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Abstract: This paper investigates the brain’s prediction mechanisms in natural language pro-
cessing by examining how word surprisal affects cognitive processes during naturalistic reading.
Using EEG and eye-tracking technologies, this research measures brain activity and pupil di-
lation while participants read sentences from ”Animal Farm” by George Orwell. This study
quantified word surprisal using the GPT-2 language model, aiming to simulate the brain’s pre-
dictive mechanisms. The EEG analysis focuses on the N400 and P600 components, associated
with semantic and syntactic processing respectively. However, the results did not show significant
differences in neural responses across varying levels of word surprisal. Pupil dilation data sug-
gested a correlation between higher surprisal and increased cognitive load, although these results
were not conclusive due to anomalies in the data indicating the need for further investigation.
This study highlights the complexity of modelling the brain’s predictive mechanisms and sug-
gests improvements for future research to better understand how word predictability influences
language comprehension during natural reading.

1 Introduction

Language processing is a fundamental cognitive
ability that allows humans to seamlessly interpret
linguistic information in real time. Language pro-
cessing involves multiple brain regions and cog-
nitive processes working together, enabling hu-
mans to understand and generate language effi-
ciently (Friederici, 2011). Understanding the com-
plex mechanisms behind natural language process-
ing has been an area of focus of cognitive science.
While previous studies have focused on single words
presented in isolation or during listening tasks, this
research aims to explore the entire reading process
in a naturalistic setting similar to how people read
at home. By examining how word surprisal affects
cognitive processes during natural reading through
the combined use of EEG and eye-tracking, we seek
to provide a more comprehensive understanding of
real world language comprehension.

Schrimpf et al. (2021) compared brain activity
patterns with those of deep neural networks (trans-

formers) trained for next-word prediction. These
models simulate neural activation using layers of
artificial neurons that respond to linguistic input.
They discovered that the models showed activity
patterns similar to those observed in the human
brain during language processing tasks (Schrimpf
et al., 2021). This similarity could be the result
of the mechanisms observed in human brain activ-
ity that inspired the development of these AI pre-
dictive models. Alternatively, it could suggest that
prediction is a key part of how the brain processes
language in real time and mirrors the predictive
mechanisms used in AI algorithms. This indicates
that large language models can be used to gener-
ate predictions about the next word in a sentence
based on the preceding context and can be used to
simulate the brain’s predictive process.

However, the role of predictive mechanisms in
language comprehension is a topic of considerable
debate among researchers. Nieuwland et al. (2018)
examined the findings of DeLong et al. (2005) which
initially reported evidence for probabilistic word
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pre-activation, where the brain anticipates upcom-
ing words during language comprehension. The
study measured brain responses to sentences with
varying levels of word predictability. Nieuwland et
al. found minimal evidence for pre-activation and
suggested the brain might not be as central to lan-
guage comprehension as some researchers propose
(Nieuwland et al., 2018). In contrast, Heilbron et al.
(2022) demonstrated a hierarchical structure of lin-
guistic predictions during natural language compre-
hension in a listening task. They suggested that the
brain continuously generates and updates predic-
tions at multiple levels of linguistic analysis. This
study showed that higher level predictions (seman-
tic and syntactic structures) influence lower level
prediction (phonemes and words) supporting the
idea of a top-down predictive mechanism in lan-
guage processing. Adding to the debate, Falk Huet-
tig (2015) concluded that prediction in language is
facilitated by multiple mechanisms that work to-
gether to anticipate upcoming information. The pa-
per emphasised that prediction is an important as-
pect of language processing but not fundamental
(Huettig, 2015). The contrasting findings under-
score the complexity of understanding predictive
mechanisms in language processing and highlight
the need for further research to analyze the condi-
tions under which predictive processing occurs and
its significance to language comprehension.
Given this ongoing debate, the application of nat-

ural language processing (NLP) provides a power-
ful tool for exploring these cognitive processes. NLP
enables machines to understand, interpret and gen-
erate human language (Khurana et al., 2023). NLP
models allow us to simulate and study how the
brain processes language, providing valuable data
that can be used to enhance the models themselves.
This iterative process helps to refine NLP mod-
els, making them more accurate in replicating the
brain’s functions and improving our understanding
of human cognition.
To analyse the brain predictive process, we chose

to quantify contextual predictions using the large
language model GPT-2, similar to the approach
in Heilbron et al. (2022)’s experiment. GPT-2 is a
transformer based neural network trained on large
amounts of text data from the internet, learning to
generate predictions about the next word in a sen-
tence based on the preceding context through unsu-
pervised learning. This is similar to how the brain

uses context to inform predictions. However, GPT-
2 is trained using data-driven methods without in-
nate linguistic knowledge while the brain learns
through experiences and sensory inputs. The brain
uses more complex and dynamic predictive mech-
anisms but large language models can be used to
simulate these processes in a less complex manner.
The ability to generate predictions about which
words are likely to come next in a given context
provides a computational framework for studying
prediction in the brain.

The probabilities calculated by the large lan-
guage models can be used to analyse how unex-
pected a word was given the preceding context. If
the brain is actively predicting the next words it
suggests that it expects certain linguistic elements
more than others based on the context. This expec-
tation can be quantified using the concept of sur-
prisal which measures the unexpectedness of a word
given its context. Surprisal can be calculated by
taking the inverse of the probability associated with
a certain word so that lower probabilities result in
higher surprisal. For example for the sentence: ”He
was twelve years old and had lately grown rather
stout, but he...”. The following word in this context
is ”was”, with a probability of 0.44. The surprisal
rating for ”was” is approximately 2.27, which can
be calculated by taking the inverse of this proba-
bility. Higher surprisal indicates that a word is less
predictable and may affect the cognitive load and
neural responses. This leads to the research ques-
tion of this paper: How does the degree of word
surprisal affect cognitive processes during reading?

To investigate how word surprisal affects cogni-
tive processes while reading one can look at EEG
and eye tracking data. EEG offers a high temporal
resolution and captures activity in real-time which
is crucial for studying dynamic cognitive processes.
The ability of EEG to record event-related poten-
tials (ERPs) makes it a good tool for examining
how the brain responds to linguistic stimuli (Stein-
hauer et al., 2008). ERPs can be used to analyse the
brain processes involved in reading after a word or
sentence has been shown, revealing insights into the
neural mechanisms underlying language compre-
hension. Vo & Gedeon (2011) used EEG to inves-
tigate the neural mechanisms behind reading com-
prehension . They found that EEG could effectively
capture cognitive processes involved in reading and
provide valuable insights into how the brain pro-
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cesses written language Vo & Gedeon (2011). Using
EEG one can analyse how the degree of surprisal
affects cognitive load and brain processes during
reading.
Research by Aurnhammer et al. (2021) explored

how the brain processes language and showed that
the N400 and P600 are particularly relevant in the
context of language processing. In their study, par-
ticipants read sentences presented one word at a
time on a screen, with each sentence ending in a
word that varied in predictability and semantic fit.
The N400 component, which peaks 400 millisec-
onds after a stimulus, is a associated with semantic
processing. This component is sensitive to the pre-
dictability of words within a given context, with
higher surprisal words (less predictable) eliciting
larger N400 responses indicating increased cogni-
tive effort in integrating these words into the on-
going context. This finding aligns with previous re-
search by Kutas and Federmeier (2011), who exten-
sively reviewed the role of the N400 component in
semantic processing and word predictability, and by
Brown and Hagoort (1993), who demonstrated the
N400’s sensitivity to semantic priming effects. The
P600 component, appearing around 600 millisec-
onds after a stimulus, is linked to syntactic reanal-
ysis and integration processes. It is observed when
readers encounter syntactic anomalies or complex
sentence structures, reflecting the brain’s effort to
reprocess and integrate unexpected linguistic ele-
ments. This is consistent with findings by Brouwer
and Crocker (2017), who discussed the relevance
of the P600 in syntactic processing and reanaly-
sis, and by Delogu et al. (2021), who examined the
overlap and interaction between the N400 and P600
components in language comprehension.
We chose to focus on the central (Cz) and pari-

etal (Pz) electrodes for a detailed analysis of our re-
sults based on findings from prior research. Šoškić
et al. (2022) noted that Cz was the most commonly
used electrode for measuring N400, appearing in
55.4% of studies. This prelevance underscores the
importance of Cz in capturing semantic processing
and word predictability effects. In the P600 time
window, (Aurnhammer et al., 2021) stated that
there was significant effect of word predictability.
Additionally, the study by Yang et al. (2015) high-
lighted that the N400 effect was followed by the
P600 effect, which was most prominently observed
over central-parietal areas, including the Cz and Pz

sites. This finding supports the relevance of these
electrode locations for capturing ERP responses to
linguistic processing.

Eye tracking technology complements EEG by
keeping track of where the participants direct their
gaze and provides context to the recorded brain
signals. Eye tracking allows researchers to measure
gaze direction, fixation duration and pupil size.
Eye tracking data can provide detailed informa-
tion about reading behaviour and by correlating
specific eye movements and pupil responses with
neural activity, researchers can obtain a compre-
hensive view of the cognitive processes involved
in reading. Pupil dilation has been shown to be
a reliable measure of cognitive load Krejtz et al.
(2018) which could increase when reading more un-
expected words. A 2019 study revealed that uncon-
scious surprisal can trigger larger pupil responses
(Alamia et al.). This physiological response reflects
the brain’s unconscious prediction mechanisms and
the effort required to process unexpected linguistic
input. Measuring pupil dilation for words with dif-
ferent surprisal ratings could reveal how cognitive
load varies with predictability.

Combining GPT-2 with EEG and eye tracking
allows for a multi-faceted investigation of how word
surprisal impacts cognitive processes during read-
ing. GPT-2 generates predictions about what the
next word in a sentence based on the preceding
context similar to how the brain uses context to
inform predictions. By using GPT-2 we can quan-
tify contextual predictions and calculate the sur-
prisal ratings of different words. By examining ERP
and pupil area associated with words of various
surprisal, we could better understand the cogni-
tive mechanisms underlying language processing.
We hypothesize that higher surprisal ratings (less
predictable words) will be associated with distinct
ERP patterns, including more pronounced N400
and P600 responses, and increased pupil dilation,
reflecting greater cognitive load.

2 Methods

In this experiment, participants engaged in a read-
ing task involving the first five chapters of ”Ani-
mal Farm”, by George Orwell. Their brain activity
was recorded using EEG and eye movements, gaze
coordinates and pupil dilation were recorded with
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an eye tracker.Participants are instructed to read
sentences naturally, displayed one at a time on the
screen, in a single row. To trigger the next sentence,
they fixated on a fixation dot, always shown at the
same coordinates on the right side of the screen.
At the end of every chapter, the participants could
take breaks. The time at which new sentences were
displayed was recorded for further data processing
and analysis.

2.1 Participants

Two participants performed the experiment. They
were recruited through flyers and questionnaires in
which information on potential candidates was col-
lected. The participants were selected based on cri-
teria including language proficiency, absence of vi-
sual impairments, and the number of times they
read in a week. Both were native speakers of En-
glish to ensure that there were no language barri-
ers or misunderstandings in the text that could al-
ter the EEG data. In addition, they had no visual
impairments to facilitate eye tracking and ensure
the accuracy of the recording. Lastly, they read 3-4
times (n = 1) and 1-2 times a week (n = 2) for plea-
sure. This requirement was selected to ensure that
the participant can read fluently and with better
reading comprehension.

Therefore, the data consisted of 2 participants
(both female, Nfemale = 2), aged 20 and 21 years
old, both pursuing a university bachelor’s degree.
An informed consent form was signed in which the
participants were informed to abort the experiment
at any time. After the experiment’s completion, the
data was anonymized for later analysis. Both par-
ticipants were compensated for their time.

2.2 Apparatus

2.2.1 Eye-tracking

To track where the participants were looking on
the screen while reading the text, the EyeLink 1000
v.4.40 was used with PyGaze v.0.8a6. The former
is a video-based eye-tracking system that supports
high sampling rates (up to 2000Hz). It outputs
the x and y coordinates and the pupil size, that
we sampled at 1000hz to extract exact gaze posi-
tion throughout the experiment. The left eye was
recorded throughout the experiment to track eye

movements and fixations.

2.2.2 Electroencephalography

To measure the electrical activity in the partici-
pant’s brain while reading, we used EEG. We uti-
lized an EEG cap equipped with 32 gel-based elec-
trodes and 6 skin electrodes from BioSemi. The
choice of the number of electrodes offers a compro-
mise between data quality and manageability. The
32 electrodes cover the major areas of the scalp that
are involved in the reading process while ensuring
the ease of the setup and preprocessing of the data.
The 6 skin electrodes were located above the left
eye, underneath the left eye, next to the right and
left eye’s outer canthus (temple part of the face)
and on the right and left mastoids. In addition, the
EEG was configured to record at a sampling rate of
1024 Hz which provides a high temporal resolution
and captures brain activity at the millisecond level.

2.3 Setup and Materials

Participants were asked to read sentences from the
first 5 chapters of ”Animal farm”, displayed one
at a time. The experiment was conducted in a
quiet room to minimize distractions and ensure
controlled environmental conditions. In addition, a
chin rest was utilized to minimize the participant’s
head and neck movements, thus ensuring EEG data
quality and the facilitation of eye tracking. The ex-
periment was programmed in OpenSesame software
version 4.0.23 with Python version 3.11.8 that in-
tegrated eye-tracking and EEG recording systems.

Animal farm was chosen for its engaging con-
tent from the start to immediately capture the
participant’s interest, avoiding lengthy and te-
dious descriptions. The aim was to minimise mind-
wandering in order to reduce its disruptive effects
on the EEG signal. In addition, it is in the public
domain facilitating the replication of the study.

Figure 2.1 shows how the sentences were dis-
played on the screen. A fixation dot was placed
on the right side of the screen, after the sentence
and was encircled to indicate the area where par-
ticipants should focus their gaze. This setup was
programmed to turn the circle around the fixation
dot green momentarily and trigger automatic pro-
gression to the next sentence once the eye tracker
detected that the participant had fixated on the
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dot for 500 milliseconds. The sentences all started
from the same coordinates and the fixation dot was
always in the same position, ensuring that partici-
pants knew where to look each time and maintained
a consistent gaze pattern throughout the experi-
ment. We also implemented a feature where if the
participant did not advance to the next sentence
within 15 seconds, a re-calibration of the eye tracker
would be triggered. This time frame is more than
sufficient to read a sentence and move on to the
next one, so a delay likely indicates that the eye
tracker did not capture the pupil accurately or the
fixation conditions were not met.

The code split the text by prioritizing punctua-
tion signs to facilitate natural reading and a maxi-
mum of 75 characters were shown at a time in order
to display the sentences on a single line. To display
the text, we used a monospaced font so that every
character had the same width, which facilitated the
decoding of which words the participants were look-
ing at when analyzing the eye tracker data.

Once the participants fitted the EEG cap, placed
the head on the chin rest and the eye tracker was
calibrated for the fist time, they underwent a train-
ing phase to accustom the participants to the real
experiment, including the multiple sentence splits
of the story and reading interface.

The training phase involved a short story gen-
erated by ChatGPT, version 3.5. It was used to
generate a randomized story and avoid any distur-
bance with the data collected during the exper-
imental phase. The prompt given was ”Create a
short story of about 500 characters”, to assure the
multiple splits of sentences.

Upon completion of the training phase, the par-
ticipants started the real experiment. The eye
tracker and EEG data were recorded throughout
the experiment. A calibration of the eye tracker was
performed at the beginning of every new chapter
to ensure the accuracy of the eye data throughout
the experiment. If participants did not proceed to
the next sentence within 15 seconds, the calibra-
tion was repeated. Besides, the participants were
allowed a small break of 5 to 10 minutes at the end
of each chapter to prevent fatigue and maintain en-
gagement which can alter EEG signal.

Figure 2.1: Display of the experiment, including
fixation point and an example sentence

2.4 Data Preprocessing

The study involved recording EEG and eye tracker
data, which were subsequently preprocessed to de-
rive the study’s dependent variables.

The mastoid electrodes were used to re-reference
the data to reduce noise and improve the signal
quality. The rest of skin electrodes that extracted
the horizontal and vertical eye movements served
to create electrooculography (EOG) channels. This
is an essential step to later identify and correct eye
movements in the EEG data. The data presented
a peak at 50Hz, probably caused by the electri-
cal interference from the battery. Therefore, the
data were band-pass filtered between 1Hz and 40Hz
to remove low-frequency drifts and high-frequency
noise. The artifacts were removed after perform-
ing a visual artefact inspection during which ex-
cessively noisy segments and periods of instabil-
ity were removed. The last step of pre-processing
before epoching encompassed independent compo-
nent analysis (ICA). Components related to EOG
were detected and removed from the EEG data.

The data collected with the eye tracker was also
preprocessed. Firstly, the trigger values were con-
verted into messages that inform on the begin-
ning and end of a new sentence. This enables the
possibility to convert data from ASC data into a
dataframe that was filtered based on the messages.
Subsequently, the data can be further preprocessed
using the PupilPre package (v0.6.2.).

The trials are filtered, aligned to start messages
and a time column is created. Thereafter, the left
eye data is selected for which the blinks are removed
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along with the saccades and the artifacts around
them. This enabled the further analysis of the data
collected.

2.5 Analysis

We examined the effect of surprisal on pupil and
EEG data for the first word of each displayed sen-
tence. Initially, the preprocessed data were divided
into epochs.
For the EEG data these consisted of 1.5 seconds

from stimulus onset, capturing the neural responses
to the first 1.5 seconds of the text display that cor-
responded to the processing of the first word of
the sentence. The pupil data was segmented into
epochs of a duration of 3.5 seconds from stimu-
lus onset, as the pupil data’s response to surprising
stimuli is still immediate than the neural response’s
captured with EEG. In trials in which the sentence
was read in less than 3.5 seconds, the duration of
the epochs was calculated as the difference between
the start and end time of those trials.
Subsequently, predictions were made using the

open-source transformer GPT-2 with a fixed con-
text window of 1024 tokens. The text was tok-
enized, and the probabilities of the first word dis-
played for each sentence were generated. We de-
cided to focus solely on the first word of each sen-
tence. We assumed that when the screen transi-
tioned from one sentence to the next, the partici-
pants’ brains had more time to predict the upcom-
ing word. Additionally, participants did not fixate
on every word but always began reading from the
first word. These probabilities were used to calcu-
late the surprisal ratings of the words as the inverse
of the predicted probabilities which are used as the
different conditions to be later analysed.The prob-
abilities were very small and had many similar val-
ues, meaning they were not normally distributed.
To normalize the data, we applied the logarithm
to the surprisal ratings to obtain more normally
distributed values that we could divide into bins.
The surprisal ratings then allowed us to categorize
the epochs of data, for both participants combined,
into different levels of surprisal bins. We divided the
surprisal ratings into five bins, ensuring that each
bin had roughly the same amount of data.
Event-Related Potentials (ERPs) were generated

to analyze EEG data. ERPs were produced by con-
dition, to allow for comparison. These plots allow

for the recognition of ERP components that, based
on the literature, can explain cognitive processes.
Thereafter, the pupil data was averaged across
epochs per condition. To account for pupil dilation
differences between participants, we calculated the
average change of pupil size with a baseline of 5
minutes per participant. By plotting the graphs, we
expect to see a higher dilation change with higher
levels of suprisal ratings.

3 Results

We focused on examining how word surprisal, as
quantified using the GPT-2 model, impacts cogni-
tive processes during reading. Specifically, we anal-
ysed ERPs and pupil dilation to understand the
relationship between word predictability and cog-
nitive load. The data of both participants was com-
bined and we decided not to include data from
chapter 1 as there were anomalies in the values
recorded. The results may have been anomalous
due to the less informed predictions by GPT-2, as
there was little or no preceding context at the start
of the book.

After calculating the surprisal ratings, we found
that the mean surprisal rating was 10.73 with a
standard deviation of 4.21. To analyse the impact
of word predictability on cognitive processes, the
surprisal ratings were categorised into specific bins
based on their value ranges. The bins were set as
follows: These bins were set as follows: Bin 0 ranged
from 0.07745 to 8.07063, Bin 1 from 8.07063 to
10.97010, Bin 2 from 10.97010 to 12.63626, Bin 3
from 12.63626 to 14.60179, and Bin 4 from 14.60179
to 23.06128.

3.1 EEG analysis

The EEG data were analysed to identify ERP com-
ponents for each bin of surprisal ratings. The ERPs
were compared across different electrode sites (F7,
Fz, F8, T7, Cz, P7, Pz, P8) to capture neural
responses, as seen in Figure 3.1. The ERP plots
display neural responses to words categorized into
five surprisal bins, with bin 0 containing the most
predictable words and bin 4 the most surprising
words. The x-axis of each plot represents the time
in milliseconds (ms) where the 0 ms mark indicates
when the stimulus (sentence) appeared on the par-
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ticipant’s screen. The y-axis represents the ampli-
tude of the ERP in microvolts (µV), indicating the
strength of the neural response. In the ERP plots
we focused on the N400 and P600 components as
they reflect different aspects of cognitive processing
during reading.
We focused on the central (Cz) and parietal (Pz)

electrodes as these are the most commonly associ-
ated with the N400 and P600, respectively (Aurn-
hammer et al., 2021; Šoškić et al., 2022; Yang et al.,
2015). Figure 3.2 provides a detailed comparing on
evoked responses at the Cz and Pz electrodes. In
the ERP data from the Cz electrode, we observe
peaks strongest in magnitude at 200 ms (N200),
400 ms (P400) and 600 ms (N600). Similarly, at
the Pz electrode, peaks strongest in magnitude can
be seen at 100 ms (N100), 200 ms (N200), 400 ms
(P400) and 600 ms (N600). In both plots the am-
plitude differences between the bins are minimal,
suggesting that different levels of surprisal did not
result in substantial differences in the brain’s elec-
trical responses. The data does not show the N400
and P600 effects as described in the literature. Both
ERP plots show a negative component around 500-
600 ms, which might be an N400 component occur-
ring later than usual due to the experimental setup.
We will provide a more detailed explanation of this
phenomenon in the discussion section.

3.2 Eye-tracking analysis

The area of the left pupil was measured throughout
the experiment as pupil dilation is an indicator of
cognitive load (Krejtz et al. (2018) and unconscious
surprisal Alamia et al. (2019)). We normalised the
data by subtracting the average pupil size during
the last five minutes from each sample. This base-
line adjustment was done to account for individual
differences between subjects and to normalize fluc-
tuations in pupil size across trials. By using the av-
erage over the previous five minutes as a reference,
we can more accurately assess how a word’s sur-
prisal impacts pupil dilation. This approach focuses
on the effects at the sentence start, rather than con-
tinuous changes throughout the experiment. Figure
3.3 represents the average left pupil area over time
for each surprisal bin. The x-axis represents time
in milliseconds (ms) with the 0 ms mark indicating
when the stimulus (sentence) appeared on the par-
ticipant’s screen. The y-axis represents the average

left pupil area.
Figure 3.3 shows a pronounced peak at around

250ms for all bins which could be related to the
initial pupil dilation caused by the switching of
the sentence screen. Interestingly, if we exclude bin
0, bins 2,3 and 4 consistently show higher pupil
dilation than bin 1, aligning with our hypothesis
that higher surprisal correlates with greater cogni-
tive load. This observation could suggest that the
initial peak in dilation. seen in Figure 3.3. reflects
the more than just the automatic response to sen-
tence switching. It could be showing the increased
cognitive load due to brain’s prediction mecha-
nism actively anticipating upcoming words. This
observation is not conclusive because bin 0 (low-
est surprisal), which should theoretically have the
least pupil dilation, shows higher values than the
other bins. This anomaly suggests that other fac-
tors could be influencing pupil dilation, or that the
surprisal ratings for bin 0 were unusual.

4 Discussion

This study aimed to answer the research question:
How does the degree of word surprisal affect cogni-
tive processes during reading? To explore this, we
quantified word surprisal using the GPT-2 model
and collected EEG and eye tracking data to anal-
yse the neural and physiological responses to vary-
ing levels of word predictability.

4.1 EEG analysis

The EEG analysis focused on the N400 and P600
components, which are linked to semantic and syn-
tactic processing, respectively (Aurnhammer et al.,
2021).Based on previous findings (Heilbron et al.
(2022); Aurnhammer et al. (2021)), we hypothe-
sised that higher surprisal ratings would result in
more pronounced N400 and P600 effects.

The N400 component, typically peaking around
400 ms after stimulus onset, is sensitive to seman-
tic discrepancies and predictability. We hypothe-
sised that words with higher surprisal rating would
trigger larger N400 amplitudes, reflecting the in-
creased cognitive effort required to integrate these
unexpected words into the ongoing context. Con-
trary to our hypothesis, the results shown in Fig-
ure 3.2 do not display a negative peak at 400 ms;
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Figure 3.1: Comparison of evoked responses to words with varying surprisal ratings at multiple
electrode sites

therefore, we cannot observe the N400 effect. In-
stead, significant peaks can be seen at 600 ms in
the ERP plots for both Cz and Pz electrodes. This
shift could be due to the experiment setup, where
participants had to fixate on a dot on the right side
on the screen to advance to the next sentence. This
required them to move their gaze back to the start
of the new sentence, which could have taken around
200 ms. This delay in gaze shift could explain the
negative peak observed at 600 ms, which might be
the N400 component shifted by 200 ms. Even if the
peak at 600 ms represents a time-shifted N400 com-
ponent, Figure 3.2 does not show significant dif-
ferences between the surprisal levels. This lack of
variation suggests that there is no observable effect
of surprisal on the N400 component. This finding
contradicts our initial hypothesis and expectations.

The P600 component, associated with syntac-
tic reanalysis and integration, can be seen around
600 ms after stimulus onset. We hypothesized that
words with higher surprisal ratings may also affect
syntactic processing, requiring the reader to rean-
alyze and integrate the unexpected linguistic ele-

ments, which would trigger larger P600 amplitudes.
Figure 3.2 shows a negative peak at 600 ms mean-
ing that we do not see the P600 component in the
plots. However, if we consider the same delay that
shifted the N400 component, we should expect to
observe the P600 component around 800 ms. No
significant positive peaks were observed at 800 ms
in the ERP plots for both electrodes, suggesting
that we did not find evidence of the P600 compo-
nent in our data.

As seen in Figure 3.2 there were no visible differ-
ences in the ERP plots between different surprisal
bins for both the Cz and Pz electrodes. One pos-
sible reason for this lack of significant differences
could be the nature of the probabilities calculated
by GPT-2. As shown in Figure 4.1, the probabil-
ities were very small and similar to each other.
The mean probability calculated was 0.017 with a
standard deviation of 0.091. These results reflect
the inherent difficulty of predicting the next word
given the context. This challenge arises due to the
many potential words that could logically and se-
mantically fit into any given sentence. This makes
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Figure 3.2: Comparison of evoked responses to words wit varying surprisal ratings at central (Cz)
and parietal (Pz) electrode sites

all words somewhat unexpected and makes it very
hard to calculate these probabilities. These proba-
bilities were used to calculate the surprisal ratings,
suggesting that the differences in surprisal were not
significant enough to produce distinct neural re-
sponses. This similarity in the probabilities could
have resulted in a lack of variation in the ERP am-
plitudes across different surprisal conditions.

4.2 Eye-tracking analysis

The analysis of pupil dilation was conducted to
asses cognitive load during reading. Pupil size in-
creases with cognitive effort, providing a physio-
logical marker of cognitive load. We hypothesised
that more surprising words would lead to greater
pupil dilation, indicating increased cognitive load.
As shown in Figure 3.3, we notice that bin 0 (lowest
surprisal) showed unexpectedly high and anoma-
lous pupil dilation compared to the other bins. If we
exclude bin 0, we observe that bins 2, 3 and 4 con-
sistently show higher pupil dilation that bin 1. This
patterns matches our prediction that higher sur-
prisal ratings (less predictable words) would result
in greater cognitive load. Bin 0 starts at a higher
level in the graph compared to the other bins, even

though a baseline correction was applied. The fact
that the other bins are closer together at the start
further indicates that the pupil response for bin 0 is
anomalous. This anomaly might be due to external
factors or individual differences in baseline pupil
size that were not fully controlled. Even though the
general trend supports our hypothesis, these results
are not conclusive, as the anomaly in bin 0 suggests
that other factors could be influencing pupil dila-
tion.

The differences observed in pupil dilation across
conditions might be attributed to the slower re-
sponse time of pupil dilation compared to EEG
changes. Studies show that pupil dilation is influ-
enced by previous trials, suggesting that the pupil’s
response integrates information form prior experi-
ences rather than only responding to immediate
stimuli (Van der Wel & Van Steenbergen, 2018).
Pupil dilation tends to accumulate context over a
longer period of time, more like GPT-2, which uses
the context to calculate the probability of the first
word. This could mean that the pupil dilation re-
flects a more integrated cognitive load over several
words or sentences, while EEG reflects more im-
mediate neural responses to individual words. This
temporal difference might explain why we observed
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Figure 3.3: Average left pupil area change over time for each bin of surprisal ratings

trends in pupil dilation that were not apparent in
the ERP data.

Among those external factors that could have in-
fluenced the pupil size are luminance and fatigue
(Kiefer et al., 2016). Even if participants could take
breaks after every chapter, this study involved pro-
longed reading, which could have led to fatigue in-
fluencing their pupil responses. Additionally, dur-
ing mind wandering the pupil may not respond to
stimuli or may show unusual patterns of dilation
Smallwood et al. (2011). Given the length of the
reading task in our study, it is possible that partic-
ipants experienced periods of mind wandering that
led to irregular pupil responses. This could have
resulted in pupil dilation patterns that did not cor-
relate with cognitive load induced by the stimuli.

4.3 Stimulus characteristics

A critical aspect of our findings revolves around the
nature of the words used to calculate the surprisal
ratings. Notably, some of the first words in the
sentences shown as stimuli were stop words (e.g.,
”the”, ”and”, ”is”). Stop words are very frequent
in language but carry little meaning by themselves
(John Snow Labs, 2024). They are not as surpris-

ing as more meaningful words like nouns and verbs.
Focusing on nouns or contextually rich words that
carry more meaning and are more surprising could
produce more interesting data about the cognitive
processes involved in the brain’s predictive mecha-
nisms.

4.4 Limitations

Some limitations must be accounted for in this
study. Firstly, the small sample size (N=2) signif-
icantly limits the generalizability of the findings.
The lack of variability observed between the two
subjects suggests that the pattern observed might
not reflect the typical pattern seen in a larger and
more diverse population. The small sample size also
results is low statistical power, making it difficult
to draw robust conclusions from the data.

We used GPT-2 to calculate the probabilities
assuming that these surprisal rating would reflect
the brain’s prediction mechanisms. GPT-2 may not
fully align with how the brain processes and pre-
dicts upcoming words. This assumption was made
because we do not fully understand how the brain’s
prediction mechanism fully works. The debate men-
tioned in our introduction highlights that we do
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Figure 4.1: Probability distribution of the first word of each sentence calculated by GPT-2.

not know if predictive mechanisms are central to
language comprehension or if they happen at all.
If this assumption is incorrect, the comparison be-
tween the surprisal ratings calculated and the ob-
served neural and physiological responses would be
unreliable. However, Heilbron et al. (2022) did use
GPT-2 and found evidence that brain responses
are modulated by linguistic predictions. This indi-
cates that GPT-2 can allign with neural activities
to some extent, supporting its use in exploring how
surprisal and predictability influence cognitive pro-
cesses during language tasks.

Additionally, it’s important to consider that
GPT-2 was trained using modern language data
whereas ”Animal Farm” by George Orwell was
written in 1945 using some outdated language. This
could have resulted in some unusual probabilities
that led to ratings that did not accurately reflect
the surprisal of the participant.

Furthermore, the nature of the stimuli may have
influenced the results. The stimuli were sentences
from the novel ”Animal Farm”. Novels generally
contain coherent and contextually consistent lan-
guage. This consistency could have led the brain’s
prediction mechanisms to anticipate words that
were not so far off from the actual word shown.
This resulted in lower prediction errors than those
that would arise from encountering completely un-

expected words unrelated to the context. As seen
in Figure 4.1, the probabilities calculated were very
similar to each other, meaning that the surprisal
ratings did not differ significantly. This is a ma-
jor limitation, as it could be the reason why we
don’t see clear differences between the different lev-
els of surprisal. Previous experiments used highly
surprising sentences to trigger stronger cognitive
and neural responses. Aurnhammer et al. (2021)
conducted an experiment to investigate the effects
of expectancy and lexical association on language
processing, focusing on the N400 and P600 compo-
nents of comprehension. They used sentences such
as ”Before he stacked the wood, the lumberjack
sharpened the axe” to create an expected context
and ”Before he stacked the wood, the lumberjack
ate the axe” to create an unexpected context. The
second sentence is much more surprising than a typ-
ical sentence from a novel, as the verb does not fit
the context at all. Sentences like these are more
likely to trigger large surprisal or prediction errors
in the brain. This difference in the level of surprisal
might be a reason why we did not observe the N400
and P600 effects as prominently in our study.

Lastly, while our study emphasized natural read-
ing conditions, the experimental setup does not
replicate how people typically read at home. Using
an EEG cap, chin rest, and a new mechanism to
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read and advance sentences using the eye-tracker
might have affected the results. This setup could
have affected participants’ reading behavior and
cognitive load. Despite a training phase, using the
mechanism for reading was likely unfamiliar, po-
tentially influencing the observed neural and phys-
iological responses.
The EEG records immediate brain activity and

the participants had to fixate on the fixation dot
(shown in Figure 2.1 for 0.5 seconds to switch to the
next sentence. It is possible that the brain predicted
the next word, and by the time the screen switched,
the neural activity showed something else. The
brain’s prediction might have happened as soon as
the participant finished reading the sentence and
not when the screen switched. If assumption is true,
the brain activity recorded from when the new sen-
tence showed up could have been showing some-
thing else rather than the prediction hat happened
right after the participant read the previous sen-
tence. Even though the fixation time was very brief,
participants could still have started to mind wan-
der. This likelihood increases if the book’s content
is perceived as less engaging. The fact that par-
ticipants had to stare at a dot and wait was not
very natural and could have significantly affected
the results.

4.5 Future research

Future research should address these limitations
and expand on the findings to get a better under-
standing of the brain’s predictive mechanisms in
language comprehension.
Including more participants would increase the

statistical power and allow for more robust conclu-
sions. Diverse participant demographics could also
provide insights into individual differences in lan-
guage processing.
The use of GPT-2 for calculating word surprisal

was based on the assumption that its predictions
would align with the brain’s predictive mechanisms.
Future studies should explore other models and
methods for quantifying surprisal and explore how
that would affect the results. Ren et al. (2024)
found a strong correlation between large language
models and brain similarity, and their findings in-
dicate that the similarity increases with the size of
the models. With this information, it would be in-
teresting to see how a larger model would affect the

surprisal ratings and results of our experiment.

In this study we used a novel, so the sentences
shown contained coherent and contextually con-
sistent language which might not trigger signifi-
cant prediction errors. Future research could cre-
ate a story including sentences with higher levels
of unexpectedness by using words that do not fit
the previous context. This could trigger more pro-
nounced cognitive responses and provide more in-
sight into the brain’s predictive mechanism. Addi-
tionally, Sarica & Luo (2021) state that a standard
step of NLP tasks is the removal of stop words to
focus on more contextually rich words. Focusing on
more meaningful words, such as nouns or verbs,
is important because these words carry significant
meaning in context. They could trigger higher pre-
diction errors in the brain compared to stop words,
which carry little meaning by themselves. It would
be interesting to start sentences using these rich
contextual words.

This research emphasised natural reading so fu-
ture research should aim to create an experimental
setup to mimic how people read in everyday set-
tings. Extending the training phase for participants
would allow more time for them to become accus-
tomed to the experimental setup, reducing the po-
tential for unusual data due to unfamiliarity with
the reading interface.

Furthermore, it would be interesting to analyse
the ERPs at the point when participants fixate on
the last word of the sentence rather than when the
new sentence appears. This approach could reveal
whether the brain’s predictive mechanisms are ac-
tively engaged while reading the last word. This
change could reveal whether the observed neural
activity and pupil dilation were influenced by the
waiting period, potentially recording activity unre-
lated to the predictive mechanisms.

Future research should continue to integrate NLP
models with cognitive neuroscience methods. Itera-
tive improvements in NLP models based on cogni-
tive data could enhance their accuracy in replicat-
ing brain functions and deepen our understanding
of human cognition. This deepening of our knowl-
edge might provide further clarification on the role
that the prediction mechanism plays and how sig-
nificant it is in language processing.
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5 Conclusions

This paper aimed to investigate how word surprisal
affects cognitive processes during natural reading
by using EEG and eye-tracking technologies com-
bined with the predictive capabilities of the GPT-2
language model. This project was challenging as
we do not fully understand how the brain’s predic-
tion mechanisms work and recreating natural read-
ing conditions in a controlled experimental setup is
complex. Accurately modelling the brain’s predic-
tion mechanisms using GPT-2 is particularly diffi-
cult due to the complex and dynamic nature of the
human brain.

We hypothesised that higher surprisal ratings
(less predictable words) would result in more pro-
nounced N400 and P600 responses, and increased
pupil dilation, reflecting greater cognitive load.
However, we did not directly observe the expected
N400 (semantic processing) and P600 (syntactic re-
analysis) components in our EEG analysis, there
was a potential shift in the N400 component. How-
ever, we did not find an effect on word surprisal
level on this shifted component. This suggests there
was no effect of the degree of surprisal on semantic
processing. The pupil data showed more of a cor-
relation between word surprisal and cognitive load,
but these results were not conclusive due to some
anomalies in the data. Despite the small sample
size of only two participants this study produced
interesting results, providing a foundation for fu-
ture research.

This research built the groundwork for under-
standing how word surprisal affects natural read-
ing, expanding beyond previous experiments that
focused on specific words or sentences. By analysing
the limitations of this experiment, we have iden-
tified areas for improvement that could make fu-
ture studies more robust and successful. Reproduc-
ing this experiment with these improvements would
be very interesting and could provide more conclu-
sive insights into the brain’s prediction mechanisms
during natural reading.
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