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Abstract

This paper provides a comprehensive mathematical analysis of cosmic inflation, demon-
strating its effectiveness in addressing several fundamental puzzles in cosmology and its
robustness against current observational constraints. The thesis begins with an overview
of the Big Bang model and the Cosmic Microwave Background (CMB), supported by the
mathematical framework of the Friedmann-Robertson-Walker (FRW) metric and Fried-
mann equations. The paper then delves into the primary shortcomings of the Big Bang
model, such as the horizon, flatness, and monopole problems, and presents initial condi-
tions leading to their resolution through inflation. The theory of inflation is introduced,
focusing on the single-field slow-roll model based on the inflation field ϕ and its param-
eters, ϵ and η, to explore the model’s limitations. Cosmological perturbations δχk are
then introduced which are followed by quantum fluctuations of both massless and massive
generic scalar fields. With the derivation of the power spectrum Pδχ and spectral index
ns, we illustrate how inflation provides a robust framework for explaining the observed
large-scale structure and temperature anisotropies in the CMB. The paper concludes by
affirming the success of the inflationary paradigm in solving the major issues of the Big
Bang model and suggesting avenues for further research to refine and test the predictions
of inflationary models.
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1 Introduction
The Hot Big Bang model, first proposed by Georges Lemaître in 1927, is currently the most
widely accepted theory describing the early universe [1]. This model traces the universe back
to an incredibly dense and hot initial state. From this primordial condition, the universe ex-
panded and cooled, eventually evolving into the complex cosmos we observe today. While
the Big Bang model successfully predicted phenomena such as the existence of the Cosmic Mi-
crowave Background (CMB), it also introduced several significant problems requiring resolution.

One of the most profound solutions to these issues is the theory of inflation. Proposed by Alan
Guth in 1981, inflation posits a period of extremely rapid exponential expansion in the early
universe, solving the horizon and flatness problems that the Big Bang model alone could not
address [2]. Inflation, by predicting a period of accelerated expansion, not only addresses the
classical problems of cosmology but also provides a framework for understanding the quantum
fluctuations that give rise to the large-scale structure of the universe. These fluctuations are
the seeds for galaxy formation and are observable in the anisotropies of the CMB. In this the-
sis, we will delve into the mathematics of inflationary cosmology, and provide solutions to the
problems of the Big Bang model.

We start with a comprehensive review of the standard cosmology, focusing on the Friedmann-
Robertson-Walker (FRW) metric and Friedmann equations. We then introduce the problems
that arise with the Big Bang theory such as the horizon, monopole, and flatness issues. To solve
these problems, we then introduce specific conditions which leads to the inflationary theory. We
look at the slow-roll model of inflation, which simplifies the inflationary process using specific
parameters. A significant part of this thesis is the study of quantum fluctuations in scalar fields
during inflation. There, we delve deeper into the mathematical analysis for both the massless
and massive case using Mathematica. We then find an expression for the power spectrum and
derive the spectral index, creating a framework to compare our predictions with observational
constraints, such as that from the Wilkinson Microwave Anisotropy Probe (WMAP) and the
CMB.
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2 The Big Bang Model

According to the Big Bang theory, the universe started out incredibly hot and dense and has
subsequently expanded and cooled [1]. General Relativity (GR), which was developed by Al-
bert Einstein in 1915 and defines gravity as the bending of spacetime brought about by mass
and energy, is the foundation of this paradigm. To describe the universe within this framework,
a metric is needed to represent the geometric and causal structure of spacetime. In the 1920s
and 1930s, Alexander Friedmann, Howard Robertson, Arthur Walker, and Georges Lemaître
independently discovered a metric for an expanding, isotropic, and homogeneous universe [3].
This metric is based on the cosmological principle, which postulates that the universe is ho-
mogenous and isotropic on large-scales. When it is inserted into Einstein’s field equations under
the assumption of the universe behaving like a perfect fluid, leads to the Friedmann equations
governing the universe’s expansion.

The first observational evidence for an expanding universe came from Edwin Hubble in 1929,
who discovered that distant galaxies are moving away from us at speeds proportional to their
distance:

v = H0d

where v is the velocity of a receding galaxy, d is the distance to the galaxy, and H0 is Hubble’s
constant [4]. When distance is measured in meters and velocity in meters per second, Hubble’s
constant is about 2.3 × 10−18 s−1. This relationship implies that the further a galaxy is from
Earth, the faster it is moving away.

Figure 1: Velocity-Distance Relation among Extra-Galactic Nebulae. Observation of the expan-
sion of the universe as presented in the original publication by Hubble [4].

Hubble’s Law indicates that the universe is expanding in all directions. This supports the Big
Bang theory, which posits that all matter in the universe originated from a single point. Most
galaxies are moving away from us, showing redshift, while a few are moving toward us, showing
blueshift. This redshift provides strong evidence for an expanding universe.
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The Big Bang theory was gradually becoming more supported by the data over time. The
strongest evidence for this comes from the 1964 discovery of the Cosmic Microwave Back-
ground (CMB) radiation by Robert Wilson and Arno Penzias [5]. The remaining heat from the
early universe is represented by this faint glow of microwave radiation, which offers a glimpse
of the universe at the moment of photon decoupling, when it was just 380,000 years old. The
early universe was a dense, heated plasma in which free electrons regularly dispersed light.
Photons could move freely because of the neutral hydrogen formed when protons and electrons
combined during the universe’s expansion and cooling. The CMB, which has a constant tem-
perature throughout the sky and is presently visible as these photons, suggests that the early
universe was homogenous.

Figure 2: The European Space Agency (ESA) and Planck’s joint observations of the CMB
anisotropies [6]. The tiny temperature variations of areas with slightly differing densities are
shown by diverse hues, which stand for the seeds of all future structures, including today’s
galaxies and stars.

The Big Bang theory was also successful in explaining other key observations such as the relative
abundances of light elements (predicted by nucleosynthesis), the predicted age of the universe
and oldest known objects, and the formation of large-scale structures through gravitational
collapse. Despite its successes, the Big Bang model left some critical questions unanswered,
such as the horizon and flatness problems. These challenges led to the development of the
inflationary theory, which will be explored in subsequent sections. First, we will delve deeper
into the underlying physics of the Big Bang model itself.

2.1 The Friedmann-Robertson-Walker Universe

Our universe is roughly homogenous and isotropic on sizes larger than 100 Mpc, which is
consistent with the "cosmological principle" [7]. It claims that, at large scales, all comoving
observers see the universe as looking the same in every direction. The Einstein field equations,
which explain the relationship between matter and spacetime geometry as well as the universe’s
subsequent development, are made simpler by this idea. Here is an expression for the Einstein
field equations:
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Rµν −
1

2
gµνR = 8πGTµν − gµνΛ, (2.1)

where gµν is the spacetime metric, Rµν is the Ricci tensor, R is the Ricci scalar, Tµν is the
energy-momentum tensor for all fields present, and Λ is the cosmological constant. Assuming
an ansatz for the metric allows solving for the matter components. For simplicity, we consider
a single matter component, assuming it is a perfect fluid with an energy-momentum tensor:

T ν
µ = (ρ+ P )uµu

ν + Pδνµ = diag(−ρ, P, P, P ),

where uµ=(1, 0, 0, 0) is the fluid’s four-velocity, ρ its energy density, and P its pressure.
We can then find the trace of the metric:

T ν
µ = (−ρ+ 3P ) (2.2)

The spatial metric is homogeneous and isotropic and is described by:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
,

where k indicates the spatial curvature (−1, 0,+1) corresponding to the three-dimensional
hyperbolic surfaces with negative curvature, flat Euclidean surfaces with zero curvature, or
three-spheres with positive curvature. All distances in a flat spacetime are multiplied by the
scale factor a(t). Comoving observers, stationary at fixed coordinates (t, r, θ, ϕ), remain at rest
regardless of the universe’s expansion. We consider a flat universe for the calculations for the
reasons which will be explained later. Therefore, for a flat FRW metric, we have:

ds2 = −dt2 + a2(t)γijdx
idxj

where γij denotes the metric of a maximally symmetric 3-space restricted to flat spatial slices,
γij = δij. Defining dx2 ≡ δijdx

idxj with conformal time dτ = dt
a(t)

, we then can rewrite the
metric as:

ds2 = a2(τ)
(
−dτ 2 + dx2

)
(2.3)

It is worth noting that for an expanding universe da/dt > 0.

2.2 Friedmann Equations

The rate at which the universe’s scale factor increases is determined by its content, which is
described by its energy density (ρ) and pressure (p). The influence of these factors on the
expansion rate is revealed by applying the FRW metric to the Einstein equation, without con-
sidering the cosmological constant term that was initially introduced to achieve a static universe
solution. This application yields the Friedmann equations for a perfect fluid [1].

Let’s derive the Friedmann equations from the Einstein field equations that were introduced
before. Due to isotropy, we have only two independent components to consider: one of the
ij-components and the 00-component. The Christoffel symbols may be computed using a(t).
Remembering from [8] general relativity:
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Figure 3: Analogy to what is meant by closed, open and flat universe with the corresponding
curvature values k. Similar picture from NASA.

Γµ
νλ =

1

2
gµρ
(
∂gρν
∂xλ

+
∂gρλ
∂xν

− ∂gνλ
∂xρ

)
,

The non-zero connection coefficients associated with the metric (2.3) are:

Γ0
00 =

ȧ

a
, Γ0

ij =
ȧ

a
δij , Γi

0j =
ȧ

a
δij, (2.4)

and by inserting these into the Riemann curvature tensor:

Rλ
µνσ = ∂νΓ

λ
µσ − ∂σΓ

λ
µν + Γλ

νρΓ
ρ
µσ − Γλ

σρΓ
ρ
µν ,

we get:

R00 = −3
ä

a
, Rij =

(
ä

a
+ 2

ȧ2

a2

)
δij

leading to

a2R ≡ a2gµνRµν = −6(Ḣ +H2)

where H = ȧ
a

is defined to be the conformal Hubble parameter, describing the expansion of the
universe. Hence, the non-zero components of the Einstein field equation 2.1 are

−3
ä

a
= 8πG

(
ρ+

1

2
(−ρ+ 3P )

)
+ Λ =⇒ −3

ä

a
= 4πG(ρ+ 3P )− Λ,

and (
ä

a
+ 2

ȧ2 + k

a2

)
= 8πG

(
1

2
(ρ− 3P )

)
+ Λ.
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Using the 00-component to eliminate ä, we get:

ä

a
+ 2

ȧ2 + k

a2
= 4πG(ρ− P ) + Λ.

Combining this with the first equation, we can then solve for ȧ and ä:

H2 +
k

a2
=

8πGρ

3
+

Λ

3
(2.5)

which is the first Friedmann equation. The second Friedmann or acceleration equation can also
be derived similarly to give:

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(2.6)

Since we assume that the universe is homogenous and isotropic, the first two Friedmann equa-
tions can be rewritten as:

H2 =
8πGρ

3
− k

a2
,

ä

a
= −4πG

3
(ρ+ 3P ),

Lastly, we derive the continuity equation from the conservation law ∇µT
µν = 0:

∇µT
µ0 = ∂µT

µ0 + Γµ
µλT

λ0 + Γ0
µλT

µλ = 0.

For a perfect fluid, the non-zero components of the energy-momentum tensor in a comoving
frame are T 00 = ρ and T ij = Pgij. Therefore,

∇µT
µ0 = ∂0T

00 + ∂iT
i0 + Γµ

µ0T
00 + Γ0

µλT
µλ = 0.

Since ∂iT
i0 = 0 in a homogeneous universe and T 00 = ρ,

∂0ρ+ Γµ
µ0ρ+ Γ0

ijT
ij = 0.

Using the Christoffel symbols 2.4,

∂0ρ+ 3Hρ+H(ρ+ P ) = 0 ⇒ ρ̇+ 3H(ρ+ P ) = 0. (2.7)

We refer to this as the continuity equation. It guarantees energy conservation in a universe
that is expanding. We present an equation of state:

P = wρ (2.8)

where w is a constant that depends on the type of fluid. For a perfect fluid, we then have:

dρ

ρ
= −3(1 + ω)

da

a
⇒ ρ(a) = ρ0a

−3(1+ω) (2.9)

By substituting this relation into the first Friedmann equation 2.5 we get:

a(t) ∝ t
2

3(1+ω) (2.10)
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We assumed that in the early universe, the scale factor a(t) scales as a ∝ tn with n < 1, and
solving the conformal time τ = dt/a we find:

a(τ) ∝ τ
n

1−n

for matter- and radiation-dominated phases. It follows that:

• The energy-momentum tensor 2.2 for radiation, which includes all relativistic particles,
is traceless, implying that Pr = ρr/3 and thus ωr = 1/3. The energy density, which
scales proportionately to the inverse of the volume and has a size of ∝ a3, can be used to
compute this. Furthermore, it follows from 2.9 and 2.10 that ρr ∝ a−4 and a ∝ t1/2 hold
true if radiation dominates the universe.

• For non-relativistic matter (dust) or cold matter -including baryons, dark matter, and
neutrinos- we require ωm = 0 and thus ρm ∝ a−3. This is because the pressure of cosmic
matter is negligible Pm = 0, like at the present day. Therefore, if the universe is dominated
with matter, then a ∝ t2/3.

• Vacuum energy (cosmological constant) ρΛ ∝ constant with ωΛ = −1. This is an in-
dication of the energy density of the cosmological constant not decreasing due to the
expansion of the universe. From the first two Friedmann equations 2.5 and 2.6, one can
derive the relation a ∝ eHt which will be revisited in the following sections.

Assuming Ω = ρ/ρc where ρc = 3H2/8πG, we may define Ω as the ratio of energy density ρ to
critical density ρc. The first Friedmann equation, 2.5, can therefore be rewritten as follows:

Ω− 1 =
k

a2H2
,

such that the sign of k corresponds to different values of Ω:

k = +1 ⇒ Ω > 1 (closed)

k = 0 ⇒ Ω = 1 (flat)

k = −1 ⇒ Ω < 1 (open)

These relations hold at all times, with Ω and ρc varying over time. Early universe phases show
Ω− 1 scaling with a2 during radiation dominance and a during matter dominance, which will
be crucial in the following chapters studying the inflationary universe.
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3 Shortcomings of the Big Bang
While the Big Bang model provides a comprehensive framework for understanding the evolution
of the universe, several significant shortcomings arise if we assume the universe has always been
dominated by some form of matter with w ≥ 0 [2]. These assumptions lead to unusual initial
conditions that current physics struggles to explain. Typically, physics predicts the evolution
of a given initial state rather than providing a theory for the initial state itself. In cosmology,
the peculiar initial state required for the Big Bang model poses several puzzles if normal matter
has always dominated.

3.1 Horizon Problem

Despite the universe being extremely small in its early stages, rapid expansion prevented causal
contact across the entire universe. The horizon problem in cosmology arises due to the the fact
that CMB radiation has a uniform temperature across the entire sky. This is puzzling because,
according to the Big Bang model, regions of the universe separated by large distances should
not have been able to exchange information or energy due to the finite speed of light and the
finite age of the universe. This lack of causal connection suggests that these regions should not
have had the same temperature, yet observations show otherwise.

Figure 4: The events we observe are within the past light cone and the intersection of this light
cone with "recombination" marks the "surface of last scattering," shown by using the opposite
points on the sky, labeled p and q. Picture from [9]

Photons follow null geodesics, which for a radial route are dr = dt/a(t) and ds2 = 0. Because
space is uniform, we may assume r0 = 0 without losing generality [10]. Similar to great circles
that pass through a two-sphere’s poles are lines of constant longitude (θ), meaning dθ = dϕ = 0,
geodesics traveling through r = 0 are characterized by constant θ and ϕ. Space is isotropic,
which suggests that the direction (θ0, ϕ0) is not important. Consequently, at time t = 0, a light
signal coming from the coordinates (rH , θ0, ϕ0) will arrive at r0 = 0 at a time t specified by:

Rp(t) = a(t)

∫ t

0

dt′

a(t′)
= a(t)

∫ a

0

d(ln a′)

a′H(a′)
∝ H−1 (3.1)

This is the the particle horizon, the greatest length of time a light beam can travel from t = 0 to
t, marking the boundaries of a causal area. Particles separated by a distance greater than the
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Hubble radius H−1 could never have been in causal contact. This Hubble horizon, expressed
in comoving coordinates, is the maximum distance over which causal interactions can occur.
Thus, the comoving Hubble radius (aH)−1 determines the particle horizon Rp. As the universe
expands, physical lengths stretch, and scales inside the horizon today were outside the horizon
in the past.

Figure 5: Points p and q on this surface separated by more than 1◦ have never interacted
causally. Their past light cones do not overlap before the singularity. Picture from [9].

Imagine two CMB photons that were released during the last scattering and that are currently
being seen in the sky at an angle of separation. These photons have almost the same tempera-
ture even though they originate from causally separate places. The horizon problem is defined
by this disparity. The particle horizon at last scattering is calculated as:

Rp(tls) = H−1
ls ≈ Rp(t0)

(
T0

Tls

)3/2

where T0 and Tls are the temperatures of the universe now and at last scattering, respectively.
This results in a significant number of regions within our current horizon being causally discon-
nected at that time. Yet, observations of CMB indicate that these regions maintain remarkably
consistent temperatures. How can such precise uniformity occur without any information ex-
change to enable comparison?

3.2 Flatness Problem

Another significant issue in cosmology is the flatness problem. This problem emerges from the
dynamics described by the Friedmann equation 2.5 where after rearranging terms, we obtained
in the previous section:

(Ω− 1) =
k

a2H2

or equivalently,

|Ω− 1| = |k|
a2H2
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In various cosmological models, it is found that the factor a2H2 in the denominator scales with
time in a manner that reveals the evolution of the universe. Specifically, in models that have a
radiation or matter-dominated era, we see that:

a2H2 ∝ t−α

with α > 0. This scaling behavior implies that:

|Ω− 1| ∝ tα

Any small deviation from flatness (|Ω− 1| = 0) is amplified with time. This poses a significant
problem because our current observations indicate that the universe is approximately flat, with
|Ω− 1| < 0.005 [1]. The value of |Ω− 1| in the early universe has to be incredibly small—tens
of orders of magnitude smaller—for this to be the case today. This implies that the universe
must have been extremely flat as it came into existence.

The flatness problem can be better understood by considering specific epochs in the universe’s
history. During the radiation-dominated (RD) era (a ∝ t1/2), and the matter-dominated (MD)
era (a ∝ t2/3), the product a2H2 scales as a2H2 ∝ constant and a2H2 ∝ t−1, respectively. Thus,
during these epochs:

|Ω− 1| ∝ t (MD)

|Ω− 1| ∝ constant (RD)

We can trace this back to previous eras since the universe is now seen to be almost flat with
|Ω0 − 1| < 0.005. Based on these estimations, the universe has to have started off extremely
near to being flat, suggesting an implausibly precise fine-tuning of initial conditions.

3.3 Solving the Problems: Conditions

The particle horizon, which is again the maximum comoving distance at which light signals
can be received by an observer at time t, is given in 3.1. Early contributions dominate the
integral if (aH)−1 is considerable in the past. This implies that rather than current temporal
quantities like the Hubble scale, the true size of the particle horizon is dictated by circumstances
in the early universe. The horizon problem arises in conventional cosmology because late times
dominate the integral. To address these issues, we require a mechanism that can trigger an
accelerated expansion phase in the early universe. An era in which the comoving Hubble radius
(aH)−1 diminishes with time is a crucial requirement. For this, the universe must experience
an accelerated expansion:

d

dt

(
1

aH

)
< 0 =⇒ ä > 0

This implies that the physical wavelengths of perturbations become longer than the Hubble
radius H−1, effectively solving the horizon problem by allowing regions of the universe to come
into causal contact. The condition for accelerated expansion can also be expressed in terms of
the equation of state parameter w. From the continuity equation 2.7, we have:

ä = −a

2
(ρ+ 3p) = −aρ(1 + 3w)
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For ä > 0, it is required that:

w < −1

3

Thus, inflation necessitates a phase where the universe is dominated by an energy form with
w < −1/3 if ρ > 0. This ensures that the comoving Hubble radius decreases, allowing the uni-
verse to expand in such a way that previously causally disconnected regions come into contact.

Figure 6: The inflationary solution to horizon problem. Instead of having a singularity, we have
the end of inflation where conformal time on the vertical axis is pushed back to the negative
values. As a result, all points in the CMB share overlapping past light cones, indicating they
originated from a causally connected region of space. Figure from [9].

4 The Theory of Inflation

Inflation is proposed to be a period in the early universe dominated by an energy form with
w ≈ −1, leading to a nearly constant Hubble parameter H. This can be achieved through the
dynamics of a scalar field, known as the inflaton, which drives the exponential expansion. Since
neither radiation- or matter-dominated satisfy such a condition, it therefore needs to be the
cosmological constant driving the expansion. This is called the de Sitter universe, in which the
universe consists simply of the cosmological constant. The equation of state 2.8 in this instance
is as follows:

ρΛ =
Λ

8πG
= −PΛ
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and using the Friedmann equations 2.5 and 2.6, we find:

H2 =
Λ

3

In a standard cosmology with w > −1/3, the scale factor a(t) behaves as 2.10, leading to a
singularity at t → 0. However, with w < −1/3, the singularity is pushed back in conformal
time, extending t to negative values. During de Sitter, H is approximately constant, and thus
during inflation we have:

a(τ) = − 1

Hτ

where −∞ < τ ≤ 0. This makes the horizon much larger than H−1. Observations of Big Bang
Nucleosynthesis indicate that the universe was radiation-dominated around t ≈ 1−100 seconds
[11]. This suggests that inflation occurred much earlier, providing the initial conditions for the
hot Big Bang phase. Combining the Friedmann equation 2.5 and the acceleration equation 2.6,
we can derive the expansion rate of the universe during different epochs as:

a(t) ∝

{
t

2
3(1+w) if w ̸= −1

eH(t−ti) if w = −1

or more comprehensively:

a(t) ∝


t

2
3(1+w) for t < ti

eH(t−ti) for ti < t < tf

eN t
2

3(1+w) for t > tf

where we consider ti is the start time and tf is the end time of inflation, and the ratio is given
by

a(tf )

a(ti)
∼ eH(tf−ti) = eN

where N is the number of e-folds, telling us the number of times the universe has expanded by
a factor of e.

• Solving the horizon problem: Let’s find the horizon distance during the radiation-
dominated early universe. The scale factor is a(t) ∝ t1/2 for the RD era, and thus:

Rhor(ti) = a(ti)

∫ ti

0

dt′

a(t′/ti)1/2
= 2ti

Assuming a(ti) and ti are constant, the horizon distance at the end of inflation becomes:

Rhor(tf ) = a(ti)e
N

(∫ ti

0

dt′

a(t′)(t′/ti)1/2
+

∫ tf

ti

dt′

a(t′)eH(t′−ti)

)
Evaluating the second integral and assuming eN is large (with N ≈ 60 which is enought
to solve both the horizon and flatness problems):
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∫ tf

ti

dt′

a(t′)eH(t′−ti)
≈ 1− e−N

a(ti)Hi

≈ 1

a(ti)Hi

So, the horizon distance at the end of inflation is:

dhor = eN
(
2ti +

1

Hi

)
This indicates that the horizon grew from roughly 10−27m at ti = 10−36s to about 15m,
with rough estimates N ≈ 60 and 1

Hi
≈ ti. This effectively solves the horizon problem by

allowing points that were initially close and causally connected to expand to sizes much
larger than the observable universe [1].

• Solving the flatness problem: The flatness problem is addressed by considering the
behavior of the curvature term |1 − Ω| during inflation. Assuming a constant Hubble
parameter H during inflation, the curvature term evolves as:

|1− Ω| ∝ 1

a(t)2

During exponential expansion, the scale factor a(t) ∝ eHt, leading to:

|1− Ω| ∝ 1

e2N

Given that N ≈ 60 is sufficient to solve the flatness problem, this mechanism ensures that
any initial curvature rapidly diminishes, driving Ω towards 1 and making the universe
appear flat [9].

• Monopole problem: Originally, inflation was suggested as a solution to the horizon
and flatness issues [2]. It also turns out to be a solution to the monopole problem,
though.The tremendous energy in the early universe permitted the unification of the
fundamental forces. The weak and electromagnetic forces combine at around 1 TeV,
while the strong and electroweak forces combine at about 1012 TeV. Symmetry breaking
resulted from the decoupling of these forces when the universe cooled, creating topological
defects like magnetic monopoles [1]. Magnetic monopoles are predicted to have high
energy densities, roughly 1094 TeV m−3. If these monopoles were abundant, they would
dominate the universe’s energy density shortly after the Big Bang. For instance, if their
energy density, ρmp, were to decrease as the universe expands, it would follow the relation
ρmp ∝ a−3, where a is the scale factor of the universe. This rate is slower than the
radiation background, ρr ∝ a−4, leading to monopoles becoming the dominant energy
component early in the universe’s history, conflicting with current observations. However,
observations place a stringent upper bound on the monopole density parameter, Ωmp,
such that Ωmp < 5 × 10−16. This discrepancy indicates that a mechanism must have
suppressed monopole density. Inflation offers a solution to this problem. During inflation,
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Figure 7: Expansion of the universe with (black line) and without (red line) an epoch of infla-
tionary expansion. All scales are approximate. Based on similar pictures from NASA and [9].

the universe undergoes exponential expansion, a(t) ∝ eHt. This rapid expansion dilutes
the monopole density. If inflation occurs after the monopole-forming phase transition,
the number density of monopoles, nmp, would be diluted according to:

nmp ∝ e−3Ht

As a result, the monopole density becomes negligible:

Ωmp ∝ e−3Ht → 0

This drastic reduction ensures that monopoles do not dominate the universe’s energy den-
sity, aligning with observational limits. Thus, inflation effectively resolves the monopole
problem by diluting any initial abundance of monopoles to an undetectable level, sup-
porting the consistency of the inflationary model with current cosmological observations.
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4.1 Inflaton

To achieve inflation, we require a component with negative pressure, specifically with an equa-
tion of state w < −1/3. A scalar field, known as the inflaton, can drive the early universe’s
accelerated expansion under certain assumptions. While vector or tensor fields could also be
candidates, they present challenges due to their preference for specific directions in space. Scalar
fields, on the other hand, are the simplest and most natural choice, as they are predictive and
align well with observations [11].

As a basic model for inflation, we examine the dynamics of the inflaton ϕ(t, x). This field
can vary with both time t and spatial position x. Each value of the field corresponds to a
potential energy density V (ϕ), as illustrated in Figure 8. When the field changes over time,
it also possesses kinetic energy density. The evolution of the FRW background is driven by
the energy density of the scalar field if it is the dominant field in the universe. Our goal is to
determine the conditions under which this dominance results in accelerated expansion. For this
scalar field, the Lagrangian density is:

L = −1

2
gµν∂µϕ∂νϕ− V (ϕ), (4.1)

where the potential corresponding to ϕ is denoted by V (ϕ) and usually includes a quadratic
term that represents the mass. We can decompose the field into two parts:

ϕ(t, x) = ϕ0(t) + δϕ(t, x),

The vacuum expectation value ϕ0(t) represents the classical solution in a FRW universe, whereas
the perturbation is represented by δϕ(t, x). Because of isotropy and homogeneity, ϕ0(t) is merely
time-dependent. Since perturbations are considered to be minor, the background field governs
the field’s dynamics primarily. This scalar field has the action:

S =

∫
d4x

√
−gL =

∫
d4x

√
−g

(
−1

2
∂µϕ∂

µϕ− V (ϕ)

)
where the Lagrangian density, denoted by L =

∫
dxiL and, for the FRW metric,

√
−g = a3,

is given. In this case, the scalar field’s kinetic and potential terms are included in the action.
Because the potential’s shape determines how the universe evolves throughout the inflationary
phase, it is essential to the inflation process. Although it had its own problems, Alan Guth’s
original inflation model was revolutionary. Among the first to tackle these issues was Andrei
Linde, who presented a novel model based on a scalar field that was gradually rolling down
a potential hill. The idea of slow-roll inflation originated with this gradual rolling of the
scalar field. We shall calculate the slow-roll parameters and associated observables in the next
subsections.

4.2 Slow-roll Inflation

For the scalar field, we get the following relations for the stress-energy tensor:

Tµν =
δL

δ(∂µϕ)
∂νϕ− gµνL = ∂µϕ∂νϕ− 1

2
gµν (∂ρϕ∂

ρϕ− V (ϕ))
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For the scalar field energy density (T00) and pressure (Tii), we have:

T00 = ρϕ =
1

2
ϕ̇2 + V (ϕ)

Tii = pϕ =
1

2
ϕ̇2 − V (ϕ)

Then the equation of state 2.8 becomes:

ωϕ =
pϕ
ρϕ

=
1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

≈ −1

when the potential energy dominates the kinetic energy, such that:

ϕ̇2 ≪ V (ϕ) (4.2)

We derive the following expression using the Friedmann and acceleration equations, knowing
that H = ȧ/a:

ä

a
− ȧ2

a2
= −4πG(ρ+ p)− k

a2
(4.3)

Assuming no curvature k = 0, and substituting T00 and Tii, we obtain the following relation:

3H2 = 8πGρ = 8πG(
1

2
ϕ̇2 + V (ϕ)) (4.4)

Ḣ = −4πG(ρ+ p) = −4πGϕ̇2 (4.5)

From the continuity equation 2.7, we can also deduce:

ϕ̈+
dV (ϕ)

dϕ
= −3Hϕ̇

A friction term 3Hϕ̇ is included in this equation of motion corresponding to the Lagrangian
density 4.1, allowing the field to roll down the potential [9]. The field rolls down slowly under
the condition ϕ̇2 ≪ V (ϕ), and equation 4.4 shows that the universe is expanding at a constant
rate, meaning that Ḣ in equation 4.5 is small. Rewriting equation 4.3, we obtain:

Ḣ +H2 =
8πG

3
(ϕ̇2 − V (ϕ))

This indicates that p < ρ
3

is necessary for inflation to occur. This requirement is the same
as what we said earlier: ϕ̇2 ≪ V (ϕ). Furthermore, we obtain from this that we may assert
|ϕ̈| ≪ Vϕ, where a derivative with regard to ϕ is indicated by the subscript ϕ. From 4.3, we can
now define a useful parameter ϵH :

ä

a
= Ḣ +H2 = H2

(
1 +

Ḣ

H2

)
= H2(1− ϵH)

where
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ϵH = − Ḣ

H2

Using the slow-roll approximations and the potential as an expression for this parameter, we
write:

H2 =
8πG

3
V (ϕ) (4.6)

3Hϕ̇ = Vϕ (4.7)

Using equation 4.5, we derive:

ϕ̇2 =
V 2
ϕ

3H2

Ḣ = −4πG
V 2
ϕ

9H2

Ḣ

H2
= −

4πGV 2
ϕ

9H4
= −

V 2
ϕ

16πGV 2

Thus, the first slow-roll parameter, ϵV , is given by:

ϵV =
1

16πG

(
Vϕ

V

)2

This parameter ϵ must lie between 0 and 1 for inflation to occur, and ideally, ϵ ≪ 1 to satisfy
slow-roll conditions. Additionally, we set 8πG = 1/M2

pl = 1. With H remaining nearly constant
during slow-roll, the universe undergoes a near-exponential expansion. The scale factor a grows
as a ∝ eHdt = eN , where N represents the number of e-folds of inflation which was introduced
in the previous sections. We define:

dN = −d ln a = −Hdt

N =

∫ af

ai

d ln a =

∫ tf

ti

H(t)dt

By reversing the integration restrictions, the negative sign before N is eliminated, resulting in
N = 0 at the conclusion of inflation (integrating backwards in time). Rewriting Hdt:

Hdt = H
dt

dϕ
dϕ =

H

ϕ̇
dϕ = −3H2dϕ

Vϕ

=
V

Vϕ

dϕ

Hence,

N = −
∫ ϕf

ϕi

V

Vϕ

dϕ
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We used equations 4.6 and 4.7 to rewrite the first relation. Next, we define a second slow-roll
parameter, η. Assuming the scalar field acceleration is small (|ϕ̈| ≪ |3Hϕ̇| ≈ |Vϕ|), we find:

d

dt
(3Hϕ̇) ≈ d

dt
(−Vϕ)

3Hϕ̈+ 3H2ϕ̇ ≈ −Vϕϕϕ̇

3ϕ̇
Ḣ

H2
≈ Vϕϕϕ̇

H2
− 3Ḣ

H2

Given |ϕ̇| ≪ |3Hϕ̇|, the left side of the above equation is small. Knowing the right side term,
ϵH , is also small, the term Vϕϕ/H

2 must be small too. Next, we define ηH and ηV as follows:

ηH =
ϕ̈

Hϕ̇
=

(
1

2

Ḣ

H2

)

ηV =
Vϕϕ

V

Therefore, in order to have a successful inflation phase, we have two conditions: ϵ ≪ 1 and
|η| ≪ 1. Although it is possible to define higher order parameters, we are only considering
these for this thesis. Moreover, when neglecting those higher order parameters, we have the
relations: ϵV ≈ ϵH and ηV = ϵH + ηH .

Figure 8: Example of a slow-roll potential. Inflation occurs in the grey areas of the figure.
Figure from [9].
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5 Cosmological Perturbations

We looked at how the early universe was almost uniform due to the slow-roll model of inflation
in the previous section. But the structures we observe now, such galaxy clusters and galaxies,
started off as tiny "seed" perturbations that evolved over time. These initial density inhomo-
geneities expanded as a result of gravitational instabilities once the universe became dominated
by matter, generating the structures we see today [10].Recent observations of the Cosmic Mi-
crowave Background (CMB) have revealed these initial conditions for structure formation as
temperature fluctuations in the background radiation. Since microphysical processes are unable
to produce temperature anisotropies on sizes larger than 1◦, inflationary inhomogeneities are
the cause of temperature anisotropies on these larger scales.

Quantum fluctuations during the inflationary era are the most likely origin of these pertur-
bations. While inflation was initially proposed to solve the horizon, flatness, and entropy
problems, its ability to produce gravitational wave and density perturbation spectra is its most
important characteristic. Due to the stretching of space during inflation, these perturbations
range from cosmic sizes to incredibly tiny scales. When inflation stops, the Hubble radius grows
more quickly than the scale factor, which leads to fluctuations reentering the Hubble radius
during MD or RD eras. Before reheating, fluctuations that left at around 60 e-foldings re-enter
at physical wavelengths that can be seen in cosmic data. These spectra, measurable through
various methods, including microwave background anisotropy analysis, provide a distinctive
signature of inflation.

Figure 9: The classical background evolution ϕ̄(t) is perturbed by quantum fluctuations of a
sample field δϕ(x, t) so that areas with negative fluctuations δϕ remain potential-dominated
longer than those with positive δϕ. diverse regions of the the universe go through somewhat
diverse evolutionary processes. Figure from [9]

We will now investigate the process by which quantum fluctuations are produced during in-
flation. We will begin by looking at the most straightforward issue: understanding how per-
turbations change over time and calculating their power spectrum by analyzing the quantum
fluctuations of a generic scalar field during inflation. The analysis in this chapter will be based
on [1], [9], [10] and [12].
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5.1 Quantum Fluctuations

The behaviour of these fluctuations can be analyzed in two regimes. First, let us define a
physical length scale:

λ =
2πa

k

where k is a comoving wavenumber for the corresponding λ. We say that λ is within the Hubble
radius if λ < H−1, and corresponds to the sub-Hubble scales. Whereas, λ is outside the Hubble
radius if λ > H−1. Then we have the following relations:

k

aH
≪ 1 ⇒ λ ≫ H−1 (5.1)

k

aH
≫ 1 ⇒ λ ≪ H−1 (5.2)

Notice that, from the particle horizon 3.1, we have:

λ

RH

= λH ∼ aH

k

These fluctuations get "frozen" in place as inflation stretches them to sizes greater than the
horizon (λ > H−1). The wavelength of these fluctuations increases with the scale factor a,
whereas the amplitude stays approximately constant on superhorizon scales. As a result, a
classical field δϕ is created, which persists when averaged throughout a macroscopic time inter-
val. The inflaton’s quantum fluctuations create perturbations in the metric, which then have
an impact on the inflaton.

We take a different scalar field than the inflaton ϕ to perform the analysis. The back response
on the metric is negligible because of its fluctuations, which have little effect on the overall
energy density. We can look at the perturbed Klein-Gordon equation for this scalar in a given
spacetime background in order to determine the quantum fluctuations created during inflation.
Please take note that we will be using Mathematica to do calculations and extract solutions in
the upcoming subsections. The Appendix contains the associated code for every section.

5.1.1 Massless Scalar Field in de Sitter

Consider the quantum fluctuations of a generic massless scalar field χ during a de Sitter stage.
We start by splitting the field into two parts in a homogenous background:

χ(x, t) = χ(t) + δχ(x, t)

where χ(x, t) is the expectation value of the field on the initial isotropic and homogeneous
state, and δχ(x, t) represents its fluctuation. We obtain the following after applying the Fourier
transform to the fields χ in Fourier modes:

δχ(x, t) =

∫
d3k

(2π)3
eik·xδχk(t),

with k and x are the comoving momenta and distance, respectively. We can then write the
equation for the fluctuations as:
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δχ̈k + 3Hδχ̇k +
k2

a2
δχk = 0 (5.3)

• For the sub-Hubble scales 5.1, the friction term 3Hδχk is negligible, and the equation
simplifies to:

δχ̈k +

(
k2

a2

)
δχk = 0

which is the equation of motion of a harmonic oscillator. Because the scaling factor a
rises exponentially, the frequency term k2/a2 depends on time. The fluctuations exhibit
oscillations on sub-Hubble scales.

• For the super-Hubble scales (λ ≫ H−1), where k ≪ aH, the term k2/a2 is negligible, and
the equation reduces to:

δχ̈k + 3Hδχ̇k = 0 (5.4)

This indicates that on super-Hubble scales, the fluctuations remain constant.

This means that a specific fluctuation with an initial wavelength λ ∼ a/k that lies within
the Hubble radius. This fluctuation oscillates until its wavelength approaches the scale of the
horizon. Once the wavelength exceeds the Hubble radius, the fluctuation stops oscillating and
becomes fixed. To study the evolution of the fluctuation more quantitatively, we introduce the
following variable:

δσk = aδχk

and work in conformal time dτ = dt/a. The conformal factor for a pure de Sitter expansion
with the scale factor a ∼ eHt is as follows:

a(τ) = − 1

Hτ
(τ < 0).

We find that 5.4 becomes:

δσ′′
k +

(
k2 − a′′

a

)
δσk = 0 (5.5)

where −a′′/a = −2/τ 2 is the negative mass term.

• For sub-Hubble scales (k2 ≫ a′′/a), 5.5 reduces to:

δσ′′
k + k2δσk = 0,

whose solution is a plane wave:

δσk =
1√
2k

e−ikτ .

This demonstrates that fluctuations with wavelengths inside the horizon oscillate just like
they would in a flat space-time configuration.
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• For super-Hubble scales (k2 ≪ a′′/a), 5.5 reduces to:

δσ′′
k −

a′′

a
δσk = 0,

which is satisfied by:

δσk = B(k)
1

a
(k ≪ aH),

where B(k) is the integration constant. By matching the solutions at k = aH (i.e.
−kτ = 1, we may calculate the constant B(k):

|B(k)| = 1

a
√
2k

=
H√
2k3

.

Going back to the initial variable δχk, we see that on super-Hubble scales, the quantum
fluctuation of the χ field is roughly constant:

|δχk| ≈
H√
2k3

.

In fact, 5.5 has an exact solution that gives the behavior shown by qualitative arguments in
the two extreme regimes k ≪ aH and k ≫ aH,

δσk =
1√
2k

e−ikτ

(
1− i

kτ

)
5.1.2 Massive Scalar Field in de Sitter

We disregarded the mass squared component m2
χ in the previous section. Let’s now look at the

answer in the case that this phrase exists. After accounting for the mass term, 5.5 is as follows:

δσ′′
k +

(
k2 +M2(τ)

)
δσk = 0 (5.6)

such that,

M2(τ) = m2
χa

2(τ)− 2

τ 2
=

(
m2

χ

H2
− 2

)
1

τ 2
.

Rewriting 5.6 in the form:

δσ′′
k +

(
k2 − 1

τ 2

(
ν2
χ −

1

4

))
δσk = 0, (5.7)

where

ν2
χ =

9

4
−

m2
χ

H2
.
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The Bessel equation of order νχ is represented by equation 5.7. The Hankel functions of the
first and second kinds are the combination of two separate solutions that make up the general
solution. This can be expressed as:

δσk =
√
−τ
[
c1(k)H

(1)
νχ (−kτ) + c2(k)H

(2)
νχ (−kτ)

]
Here, H(1)

νχ and H
(2)
νχ are the Hankel functions of the first and second kind, respectively, and c1

and c2 are arbitrary functions of momentum that can be found by applying boundary conditions.
It is reasonable to require that δσk(τ) → e−ikτ for −kτ ≫ 1 in the setting of cosmic pertur-
bations. This is consistent with adopting the Bunch-Davies vacuum. The Hankel functions’
asymptotic behavior is given by:

H(1)
ν (x → 0) ∼

√
2

πx
ei(x−

π
2
ν−π

4
) + ei(x−

π
2
ν+π

4
) ν

2 − 1
4

x
√
2πx

,

H(1)
ν (x → −∞) ∼ −i

2νΓ(ν)

π
x−ν − i

2ν−2Γ(ν)

π(ν − 1)
x2−ν

+

(
−i

cos(πν)Γ(−ν)

2νπ
+

1

2νΓ(ν + 1)

)
xν ,

and the first and second orders are related by H
(2)
ν = H

(1)∗
ν . Using the previous equations, one

can find that c2(k) = 0 and:

c1(k) =

√
π

2
ei(νχ+

1
2)

π
2 .

The exact solution then becomes:

δσk =

√
π

2
ei(νχ+

1
2)

π
2
√
−τH(1)

νχ (−kτ). (5.8)

On super-Hubble scales, the fluctuation 5.8 becomes:

δσk = ei(νχ−
1
2)

π
2

(
2νχ−

3
2Γ(νχ)

Γ(3/2)

)
1√
2k

(−kτ)
1
2
−νχ .

Returning to the original variable δχk, on super-horizon scales, the field perturbation’s modulus
can be rewritten as follows:

|δχk| ≈
√

H2

2k3

(
k

aH

) 3
2
−νχ

.

Since ν ≈ 3
2
, A perturbation with wavenumber k has an amplitude that is proportional to

its expansion rate H, which remains nearly constant during inflation. Defining the parameter
ηχ = m2

χ/3H
2 ≪ 1 Comparable to the inflaton field’s slow roll parameters η and ϵ, we find:

3

2
− νχ ≈ ηχ.
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5.2 The Power Spectrum

Let’s now define the power spectrum, a useful tool to describe the characteristics of perturba-
tions. In Fourier space, the generic quantity g(x, t), can be extended as follows:

g(x, t) =

∫
d3k

(2π)3
eik·xgk(t),

the power spectrum is defined as:

⟨0|gk1gk2 |0⟩ ≡ (2π)3δ(3)(k1 + k2)|gk|2,

where |0⟩ denotes the system’s vacuum quantum state. This brings up the following relation-
ship:

⟨0|g2(x, t)|0⟩ =
∫

d3k

(2π)3
gkg−k =

∫
d3k

(2π)3
|gk|2 ≡

∫
dk

k
Pg(k),

This describes the following as the power spectrum of the field g(x, t) perturbations:

Pg(k) =
k3

2π2
|gk|2.

It is crucial to remember that the fluctuations of a scale-invariant spectrum (also known as
white noise) are not constant across all scales k. Specifically, because the size of fluctuations
needs to be connected to a certain physical length, the power spectrum has a k−3 scaling. The
Hubble radius, which changes throughout time, provides this scale. The following is the power
spectrum of the scalar field χ fluctuations:

Pδχ(k) ≡
k3

2π2
|δχk|2 =

(
H

2π

)2(
k

aH

)3−2νχ

Next, we establish the fluctuations’ spectral index, nδχ as:

nδχ − 1 =
d lnPδϕ

d ln k
= 3− 2νχ = 2ηχ − 2ϵ (5.9)

The spectral index ns is a measure of divergence from scale invariance. If ns = 1 (or ns−1 = 0,
the scalar power spectrum is scale-invariant, which means its power is independent of the size
of the angular scale ℓ. Any spectrum with ns ̸= 1 is considered tilted. For example, when
ns < 1, the spectrum is characterized as a red spectrum, showing higher power at large scales
(smaller ℓ) than in a scale-invariant universe. In contrast, if ns > 1, it is considered a blue
spectrum, indicating less power at small scales.

5.3 Observables

As we can see from 5.9, for single-field inflation, ns ≈ 1 since ν ≈ 3
2
, yielding a power

spectrum that is almost scale-invariant, with deviations from scale invariance on the order
of the slow-roll parameters. According to recent measurements made by the Planck spacecraft,
ns = 0.9645 ± 0.0049 has been found [6]. Remarkably, there is a red tilt in the primordial
power spectrum (ns − 1 < 0). This agreement between theoretical predictions and empirical
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Figure 10: Power spectrum of fluctuations in the CMB. The temperature variations are rep-
resented on the vertical axis. The image is from [13], which aggregates data from many CMB
experiments, including ACT [14], SPT [15], and WMAP.

evidence is one of the biggest achievements of single-field slow-roll inflation. It is important to
note that, except from its flatness, no particular assumptions were made regarding the shape of
the potential. Thus, for all single-field models satisfying the slow-roll requirements, an almost
scale-invariant power spectrum is a generic prediction.

The peaks of the spectrum as seen in Figure 10 correspond to different stages of these acoustic
oscillations. The first peak represents regions that had just undergone partial compression at
recombination, while subsequent peaks correspond to regions that had completed various stages
of oscillation. This observed oscillatory behavior in the power spectrum, plotted against angu-
lar scale, reflects the early universe’s physical processes. The CMB power spectrum depends on
the matter content of the the universe in addition to the perturbation spectrum. This enables
us to derive important parameters of the primordial density variations. The CMB is neverthe-
less an effective instrument for learning about the early universe even given the existence of
possible sources of mistake, such as parameter degeneracies, cosmic noise on small sizes, and
cosmic variation on large scales.



Chapter 6 Conclusion 29

6 Conclusion
In this thesis, we conducted a detailed mathematical analysis of cosmic inflation. We began
with an introduction to the Big Bang theory and standard cosmology, exploring the Friedmann-
Robertson-Walker (FRW) metric and Friedmann equations. While the Big Bang theory explains
many aspects of the universe, it has significant shortcomings, such as the horizon, monopole,
and flatness problems. To address these issues, we introduced inflation, a rapid exponential
expansion of the early universe. We examined the slow-roll inflationary model and its parame-
ters, which simplify the dynamics of inflation. We then analyzed quantum fluctuations of scalar
fields, computed the power spectrum, and derived the spectral index. This theoretical frame-
work allowed us to compare our predictions with observational constraints, such as that from
the Wilkinson Microwave Anisotropy Probe (WMAP) and the Cosmic Microwave Background
(CMB).

The predictions of single field slow roll inflation present a strong agreement with observational
data, supporting the success of inflation The nearly scale-invariant power spectrum and the
slight red tilt predicted by the theory match observations, providing strong evidence for infla-
tion. In conclusion, inflation effectively addresses key problems in the Big Bang theory and
provides a robust framework for understanding the early universe’s quantum fluctuations. The
agreement between the derived spectral index and observational data shows us that the infla-
tionary paradigm works quite well at solving a number of puzzles in cosmology and is robust
against current observations.

Future research could further our understanding of inflation by investigating alternative infla-
tionary models such as multifield inflation or k-inflation. Additionally, studying the reheating
process after inflation and looking for non-Gaussian features in the CMB could reveal more
about the early universe. Detecting primordial gravitational waves would also be significant.
Finally, high-precision observations from upcoming space missions could refine our understand-
ing of inflation and its implications for cosmology. By pursuing these areas of research, we can
build on the successes of the inflation and enhance our understanding of the universe’s origins
and fundamental physics.
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Appendix

.1 Christoffel Symbols

We write the FRW metric as:

ds2 = −dt2 + a2(t)g̃ijdx
idxj

From now on, all objects with a tilde will refer to three-dimensional quantities calculated with
the metric g̃ij. One can then calculate the Christoffel symbols in terms of a(t) and Γ̃i

jk. Recalling
from the GR course that the Christoffel symbols are:

Γµ
νλ =

1

2
gµρ
(
∂gρν
∂xλ

+
∂gρλ
∂xν

− ∂gνλ
∂xρ

)
,

we may compute the non-vanishing components:

Γi
jk = Γ̃i

jk,

Γi
j0 =

ȧ

a
δij,

Γ0
ij =

ȧ

a
gij = aȧg̃ij.

The relevant components of the Riemann tensor for the FRW metric are:

Rλ
µνσ = ∂νΓ

λ
µσ − ∂σΓ

λ
µν + Γλ

νρΓ
ρ
µσ − Γλ

σρΓ
ρ
µν ,

Ri
0j0 = − ä

a
δij,

R0
i0j = aäg̃ij,

Ri
jkl = R̃i

jkl + 2ȧ2g̃i[kδ
i
l].

Now we can use R̃ij = 2kg̃ij (as a consequence of the maximal symmetry of g̃ij) to calculate
Rµν . The nonzero components are:

R00 = −3
ä

a
,

Rij =
(
aä+ 2ȧ2 + 2k

)
g̃ij,

=

(
ä

a
+ 2

ȧ2

a2
+

k

a2

)
gij.

The Ricci scalar is:
R =

6

a2
(
aä+ ȧ2 + k

)
,

and the Einstein tensor Gµν = Rµν − 1
2
gµνR has the components:

G00 = 3

(
ȧ2

a2
+

k

a2

)
,

G0i = 0,

Gij = −
(
2
ä

a
+

ȧ2

a2
+

k

a2

)
gij.
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.2 Derivation of the specific Christoffel symbols

The FRW metric in comoving coordinates (t, r, θ, ϕ) is:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
.

For simplicity, let’s consider the flat case K = 0:

ds2 = −dt2 + a2(t)(dr2 + r2dθ2 + r2 sin2 θdϕ2).

The Christoffel symbols are given by:

Γλ
µν =

1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) .

For the FRW metric, the relevant components are g00 = −1 and the fact that ∂0g00 = 0.
Therefore:

Γ0
00 =

1

2
g00(∂0g00 + ∂0g00 − ∂0g00) = 0.

Actually, for Γ0
00, we need to use the fact that the dt term does not change directly. For the

spatial components, gij = a2(t)δij. Therefore:

Γ0
ij =

1

2
g00(∂ig0j + ∂jg0i − ∂0gij).

Since g0j = g0i = 0, this simplifies to:

Γ0
ij = −1

2
g00∂0gij.

Now, g00 = −1 and gij = a2(t)δij, thus:

∂0gij = 2a(t)ȧ(t)δij.

Substituting this, we get:

Γ0
ij = −1

2
(−1)2aȧδij = aȧδij.

Since H = ȧ
a
:

Γ0
ij = Ha2δij = Hgij.

For Γµ
0µ, we sum over all µ:

Γµ
0µ = Γ0

00 + Γi
0i.

We already have Γ0
00 = 0. For Γi

0i, where i represents spatial indices:

Γi
0i =

1

2
giσ(∂0giσ + ∂ig0σ − ∂σg0i).

Since g0σ = 0, this simplifies to:

Γi
0i =

1

2
gii∂0gii.

Now, gii = 1
a2(t)

and gii = a2(t)δii:

∂0gii = 2a(t)ȧ(t)δii.

Thus:
Γi
0i =

1

2

1

a2(t)
2a(t)ȧ(t)δii =

ȧ(t)

a(t)
δii = H.

Summing over the three spatial dimensions (since i can be 1, 2, or 3):

Γµ
0µ = 3H.
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.3 Mathematica code for the quantum fluctuations of a generic scalar
field v(t)

.3.1 Massless case

For the sub-Horizon scale: (.1)
(.2)

DSolve
[
∂2v(t)

∂t2
+ k2v(t) = 0, v(t), t

]
(.3)

{v(t) → c1 cos(kt) + c2 sin(kt)}
(.4)

For the super-Horizon scale: (.5)
(.6)

DSolve
[
∂2v(t)

∂t2
− 2v(t)

t2
= 0, v(t), t

]
(.7){

v(t) → c2t
2 +

c1
t

}
(.8)

The exact solution of 5.5: (.9)
(.10)

DSolve
[
∂2v(t)

∂t2
+

(
k2 − 2

t2

)
v(t) = 0, v(t), t

]
(.11){

v(t) →
√

2

π
c1

(
sin(kt)

t
− cos(kt)

)
+

√
2

π
c2

(
− sin(kt)− cos(kt)

t

)}
(.12)(

t

√
2

π
c1

(
sin(kt)

t
− cos(kt)

)
+

√
2

π
c2

(
− sin(kt)− cos(kt)

t

))
(∞)

(.13)

c1Interval

[{
−
√

2

π
,

√
2

π

}]
+ c2Interval

[{
−
√

2

π
,

√
2

π

}]
(.14)

.3.2 Massive case

DSolve

[
∂2v(t)

∂t ∂t
+ v(t)

(
m2

H2 − 2

t2
+ k2

)
= 0, v(t), t

]

{{
v(t) → c1

√
tJ 1

2

√
9− 4m2

H2

(kt) + c2
√
tY 1

2

√
9− 4m2

H2

(kt)

}}
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DSolve

[
∂2v(t)

∂t2
+ v(t)

(
m2

H2 − 2

t2
+ k2

)
= 0, v(t), t

]

{{
v(t) → 1

2

√
π
√
te

1
2
iπ

(√
9− 4m2

H2 + 1
2

)
Y 1

2

√
9− 4m2

H2

(kt)

}}

Series

[
Expand

[
v(t) =

1

2

√
π
√
te

1
2
iπ

(√
9− 4m2

H2 + 1
2

)
Y 1

2

√
9− 4m2

H2

(kt)

]
, {kt,∞, 1}

]

v(t) = sin

(
kt +

1

4

(
−

(√
9− 4m2

H2
+ 1

))
π +O

((
1

kt

)2
))

e
1
2

(√
9− 4m2

H2 + 1
2

)
iπ√

t
√

1
kt√

2
+O

((
1

kt

)3/2
)

+ cos

(
kt +

1

4

(
−

(√
9− 4m2

H2
+ 1

))
π +O

((
1

kt

)2
))


(
e

1
2

(√
9− 4m2

H2 + 1
2

)
iπ
(
8− 4m2

H2

))√
t
(

1
kt

)3/2
8
√
2

+O

((
1

kt

)2
)

Here, J and Y represent the Henkel functions.
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