
 faculty of science and 

engineering 

 biomedical engineering 

 

 

Development of an intention detection system 

for the EduExo Pro exoskeleton 
 

 

 

 

Juan Fernández-Martos Fernández 

S4686004 

 

Engineering and Technology Institute Groningen, Discrete Technology and 

Production Automation 

 

15/04/2024 - 15/07/2024 

 

Bachelor’s project 

 

1st Examiner: Dr. Elisabeth Wilhelm, Assistant Professor Engineering and 

Technology Institute Groningen (ENTEG) 

 

2nd Examiner: Dr. Ir. Charissa Roossien, Bio-inspired MEMS and Biomedical 

Devices  

 

 

 

 



 

 

2 

Abstract 

Exoskeletons are tools used for movement amplification or medical rehabilitation. However, 

these exoskeletons try to understand what the user wants to do through an intent detection 

system. Most intention detection systems rely on residual muscle function, making them 

difficult to use for certain subgroups of patients who lack these abilities. The development 

of systems that do not rely on residual function would be beneficial for the users. For this 

purpose, an intention detection system was developed for a one-degree-of-freedom upper 

limb exoskeleton focused on users with muscle weakness.  Two MPU6050 sensors were 

used to determine the position of the head relative to the body. Two Grove-EMG sensors 

were used to perform vertical and horizontal electrooculography to detect the movement of 

the user's eyes. The sensors were connected to two Arduino Uno R3 boards and combined 

via Python. The developed algorithm was tested on a user without vision problems and in a 

static position. Obtaining an average accuracy of 56% in the detection of eye movement 

directions. However, being unable to compute the head and shoulder movement in the yaw 

axis, a limitation that compromises an essential function of the system. Further research 

focused on improving yaw axis motion measurement, the blinking detection capacity, and 

the detection of more complex eye movement patterns, might enhance the user experience. 
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1. Introduction 

Exoskeletons are crucial tools in both personal use and medical rehabilitation. They play a 

key role in restoring lost skills due to age or disabilities. Exoskeletons are used in a wide 

range of fields, such as neuromuscular impairment compensation (Carmeli et al., 2010), 

post-stroke rehabilitation (Kim & Deshpande, 2017), or force amplification in industrial 

environments (Nussbaum et al., 2018). These devices interact with the human body by 

amplifying force, assisting or replacing motor function (Gull et al., 2020). They generate a 

considerable amount of force to support, assist, or stop the patient's movements (Jarrassé 

et al., 2014). Most notably, these devices are designed to comprehend human movement 

intentions and execute them accordingly (Wang et al., 2023). 

Exoskeletons are classified according to their use: those designed for movement 

amplification and those dedicated to medical rehabilitation. Exoskeletons intended for 

medical rehabilitation are generally mounted on a mobile or stationary platform that cannot 

be operated by the user alone or can only be used in controlled environments. They help 

patients suffering from amyotrophic lateral sclerosis or post-stroke paralysis. Exoskeletons 

dedicated to assisting movement help to reduce the load or help patients with muscle 

weakness who have difficulty with daily activities (Gull et al., 2020). An example of an 

exoskeleton designed to assist movement is the EksoVest exoskeleton. This device reduces 

the load carried by the wearer and the spinal load by approximately 10%, particularly during 

overhead tasks such as drilling (Nussbaum et al., 2018). 

A crucial point when using an exoskeleton is how the user can initiate the desired movement. 

Intent can be obtained by assessing the interactions between the human and the 

exoskeleton. Human-robot interaction (HRI), which can be cognitive or physical, is how the 

exoskeleton interacts with the user and vice versa. Cognitive human-robot interaction-based 

systems (cHRI) often monitor the electrical signals the central nervous system uses to 

control the musculoskeletal system, using them as inputs to control the exoskeleton. The 

intention is identified before the movement occurs. The speed and/or force needed to assist 

the motion the user intends to carry out can be predicted by the algorithm. The motors of 

the exoskeleton can then provide the necessary torque to support the motion. On the other 

hand, physically human-robot interaction-based systems (pHRI) measure the force or 

change in position produced by the user's movement. The measured change in position or 

interaction forces is used as an input to the exoskeleton (Gull et al., 2020).  

This study aims to develop an intention detection system for the EduExo (Auxivo AG, n.d.) 

exoskeleton that does not rely on residual muscle function of the arm. Implementation of the 

developed algorithm in the device's control structure is beyond this report's scope. For this, 

two Arduino One R3 boards will be connected with two MPU6050 and two Grove-EMG 

sensors to determine the position of the shoulders and head and to perform vertical and 

horizontal electrooculography (EOG), respectively. The information obtained by the sensors 
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is sent to the computer by the boards through the USB-A ports. Once received, the data is 

processed with Python.  

 2. Problem analysis 

2.1 Market research 

Different sensors and systems are combined to detect the user's intent. Each exoskeleton 

uses its own combination. Some systems include tongue movement (Kim et al., 2013), 

speech (Simpson & Levine, 2002), or manual triggers (Gantenbein et al., 2022). The most 

common ways to detect intentions include the following strategies: 

Electromyography (EMG) detects signals generated during muscle activation and is used in 

more than 40% of exoskeletons. It is simple to use and obtain and can be applied in various 

ways, including sleeves and bands. However, it is not particularly resistant to changes in 

electrode position, sweating, or muscle fatigue (Gantenbein et al., 2022). sEMG signals are 

stochastic signals affected by various noise sources. Including noise generated from the 

movement of the electrodes and their cables, the crosstalk signal generated by interference 

from other muscles, and electromagnetic interference from power lines and radio 

transmission. EMG signals are user-dependent and change with time (Hameed et al., 2019).  

If the patient has some kind of neurological disorder, there may be alterations in motor 

neuron properties, resulting in muscle spasticity, weakness, and contracture. Paretic 

muscles can produce involuntary motor activity, such as spurious background spikes, 

making reading these signals and implementing any algorithm much more complicated 

(Hameed et al., 2019).  

Other systems include measuring mechanical muscle contraction by measuring changes in 

muscle stiffness patterns (FMG) or low-frequency vibrations of the muscle fibers (MMG). 

The operation and uses of force myography (FMG) are very similar to EMG. Both are simple 

to integrate but depend on the user's muscle health, muscle fatigue, and sensor placement. 

On the other hand, they are robust to moisture and resistant to electromagnetic noise 

(Gantenbein et al., 2022). 

It is also possible to detect the intention through the rotation of the joints. However, this 

system requires sufficient residual muscle function to work. Sensors such as inertial 

measurement units (IMUs) are used to detect residual limb movement. Similarly, the 

intention can be detected by measuring the isometric forces generated by the user on the 

exoskeleton because the desired motion is "constrained" by the exoskeleton structure 

(Gantenbein et al., 2022). 

Another intention detection technique that has advanced rapidly in recent years is Brain-

computer interfaces (BCIs). This technique allows patients with zero muscle control, such 
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as paralysis, to communicate and interact with the environment. However, 20% of the users 

are unable to use them because they cannot modulate their brain response correctly. BCIs 

require a very complex setup and extensive knowledge of the device. They also generate a 

large amount of fatigue since they need a lot of concentration, focus, and awareness to be 

able to respond to environmental stimuli (Mridha et al., 2021). Electroencephalography 

(EEG) is the least invasive version, using electrodes placed on the scalp to measure the 

electrical activity of the cerebral cortex. These systems have a limitation: only some things 

that are thought of are performed. This can create uncomfortable or dangerous situations 

for the user; a normally harmless thought, due to its non-execution, can be carried out by 

the device (Gantenbein et al., 2022). For example, during a fierce argument, the exoskeleton 

user has the idea of punching the other person. Usually, this thought is not expected to turn 

into action, but BCIs cannot distinguish between this thought and the decision to act, so they 

throw the punch directly (Rainey et al., 2020). When a vague intention activates a device, it 

may indicate that, from a neuroanatomical perspective, two signals were sufficiently similar 

to be interpreted as commands (Rainey et al., 2020). This makes it complex to apply in an 

exoskeleton as it must be able to differentiate between thoughts and actions. BCIs are 

usually used when there is no other option because the device can work as long as the brain 

is functioning. They allow the user to do simple tasks like typing or moving the computer 

cursor.  

Other intent detection strategies use eye movements. Eye movements play a fundamental 

role in motion planning, obtaining information about the object and its surroundings. Most 

neurological deficits affecting the upper limbs do not affect the eyes. Making this a viable 

method for a large population. The difficulty of this approach is knowing how to differentiate 

between when the user is simply looking around and when they are looking to initiate 

movement. For this reason, eye movement systems are often used in combination with other 

intention detection systems (Gantenbein et al., 2022). There are different methods available 

for tracking the eye. Video-oculography measures the position of the eye through corneal 

reflection (Gantenbein et al., 2022). Among the problems with this method are the high cost 

of the devices, low temporal resolution, and possible reduction of the range of motion of the 

head (Bamiou & Luxon, 2005). Electrooculography (EOG) measures the potential difference 

between the cornea and the retina with electrodes placed around the eye (Gantenbein et 

al., 2022). In other fields, electrooculography is sometimes used as a cheaper alternative 

with higher time resolution (Barea et al., 2002).  

2.2 Problem definition 

The EduExo Pro (Auxivo AG, n.d.) exoskeleton by AUXIVO covers the shoulder and elbow 

with 2 degrees of freedom at the shoulder, allowing internal/external rotation and shoulder 

flexion/extension but blocking shoulder abduction/adduction and 1 degree of freedom in 

the elbow actively supporting forearm extension/flexion. However, supination/pronation is 

also possible (Auxvivo AG, 2022). The EduExo Pro exoskeleton features a force sensor in 
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the lower arm, an angle sensor in the elbow joint, and an EMG sensor to measure muscle 

activity. 

 

Image 1. EduExo Pro exoskeleton (Auxivo AG, n.d.) 

Due to time constraints, the scope of this research is limited. Therefore, it has been decided 

to focus the research on the intention detection system and design a system that could be 

combined with the existing exoskeleton in the future. The design must transmit the 

commands corresponding to the detected intent but not execute the movements. The 

system is intended to be used in a static or nearly static position without sudden movement. 

The objective is to find the combination of sensors that can be added to the existing 

exoskeleton to detect the user's intentions. For the purpose of this study, it is assumed that 

the user has limited upper arm and forearm muscle control, thus ruling out the use of the 

EMG provided. The use of force sensors is also ruled out for similar reasons. Suppose the 

user tries to pick up a heavy object. In that case, the sensor will detect the force generated 

by this weight, which the user's arm cannot compensate for due to muscle weakness, and 

move to accompany this force, reacting in the opposite direction to that required to lift the 

weight. 

3. Design 

3.1 Inertial measurement units (IMUs) 

Normally, we make movements with the upper limbs where the head is not involved, 

movements where haptic perception is essential. These movements require great precision 

to modify the position millimetrically. The user does not have normal use of the arm and the 
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exoskeleton does not have the level of precision required when combined with the user's 

arm, so certain functions are limited, and different alternatives need to be explored to 

alleviate these problems. 

For this purpose, it was decided that all movements require the head. The head must face 

the side where the exoskeleton is located to be able to use it, partly substituting the lack of 

touch-based precision with sight. This works as a safety measure to prevent unintentional 

use of the device when performing other actions, such as moving the opposite arm. 

For this purpose, two IMUs (MPU6050) were placed on the back and head, as shown in 

Figure 2b, to know the head's relative position and where the user is looking. The IMU placed 

on the back will also be considered to determine if the user wants to start the movement. In 

case of a forward movement with the shoulder, the arm will be moved forward. The sensors 

were connected to an Arduino one R3 board following the schematic in Figure 2a. For the 

sensor on the back (Sensor 1), the 3.3V port is connected to the AD0 pin to change the write 

address of the sensor from 0x68 to 0x69, allowing the use of two sensors at the same time. 

Then, both sensors sensitivity were set to ±251 º/s and ±2g for the gyroscope and 

accelerometer, respectively.  

 
Figure 2: a) Arduino circuit adapted from (Autodesk, 2011) b) sensor placement. 

The accelerometer uses the inertia of a mass, which accelerates slower than the 

surroundings. When the sensor is moved, this causes a small delay in the displacement of 

the bigger mass compared to the smaller mass. Most often, a capacitive sensor is used to 

detect this small displacement. Due to gravity, we constantly see 1 g in the axis that points 

towards the center of the earth. Through the measurements, it is possible to know the 
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rotation in the axes X (roll) and Y (pitch), but not being able to know the rotation in the Z axis 

(yaw), because gravity is so large that small accelerations are lost in a quantization error. A 

representation of the angles in the human body is shown in Figure 3. 

To complement the accelerometer, it is possible to use the gyroscope, which measures the 

angular acceleration on each axis. The angle can be obtained by integrating the angular 

velocity obtained from the gyroscope as a function of time. In order to set the initial values 

of the angle, the sensors must be calibrated before starting. The problem with the gyroscope 

is that if a small error increases the measurement constantly, the error will affect the angle 

measurement more and more.  

 

Figure 3. Roll pitch and yaw equivalents in the human body (Arnold et al., 2019). 

Therefore, the most accurate way to know the angle through the MPU6050 is to combine 

the information from the gyroscope and the accelerometer. To calibrate the sensors, they 

were left still in the same position, and the values were measured 200 times in succession. 

The average of these values was then used as the offset error in each of the axes. The 

Arduino code can be found in Appendix 1. 

Formulas 1 and 2 were used to calculate the angle with the accelerometer. The orientation 

of the device was calculated through a sequence of rotations. 

(1)    𝐴𝑅𝑜𝑙𝑙 =  𝑎𝑡𝑎𝑛
𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ

√𝐴𝑐𝑐𝑅𝑜𝑙𝑙2 + 𝐴𝑐𝑐𝑌𝑎𝑤2
∗ 180/𝜋 
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(2)    𝐴𝑃𝑖𝑡𝑐ℎ =  𝑎𝑡𝑎𝑛
−𝐴𝑐𝑐𝑅𝑜𝑙𝑙

√𝐴𝑐𝑐𝑃𝑖𝑡𝑐ℎ2 + 𝐴𝑐𝑐𝑌𝑎𝑤2
∗ 180/𝜋 

To calculate the angle with the gyroscope, the value obtained is integrated over the time 

between measurements. This is added to the previous values, obtaining the current value 

(equations 3, 4, and 5). 

(3) 𝐺𝑅𝑜𝑙𝑙 =  𝐺𝑅𝑜𝑙𝑙 +  𝐺𝑦𝑟𝑜𝑅𝑜𝑙𝑙 ∗  𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒 

(4) 𝐺𝑃𝑖𝑡𝑐ℎ =  𝐺𝑃𝑖𝑡𝑐ℎ +  𝐺𝑦𝑟𝑜𝑃𝑖𝑡𝑐ℎ ∗  𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒 

(5) 𝑌𝑎𝑤 =  𝑌𝑎𝑤 +  𝐺𝑦𝑟𝑜𝑌𝑎𝑤 ∗  𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒 

Roll and pitch combine 96% weighting to the gyroscope and 4% weighting to the 

accelerometer with respect to the angle, as shown in equations 6 and 7.  

(6) 𝑅𝑜𝑙𝑙 =  0.96 ∗  𝐺𝑅𝑜𝑙𝑙 +  0.04 ∗  𝐴𝑅𝑜𝑙𝑙 

(7) 𝑃𝑖𝑡𝑐ℎ =  0.96 ∗  𝐺𝑃𝑖𝑡𝑐ℎ +  0.04 ∗  𝐴𝑃𝑖𝑡𝑐ℎ 

A Kalman filter was used to solve the drift problem. This uses the accelerometer 

measurements, which are very noisy but not affected by drift, to predict the real gyroscope 

input (Franklin, 2020). This filter gives very accurate measurements but can only be applied 

on the axis where the accelerometer provides usable data. 

As an alternative method, it was attempted to use the Digital Motion Processor (DMP) of the 

MPU6050 to obtain the characteristic quaternions of each angle. The DMP reduces the load 

that would usually be placed on the microprocessor by combining information from the 

gyroscope and accelerometer to obtain a quaternion that represents the orientation of the 

sensor (White, 2019). Quaternions are a more efficient way of expressing the rotation of a 

body than Euler angles because they do not have the gimbal lock problem, which can lead 

to a singularity that causes the robot to crash. Quaternions express any rotation or sequence 

of rigid body rotations around a fixed point as a single rotation of an angle θ around a 

particular axis (Nelli, 2020). The quaternion is then converted to yaw pitch roll angles. Once 

the data is converted, the results obtained are sent via serial communication with the 

computer. For all this, the MPU6050_6Axis_MotionApps12 library was used. The Arduino 

code can be found in Appendix 2. 

In order to know the rotation of the head with respect to the body, the average of the last 10 

measurements of the yaw angle of the body is subtracted from the average of the head 

angle. This way, the impact of sensor errors is reduced. If a value differs greatly from the 

previous one, it will not have a big effect. Only when the angle is maintained, the difference 
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is seen. If the difference in angle is between 10 and 90 degrees, in the robotic arm quadrant, 

it is possible to start the movement.  

While the head is in the correct quadrant, it is calculated if the body's position has changed 

rapidly. For this, the average of the last five values and the previous five values is calculated, 

and then the difference between them is calculated. If the difference is greater than 10 

degrees, it is considered that the forward motion is fast enough to initiate the movement. 

The arm would then move forward.  

3.2 Electrooculography (EOG) 

Once the movement has been initiated, it is necessary to be able to direct the arm to the 

proper position. For this, the measurements collected by an EOG were used, with Skintact® 

Silver–Silver Chloride electrodes positioned as shown in Figure 4a. For this purpose, a 

similar setup to the one proposed by (Barea et al., 2002) to manage wheelchairs was used. 

This system allows the user to control the direction of the arm by looking at the different 

directions, using a double blink to stop the arm's movement. In addition, this system allows 

the user to choose the depth to which the arm reaches. Once the movement has started 

and the arm has been thrown forward, the double blink determines when it stops. If the target 

has not been reached, the user can repeat the initial trigger with the shoulder, and the arm 

will continue moving forward. This method creates a two-dimensional control with the eyes 

and a depth control with the shoulders.  

Two Grove-EMG Detectors (Huang, 2023) were used to carry out the EOG. They were 

connected to an Arduino Uno R3 board following the schematics shown in Figure 4b. EMG, 

EKG, and EOG all measure biopotentials, the only differences being the strength and 

frequency of the signal. These biopotentials can be measured with the same sensor as long 

as the device is capable of measuring the amplitudes and frequencies characteristic of each 

signal (Thakor, 2014). The theoretical amplitude of the EOG ranges from 0.01 to 0.1 mV, 

although the measurements obtained are closer to a max of 0.35 mV. The maximum voltage 

of the Grove EMG sensor is 3.3V. So, it is suitable for an EOG. 

Different studies point out that information is no longer relevant above 10 Hz (Thakor, 2014) 

(Banerjee et al., 2014). In order to improve the received signal, low-pass filters were used 

at 8.7 Hz (R = 470 Ω, C = 39 µF) and 10,3 Hz (R = 470 Ω, C = 33 µF) for the horizontal and 

vertical channels, respectively. The cutoff frequency was calculated with formula 8. A 10 Hz 

filter in both channels was not possible due to a lack of materials in the laboratory, so a 

solution as close as possible was sought. Although the filter of the vertical channel is below 

10Hz, no problems have been encountered when measuring the signal. 

(8) 𝑓𝑐 =  
1

2𝜋𝑅𝐶
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Figure 4. a) Electrode positioning (adapted from (Barea et al., 2002)) b) Arduino circuit (adapted from 

(Autodesk, 2011)) 

The PyFirmata library was used to read the information from the Grove sensors. It allows 

Python to control the Arduino board. Python version 3.9 was used because the PyFirmata 

library is incompatible with the latest version (3.12). In Python, the information provided by 

the sensors on the analog ports is read and stored by channels (Horizontal and Vertical).  

Then, the 150 values following the first 50, which are discarded because the sensors take 

time to start and return null values, are taken at a standstill position, looking at the center. 

These are then averaged and subtracted from all other values. In this way, the drift that the 

devices can accumulate each time the measurement is started is eliminated.  

The objective is to be able to detect five different movements: up, down, right, left, and 

blinking. Thresholds are then used to differentiate the movements (Lv et al., 2009). Several 

tests were carried out to determine these thresholds. In these tests, it was found that looking 

right-left or up-down are opposite movements. Looking to the right or up causes first a 

negative and then a positive polarization. Looking to the left or down causes the opposite 

effect. Blinking has a similar effect as looking up but faster and more negative. To know if 

one of these events is occurring, a value 100 values prior to the last value taken is chosen 

(n), and it is checked if any values in the range of the following m meet the criteria of the 

initial peak for each movement, Table 1 and 2 show the ranges and thresholds. Then, it is 

checked if any of the following q values coincide with the next peak. In case one of the 

events is detected, the search for further events is stopped, and the command for the 
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triggered event is sent. It is then that the search for the double-blink starts. The same 

procedure is followed, with the difference that finding two events in a row is necessary. When 

this is detected, the signal is sent, and the event search is reactivated. The Python code can 

be found in Appendix 3. 

Each time the measurement is started, it is necessary to slightly modify the thresholds 

because the slightest differences in the electrode positions can change the measurement. 

  Range of 
comprobation 

 Range of 
comprobation 

Threshold 
order 

Negative peak Positive peak 

Right  n > - 0.020 [n: n + 75] n > 0.03 [n + 25: n + 100] 

Threshold 
order 

Positive peak Negative peak 

Left 0.025 > n > 

0.010 

[n: n + 25] n < - 0.026 [n + 25: n + 50] 

Table 1. Horizontal channel thresholds and range 

 

  Range of 
comprobation 

 Range of 
comprobation 

Threshold 
order 

Negative peak Positive peak 

Up - 0.025 > n > -
0.04 

[n: n + 75] n > 0.025 [n + 25: n + 100] 

Threshold 
order 

Positive peak Negative peak 

Down 0.05 > n > 0.01 [n: n + 25] -0.04 < n < -0.016 [n + 25: n + 50] 

Threshold 
order 

Negative peak Positive peak 

Blink n < -0.030 [n: n + 25] 0.025 > n > 0.01 [n + 25: n + 75] 

Table 2. Vertical channel thresholds and range 
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4. Results 

4.1 Inertial Measurement Units (IMUs) 

After calibrating the sensors, the following errors were obtained, which are subtracted from 

each of the values obtained. These values are calculated each time the measurement is 

started. The values in Table 3 show the errors calculated during one of the measurements. 

Sensor Accelerometer 
Error X 

Accelerometer 
Error Y 

Gyroscope 
Error X 

Gyroscope 
Error Y 

Gyroscope 
Error Z 

1 0.56 -3.62 0.09 -5.37 1.05 

2 0.40 -2.62 -1.17 1.44 0.96 

Table 3. Error calculation 

The calculated angles increased non-stop as if the sensor was spinning. When the Kalman 

filter was applied, the roll and pitch angles remained stable, but the yaw angle had the same 

problem, as it is not calculable through this filter. 

First, the two sensors were placed in parallel, one in front of the other, so that the angle 

between them was 0º, as shown in Figure 5a. The program was started, and the difference 

between the two yaw angles was recorded. Then, the process was repeated with one sensor 

at 90 degrees to the other, as shown in Figure 5b. In both cases, the results obtained were 

totally random. The obtained difference kept jumping between -55 and 35 when the angle 

was 0º and between -45 and 25 when the angle was 90º. There was never a moment when 

the values remained stable. During the measurements, the sensors were as still as possible, 

but they were carried out on a table without any vibration isolation. Additionally, one of the 

sensors was rotated 360º to detect when the angle was between 10º and 90º. At no time did 

the sensors give values close to these angles. 
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Figure 5. a) Sensor placement at 0º and b) 90º. 

4.2 Electrooculography (EOG) 

To set the thresholds, patterns were recorded on both channels. First, in the horizontal 

channel, the pattern right, right, left, left, and in the vertical channel, up, up, down, down, 

blink, blink, were repeated twice each. Then, the patterns were combined by looking right, 

left, up, down, blink. Each of the channels was analyzed, and the last patterns were 

represented, as shown in Figures 6 and 7.  

Figure 6. Horizontal channel readings + movement detection 
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Figure 7. Vertical channel readings + movement detection 

 

Once it was verified that it was able to detect the movements, each movement was repeated 

ten times and recorded whether the result was obtained on the first or second attempt to 

make the move. The result was recorded in Table 4. To be considered as movement, the 

user needs to look in the intended direction and immediately look back to the center.  

Movement First try Second try No response 

Right 9 0 1 

Left 7 2 1 

Up 9 1 0 

Down 2 5 3 

Blink 2 0 8 

Table 4. Movement detection results 

5. Discussion 

The MPU6050 sensors are not accurate at measuring the yaw angle. The results are neither 

accurate nor precise, which compromises this design's fundamental function. To solve this 

problem, the MPUs could be combined with a magnetometer or a sensor that includes it, 

obtaining 9 DOF and more accurate and precise long-term readings of all the angles. Other 

methods include using only the gyroscope for the yaw angle calculation, subtracting the 

average drift, assuming that the drift remains constant (Borowska-Terka & Strumiłło, 2023). 
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The EOG gives good results for right, left, and up movements. 90% of the movements to the 

right were correctly recorded, while only 70% of the movements to the left were recorded. 

This may be due to the fact that, as shown in Figure 7, these movements are weaker. This 

may be due to the right eye being dominant, meaning that the right eye is used more, has 

better vision, or fixes the view better. However, it is not able to detect the down and blink 

movements, as it only detects them 20% of the time. The objective was to use the blinking 

as a stopping mechanism. This low detection capacity makes its combination with the 

exoskeleton dangerous because if the movement is not stopped, it can harm the user. 

On the other hand, all upward movements were detected, unlike the downward movements, 

which were hardly registered. This may be because upward movements are easier to make. 

After all the tests, eye pain was reported, especially when looking down. However, the 

studies suggest that there is a greater range of downward movement compared to upward 

movement, approximately 20º. Which could explain results contrary to those obtained (Lee 

et al., 2019). The more movement, the greater the potential difference. One possible 

explanation for these measurements is the positioning of the ground electrode, which, 

although standard, is placed high in the middle of the forehead. It may be that these 

differences are influenced by the proximity of the electrode to the vertical axis of the eyes. 

The blink recognition failure may be due to the fact that not all blinks are the same. It is very 

complicated to always blink the same way. A blink usually lasts between 0.1 and 0.4 seconds 

(Chudler, n.d.). The force with which the eyes are closed also modifies the measurement. 

When you try to blink on purpose, it is more complicated to control the force because it is 

not automatic. It may be possible to regulate the response depending on the force. However, 

further research is needed to learn more about this relationship. 

The system proposed by (Wu et al., 2013) has a 100% accuracy in 10 different movements, 

including up-down, right-left, and combinations of both channels, plus clockwise and 

counterclockwise eye movements. This system uses the slope of the maximum and 

minimum voltage peaks to differentiate the movements. They show that the movements are 

sufficiently different from each other to be able to always identify them. However, for its use, 

the user needs to stand 1.05 meters away from the wall and follow the target paths, so it still 

needs to be refined to be used in more specific contexts, such as virtual keyboards or the 

control of a wheelchair. 

Two different approaches are proposed to improve the EOG.  Improving the received signal 

or improving the signal processing. To improve the received signals, the first thing that can 

be done is to incorporate at least an amplifier between each sensor and the Arduino board. 

It is also possible to include more filters to improve the signal quality. Currently, only a low-

pass filter is used. Among the options could be to increase the order of this filter to make it 

more accurate. Incorporating a high-pass filter near 0.15 Hz to decrease the signal noise 

could also be an option.  
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From the signal processing point of view, using variable thresholds to convert the signal to 

high or low can help simplify the detection of movements. Right now, the system can only 

detect quick movements to the sides. More complex mechanisms to know the angle at which 

the user is looking can allow more complex algorithms that depend not only on the direction 

but also on the angle. Knowing where the subject is looking permits faster and more precise 

control. For example, creating a gradient of commands that allows speed control. With this 

improved system, even patterns or combinations of the vertical and horizontal channels 

could also be introduced, and the corners of the visual field could be used as extra 

commands. 

In terms of design, more comfortable alternatives should be considered. Right now, the 

electrode cables fall on the user's face and are not excessively comfortable. Among the 

options proposed is a system similar to the one proposed by (Ryu et al., 2019) that makes 

it easier to wear with glasses, in case the user needs them, or similar to the EOG forehead 

proposed by (Heo et al., 2017), which locates the system on a band of cloth placed on the 

forehead. 

It is also important to keep in mind that the measured potential changes with the intensity of 

the surrounding light and the dilation of the pupil. The more light, the higher the potential 

(Denney & Denney, 1984). Furthermore, the system has only been tested on one person, 

so the thresholds may not work for other subjects. This is why the system should be tested 

on a larger number of users and even on users with eye problems. Also, the range of motion 

is affected by age. The most affected movement is looking upward, being approximately 33º 

at ten years of age and 16º at 90 years of age. Looking down, left and right vary little with 

age. Right and left are similarly reduced by 5° throughout life. The depression angle slightly 

increases with age (Lee et al., 2019). This may make the thresholds ineffective in people of 

different ages, thus requiring further research on the effect of age on the measured potential. 

It is also important to note that this research has been carried out during the spring. Pollen 

allergy causes inflammation in the eyes that can affect the eyes and the measurements. 

Also, the electrodes are intended to be used in the next seven days after the bag is opened. 

When the research started, the bag was already open.  

At the end of the research, it was realized that the Pyfirmata library was unnecessary. 

Initially, it was intended to be used to help control the MPUs simultaneously with the EOG. 

In the end, the MPUs were used independently, so there was no need for the Pyfirmata 

library. By the time this conclusion was reached, the research was well underway, and it 

was decided that there was not enough time to start again. This may have affected the 

frequency at which EOG is measured. Although an attempt was made to use a frequency of 

156 Hz, during the measurements, it was found that the ADC failed to sample that fast, as 

it was approximately five times lower. Nevertheless, the measurements are still analyzable 

and allow conclusions to be drawn. 
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6. Conclusion 

The suggested system can detect the user's intention with an overall accuracy of 58% for 

the EOG, but it fails to know the relationship between the head's and body's position. 

Although that does not satisfy the needs of Exoskeleton users, it could be promising if the 

problems with the MPUs were fixed and the blinking detection capacity was improved. 

Future research should test whether the results can be replicated with other users and 

connect this algorithm to the low-level control that steers the Exoskeleton motors. 
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8. Appendix 

8.1 MPU6050 Arduino Gyroscope + Accelerometer 

 

#include <Wire.h> 

const int MPU_addrs[] = { 0x68, 0x69 }; 

 

float AcX[2], AcY[2], AcZ[2], Tmp[2], GX[2], GY[2], GZ[2]; // definition of variables 

float roll[2], pitch[2], yaw[2]; 

float AccErrorX[2], AccErrorY[2], GyroErrorX[2], GyroErrorY[2], GyroErrorZ[2]; 

float elapsedTime[2], currentTime[2], previousTime[2]; 

float accAngleX[2],  accAngleY[2], accAngleZ[2], gyroAngleX[2], gyroAngleY[2], 

gyroAngleZ[2]; 

 

void setup(){ 

 

  Serial.begin(19200); 

  for(byte b=0; b<2; b++) 

  { 

    Wire.begin(); 

    Wire.beginTransmission(MPU_addrs[b]); 

    Wire.write(0x1A);  //Switch on low pass filter (10Hz) 

    Wire.write(0x05);      

    Wire.endTransmission(true); 

     

    Wire.beginTransmission(MPU_addrs[b]); 

    Wire.write(0x6B);  // PWR_MGMT_1 register 

    Wire.write(0);     // set to zero (wakes up the MPU-6050) 

    Wire.endTransmission(true); 

    Wire.beginTransmission(MPU_addrs[b]); 

    Wire.write(0x1B);                     //Accessing the register 1B - Gyroscope Configuration 

(Sec. 4.4) 

    Wire.write(0x00000000);  

    Wire.endTransmission(true); 

    Wire.beginTransmission(MPU_addrs[b]); 

    Wire.write(0x1C);                     //Accessing the register 1C - Acccelerometer 

Configuration (Sec. 4.5) 

    Wire.write(0b00000000);             //Setting the accel to +/- 2g 

    Wire.endTransmission(true);           

                                    

  } 
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  calculate_IMU_error(); 

} 

 

void loop() 

{ 

  for(byte b=0; b<2; b++) 

  { 

    Wire.beginTransmission(MPU_addrs[b]); 

    Wire.write(0x3B);  // starting with register 0x3B (ACCEL_XOUT_H) 

    Wire.endTransmission(true); 

    Wire.requestFrom(MPU_addrs[b],8); 

    Wire.requestFrom(MPU_addrs[b], 8, true); // request a total of 8 registers 

    AcX[b] = Wire.read() << 8 | Wire.read()/ 16384; // 0x3B (ACCEL_XOUT_H) & 0x3C 

(ACCEL_XOUT_L) 

    AcY[b] = Wire.read() << 8 | Wire.read()/ 16384; // 0x3D (ACCEL_YOUT_H) & 0x3E 

(ACCEL_YOUT_L) 

    AcZ[b] = Wire.read() << 8 | Wire.read()/ 16384; // 0x3F (ACCEL_ZOUT_H) & 0x40 

(ACCEL_ZOUT_L) 

    Tmp[b] = Wire.read() << 8 | Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 

(TEMP_OUT_L) 

 

    Wire.beginTransmission(MPU_addrs[b]); 

    Wire.write(0x43); 

    Wire.endTransmission(true); 

    Wire.requestFrom(MPU_addrs[b],6); 

    GX[b] = Wire.read() << 8 | Wire.read()/ 131;  

    GY[b] = Wire.read() << 8 | Wire.read()/ 131;  

    GZ[b] = Wire.read() << 8 | Wire.read()/ 131;  

 

// Correct the outputs with the calculated error values 

    accAngleX[b] = (atan(AcY[b] / sqrt(pow(AcX[b], 2) + pow(AcZ[b], 2))) * 180 / PI) ;  

    accAngleY[b] = (atan(-1 * AcX[b] / sqrt(pow(AcY[b], 2) + pow(AcZ[b], 2))) * 180 / PI); 

 

    previousTime[b] = currentTime[b];        // Previous time is stored before the actual time 

read 

    currentTime[b] = millis();            // Current time actual time read 

    elapsedTime[b] = (currentTime[b] - previousTime[b]) / 1000; // Divide by 1000 to get 

seconds 

 

    GX[b] = GX[b] - GyroErrorX[b]; // GyroErrorX  

    GY[b] = GY[b] - GyroErrorY[b]; // GyroErrorY 

    GZ[b] = GZ[b] - GyroErrorZ[b]; // GyroErrorZ 
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    // Currently the raw values are in degrees per seconds, deg/s, so we need to multiply by 

seconds (s) to get the angle in degrees 

    gyroAngleX[b] = gyroAngleX[b] + GX[b] * elapsedTime[b]; // deg/s * s = deg 

    gyroAngleY[b] = gyroAngleY[b] + GY[b] * elapsedTime[b]; 

    yaw[b] =  yaw[b] + GZ[b] * elapsedTime[b]; 

 

    // Complementary filter - combine acceleromter and gyro angle values 

    roll[b] = 0.96 * gyroAngleX[b] + 0.04 * accAngleX[b]; 

    pitch[b] = 0.96 * gyroAngleY[b] + 0.04 * accAngleY[b]; 

 

    Serial.print(b+1); 

    Serial.print(" "); 

    Serial.print(roll[b]); 

    Serial.print(" "); 

    Serial.print(pitch[b]); 

    Serial.print(" "); 

    Serial.print(yaw[b]); 

    Serial.println(" "); 

 

     

  } 

  //delay(100); 

} 

 

void calculate_IMU_error() { 

  // Calculate error - IMU flat  

  // Read accelerometer values 200 times 

  for(byte b=0; b<2; b++) 

  { 

    //while (c < 200) { //No me gustan los while 

    for (int i = 0; i < 200; i++){ 

 

      Wire.beginTransmission(MPU_addrs[b]); 

      Wire.write(0x3B); 

      Wire.endTransmission(false); 

      Wire.requestFrom(MPU_addrs[b], 6, true); 

      AcX[b] = (Wire.read() << 8 | Wire.read()) / 16384.0 ; 

      AcY[b] = (Wire.read() << 8 | Wire.read()) / 16384.0 ; 

      AcZ[b] = (Wire.read() << 8 | Wire.read()) / 16384.0 ; 

      Wire.beginTransmission(MPU_addrs[b]); 

      Wire.write(0x43); 

      Wire.endTransmission(false); 
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      Wire.requestFrom(MPU_addrs[b], 6, true); 

      GX[b] = Wire.read() << 8 | Wire.read(); 

      GY[b] = Wire.read() << 8 | Wire.read(); 

      GZ[b] = Wire.read() << 8 | Wire.read(); 

 

      // Sum all readings 

      AccErrorX[b] = AccErrorX[b] + ((atan((AcY[b]) / sqrt(pow((AcX[b]), 2) + pow((AcZ[b]), 

2))) * 180 / PI)); 

      AccErrorY[b] = AccErrorY[b] + ((atan(-1 * (AcX[b]) / sqrt(pow((AcY[b]), 2) + 

pow((AcZ[b]), 2))) * 180 / PI)); 

      // Sum all readings 

      GyroErrorX[b] = GyroErrorX[b] + (GX[b] / 131.0); 

      GyroErrorY[b] = GyroErrorY[b] + (GY[b] / 131.0); 

      GyroErrorZ[b] = GyroErrorZ[b] + (GZ[b] / 131.0); 

       

    } 

    //Divide the sum by 200 to get the error value 

    AccErrorX[b] = AccErrorX[b] / 200; 

    AccErrorY[b] = AccErrorY[b] / 200; 

    //Divide the sum by 200 to get the error value 

    GyroErrorX[b] = GyroErrorX[b] / 200; 

    GyroErrorY[b] = GyroErrorY[b] / 200; 

    GyroErrorZ[b] = GyroErrorZ[b] / 200; 

 

   } 

} 

 

8.2 MPU6050 Arduino DMP Quaternions 

#include <Wire.h> 

#include "I2Cdev.h" 

#include "MPU6050_6Axis_MotionApps612.h" 

 

MPU6050 mpu1(0x68);  // MPU device 1 (AD0 low) 

MPU6050 mpu2(0x69);  // MPU device 2 (AD0 high) 

 

bool dmpReady1 = false, dmpReady2 = false; 

uint8_t mpuIntStatus1, mpuIntStatus2; 

uint16_t packetSize1, packetSize2; 

uint16_t fifoCount1, fifoCount2; 

uint8_t fifoBuffer1[64], fifoBuffer2[64]; 
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float yr, pr, rr, y, p, r; 

 

Quaternion q1, q2; 

VectorFloat gravity1, gravity2; 

float ypr1[3], ypr2[3]; 

 

void setup() { 

    Wire.begin(); 

    Serial.begin(38400); 

 

    mpu1.initialize(); 

    mpu2.initialize(); 

 

    Serial.println(mpu1.testConnection() ? "MPU1 connection successful" : "MPU1 

connection failed"); 

    Serial.println(mpu2.testConnection() ? "MPU2 connection successful" : "MPU2 

connection failed"); 

 

    uint8_t devStatus1 = mpu1.dmpInitialize(); 

    uint8_t devStatus2 = mpu2.dmpInitialize(); 

 

    if (devStatus1 == 0 && devStatus2 == 0) { 

        mpu1.setDMPEnabled(true); 

        mpu2.setDMPEnabled(true); 

        packetSize1 = mpu1.dmpGetFIFOPacketSize(); 

        packetSize2 = mpu2.dmpGetFIFOPacketSize(); 

        dmpReady1 = true; 

        dmpReady2 = true; 

    } else { 

        Serial.println("DMP Initialization failed."); 

    } 

} 

void loop() { 

    if (!dmpReady1 || !dmpReady2) return; 

 

    manageFIFO(mpu1, fifoCount1, packetSize1, fifoBuffer1, q1, gravity1, ypr1, "MPU1"); 

    manageFIFO(mpu2, fifoCount2, packetSize2, fifoBuffer2, q2, gravity2, ypr2, "MPU2"); 

     

    delay(100);  // Adjust delay based on your needs 

} 

 

void manageFIFO(MPU6050 &mpu, uint16_t &fifoCount, const uint16_t packetSize, 

uint8_t *fifoBuffer, Quaternion &q, VectorFloat &gravity, float *ypr, String label) { 



 

 

28 

    fifoCount = mpu.getFIFOCount(); 

 

    if (fifoCount < packetSize) return;  // Ensure we have enough data for a full packet 

 

    while (fifoCount >= packetSize) { 

        mpu.getFIFOBytes(fifoBuffer, packetSize); 

        fifoCount -= packetSize; 

    } 

 

    mpu.dmpGetQuaternion(&q, fifoBuffer); 

    mpu.dmpGetGravity(&gravity, &q); 

    mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); 

 

    Serial.print(label + ":"); 

 

    Serial.print(ypr[0] * 180/M_PI); 

    Serial.print(","); 

    Serial.print(ypr[1] * 180/M_PI); 

    Serial.print(","); 

    Serial.print(ypr[2] * 180/M_PI); 

    Serial.println(";");  

} 

 

8.3 EOG Python code 

import threading 

import pyfirmata  

import time  

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib.animation import FuncAnimation 

 

 

#setup initial values 

n = 100  # seconds of experiment 

freq = fs = 256  # frequency (timepoints per sec) 

aveV = 0 

aveH = 0 

#arduino setup 

port = 'COM3' 

board = pyfirmata.Arduino(port)  # Initialize the communication 

with the Arduino card 
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a1 = board.get_pin('a:1:o') 

a2 = board.get_pin('a:2:o') 

 

it = pyfirmata.util.Iterator(board) 

it.start() 

 

# Left right + Up down checking activated 

ON = True 

global detect 

detect = True 

dataV = [] 

dataH = [] 

 

global blink 

blink = False 

 

def EOG(): #EOG get data 

   print("starting") 

   global dataV 

   global dataH 

 

   for i in range(200): 

       valueH = a1.read() 

       valueV = a2.read() 

       dataH.append(valueH) 

       dataV.append(valueV) 

       time.sleep(5 / freq) 

   aveV = np.average(dataV[50:200:]) 

   aveH = np.average(dataH[50:200:]) 

   dataH = list(dataH[50::] - aveH) 

   dataV = list(dataV[50::] - aveV) 

 

   for i in range(n*freq): 

       valueH = a1.read() - aveH 

       valueV = a2.read() - aveV 

       dataH.append(valueH) 

       dataV.append(valueV) 

       time.sleep(5 / freq) 

 

   return dataV, dataH 

i = 1 

 

def detection(): 
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   global detect 

   print("LRUD started") 

   while ON == True: 

       if detect == True: 

           i = len(dataH) - 201 

           if (i > 0): 

               print("start") 

       while ((detect == True) and (i > 0)): 

           # print(len(dataH)-i) 

           print("") 

           if (((min(dataH[i + 25:i + 50]) < -0.026)) and (0.025 > 

max(dataH[i:i + 25]) > 0.010)): 

               detect = False 

               print("LEFT") 

 

           elif (((-0.020 > min(dataH[i:i + 75]))) and 

(max(dataH[i + 25:i + 100]) > 0.03)): 

               detect = False 

               print("RIGHT") 

 

           elif (((-0.025 > min(dataV[i:i + 75]) >-0.04)) and 

(max(dataV[i + 25:i + 100]) > 0.025)): 

               detect = False 

               print("UP") 

 

           elif (((-0.04 < min(dataV[i + 25:i + 50]) < -0.016)) 

and (0.05 > max(dataV[i:i + 25]) > 0.01)): 

               detect = False 

               print("DOWN") 

 

 

           elif (((min(dataV[i:i + 25]) < -0.030))and (0.025 

>max(dataV[i+25:i + 75]) > 0.01)): 

               detect = False 

               print("Blink") 

 

           if i < (len(dataH) - 100): 

               i += 50 

 

 


