(i,1) || rootsnegneg.Tn(i,1)

>=rootsnegneg.Sn(i,1))

69 rootsnegneg.Tz(i)=[];

70 rootsnegneg.Sz(i)=[];

71 rootsnegneg.Tn(i)=[];

72 rootsnegneg.Sn(i)=[];

73 end

74 end

75
76 %f1=funcheck1(rootspospos.Tz(1),rootspospos.Tn(1),rootspospos.Sz(1),

rootspospos.Sn(1))

77 %f2=funcheck2(rootsposneg.Tz(1),rootsposneg.Tn(1),rootsposneg.Sz(1),

rootsposneg.Sn(1))

78 %f3=funcheck2(rootsnegneg.Tz(1),rootsnegneg.Tn(1),rootsnegneg.Sz(1),

rootsnegneg.Sn(1))

79 %f4=funcheck2(rootsnegpos.Tz(1),rootsnegpos.Tn(1),rootsnegpos.Sz(1),

rootsnegpos.Sn(1))

80
81 % rootslist=zeros(length(rootsneg.Ts)+length(rootspos.Ts) ,4);

82 rootlist (:,1)=[rootspospos.Tz;rootsnegpos.Tz;rootsposneg.Tz;

rootsnegneg.Tz];

83 rootlist (:,2)=[rootspospos.Tn;rootsnegpos.Tn;rootsposneg.Tn;

rootsnegneg.Tn];

84 rootlist (:,3)=[rootspospos.Sz;rootsnegpos.Sz;rootsposneg.Sz;

rootsnegneg.Sz];

85 rootlist (:,4)=[rootspospos.Sn;rootsnegpos.Sn;rootsposneg.Sn;

rootsnegneg.Sn];

86 for i=1: size((rootlist) ,1)

87 rootlist(i,5)=aTs;

88 rootlist(i,6)=aTn;

89 rootlist(i,7)=aSs;

90 rootlist(i,8)=aSn;

91 rootlist(i,9)=p3;

22

92 end

93
94
95 % for i=1: size(rootlist ,1) %rootcheck debug

96 % funcheck1(rootlist(i,1),rootlist(i,2),rootlist(i,3),rootlist(i

,4))

97 % funcheck2(rootlist(i,1),rootlist(i,2),rootlist(i,3),rootlist(i

,4))

98 % funcheck3(rootlist(i,1),rootlist(i,2),rootlist(i,3),rootlist(i

,4))

99 % funcheck4(rootlist(i,1),rootlist(i,2),rootlist(i,3),rootlist(i

,4))

100 % end

23

5.3 Code for calling the Polynomial Reduction Root Finding

Main script calling basic root-finder for polynomial reduction method. This was used to gerenate figure
8 and 10.

1 n=501; %two hours for 50.000

2 N=n+1;

3 pmin =0.4;

4 pmax =0.6;

5 rootcell=cell(n+1,1);

6 rootbranch=cell (1);

7 sortdim =2; %Optional to make nicer plots to know in advance which

value needs to be plotted for sorting

8 sortdim2 =1;

9
10 tic

11 aTn =1.5;

12 aTs =1.5*1.01;

13 %This script will loop over values for aSn and aSs; namely p2;

14 p3=0.3;

15 parfor i=1:N

16 p2=(pmax -pmin)/n*(i-1)+pmin;

17 rootcell{i}=[vparoot01(aTs ,aTn ,p2,p2,p3)];

18 rootcell{i}= sortrows(rootcell{i},sortdim);

19 end

20
21 rootcount =0; %amount of found roots

22 [lastcount ,~]= size(rootcell {1}); %amount of roots found by i'th
parameter value.

23 branchcount =0; %amount of finished branches

24 for i=1: length(rootcell)

25 [jmax ,~]= size(rootcell{i}); %amount of roots by i'th parameter

value.

26 if jmax== lastcount

27 rootcount=rootcount +1;

28 for j=1: jmax

29 rootbranch{branchcount+j}(rootcount ,1:9)=rootcell{i}(j,:);

30 end

31
32
33 else

34 rootcount =1;

35 branchcount=branchcount+lastcount;

36 [lastcount ,~]= size(rootcell{i});

37 jmax=lastcount;

38 for j=1: jmax

39 rootbranch{branchcount+j}(rootcount ,1:9)=rootcell{i}(j,:);

40 end

41
42 end

43 end

44 % rootarray(rootcount +1:end ,:) =[];

45 toc

46 hold on

47 for i=1: size(rootbranch ,2)

48 scatter(rootbranch{i}(: ,7),rootbranch{i}(:, sortdim)-rootbranch{i

}(:, sortdim2))

24

49 end

50 hold off

51 %sort data for human eyes maybe

52 % scatter(rootline1 (:,3),rootline1 (:,1))

53 % hold on

54 % scatter(rootline2 (:,3),rootline2 (:,1))

55 % scatter(rootline3 (:,3),rootline3 (:,1))

56 % scatter(rootline4 (:,3),rootline4 (:,1))

57
58
59
60
61 % rootarray=rootline1;

62 % if exist (" rootline2 ","var")

63 % rootarray =[rootline1;rootline2];

64 % if exist (" rootline3 ","var")

65 % rootarray =[rootline1;flip(rootline2 ,1);rootline3];

66 % if exist (" rootline4 ","var")

67 % rootarray =[rootline1;flip(rootline2 ,1);rootline3;

rootline4];

68 % end

69 % end

70 % end

71 % plot(rootarray (:,3),rootarray (:,2))

72 % hold on

73 % plot(rootarray (:,3),rootarray (:,1))

25

5.4 Code for Absolute Value-approximation

Small script enabling a choice for absolute value-approximation. This was used to generate figure 10
and 9.

1 function cabs=cabs(x)

2 %choices for e.g. differentiable absolute values

3 epsilon =0.01;

4 cabs=sqrt(x^2+ epsilon)-sqrt(epsilon);

5 %cabs=x*tanh (1/ epsilon*x);

6 %cabs=abs(x);

7 %multiple choices for testing

8 end

References

[Dij05] H. Dijkstra. Nonlinear Physical Oceanography. Springer Dordrecht, 2005.

[Sto61] Henry Stommel. Thermohaline convection with two stable regimes of flow. Tellus, 13(2):224–
230, 1961.

[vA07] Hendrik M. van Aken. The Oceanic Thermohaline Circulation: An Introduction. Springer
New York, NY, 2007.

26

	Introduction
	Stommel's box models
	The Two-Box Model
	Model construction

	The Three-Box Model
	Model construction

	Equilibria
	Introduction and problem statement
	Modes of Equilibria

	Finding Equilibria
	Polynomial Reduction
	Introduction
	Implementation
	Properties

	 Pseudo-arclength continuation
	Introduction
	Implementation
	Properties

	Comparison Polynomial Reduction and Pseudo-arclength Continuation

	Conclusion and Further Research
	Appendix: Matlab Code
	Code for Pseudo-arclength Continuation
	Code for Polynomial Reduction Root Finding
	Code for calling the Polynomial Reduction Root Finding
	Code for Absolute Value-approximation

