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Abstract

The Lorenz 96 (L96) model, developed by Edward Lorenz, has been broadly researched
and applied to many areas such as oceanography and climate modelling. In previous
studies, travelling and stationary waves were observed in the model, for suitable forcing
parameter values, as they represent stable periodic orbits born after supercritical Hopf
bifurcations. The system can be generalized by modifying the indices of the advection
term in the differential equation function. In this paper, suitable modifications to
the original L96 system are studied, in order to derive variations of the travelling and
stationary waves. The variations of the model and the L96 model are related by a linear
change of coordinates, which is presented in the form of propositions. Additionally, an
analysis of eigenvalues of the Jacobian matrix evaluated at the equilibrium solution
was preformed for the lowest possible dimension n = 4 in order to identify a Hopf
bifurcation, which produces a stable periodic orbit seen as a travelling wave. The
periodic orbit is approximated in order to examine spatial and temporal properties of
the travelling waves in the variations of the model. When analysing stationary waves,
the dimension n = 6 was taken. A pitchfork bifurcation of the original equilibrium
produces two new equilibrium solutions, whose further supercritical Hopf bifurcations
give rise to two coexisting stable periodic orbits, which can be interpreted as stationary
waves. Spatial and temporal properties of the waves are examined such as wave number
and period. All waves are represented using a Hovmöller diagram.
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1 Introduction

The Lorenz-96 (L96) model, developed by Edward Lorenz [1], is one of the most widely used
models for studying predictability and weather modelling. Lorenz initially developed the
model to study error growth, however due to it’s simplicity compared to the other models,
it is still heavily used and allows us to explore certain mathematical properties. Given a
positive integer n, the L96 model is described by the following differential equations:

d

dt
xi = xi−1(xi+1 − xi−2)− xi + F ,

where xi = xi+n for all times t and all integers i. The parameter F is usually called the
forcing parameter. The points x0, . . . , xn−1 can be seen as n equidistantly distributed points,
circulating the globe latitudinally as their indices are integers modulo n. The model also
has physical interpretations as we can view the term xi−1(xi+1 − xi−2) as advection of some
atmospheric property (such as temperature or pressure), while the term −xi represents dis-
sipation or cooling. The parameter F is called the forcing parameter precisely because it can
resemble some external forcing applied to the system.

When studying the L96 model, we can examine bifurcations occurring in the system. The
type of the bifurcation depends on the parameter F and the dimension of the system n. When
the forcing parameter reaches the first positive critical point, the process undergoes a super-
critical Hopf or a double-Hopf bifurcation. This bifurcation produces a periodic attractor
which represents a traveling wave. For F < 0 and an even integer n, the first bifurcation
is a pitchfork bifurcation, which gives birth to two new equilibrium solutions, whose further
Hopf bifurcations induce stable periodic attractors. These attractors represent stationary
wave propagation. Usually, the spatial wave number and the period of the wave are studied
as seen in [2].

Since Lorenz introduces the famous L96 model, many variations and adaptations have been
studied. One of them is the generalized Lorenz-96 model (see [3] and [4]) and it is defined as
follows:

Definition 1. Let α, β and γ be three integers and n a positive integer. The system:

d

dt
xi(t) = xi+α(xi+β − xi+γ)− xi + F ,

where the indices of xi are taken modulo n. The system above is usually identified by the
symbol Lα,β,γ(n) and the integers α, β and γ are called system parameters.

This way, L96 model with the dimension n is given by L−1,1,−2(n). Notice that if β = γ we
get the system

d

dt
xi = −xi + F ,

which is a simple system with the solution given by:

xi(t) = xi(0)e
−t − e−t + F ,
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where xi(0) is the initial state of the system. Notice that as t → ∞, we have that e−t → 0,
so the solution of the system will converge to the value of the parameter F . For this reason,
only the systems Lα,β,γ(n) with β ̸= γ, are considered.

The aim is to examine the spatial and temporal properties of waves occurring in some of the
Lα,β,γ(n) models and explore the relation between them and the original L96 model. These
models have been studied in the papers [3] and [4]. In particular, the goal is to show some
previous results for the system described by Lα,β,γ(n) and examine the waves in systems with
suitable system parameters α, β and γ. The representation of the waves is done using the
Hovmöller diagram. Usually, on the x-axis we plot coordinates, while the y-axis represents
time. The points on the diagram are then coloured depending on the value of the data point
at the given time.

2 Prerequisites

In the field of dynamical systems, we explore behaviour of systems that evolve with time. In
the remainder of this section, we will explore the dynamics of an n-dimensional, non-linear
systems that are given by a first order differential equation, with one parameter. Firstly, we
introduce the notion of dynamical systems and their flow through a formal definition, which
was taken from [5].

Definition 2. Let f : Rn → Rn be a map and dx
dt

= f(x) a differential equation. Then the
dynamical system associated with the differential equation is a map ϕ : R × Rn → Rn with
the following properties:

• ϕ(0, x) = x, for all x ∈ Rn

• ϕ(t+ s, x) = ϕ(t, x) ◦ ϕ(s, x), for all x ∈ Rn

We refer to the function ϕ as flow and we write ϕt(x) = ϕ(t, x).

Given that the flow is a continuously differentiable function, the dynamical system will be
smooth. Moreover, in this case, the solution to the system will be unique for a given initial
state.

One of the most important concepts is an equilibrium solution of the system, which is a
time-invariant solution. Namely, consider any system of differential equations as follows:

dx

dt
= f(x, µ),

where x ∈ Rn, µ is a parameter with respect to which we will observe bifurcations occurring
in the system and f : Rn × R → Rn a (differentiable) map. An equilibrium solution with
respect to the parameter value µ0 is a vector x0 ∈ Rn if and only if f(x0, µ0) = 0.

In Lα,β,γ(n) systems, the vector x0 = (F, F, . . . , F ) is always an equilibrium solution as we
have x0

i+α(x
0
i+β − x0

i+γ)− x0
i + F = 0, for all i ∈ {0, . . . , n− 1}. Depending on the behavior
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of trajectories with initial conditions near the equilibrium, we can classify the equilibrium as
stable or unstable. When it is stable we say that it is of physical significance as trajectories
of initial points near the equilibrium stay near the equilibrium. The formal definition below,
as well as the others in this section are taken from [5].

Definition 3. Suppose that x0 ∈ Rn is an equilibrium solution of the system:

dx

dt
= f(x).

Then x0 is called a stable equilibrium if for every neighbourhood O of x0 there exists a
neighbourhood O1 of x0 in O such that for every solution X(t) with X(0) ∈ O1 we have that
X(t) ∈ O, for all t > 0. The equilibrium is called unstable if it is not stable.

When examining dynamical systems, bifurcations are an indicator of a change in equilibrium
solutions. There can be many different bifurcations occurring in the system, but for the
purpose of this paper, we are mainly interested in the Hopf and pitchfork bifurcations. We
give formal definitions for both below.

Definition 4. Consider a dynamical system

dx

dt
= f(x, µ) ,

where x ∈ Rn, µ a parameter and f(x0, µ0) = 0. The system undergoes a Hopf bifurcation
at µ0 if the Jacobian matrix of f(x, µ) at (x0, µ0) has purely imaginary eigenvalues.

Hopf bifurcation indicates a new periodic solution that arises from the equilibrium. This
periodic orbit can be stable or unstable, which is defined in the same way as the stability
of equilibrium. When the period orbit is stable, preceded by a stable equilibrium, we say
that the Hopf bifurcation is supercritical. In the examples below, we illustrate the difference
between supercritical and subcritical Hopf bifurcation in the 2-dimensional systems.

Example 1. Consider the system

x′ = ax− y − x(x2 + y2)

y′ = x+ ay − y(x2 + y2).

An equilibrium solution is given by x0 = y0 = 0. By evaluating the Jacobian of the system at
the equilibrium, we get the matrix: (

a −1
1 a

)
,

which has two eigenvalues: λ0,1 = a± i. This indicates a Hopf bifurcation at a = 0. In order
to observe the behaviour of this planar system better, we switch to polar coordinates, which
gives us the following:
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r′ = ar − r3

θ′ = 1.

Notice that the equilibrium (x0, y0) is the only one because θ′ ̸= 0. For a < 0 we have that r′

is negative for all r > 0. This means that the origin is a stable equilibrium for a < 0. Now if
a > 0, we have that r′ = 0 for r =

√
a. This means that the circle in xy-plane, with radius√

a for a > 0, is a periodic solution to the system with period 2π.

Additionally, notice that for 0 < r <
√
a we have r′ > 0 and if r >

√
a, then r′ < 0. We

can interpret this as follows: for points in the plane with radius less than
√
a, the radius will

increase over time, but if the point has a radius bigger than
√
a, it will decrease over time.

This means that all points will tend to the limit cycle given by x2 + y2 = a. This can be seen
in Figure 1.

Figure 1: A phase portrait representing a stable limit cycle born at parameter value a = 0
from the equilibrium at origin that loses its stability. The picture is taken from [6] and
represents a supercritical Hopf bifurcation.

Example 2. Now, consider the system

x′ = ax− y + x(x2 + y2)

y′ = x+ ay + y(x2 + y2).

Note that the system is the same as in the previous example, except for the opposite signs
in front of the cubic terms. Again, the equilibrium is x0 = y0 = 0 and the Jacobian matrix
evaluated at the equilibrium is given by: (

a −1
1 a

)
,
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which has two eigenvalues λ0,1 = a±i. The equilibrium undergoes a Hopf bifurcation at a = 0
as it’s Jacobian has two purely imaginary eigenvalues at this parameter value. We can write
the system in the polar form by changing to complex form z = x+ iy:

z′ = (a+ i)z + z|z|2,

and by taking z = reiθ, we get:

r′ = ar + r3

θ′ = 1.

This implies that the only equilibrium solution is indeed the origin as θ′ ̸= 0. Similarly as in
the previous example, the limit cycle is given by r =

√
−a for a < 0 as r′ = 0 for this value

of r. This gives a circle in the xy-plane with radius
√
−a and period 2π.

In the case when a < 0 we have that r′ < 0 for 0 < r <
√
−a indicating that the points with

the radius less than
√
−a in the plane will converge to the origin. On the other hand, when

r >
√
−a, we have that r′ > 0, indicating that the points outside of the circle enclosed by the

limit cycle diverge further away from the cycle. This can be observed in the Figure 2.

Figure 2: A phase portrait representing an unstable limit cycle disappearing at the parameter
value a = 0, from where the equilibrium changes its stability from stable to unstable. The
picture is taken from [6] and represents the 2-dimensional subcritical Hopf bifurcation.

In the following we define a pitchfork bifurcation.

Definition 5. Consider the same system with x0 and µ0 as in the previous definition. We
say that the system goes under pitchfork bifurcation at µ0 if x0 is the only equilibrium for
µ < µ0 (µ > µ0), with two more equilibrium arise for µ > µ0 (µ < µ0).

Now assume that x0 is an equilibrium, f(x0, µ0) = 0 and the imaginary eigenvalues of the Ja-
cobian evaluated at x0 are given by±ωi. In the paper [7], for some small ϵ with ϵ =

√
|µ− µ0|,

the periodic orbit born at the Hopf bifurcation can be approximated by:
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x(t) = x0 +
ϵ

∥u+ iv∥
Re((u+ iv)eiωt) +O(ϵ2), (1)

where u + iv is the eigenvector corresponding to the eigenvalue ±ωi. As mentioned before,
we are mainly interested in supercritical Hopf bifurcations because then, the arising periodic
orbit is stable. We say that stable orbits are of physical significance because then, the points
in its neighbourhood converge to the orbit.

3 General results for Lα,β,γ(n) systems

In this section we present some general properties for the family of systems {Lα,β,γ(n)|α, β, γ ∈ Z/nZ}.
Every Lα,β,γ(n) system has an equilibrium solution at x0 = (F, F, . . . , F ). In order to examine
stability at the equilibrium, the Jacobian matrix of the system is observed. The system
Lα,β,γ(n) can be written as:


ẋ0

ẋ1
...
˙xn−1

 =


f0(x;α, β, γ)
f1(x;α, β, γ)

...
fn−1(x;α, β, γ)

 = f(x;α, β, γ) ,

where x = (x0, x1, . . . , xn−1)
⊤, fi(x;α, β, γ) = xi+α(xi+β−xi+γ)−xi+F , for i = 0, 1, . . . n−1

and indices of xi’s are taken modulo n. Note that the Jacobian matrix of the system is given
by

JA(x) =


∂f0
∂x0

∂f0
∂x1

. . . ∂f0
∂xn−1

∂f1
∂x0

∂f1
∂x1

. . . ∂f1
∂xn−1

...
...

. . .
...

∂fn−1

∂x0

∂fn−1

∂x1
. . . ∂fn−1

∂xn−1

 .

By observing the function f0(x;α, β, γ), we can derive the first row of the Jacobian matrix
JA(x). Indeed, it is given by c = (c0, c1, . . . , cn−1), where:

ci =



−1 if i = 0,

xβ − xγ if i = α,

xα if i = β,

−xα if i = γ,

0 otherwise.

Since the formula of the function f1 is obtained by increasing all indices in the formula of f0
by one, the second row of the Jacobian matrix is given by shifting all of the entries of the
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first row to the right. Namely, if the first row of the matrix JA(x) is c
0 = (c0, c1, . . . , cn−1),

the second row is given by c1 = (cn−1, c0, c1, . . . , cn−2).

This rule can be applied further, meaning that the entire matrix JA(x) is generated by cyclic
right shifts of the first row. These types of matrices are called circulant matrices and we know
how to find their eigenvalues and the corresponding eigenvectors. In the following theorem,
eigenvalues and eigenvectors of the Jacobian matrix of the system Lα,β,γ(n) are given in terms
of n, α, β and γ.

Theorem 3.1. The eigenvalues of the Jacobian matrix of Lα,β,γ at x0 = (F, F, ..., F ) are
given by:

λj = −1 + F (η(j, n; β, γ) + iµ(j, n; β, γ)), j = 0, 1, . . . , n− 1,

where

η(j, n; β, γ) = cos

(
2πjβ

n

)
− cos

(
2πjγ

n

)
µ(j, n; β, γ) = sin

(
2πjγ

n

)
− sin

(
2πjβ

n

)
.

Moreover, the eigenvectors vj corresponding to the eigenvalues λj as above, are given by

vj =
1√
n
(1, ρj, . . . , ρ

n−1
j )⊤,

where ρj = e
−2πij

n are the n-th roots of unity.

Proof. The Jacobian matrix JA(x
0) is a circulant matrix. The article [8] states that if the

first row of a circulant matrix is c = (c0, c1, . . . , cn−1), the eigenvalues and the corresponding
eigenvectors are given by

λj =
n−1∑
k=0

ckρ
k
j ,

vj =
1√
n
(1, ρj, . . . , ρ

n−1
j )⊤ ,

where ρj are the n-th roots of unity. Note that the first row of the Jacobian matrix, in this
case, is c0 = (c0, c1, . . . , cn−1), where c0 = −1, cα = xβ − xγ, cβ = xα and cγ = −xα. Since
the Jacobian matrix is evaluated at x0 = (F, F, . . . , F ), we have that cα = 0, cβ = F and
cγ = −F , with the remaining entries zeros. This means that we can write:
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λj =
n−1∑
k=0

ckρ
k
j = c0ρ

0
j + cβρ

β
j + cγρ

γ
j

= −1 + Fe
−2πijβ

n − Fe
−2πijγ

n

= −1 + F

(
cos

(
−2πjβ

n

)
+ i sin

(
−2πjβ

n

))
− F

(
cos

(
−2πjγ

n

)
+ i sin

(
−2πjγ

n

))
= −1 + F

(
cos

(
2πjβ

n

)
− cos

(
2πjγ

n

))
+ iF

(
sin

(
2πjγ

n

)
− sin

(
2πjβ

n

))
,

which completes the proof.

Notice that for F = 0 we have that λj = −1 for all j ∈ {0, . . . , n− 1}, which means that the
equilibrium solution x0 is stable at F = 0.

4 Travelling waves in Lα,β,γ(n) systems for n = 4

In the Lorenz 96 model, travelling waves can be observed near a supercritical Hopf bifurcation.
In this sub-section, we will dive into the case where the dimension is n = 4 and explore in
which systems in the family {Lα,β,γ(4)|α, β, γ ∈ Z/4Z} do the travelling waves occur. To
do that, we will identify the systems in which the Hopf bifurcation gives birth to a periodic
solution from a stable equilibrium x0, as such occurrence indicates a strong possibility of
existence of a stable periodic orbit.

In the following proposition, different sets of eigenvalues are given for the dimension n = 4,
depending on the choices for β and γ, since eigenvalues and eigenvectors do not depend on the
choice of α. Note that in the table below, all possible cases are discussed for the dimension
n = 4.

Proposition 4.1. Let Lα,β,γ(4) be a system and x0 = (F, F, F, F ) the equilibrium solution.
Then the eigenvalues λj (for j = 0, 1, 2, 3) of the Jacobian at x0, depending on the choice of
β and γ, are given in the table below.
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(β, γ) λ0 λ1 λ2 λ3

(0, 1) −1 −1 + F + iF −1 + 2F −1 + F − iF
(0, 2) −1 −1 + 2F −1 −1 + 2F
(0, 3) −1 −1 + F − iF −1 + 2F −1 + F + iF
(1, 0) −1 −1− F − iF −1− 2F −1− F + iF
(1, 2) −1 −1 + F − iF −1− 2F −1 + F + iF
(1, 3) −1 −1− 2iF −1 −1 + 2iF
(2, 0) −1 −1− 2F −1 −1− 2F
(2, 1) −1 −1− F + iF −1 + 2F −1− F − iF
(2, 3) −1 −1− F − iF −1 + 2F −1− F + iF
(3, 0) −1 −1− F + iF −1− 2F −1− F − iF
(3, 1) −1 −1 + 2iF −1 −1− 2iF
(3, 2) −1 −1 + F + iF −1− 2F −1 + F − iF

Proof. Taking n = 4 and using the expression for eigenvalues of the Jacobian of the Lα,β,γ(4)
system, evaluated at x0 = (F, F, F, F ), we get:

λj = −1 + F

(
cos

(
2πjβ

4

)
− cos

(
2πjγ

4

))
+ iF

(
sin

(
2πjγ

4

)
− sin

(
2πjβ

4

))
= −1 + 2F sin

(
πj(β + γ)

4

)
sin

(
πj(γ − β)

4

)
+ 2iF cos

(
πj(β + γ)

4

)
sin

(
πj(γ − β)

4

)
.

From here we can conclude that λ0 = −1 for any choice of β and γ, since sin(0) = 0. Addi-
tionally, if β − γ is an even number, we have that λ2 = −1, as sin(πj) = 0 for any integer j.
This means that for (α, β) = (0, 2), (2, 0), (1, 3) or (3, 1), λ2 = −1.

The rest of the values in the table are found by a simple substitution of sine and cosine func-
tion values into the expressions. We show the computations of λ1,λ2 and λ3 for (β, γ) = (0, 1)
system parameters:

λj = −1 + 2F sin2(
πj

4
) + iF sin

(
πj

2

)
,

which allows us to find:

λ1 = −1 + 2F (
1√
2
)2 + iF · 1 = −1 + F + iF

λ2 = −1 + 2F · 1 + iF · 0 = −1 + 2F

λ3 = −1 + 2F (− 1√
2
)2 + iF · (−1) = −1 + F − iF
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The theorem above allows us to observe when does a Hopf bifurcations occur for n = 4. The
stability of equilibrium solution is indicated by the sign of real parts of eigenvalues. If all of
the values are negative, the equilibrium is stable, otherwise it is unstable.

Notice that the Hopf bifurcation occurs in all 4-dimensional systems, except when (β, γ) = (0, 2),
(1, 3), (2, 0) or (3, 1). This is because when (β, γ) = (0, 2) or (2, 0), all eigenvalues are real
numbers, and in the cases when (β, γ) = (1, 3) or (3, 1), all eigenvalues have a constant real
part equal to −1, so they can never cross the imaginary axis.

For the systems (β, γ) = (0, 1) and (0, 3), the Hopf bifurcation occurs at F = 1 since for
this parameter value we have Re(λ1) = Re(λ3) = 0 and Im(λ1,3) = ±i. However, in both
cases, x0 is unstable at F = 1, as the equilibrium x0 loses stability at F = 1

2
. This indicates

a possible supercritical pitchfork bifurcation at F = 1
2
, preceding a Hopf bifurcation, which

would mean that a supercritical Hopf bifurcation doesn’t occur.

When (β, γ) = (1, 0) or (3, 0), the Hopf bifurcation occurs at the parameter value F = −1.
It can easily be verified that Re(λ1) = Re(λ3) = 0 in both cases, while the imaginary parts
are non-zero. However, same as for (β, γ) = (0, 1) and (0, 3), a possible pitchfork bifurcation
at F = −1

2
implies that the equilibrium loses stability at this value. Moreover, as x0 is stable

for −1
2
< F < 0, the pitchfork bifurcation would be supercritical, meaning that the Hopf

bifurcation is unlikely to occur.

This leaves only four pairs of (β, γ) values for which the system could have a supercritical
Hopf bifurcation at the equilibrium solution x0 = (F, F, F, F ). These are: (β, γ) = (1, 2),
(2, 1), (2, 3) and (3, 2). For (β, γ) = (1, 2) and (3, 2), the system goes under Hopf bifurcation
at F = 1, while for (β, γ) = (2, 1) and (2, 3) the Hopf bifurcation occurs at F = −1. The table
below gives an overview for the four pairs of parameters (β, γ) for which the Hopf bifurcation
occurs, their eigenvalues corresponding to the Jacobian of the system at the equilibrium and
value of the parameter for which the Hopf bifurcation occurs.

(β, γ) λ0 λ1 λ2 λ3 Hopf bifurcation at:

(1, 2) −1 −1 + F − iF −1− 2F −1 + F + iF F = 1
(2, 1) −1 −1− F + iF −1 + 2F −1− F − iF F = −1
(2, 3) −1 −1− F − iF −1 + 2F −1− F + iF F = −1
(3, 2) −1 −1 + F + iF −1− 2F −1 + F − iF F = 1

In order to formally prove that the Hopf bifurcation is supercritical in all four cases, non-
degeneracy conditions (given in [6]) would need to be satisfied. This would require significant
amount of computations and work, which is why it was not proven in this paper.

For all systems, the first eigenvalue crosses the imaginary axis with λ1 = ±i, which means
that ω = ±1. We find the corresponding eigenvector to λ1 as described in the theorem:

v1 =
1√
n
(1, ρ1, ρ

2
1, ρ

3
1)

⊤ =
1√
4
(1,−i,−1, i)⊤.
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Notice that if v1 = (x0, x1, x2, x3), then we can write xj =
1√
4
e−

πij
2 . This means that we can

express the periodic orbit as:

xj(t) = x0
j +

1√
4
ϵ ·Re

[
e−

πij
2

+iωt
]
+O(ϵ2)

= x0
j +

1√
4
ϵ ·Re

[
ei(ωt−

πj
2
)
]
+O(ϵ2)

= F +
1√
4
ϵ cos

(
πj

2
− ωt

)
+O(ϵ2),

where x0 = (F, F, F, F )⊤ is the equilibrium solution of the system and ϵ = |F −F0| (F0 is the
parameter value for which the supercritical Hopf bifurcation occurs). From here we find that
the period of the travelling wave described by the equation above is T = 2π

ω
= 2π and the

wave number is 1. Period of the wave is determined by the −ωt term in the cosine function
and the wave number is indicated by πj

2
in the same function. As j takes 0, 1, 2 and 3 as

values, πj
2
ranges from 0 to 2π, which is exactly one length of a period of the cosine function,

meaning that the wave number is 1.

This can be seen in the diagrams below as there is one wave in the x-axis direction (confirming
that the wave number is one). Period of the wave can be observed in the y-axis direction. It
is important to see that in the first two diagrams wee can observe westward propagation of
the waves, while in the other two, eastward propagation appears.

Note that we chose a specific α for each pair (β, γ) in order to plot the Hovmöller diagram. It
can be shown that for each (non-ordered) pair, we can take precisely two value for α in order
to ensure appearance of the waves. This is due to the boundedness of orbits, as for certain
parameters (α, β, γ), the total energy of the system is not bounded. As we are interested in
systems with bounded orbits, some restrictions on choices for the system parameters need to
be introduced. In [3], it was shown that if An = 0, where:

An = max
x∈Sn

n−1∑
i=0

xixi+α(xi+β − xi+γ),

then the orbits for these system parameters are bounded. It can be shown that for all four
choices of (α, β, γ) that were taken, we have An = 0.
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Figure 3: A Hovmöller diagram where the y-axis represents time and xj(t) is represented by a
colour. Linear interpolation was done in order to obtain the values between xj(t) and xj+1(t)
for visualization purposes. The picture on the left represents the L96 model and parameter
value F = 1.1 was taken, while the diagram on the right corresponds to the system L−1,−2,1(4)
and parameter value F = −1.1. The plot was done using python and the code can be found
in SectionA.

Figure 4: The diagram on the left represents the system L1,−1,2(4) with parameter value
F = 1.1, while the diagram on the right corresponds to the system L1,2,−1(4) with F = −1.1.
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5 Systems L−1,−2,1(n), L1,−1,2(n) and L1,2,−1(n)

In this section, we will use the following notation: f(x, F ) = f(x;−1, 1,−2),
g(x, F ) = f(x; 1,−1, 2) and h(x, F ) = f(x;−1,−2, 1) where F is omitted if such specification
is not needed in the given context. We show that the systems given by L−1,−2,1(n), L1,−1,2(n)
and L1,2,−1(n) are related to the original L96 model by simple transformations.

Proposition 5.1. Let the solution to the system L−1,1,−2(n) with the initial condition
xin = (x0

in, . . . , x
n−1
in ) be given by ϕt(xin). Then the solution to the system L1,−1,2(n), with the

initial condition yin = (y0in, . . . , y
n−1
in ), is given by ϕ1

t (yin) = Tϕt(Tyin), where T is a linear
transformation, whose matrix representation is given below.

T =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0


Proof. Let y = Tx be a linear transformation of vector x as described in the proposition. We
show that gi(x) = fn−i−1(y) using the fact that xi = yn−i−1 and that indices of xi’s and yi’s
are taken modulo n:

gi(x) = xi+1(xi−1 − xi+2)− xi + F

= yn−i−2(yn−i − yn−i−3)− yn−i−1 + F

= y(n−i−1)−1(y(n−i−1)+1 − y(n−i−1)−2)− yn−i−1 + F

= fn−i−1(y)

= fn−i−1(Tx).

This implies that:
g(x) = Tf(Tx) ,

for any vector x. Note that T 2 = I, so we can also write the above as f(x) = Tg(Tx).
From here we can conclude that the system L1,−1,2(n) is the same as L−1,1,−2(n) under
the linear transformation T . This means that if the solution to the L96 model with the
initial condition xin = (xin,0, . . . , xin,n−1)

⊤ is given by x = (x0, . . . , xn−1)
⊤, then the solution

to the system L1,−1,2(n) with the initial condition yin = (xin,n−1, . . . , xin,0)
⊤ is given by

y = (xn−1, . . . , x0)
⊤ = Tx.

Since L1,−1,2(n) system is equivalent to the L96 model and is related to it by a linear
transformation T , we expect the waves observed in the L96 model to appear in this sys-
tem as well, but as a mirrored image. This explains eastward wave propagation seen in
Figure 4 that arises when looking at travelling waves in the dimension n = 4. Moreover, all
bifurcations observed in the L96 system will also be present in the L1,−1,2(n) system, at the
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same parameter values. In [9], bifurcations in L96 model for a positive forcing parameter F
are explored in more detail. Additionally, as a consequence of the proposition, we also expect
stationary waves in the system L1,−1,2(n) to behave in the same way as observed in [2] while
studying the L96 model.

In the same way as in the previous proposition, the dynamical systems L−1,−2,1(n) and
L1,2,−1(n) are related via the same linear transformation T .

Proposition 5.2. Let the solution to the system L−1,−2,1(n) with the initial condition
xin = (x0

in, . . . , x
n−1
in ) be given by ϕt(xin). Then the solution to the system L1,2,−1(n), with the

initial condition yin = (y0in, . . . , y
n−1
in ), is given by ϕ1

t (yin) = Tϕt(Tyin), where T is the same
as in Proposition 5.1.

We can show that f(x; 1, 2,−1) = Tf(Tx;−1,−2, 1), meaning that the solution to the sys-
tem L1,2,−1(n) can be obtained by a linear transformation of the solution to the L−1,−2,1(n)
system and vice versa. We omit the proof as it is identical to the one in the previous propo-
sition. As a consequence, the same wave characteristics can be observed in L−1,−2,1(n) and
L1,2,−1(n) models.

Now, we show the relation between L−1,−2,1(n) and the original L96 model in the proposition
below.

Proposition 5.3. Let the solution to the system L−1,1,−2(n) with the initial condition
xin = (x0

in, . . . , x
n−1
in ) be given by ϕt(xin;F ), where F is the forcing parameter. Then the

solution to the system L−1,−2,1(n), with the initial condition yin = (y0in, . . . , y
n−1
in ), is given by

ϕ1
t (yin;F ) = −ϕt(−yin;−F ).

Proof. we can show that h(x, F ) = −f(−x,−F ) for all x ∈ Rn and F ∈ R:

−fi(−x,−F ) = − (−xi−1(xi−2 − xi+1) + xi − F )

= xi−1(xi−2 − xi+1)− xi + F

= hi(x, F ),

for all i = 0, . . . , n − 1. This means that the dynamical system given by the L−1,−2,1(n)
model can be obtained by a simple transformation of the dynamical system of the L96
model. Concretely, we can now write the following:

ϕ1
t (xin;F ) = −ϕt(−xin;−F ) ,

where ϕt(x;F ) is the flow of the L96 model with forcing parameter F and the initial condition
x. Similarly, ϕ1

t (x) is the flow of the L−1,−2,1(n) model. This completes the proof.

As a consequence, the waves observed in the L96 model at parameter value F will also ap-
pear in the L−1,−2,1(n) system at −F , but with the values of the solution vectors of opposite
signs. Notice that by using the Proposition 5.3 and 5.2, we can represent the solution to
the L1,2,−1(n) system as a combination of the two transformations of the solution to the L96
model. We show this in a corollary.
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Corollary 5.3.1. Let the solution to the system L−1,1,−2(n) with the initial condition
xin = (x0

in, . . . , x
n−1
in ) be given by ϕt(xin;F ), where F is the forcing parameter. Then the

solution to the system L1,2,−1(n), with the initial condition yin = (y0in, . . . , y
n−1
in ), is given by

ϕ1
t (yin;F ) = −Tϕt(−Tyin;−F ), where T is the same as in Proposition 5.1.

Proof. According to Proposition 5.2, we can write:

ϕ1
t (yin;F ) = Tϕ2

t (Tyin;F ) ,

where ϕ2
t (x;F ) is the flow of the system L−1,−2,1(n) with initial condition x. Now, by using

Proposition 5.3, we get:

ϕ1
t (yin;F ) = Tϕ2

t (Tyin;F )

= −Tϕt(−Tyin;−F ) ,

so the proof is complete.

6 Stationary waves in systems L−1,−2,1(6),L1,−1,2(6) and

L1,2,−1(6)

In this section the dimension n = 6 is taken and stationary waves in L−1,−2,1(6),L1,−1,2(6)
and L1,2,−1(6) systems will be examined. In the paper [2] which explored L−1,1,−2(6) system,
a pitchfork bifurcation at F = −0.5 leads to two new equilibrium solutions, whose further
Hopf bifurcation induces two co-existing stable periodic orbits, which can be interpreted as
stationary waves. As it was shown in the previous sections, the systems that we want to
discuss in this section are closely related to the original L96, so we expect similar results
when exploring Hopf bifurcation of the non-trivial equilibrium solutions.
First, let us consider the eigenvalues of the Jacobian matrix of each system, evaluated at the
equilibrium solution x0 = (F, F, F, F, F, F ). The values of all 6 eigenvalues for each system
are listed in the table below.

Lα,β,γ(6) λ0 λ1 λ2 λ3 λ4 λ5

L−1,−2,1(6) −1 −1− F + iF
√
3 −1 −1 + 2F −1 −1− F − iF

√
3

L1,−1,2(6) −1 −1 + F + iF
√
3 −1 −1− 2F −1 −1 + F − iF

√
3

L1,2,−1(6) −1 −1− F − iF
√
3 −1 −1 + 2F −1 −1− F + iF

√
3

By observing the table, notice that the eigenvalue λ3 changes sign at F = 1
2
for the systems

L−1,−2,1(6) and L1,2,−1(6), and at F = −1
2
for the system L1,−1,2(6). This indicates a bi-

furcation occurring at these parameter values. Since the equilibrium x0 exists for all values
of F ∈ R, a saddle-node bifurcation can be ruled out, meaning that a possible pitchfork
bifurcation occurs, leading to two new equilibrium solutions. In the following, each system
will be discussed separately in order two examine new equilibrium solutions arising and their
further Hopf bifurcations.
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6.1 Stationary waves in L−1,−2,1(6)

Consider the equilibrium solution given by x1 = (a, b, a, b, a, b), with a, b ∈ R. Then it has to
satisfy fj(x

1;−1,−2, 1) = 0 for all j = 0, . . . , 5. This yields two equations:

b(a− b)− a+ F = 0

a(b− a)− b+ F = 0.

By solving the system above, we get:

a =
1 +

√
2F − 1

2
and b =

1−
√
2F − 1

2
.

Note that x2 = (b, a, b, a, b, a) is also an equilibrium solution since fj(x
2;−1,−2, 1) = 0 for

all j = 0, . . . , 5. Since a and b are real number when F ≥ 1
2
, there must be a pitchfork

bifurcation occurring at F = 1
2
, leading to two new equilibrium solutions that exist for all

F ≥ 1
2
. The Jacobian matrix of the system L−1,−2,1(6) evaluated at x1 is given by:

JA(x
1) =


−1 −b 0 0 b a− b
b− a −1 −a 0 0 a
b a− b −1 −b 0 0
0 a b− a −1 −a 0
0 0 b a− b −1 −b
−a 0 0 a b− a −1

 ,

which is not a circulant matrix. By doing some numerical experimentation, we find the
characteristic polynomial of this system at F = 3.5 is:

p1(λ) = (λ2 + 3)(λ2 + λ+ 12)(λ2 + 5λ+ 13),

indicating an eigenvalue crossing of the imaginary axis at this parameter value, as λ = ±i
√
3

are roots of the characteristic polynomial. Notice that all of the other eigenvalues have a
negative real part, indicating that the equilibrium x1 is stable for F ∈ (1

2
, 7
2
), but looses

it’s stability at F = 7
2
. In order to find the eigenvector v0 corresponding to the eigenvalue

λ0 = i
√
3, we solve:



−1− i
√
3 −b 0 0 b a− b

b− a −1− i
√
3 −a 0 0 a

b a− b −1− i
√
3 −b 0 0

0 a b− a −1− i
√
3 −a 0

0 0 b a− b −1− i
√
3 −b

−a 0 0 a b− a −1− i
√
3




v0,0
v0,1
v0,2
v0,3
v0,4
v0,5

 = 0.

Using Mathematica [10], we find:
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
v0,0
v0,1
v0,2
v0,3
v0,4
v0,5

 =



9102+273i
√
2+246i

√
3+3367

√
6

2(−6i+
√
2)(12i+

√
3)(22+18i

√
2+11i

√
3+12

√
6)
x

− 4374−1209i
√
2−438i

√
3+2239

√
6

2(−6i+
√
2)(12i+

√
3)(22+18i

√
2+11i

√
3+12

√
6)
x

− 5(600−837i
√
2−540i

√
3+310

√
6)

(−6i+
√
2)(12i+

√
3)(−1+

√
6)(22+18i

√
2+11i

√
3+12

√
6)
x

(−13−18i
√
2−31i

√
3+2

√
6)(78+45i

√
2+18i

√
3+65

√
6)

4(−6i+
√
2)(12i+

√
3)(22+18i

√
2+11i

√
3+12

√
6)

x

−78+45i
√
2+18i

√
3+65

√
6

2(−6i+
√
2)(12i+

√
3)

x

x


,

for any x ∈ C. By dividing the entries of the eigenvector, we can conclude the following:

v0,2
v0,0

= −1

2
+ i

√
3

2
= e

2πi
3 ,

v0,4
v0,0

= −1

2
− i

√
3

2
= e−

2πi
3

v0,3
v0,1

= −1

2
+ i

√
3

2
= e

2πi
3 ,

v0,5
v0,1

= −1

2
− i

√
3

2
= e−

2πi
3 .

This allows us to write the eigenvector v0 as:


v0,0
v0,1
v0,2
v0,3
v0,4
v0,5

 =



v0,0
v0,1

v0,0e
2πi
3

v0,1e
2πi
3

v0,0e
− 2πi

3

v0,1e
− 2πi

3


.

Using the approximation of the periodic orbit given by 1, we can write:

x0(t) =
1 +

√
6

2
+

ϵ

∥v0∥
Re

(
v0,0 · ei

√
3t
)

x1(t) =
1−

√
6

2
+

ϵ

∥v0∥
Re

(
v0,1 · ei

√
3t
)

x2(t) =
1 +

√
6

2
+

ϵ

∥v0∥
Re

(
v0,0 · e

2πi
3

+i
√
3t
)

x3(t) =
1−

√
6

2
+

ϵ

∥v0∥
Re

(
v0,1 · e

2πi
3

+i
√
3t
)

x4(t) =
1 +

√
6

2
+

ϵ

∥v0∥
Re

(
v0,0 · e−

2πi
3

+i
√
3t
)

x5(t) =
1−

√
6

2
+

ϵ

∥v0∥
Re

(
v0,1 · e−

2πi
3

+i
√
3t
)
.
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From here we can observe that xi(t) is always positive for i ∈ {0, 2, 4} and xi(t) is always
negative for i ∈ {1, 3, 5}. This indicates the appearance of stationary waves, which can be
seen in Figure 5. The period of the wave is T = 2π√

3
as it can be derived from the periodic

orbit approximation. The period is given by the period of the cosine function(which is 2π)
divided by the the term in front of t(which is

√
3). We find that the wave number is 3, which

is determined by the fact that 3 data points are always positive, while the other 3 always
negative. This can also be seen on the plot.

In the same way, we observe the other equilibrium solution x2 that arises at F = 1
2
. Namely,

the Jacobian matrix at x2 is the same as the Jacobian at x1, but with a and b interchanged,
so it’s expression is omitted. Similarly, the characteristic polynomial at F = 3.5 is p2(λ) =
(λ2 + 3)(λ2 + λ + 12)(λ2 + 5λ + 13), indicating that the eigenvalues given by λ0,1 = ±i

√
3

cross the imaginary axis at this parameter value. Consequently, the Hopf bifurcation of x2

equilibrium at F0 = 3.5 gives birth to a periodic orbit for F > F0. Notice that again, x2

loses it’s stability at F0. In order to derive an approximation of this orbit, the eigenvector
of the Jacobian at x2 is needed. Again, using Mathematica, we derive an eigenvector v0
corresponding to λ0 as :


v0,0
v0,1
v0,2
v0,3
v0,4
v0,5

 =



9102−273i
√
2+246i

√
3−3367

√
6

2(6i+
√
2)(12i+

√
3)(−22+18i

√
2−11i

√
3+12

√
6)
x

− 4374+1209i
√
2−438i

√
3−2239

√
6

2(6i+
√
2)(12i+

√
3)(−22+18i

√
2−11i

√
3+12

√
6)
x

− 5(−600−837i
√
2+540i

√
3+310

√
6)

(6i+
√
2)(12i+

√
3)(1+

√
6)(−22+18i

√
2−11i

√
3+12

√
6)
x

(13−18i
√
2+31i

√
3+2

√
6)(−78+45i

√
2−18i

√
3+65

√
6)

4(6i+
√
2)(12i+

√
3)(−22+18i

√
2−11i

√
3+12

√
6)

x

−−78+45i
√
2−18i

√
3+65

√
6

2(6i+
√
2)(12i+

√
3)

x

x


,

where x is any complex number. Notice that the this eigenvector is very similar to the one
we obtained for the x1 equilibrium solution case. Moreover, by dividing the entries of the
eigenvector, we can conclude that v0 is of the form:

v0 =



v0,0
v0,1

v0,0e
2πi
3

v0,1e
2πi
3

v0,0e
− 2πi

3

v0,1e
− 2πi

3


.

This gives us the same expression for the periodic orbit as the one obtained from x1 equilib-
rium, but the values 1+

√
6 and 1−

√
6 interchange places. As such, this periodic orbit xi(t)

is always positive for j ∈ {1, 3, 5} and negative for j ∈ {0, 2, 4}, which is the opposite from
the stationary wave obtained from x1. These two stable periodic orbits arising from the two
equilibrium solutions x1 and x2 represent stationary waves, which co-exist and depending on
the initial state of the system, the solution will converge to one or the other orbit. This can
be seen in Figure 5 where two different initial states were taken, leading to the convergence
to two different stationary waves.
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Figure 5: Hovmöller diagram which represents stationary waves in L−1,−2,1(6) model for the
parameter value F = 3.6. The picture on the left corresponds to the periodic orbit born from
x1 equilibrium solution, while the picture on the right represents the periodic orbit born at
x2.

Figure 6: Hovmöller plot representing stationary waves in L1,2,−1(6) model at parameter
value F = 3.6.

6.2 Stationary waves in L1,2,−1(6)

As it was shown in section 5, the solution to the system L1,2,−1(n) can be obtained by ”flip-
ping” the solution vector to the L−1,−2,1(n). This means that the stable periodic orbits found
in the system L−1,−2,1(6) will also appear in the L−1,−2,1(6) system, but as a mirrored image.
This can be better observed for travelling waves as stationary waves are fairly symmetrical,
differing only by a fraction of the period. The Hovmöller plot of stationary waves in this
system are represented in Figure 6.

The period and the wave number will be the same as observed in the previous subsection. It
is also visible from the plot that the wave number is 3. The period is given by T = 2π√

3
.
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6.3 Stationary waves in L1,−1,2(6)

Again, consider the equilibrium solution of the system given by x1 = (a, b, a, b, a, b), for some
real numbers a and b. It has to be that fj(x

1; 1,−1, 2) = 0 for all j ∈ {0, 1, . . . , 5}. This
gives us two equations:

b(b− a)− a+ F = 0

a(a− b)− b+ F = 0.

By solving the system of equations above, we get the values:

a =
−1 +

√
−1− 2F

2
and b =

−1−
√
−1− 2F

2
.

Notice that if x1 is an equilibrium, then so is x2 = (b, a, b, a, b, a). For F = −1
2
, a = b = −1

2
,

so the two new equilibrium points are ”born” at parameter value F = −1
2
, implying that

the pitchfork bifurcation occurs at this parameter value. The Jacobian matrix of system
evaluated at x1 is given by:

JA(x
1) =


−1 b− a −b 0 0 b
a −1 a− b −a 0 0
0 b −1 b− a −b 0
0 0 a −1 a− b −a
−b 0 0 b −1 b− a
a− b −a 0 0 a −1

 ,

which is not a circulant matrix. We can observe that the equilibrium x1 now undergoes a Hopf
bifurcation at F = −7

2
, since for this parameter value we have a = −1+

√
6

2
and b = −1−

√
6

2
, so

using a characteristic polynomial calculator, we find:

p1(λ) = (λ2 + 3)(λ2 + λ+ 12)(λ2 + 5λ+ 13)

as a characteristic polynomial of the Jacobian JA(x
1) at F = −3.5. From here we see that

the eigenvalues which cross the imaginary axis at F = −3.5 are given by λ0,1 = ±i
√
3, while

the other four eigenvalues have a negative real part, which implies stability of equlibrium x1.
Furthermore, by finding a solution to:



−1− i
√
3 b− a −b 0 0 b

a −1− i
√
3 a− b −a 0 0

0 b −1− i
√
3 b− a −b 0

0 0 a −1− i
√
3 a− b −a

−b 0 0 b −1− i
√
3 b− a

a− b −a 0 0 a −1− i
√
3




v0,0
v0,1
v0,2
v0,3
v0,4
v0,5

 = 0,

we get the eigenvector v0 = (v0,0, . . . , v0,5)
⊤ that corresponds to the eigenvalue λ0 = i

√
3.

Using Mathematica software [10], we find that:
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
v0,0
v0,1
v0,2
v0,3
v0,4
v0,5

 =



2(−1221+1080i
√
2−33i

√
3+286

√
6)

(6i+
√
2)(12i+

√
3)(−20−21i

√
2−24i

√
3+7

√
6)
x

2(696−249i
√
2−1038i

√
3+359

√
6)

(6i+
√
2)(12i+

√
3)(−20−21i

√
2−24i

√
3+7

√
6)
x

2(1821+2850i
√
2−2565i

√
3+164

√
6)

(6i+
√
2)(12i+

√
3)(

√
6−1)(−20−21i

√
2−24i

√
3+7

√
6)
x

− 2(1905+414i
√
2−171i

√
3+304

√
6)

(6i+
√
2)(12i+

√
3)(−20−21i

√
2−24i

√
3+7

√
6)
x

−66+75i
√
2−30i

√
3−55

√
6

2(6i+
√
2)(12i+

√
3)

x

x


,

for any x ∈ C. From here we find that:

v0,2
v0,0

= −1

2
− i

√
3

2
= e−

2πi
3 ,

v0,4
v0,0

= −1

2
+ i

√
3

2
= e

2πi
3 , and

v0,3
v0,1

= −1

2
− i

√
3

2
= e−

2πi
3 ,

v0,5
v0,1

= −1

2
+ i

√
3

2
= e

2πi
3 .

This means that the eigenvector is of the form:


v0,0
v0,1
v0,2
v0,3
v0,4
v0,5

 =



v0,0
v0,1

v0,0e
− 2πi

3

v0,1e
− 2πi

3

v0,0e
2πi
3

v0,1e
2πi
3


.

Now, according to 1, the periodic orbit born at the Hopf bifurcation can be written as follows:

x0(t) =
−1 +

√
6

2
+

ϵ

∥v0∥
Re

(
v0,0 · ei

√
3t
)

x1(t) =
−1−

√
6

2
+

ϵ

∥v0∥
Re

(
v0,1 · ei

√
3t
)

x2(t) =
−1 +

√
6

2
+

ϵ

∥v0∥
Re

(
v0,0 · e−

2πi
3

+i
√
3t
)

x3(t) =
−1−

√
6

2
+

ϵ

∥v0∥
Re

(
v0,1 · e−

2πi
3

+i
√
3t
)

x4(t) =
−1 +

√
6

2
+

ϵ

∥v0∥
Re

(
v0,0 · e

2πi
3

+i
√
3t
)

x5(t) =
−1−

√
6

2
+

ϵ

∥v0∥
Re

(
v0,1 · e

2πi
3

+i
√
3t
)
.
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Figure 7: Hovmöller diagram which represents stationary waves in L1,−1,2(6) model for the
parameter value F = −3.6. Again, the left picture represents periodic orbit at x1, while the
other represents the periodic orbit born after Hopf-bifurcation of x2.

From here we can conclude that the periodic orbit will take the form of stationary waves as
xj(t) is always positive for j ∈ {0, 2, 4} and always negative for j ∈ {1, 3, 5}(for a sufficiently
small ϵ). Notice that the period of the waves is given by T = 2π√

3
and the spatial wave number

is 3.

Same as for the system L−1,−2,1(6), we now consider the other new equilibrium solution given
by x2 = (b, a, b, a, b, a). Since the computations are repetitive, we will omit that part. The
approximated periodic orbit born at the equilibrium x2 is the same as for the equilibrium
x1, but with −1 +

√
6 and −1−

√
6 interchanged. Again, we find two stable periodic orbits,

which represent stationary waves that co-exist. For this reason, depending on the initial state
of the system, the solution will converge to one of the two stable orbits. This can be seen in
Figure 7.

7 Conclusion

The variations of the L96 model described by Lα,β,γ(n) can have widely different dynamics for
different choices of system parameters α, β and γ. In this paper, the lowest possible dimen-
sion 4 was chosen, in order to explore all possible Hopf bifurcations of the x0 = (F, . . . , F )
equilibrium in Lα,β,γ(4) systems. By doing so, we concluded that there are only for pairs of
values for (β, γ) for which the system definitely undergoes a supercritical Hopf bifurcation.
These are (β, γ) = (1, 2), (2, 1), (2, 3) and (3, 2).

For suitable values for α, we found travelling waves with very similar properties to the ones
found in the L96 model. To be precise, we found travelling in systems L−1,−2,1(4), L1,−1,2(4)
and L1,2,−1(4), which can be observed in the Hovmöller diagram. The period of all waves
we found is 2π and the wave number is 1. This was obtained by approximating the period
orbit born at the Hopf bifurcation. The waves in systems L1,−1,2(4) and L1,2,−1(4) exhibit
eastward propagation, while in the original L96 and L−1,−2,1(4) the waves propagate in the
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”west” direction.

When observing the systems L−1,−2,1(n), L1,−1,2(n) and L1,2,−1(n), we found that they can
be transformed into the original L96 model by simple linear transformations. Namely, the
solution to the L−1,−2,1(n;F ) system can be obtained as a negative solution to the negative
initial condition and negative parameter value of the L96 solution. The solution to the system
L1,−1,2(n) can be obtained by ”flipping” the solution vector of the flipped initial condition
of L96 model. Similarly, the solution to the system L1,2,−1(n) can be obtained by applying
both transformations described above to the solution of the L96 system.

As stationary waves were found in the L96 model, we discussed stationary waves in L−1,−2,1(6),
L1,−1,2(6) and L1,2,−1(6). The same properties of stationary waves were expected, as the
Section 5 shows clear relation between them and the famous L96 system. Indeed, by follow-
ing the two equilibria after the pitchfork bifurcation, we found two coexisting stable periodic
orbits. As expected, the wave number in this scenario is 3, and the period is given by
T = 2π√

3
. The two stable periodic orbits were represented by a Hovmöller diagram for all

three variations of the L96 model.
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A Python code

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

import math

N = 6 #dimension of the system

F = -3.6 #focring parameter

x0 = [1,-0.7,0.1,0.5,0.1,-1] #initial state

t = np.linspace(20.0, 40.0, 2000) #times

def GL96(x,t):

alpha = -1 #system parameter alpha

beta = 1 #system parameter beta

gamma = -2 #system parameter gamma

d = np.zeros(N)

for i in range(N):

d[i] = (x[(i + beta) % N] - x[(i + gamma) % N]) * x[(i + alpha) % N] - x[i] + F

return d

def matrix(x_values, t, x, N): #preforms linear interpolation in order to get values in between the data points

time = len(t)

num_points = len(x_values)

step = N/num_points

M = np.zeros([time,num_points])

for i in range(time):

for j in range(num_points):

if x_values[j] == math.trunc(x_values[j]):

M[i][j] = x[i][int(j*step)]

else:

M[i][j] = x[i][math.trunc(j*step)]+(j*step-math.trunc(j*step))*

(x[i][(math.trunc(j*step)+1)%N]-x[i][math.trunc(j*step)])

return M

x_values = np.linspace(0,N,240)

x = odeint(GL96, x0, t)

x_new = odeint(GL96,x[1999],t)

Z = matrix(x_values, t, x_new, N)

plt.pcolor(x_values, t, Z)

plt.colorbar()

plt.show()
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