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Abstract

In this thesis, machine learning is applied to HPGe detector waveforms to clus-
ter them with the goal of determining correlations that serve to improve detector
time resolution. HPGe detectors are used in neutron cross section determination
experiments; improvement of the moderate time resolution HPGe detectors possess
is salient due to the neutron time-of-flight being closely linked to its energy, and in
turn the reaction cross section. Close determination of neutron cross sections is im-
portant, as they play roles in nuclear reactor physics and design, astrophysics, radia-
tion shielding and more. To investigate these correlations, the clustering algorithms
KMeans and Hierarchical Clustering Algorithm (HCA) were applied to a version of
the dataset reduced through principal component analysis. It was found that there
was a strong correlation between the cluster index, corresponding to mean value of
the first principal component PC1, and the time difference compared to a reference
lanthanum bromide detector d1'. Methods to apply corrections using clustering, as

well as principal components analysis directly, are suggested and discussed.
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1 Introduction

The nuclear cross section is a measure of the probability that a nuclear reaction will occur
when two particles collide. The cross section is dependent on which two bodies collide
and the center of mass energy of the collision. One of the processes that can occur when
a neutron is incident on an atom involves the emission of one or more neutrons; these
reactions are noted as (n, xn) reactions with x being the number of neutrons emitted
following the interaction. The close determination of neutron cross sections is crucial in
fields like nuclear astrophysics and radiation shielding, but (n, xn) reactions are especially
salient in nuclear reactor physics and design; this is due to these reactions having relatively
large cross sections, and by extension having a large influence on the neutron density in
the reactor [1|. There is a distinct lack of experimental data on these reactions, however,
which can be largely attributed to the difficulties related to these neutron measurements,
including subpar neutron detection efficiency and the prevalence of other neutron emission
processes. These difficulties can be circumvented by employing prompt y-ray spectroscopy
at neutron time-of-flight facilities [2]. This involves considering the subset of events that
leaves the daughter nucleus excited, as gamma radiation is emitted upon de-excitation.
By using this method, cross sections of only (n, xnvy) are acquired and can be used to

deduce total inelastic (n, xn) cross sections.

Figure 1: The GAINS experimental setup at GELINA in Geel, Belgium. [3]



Copper cooling rod

Aluminium cup

Germanium crystal

Copper contact pin

Aluminium end cap

Figure 2: Cross section of an HPGe detector model, facing downwards. [1]

One of the premier neutron time-of-flight facilities employed for neutron cross section
determination is GELINA, a linear accelerator located in Geel, Belgium. One of the
experimental setups at this complex named GAINS (Gamma Array for Inelastic Neutron
Scattering), shown in figure 1, is positioned at a 200 meter flight path of the white
neutron beam source. The beam is incident on a sample surrounded by eight HPGe (high
purity germanium) detectors, each detector being assigned a channel. These detectors
are employed for their excellent energy resolution, but they provide only moderate time
resolution compared to other ionizing radiation detectors. As seen in figure 2, HPGe
detectors are coaxial and maintained under a high voltage under reverse bias. This voltage
difference creates an electric field extending across the intrinsic or depleted region. When
incident ionizing radiation interacts with the depleted volume material of a detector,
electrons and corresponding holes are produced and swept by the electric field to the p
and n electrodes [5]. The number of charge carriers produced is proportional to the energy
deposited by the incident photon in the detector, and is converted to a voltage pulse that
is outputted.



Figure 3: a diagram of a simple charge preamplifier circuit. A resistor is added over the
capacitor, introducing exponential decay.

2 Methodology

2.1 Data preprocessing and resulting dataset

The signal data retrieved from the HPGe detectors underwent significant preprocessing
before being usable for pursuing the aims of this thesis. The direct output of the HPGe
detectors is a measure of charge deposited per time interval. The measure can be inte-
grated to get the voltage per time interval. Integration is necessary due to the low number
of electrons created in the germanium; only around ten thousand free electrons are created
upon a single ionization event, meaning very little charge is measured. To process the
charge measurement, one can either apply a voltage amplifier and integrate the result or

simply apply a charge preamplifier circuit. The former approach introduces significant



noise in the integration stage compared to the latter. A charge preamplifier circuit, seen in
figure 3, was chosen after consideration of the requirements of the experimental setup. If
no method is implemented to reduce the resulting voltage signal amplitude, it would keep
increasing indefinitely. In order to discharge the capacitor, a resistor was added above the
capacitor which introduced exponential decay. A lower resistance of the inserted resistor
would lead to a quicker decay rate of the signal but would introduce more noise, with
the inverse being true for a higher resistance; the chosen resistance was decided keeping
these consequences in mind. The decay of signal strength means that the recorded max-
imum amplitude recorded is lower than the true maximum, as some of the voltage will
already have decayed. Amplitude determination was therefore performed with the use
of a trapezoid algorithm to reshape the signal. Optimal shaping balances signal-to-noise
ratio, pulse pile-up, and ballistic deficit. Trapezoidal shaping, which converts the expo-
nentially decaying preamplifier signal into a trapezoidal form through convolution with
time-dependent functions, offers a good compromise. The algorithm involves correcting
the preamplifier signal for finite decay time to create a step function, then differentiating
this to produce the trapezoid shape [6]. Following these procedures, the output of the
detectors was processed to produce voltage signals suitable for further analysis.

The analogue HPGe output signals were all processed using a digitizer with a 14 bit
resolution and 250 MHz sampling rate. Pulses, corresponding to gamma-detection are
selected by applying a threshold to continuous data coming from the digitizer. If the
threshold program observes a signal, a number of points before and after the threshold
crossing is saved adding up to 650 points. The timestamp of the trigger is also saved.
These threshold crossings are highly sensitive to noise, which both requires correction of
the trigger timestamp and explicit noise suppression without suppressing waveforms. The
latter was performed through isolating the first section of each waveform and performing
linear regression to describe it with a 3rd order polynomial. The first 20% of the pulse
proved adequate for all waveforms and was used to obtain precise timing of the pulse in
the waveform.

At this stage, a dataset generated by a 2?Na source was utilized to locate coincidences,
defined to be events occurring within 100ns of each other. A new coincidence-only dataset
was produced that was significantly smaller than the original. Each waveform was nor-
malized to amplitude equal to 1 and truncated such that each waveform has been reduced
from 650 to 128 data points. A selection of these waveforms can be seen in figure 4.
Truncation led to some waveforms not reaching their original peak amplitude in the new

dataset. The noise level is approximately constant for all the waveforms, but constitutes
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Figure 4: Plot of the first 750 waveforms in the initial dataset used. Time is in arbitrary
units and the amplitude has been normalized.

a greater proportion of the maximum amplitude for waveforms with lower maxima; this
is apparent in the plot, where some waveforms are noticeably noisier than the mean. The
waveforms are also aligned with approximately proper timestamp, situated within 20 ns
from the pulse start. This corresponds to about 0.2 in the arbitrary time units used. In
order to ensure that the threshold is not dependent on the energy of the incoming photon,
constant fraction discrimination was utilized. Constant fraction discrimination can deter-
mine amplitude-independent pulse timings. It accomplishes this by dividing the signal, in
this case the charge output of the detector, into two, constituting 1 and 0.35 respectively.
The former is delayed, here by 40 ns, and the latter is inverted (f(x) — —f(z)) before the
two are recombined. The resulting zero-crossing point is independent of the amplitude of
the input signal [7]. By applying the procedure explained in this section, datasets suit-
able for applying machine learning could be produced with a number of waveforms, each
possessing 128 amplitude points, the energy of the incident photon E. the time difference
compared to the reference detector d7', and the channel through which the particular

waveform was detected.



2.2 Clustering algorithms

Clustering analysis is an machine learning method in which the task is grouping objects
in such a way that objects within a group, called clusters, are more similar to each other
than to objects not in the same group. It is a form of unsupervised learning, meaning the
data used is unlabeled; it in this way different from classification which utilizes labeled
data and hence has more of an understanding of what the output groups should be. While
cluster and class are non-equivalent, corresponding to clustering and classification analysis
respectively, once clustering analysis has been applied to a dataset and clusters have been
determined, further analysis is functionally identical on both. For this reason, the terms
will be used interchangeably throughout this thesis. Most clustering algorithms require
a cluster number input in order to perform analysis on a dataset. Several methods are
available that aim to determine the optimal number of clusters; however as the the pulse
shapes are expected to be a continuous distribution by considering the detector geometry,
the choice of cluster number is arbitrary and should be based on the requirements of the
application. Throughout this thesis, three clusters will be pictured and discussed as this
number best showcased the found results, but the results can easily be generalized for any

number of clusters.
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Figure 5: An overview of how different clustering algorithms perform on different datasets.
The time taken to produce the results is shown in the lower-right corner of each plot. [3]



Within clustering analysis, there are a myriad of algorithms that vary greatly in work-
ing principle, implementation and time complexity. For this project, two algorithms were
chosen, namely KMeans and hierarchical clustering analysis which will be referred to
as hierarchy. Two algorithms were chosen to create an obvious sanity check; if the two
algorithms produced vastly different results, that would either reveal an error in implemen-
tation or a difference in methodology between the chosen algorithms producing distinct
clusters. KMeans was selected for this application due to it a being simple, efficient and
effective algorithm. KMeans does not possess a method to assess the optimal number
of clusters in a dataset and instead takes the cluster number n as an input. KMeans
functions by placing n centroids in the parameter space according to initial conditions,
and determines for each data point which centroid it is closest to and assigns it to that
centroid. The centroid positions are then moved to the average position of all data points
assigned to it; these two steps are iterated until a steady state is reached. This approach
is highly efficient and scales incredibly well, with KMeans having a time complexity of
O(n). Some drawbacks include centroid-based clustering approaches being highly sen-
sitive to outliers and initial conditions, but these can be mitigated with proper outlier
removal procedures. Another limitation is the inability of KMeans to detect more complex
patterns in the data, illustrated in figure 5. The choice of second algorithm was made with
this in mind, valuing complexity detection and transparency of clustering process over ef-
ficiency. Hierarchy, which aptly attempts to build a hierarchy of clusters and produces an
easily digestible dendrogram was therefore a logical contender. This algorithm iteratively
merges data points or clusters based on a dissimilarity measure. This measure takes the
euclidean distance between data points in parameter space and a linkage criterion, wherein
the dissimilarity between sets is determined by the pairwise distances among observations
within those sets, as inputs [9]. Hierarchical clustering is much more computationally
intensive than KMeans, a fact reflected in the poor time complexity of O(n?logn) at best
and O(n?) at worst. Based on the continuous nature of the input data, however, KMeans
is expected to be highly applicable; as Hierachy therefore primarily serves a comparative
role, it was chosen despite its drawbacks.

The implementation of a method to quantitatively compare the outputs of the chosen
algorithms was considered. Ensemble clustering is a deterministic method of producing
an accurate consensus result from a collection of base clustering results and would fit
this need [10]. Its incorporation was ultimately decided against, however. This is due
to the approach being computationally expensive, relatively difficult to implement and

ultimately not needed as the aim would be to eliminate the need for one of the clustering



algorithms. An alternative and much simpler approach was pursued and is discussed in

section 3.4.

3 Clustering application

A prerequisite in this process for effectively applying clustering analysis is reducing the
size of the dataset. Consideration of the form of the dataset, clear correlation between
the amplitude points is seen. Correlations include early points having values close to
zero, late points having values close to one and the values of intermediate points being
somewhere in between. Points in close proximity also tend to have very similar values.
Realizing this, a reduction of the number of parameters is expected to be feasible and was

attempted.

3.1 Outlier removal
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Figure 6: A single waveform from the original dataset plotted with its derivative.
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Before any dimensionality reduction approach can be applied, an outlier removal al-
gorithm must be implemented. This is due to clustering algorithms, especially KMeans,
being highly sensitive to outliers and noise. At this stage, there is not enough informa-
tion in the dataset to properly filter the waveforms, and a relatively simplistic approach
was therefore taken. This approach involved taking the derivative of each waveform in
the dataset. A waveform plotted alongside its derivative is displayed in figure 6. If the
derivative of the waveform at any points exceeds a certain threshold, this waveform was
removed from the dataset. This filters out low-amplitude waveforms due to the relative
noise levels being much more significant, which leads to larger amplitude jumps and thus
higher derivatives. Using this method, only around 4% of the dataset was removed for the
determined threshold, but the remaining dataset was considerably less noisy. By remov-
ing the outliers, both clustering algorithms employed, especially KMeans, should produce

significantly better results.

3.2 Quantization of time and amplitude

The initial approach for dataset size reduction involved quantizing the amplitude and
time. To do this, the maximum amplitude of each waveform was determined, followed by
the determination of 10 through 90 percent of the maximum in increments of 10. The
amplitude values in the dataset closest to these incremental percentages, along with the
time values corresponding to these data points, were then saved and used to create a new
dataset. These amplitudes and corresponding time were labeled Az and Tz respectively
with x being the increment used. The resulting data points, compared to the original
waveform, can be seen in figure 7 This quantization process successfully reduced the 128
parameters to only 18, which should greatly reduce the computational resources required
to apply clustering analysis. Two additional parameters named rise20 and rise90 were
also including representing the time difference between 20 and 10 and 90 and 10 respec-
tively. A correlation matrix was created for this new dataset and can be seen figure 8.
This was achieved through the use of the pandas corr function which computes pairwise
correlation of columns. The corr function method was chosen to be Spearman rank cor-
relation as the conditions were not expected to be met for Pearson standard correlation
coefficient. This method was iterated for each combination of columns and plotted in a
matrix form. As this matrix is primarily for correlation visualization purposes, the ab-
solute value of the correlations were taken to improve clarity. Many of the correlations

displayed in the figure are expected; the time at which the signal reaches 40% will always
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Figure 7: Example of a single waveform from the original dataset plotted alongside the
data points to which it was reduced using the explained method.

be some time after it reaches 30%, for example. Most other correlations also have intu-
itive values, and the found parameters were therefore deemed promising enough to apply
clustering analysis to.

Despite the promising correlation matrix and intuitive newfound parameters, the cho-
sen clustering algorithms applied to the reduced dataset proved unsuccessful. The results
of this procedure are shown in figure 9 and show that both algorithms produce seemingly
nonsensical classes. While the clusters could have some underlying significance not readily
apparent to qualitative inspection, no attempt at reaching meaningful conclusions using
these clusters yielded usable results. Outliers and noise, poor choice of algorithms and
dimensionality reduction could all contribute to the relatively poor results. Noise and
outliers should be heavily suppressed due to the removal algorithm implemented and the
clustering algorithms are proper, so these are likely not the cause of the issues observed.
As the shortcomings of this approach were expected to be due to the dimensionality

reduction, a different method must be employed.
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Figure 8: Correlation matrix of the parameters in the new dataset.

3.3 Principal component analysis

Principal component analysis, often shortened to PCA, is a dimensionality reduction
method that relies on linear transformation of parameters followed by projection onto a
parameter subspace. The determined principal components constitute an orthonormal
basis in which distinct dimensions of the data are linearly uncorrelated. The numbering
of the basis vectors, called principal components, reflects the amount of variance they
capture such that the first principal component captures the most variance. To illustrate
the working principle of PCA, the dataset in figure 10 was generated. The dataset plotted
consists of two parameters shown on the x- and y-axis. By inspection, one can realize that
a majority of the variance is along an axis at an approximately 45° angle to the x-axis.
By choosing an orthonormal basis where one of the vectors is along this direction of most
variance, shown in the figure as the red arrows, the basis will be optimized such that the
greatest amount of information in the original dataset is captured in the fewest number of
coordinates. This approach can be generalized for any number of input parameters and

was chosen as the new dimensionality reduction procedure.
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Figure 9: Plots of a selection of waveforms. Each wave is plotted in a color corresponding
to the class into which it was clustered. The respective plot titles reflect which algorithm

was employed.
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Figure 10: Example dataset generated to illustrate the working principle of principle
component analysis.

Principle component analysis was applied to the original waveform dataset. The results

are shown in figure 11. In figure 11(a), the explained variance ratio is plotted against the
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Figure 11: Plots of PCA results. (a) fraction of information in the original dataset
captured in principal components as a function of number of principal components used.
(b) scatter plot of the first and second principal coordinates for all waveforms.
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Figure 12: Results of applying the clustering algorithms to the principal components. On
the right is the same PC scatter plot shown earlier, but with the points shown in the color
corresponding to their class. On the right, composites of all the waveforms in each class
is shown, along with the percentage of waveforms in the dataset found to be in that class.

number of components. Number of components refers to how many of the components
containing the most variance are kept. The explained variance ratio is defined as the
fraction of the information in the original dataset that is captured by a given number of

principal components. also plotted is a dotted line marking 95% variance. This was chosen
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Figure 13: Plots of a selection of waveforms. Each wave is plotted in a color corresponding
to the class into which it was clustered. The respective plot titles reflect which algorithm
was employed.

as the threshold, such that the number of components used will be the lowest number
containing more than 95% of the variance. As seen in the figure, two components were
adequate to surpass this threshold. Throughout this project, many datasets were used; for
all of them, two principal components surpassed the chosen threshold. Using this method,
the 128 amplitude points in the original dataset were reduced to two principal components
labelled PC'1 and PC2. The information captured by each is illustrated in figure 14. The
PC'1 plot consists of a single peak in the middle. The PC?2 plot has two peaks with one on
either side of the middle. The first principal component therefore captures the variance
at the approximate center of the waveforms, while the second component captures the
variance closer to the start and end points. The third and fourth principal components
are shown in the second row of the figure. This figure clearly illustrates the increasing
frequency of the components, with the first component having a single peak and each
subsequent component having one more extremum than the last. This suggests that
subsequent components capture higher order harmonics, but as they contain little of the
overall variance, these phenomena do not impact the overall waveforms significantly. In
figure 11(b), a scatter plot of the first and second principal components for all waveforms
is shown. In the axis titles, the percentage of variance captured by each coordinate is
displayed. The significant dimensionality reduction achieved through the use of principal

component analysis should enable more efficient application of clustering algorithms.
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Figure 14: Plots of the magnitudes of each of the 128 amplitude points of the original
dataset. The first row shows the two principal components used throughout this paper,
while the lower row contains the next two components.

3.4 Correspondence rate

In order to quantitatively compare the outputs of the clustering algorithms without re-
quiring significant resources, a correspondence rate was implemented. This was presented
as the percentage of waveforms in the dataset that were sorted into equivalent classes
by both clustering algorithms. While this works in theory, it hinges on the algorithms
labelling equivalent clusters the same. This is not by default the case, as the labels them-
selves, simply meaning the numbering, is arbitrary. To enable the correspondence rate
calculation, a method must be implemented to enforce a predictable labelling scheme for
both algorithms. The chosen method involved linking the cluster number to the mean
PC'1 value of the cluster. This was a logical approach, since the clusters of the PC scatter
plots like the one in figure 12(b) were separated by vertical lines. The clustering was

allowed to run and arbitrary labels were attributed; two new columns were appended to
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the dataset containing the number of the cluster the waveform was assigned to according
to both KMeans and Hierarchy. The mean value PC'1 value of all cluster members was
then calculated, and the cluster numbers were redefined; cluster 0 was now defined to be
the cluster with the lowest mean PC'1 value. Increasing cluster number now corresponded
to increasing PC'1 mean. This approach worked well for lower cluster numbers due to
the vertical splits between clusters, due to the approach not being significantly affected
by the differences between the algorithms. This approach starts to break down, however,
when approaching ten clusters as some of the splits are horizontal. These clusters are
much more sensitive to minuscule differences in clusters between the algorithms, and as
such equivalent clusters are prone to not occupy the same cluster index. This would be
possible to solve by extending the method to also consider mean PC2 value, but this
was not pursued as this project mostly considered two to five clusters where this problem
does not present itself. The correspondence rate was calculated for all the datasets used
for this research, with all having between a 60% and 100% correspondence rate for suffi-
ciently low cluster numbers. This is both an expected and sufficient result, and was an
important tool in revealing and highlighting differences between clustering done by the

different algorithms.

4 Additional parameter consideration
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Figure 15: Histograms of energy values for all waveforms registered in a single channel.
(a) shows the distribution of the entire dataset, while (b) is a magnification of the section
of interest in the former. The bins are in arbitrary energy units.

With the clustering algorithms operational, additional parameters of the waveforms
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Figure 16: Histogram of dT values for all waveforms registered in a single channel. The
bins are in arbitrary time units.

can be considered. This included the Ch, E and dT parameters. E refers to the energy
deposited in the detector and the distribution seen in one of the datasets is shown in
figure 15. The peak seen at around bin 4750 in (a) is the one expected of this experi-
ment; a magnification of this section can be seen in 15(b). All waveforms in this dataset
with E values outside this Gaussian were discarded. This served to replace the outlier
removal procedure discussed in section 3.1. By selecting waveforms of the same energy
the noise levels will also be similar, which ensures that the clustering is only dependent
on the shape of the waveforms as the influence of noise is minimized. This approach is
significantly more rigorous, having a proper basis for removal of certain waveforms be-
yond simply noise level. However, whereas the original outlier removal method removed
only about 4% of the dataset, the E consideration removed about 97% of the dataset,
or leaving a dataset containing only around 350 waveforms. This naturally lead to quite
poor statistics, but was eventually solved by the generation of a new dataset of around
10000 waveforms all within the correct energy Gaussian. Ch refers to the channel, or

which detector in the detector geometry present at the experiment the data was recorded
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in. This served mostly as a check of the approach used, as only data from detector 0 had
been used up until this point. With the exception of detector 4, 6 and 22 in the detector
array, which were a different type of detector and hence not in the scope of this research,
the approach described in this paper worked for all detectors in the experimental setup.
Minor modifications were required to enable this however; minute differences between
the detectors lead to displacements of the energy peak, and as such manual inspection
was required to set proper bounds for the Gaussian. A possible extension of the work
described here would be devising a program to automatically locate the correct peak in
the dataset, set appropriate energy bounds and reduce the dataset accordingly. Lastly,
dT' is the time difference between the observation of an event in the HPGe detector and
the reference lanthanum bromide detectors. The distribution of this parameter, using the
new dataset described above to maintain proper statistics, can be seen in figure 16. The
distribution appears to be a Gaussian with an exponential tail on the right side. With
the proper considerations made using the newly introduced parameters, the correlation

between the dT' parameter and the clusters calculated previously can be determined.
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Figure 17: dT distribution split by cluster. Prop. refers to the proportion of the dataset
sorted into this cluster and Delay is set in the timing algorithm.
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5 dT-cluster correlation

PC1-PC2 Distributions
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Figure 18: 2D histogram of the two principal components used throughout this thesis,
effectively a density plot of figure 11(b).

Seen in figure 17 is the same histogram as figure 16, but with the histogram divided
into three overlapping histograms based on the cluster to which the waveform belongs.
The threshold level used for each set of graphs refers to the threshold described in section
2.1. The results show a strong dependence of the dT parameter on the cluster; cluster
number, corresponding to PC'1 value, is proportional to dT value such that the increase
in one leads to an increase in the other. The histograms vary considerably with delay.
At lower delay values, the overlap is significant especially between class 0 and 1. With
increasing delay, the split between the clusters becomes more significant with delays above
1% producing quite distinct peaks. These findings are significant, as this would allow for
more precise corrections to be applied to the dT timing algorithm; different clusters
could have varying corrections, which should significantly reduce the deviation of the
distribution. A reduction in the variance and elimination of the exponential tail would

lead to a narrowing of the distribution of dT’, which would lead to an improvement in
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HPGe detector time resolution.

There are also clear differences visible between KMeans and Hierarchy for all the de-
lays. One of these is the difference is proportion of the dataset found in each of the
clusters. The relative abundance of waveforms in each cluster, specifically the high per-
centage found in the earlier clusters, can be understood by considering figure 19. Shown
here is a 2D histogram of the two principal components used; it clearly shows that the
density is much higher in the bottom left section of the plot, explaining the much higher
percentage of waveforms found in earlier clusters. Despite this, Hierarchy consistently
sorts around 10% more of the dataset into class 0 than KMeans. This class is already the
largest class in both algorithms, so the greater proportion does not benefit the statistics
significantly. The proportion in class 1 is approximately equivalent throughout, but class
2 has a much smaller proportion in Hierarchy than KMeans with about 13% in the former
and 5% in the latter. This leads to much less significant statistics for Hierarchy, reflected
in a very flat and wide distribution less suitable for analysis. KMeans also consistently
produces a sharper peak in class 1 despite a similar proportion to Hierarchy, caused by a
much lower overlap with class 2.

At this stage a conclusion can be drawn on the effectiveness of the two clustering algo-
rithms that were implemented. As discussed in section 2.2, KMeans was implemented as
the default solution with Hierarchy serving the role of sanity check and tool to potentially
uncover deeper patterns not easily recognizable. This latter point lost applicability fol-
lowing the implementation of PCA; since only two components were used, the parameters
could be easily visualized, and upon inspection it is clear that no pattern was seen that
KMeans would not recognize. Because of this, the two algorithms produced very similar
results as seen throughout this paper. As discussed above, there are differences in the
outputted histograms in figure 17. While KMeans seems favorable, it is hard to say which
of these algorithms’ characteristics are favorable without considering its application. The
similar outputs combined with the significantly lower time complexity of KMeans suggests
that it is most suitable for this purpose and should be the designated default algorithm,

with Hierarchy perhaps serving niche applications where its characteristics are required.
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6 Direct application of Principal Components for dT

correction
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Figure 19: 2D histogram of dT and PC1 (left) and PC?2 (right). All delays are shown.

By using the principal components directly, it may be possible to apply corrections to the
waveforms without applying clustering first. Clustering has the downside of requiring a
number of clusters to use, which is necessarily arbitrary. Low cluster numbers will have
limited application due to relatively small splitting of the clusters, while high cluster num-
bers will struggle from low population in each leading to poor statistics. This approach

could be bypassed entirely by considering the plots in figure 19. Here, a 2D histogram
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of dT versus each principal component is shown and a trend emerges. For PC1, most
of the data is in an approximately straight vertical line (same dT values), but a waning
tail starts to form at higher PC'1 values. This waning section is what becomes the later
classes and what causes the exponential tail on the right in figure 16. A similar pattern
is observed with PC?2, but here the very little of the tail is straight; instead, the entire
section is angled to the left. Additionally, a smaller tail pointing to the right can be seen.
For this reason, in addition to the relatively small contribution of PC?2 to the overall
variance captured, means that PC1 would be more suitable for this type of analysis.
Considering these findings, it would be possible to devise an algorithm that applies a
correction based on the PC1 value; this would have the effect of straightening out the
tail, such that the values of PC'1 would be distributed more evenly around the mean. For
this, delays around 1% should be suitable. Due to time constraints, attempting such an
algorithm for this thesis was not feasible. If this method was implemented successfully,
however, it would allow for the correction of the timing in a continuous manner rather
than the arbitrarily clustered approach whose flaws were discussed above, which should
yield significantly better results and is viewed as a natural extension to the work carried

out in this thesis.

7 Conclusion

This paper aims to improvethe time resolution of HPGe detectors used at the GAINS
experimental setup at GELINA, which investigates neutron cross sections. This improve-
ment is crucial, as better time resolution enables more close determination of neutron
time-of-flight, which is closely linked to the neutron energy. Precise knowledge of the
neutron energy is important due to the great variance in cross section found in the res-
onance region. To improve the detector time resolution, the machine learning approach
clustering was applied to a reduced form of the detector data. The two clustering al-
gorithms KMeans and Hierarchical Clustering Algorithm, referred to throughout as Hi-
erarchy, were chosen. The initial data reduction approach involved time and amplitude
quantization, but did not produce meaningful results. The final data reduction approach
used was principal component analysis, which successfully reduced the dataset to only
two parameters containing above 95% of the variance of the original dataset and was well
suited for clustering. Upon introducing the energy of the waveforms to the dataset, all
waveforms not having energies corresponding to the expected decays were filtered out.

The time difference compared to a reference detector was also added to the dataset, and
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the distribution of this parameter observed through the lens of the clusters found prior.
It was found that there was a strong correlation between cluster number, effectively mean
value of the first principal component of the cluster, and dT. This lead to a "splitting" of
the histogram, with the clusters forming approximately normal distributions with differ-
ing means. This effect was more drastic for higher delay values in the data preprocessing
algorithm. These results are significant, as they allow for more precise corrections the
waveforms; a correction could be determined for each cluster, resulting in the mean of all
the clusters coinciding. This would reduce the deviation of the dT distribution, serving
to improve the time resolution of HPGe detectors. This thesis makes no attempt at de-
termining or applying such corrections, but views this as a natural extension of the work
demonstrated. A more appealing extension is the treatment of the principal components
directly; it was determined that with increasing PC'1 values, dT stayed relatively constant
before increasing. By fitting a function to this trend, appropriate corrections can be deter-
mined that treat the waveforms continuously, bypassing the arbitrariness of the number
of clusters used and the issues this approach brings. In summary, this paper determined
a strong correlation between clusters determined through machine learning applied to
detector waveforms and the time difference between said detector and a reference detec-
tor with much better time resolution, and suggest approaches to use this correlation to
improve HPGe detector time resolution. Extensions to the work carried out are also put

forward that would serve to improve the results determined.
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