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Abstract

This thesis serves as an introduction to “Positive Systems Theory” by providing an overview of the
fundamental results concerning positive systems. Generally speaking, a dynamical system is positive if
its describing variables only take nonnegative values. Motivated by various real-life examples, we study
linear time-invariant systems in continuous and in discrete time and we provide characterisations for
their positivity. Next, we show several ways to verify whether a positive system is asymptotically sta-
ble, which reveal that checking stability properties of large-scale systems remains practically feasible.
We proceed with the widely recognised Kalman-Yakubovich-Popov lemma adapted to positive sys-
tems, which bridges the frequency domain and state space. Then, we tackle the positive stabilisation
problem, i.e. we seek to design a controller, which achieves both stability and positivity. Finally, we
take first steps towards data-driven analysis and control of positive systems by solving the problem of
system identification. Throughout this thesis, we demonstrate our results with numerical examples.



Table of Contents

1 Introduction 3
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Motivation 5
2.1 Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Leslie Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Positive Systems 7
3.1 Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Asymptotic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Proofs of Theorems 3.9 and 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Kalman–Yakubovich–Popov Lemma 16
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Proofs of Theorems 4.1 and 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Positive Stabilisation 23
5.1 By Semidefinite Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 By Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Data-Driven Analysis and Control 27
6.1 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 On the Stability and Stabilisation Problems . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Conclusion 33

Bibliography 34

1



Acknowledgements

First and foremost, I would like to thank my main supervisor, dr. ir. Henk J. van Waarde.
Professor van Waarde, it has been an immense honour and pleasure working alongside you for the
past two years. Doing research with you has been one of the most “positive” and “informative”
experiences during the Bachelor’s programme. Thank you for your limitless patience, the great and
abundant feedback, the opportunity to attend ECC24, the enthusiasm, the stories and the jokes.
Thank you also for never lowering your standards and making me want to become a better writer and
storyteller.

I would like to extend my gratitude to prof. dr. ir. Bart Besselink and prof. M. Kanat Camlibel.
Thank you for introducing me to and deepening my interest in systems and control theory.

Nothing from the past three years would have been possible without the endless support of my
father, mother and brother.

Finally, I would like to thank Teya, Hristo, Yoko, Jijo, Mirinski, Tuni and Martin for being great
friends. May we reach gold rank in Siege soon.

2



Chapter 1

Introduction

In this thesis, we are interested in a particular class of dynamical systems, namely, those, whose
state variables, inputs and outputs only take nonnegative values. There are ample examples based
on applications of these so-called positive systems, some of which include models in social sciences,
epidemiology, biology, pharmacology, biochemical engineering, econometrics and stochastic processes.
In fact, population density, concentrations, prices and probabilities are variables with a natural non-
negativity constraint.

There is a vast literature on “Positive Systems Theory” that spans over the past 45 years. If we
include the contributions from “Positive Matrix Theory”, for instance, the renowned Perron-Frobenius
theorem, then we can even say over the past 120 years. Regardless, we attribute the beginning of
positive systems theory to David G. Luenberger. In [1, Chapter 6], he studies the positivity, equilibria
and stability of continuous- and discrete-time linear time-invariant (LTI) systems with constant inputs.
Additionally, the interested reader should refer to the books by Abraham Berman and Robert J.
Plemmons [2], Lorenzo Farina and Sergio Rinaldi [3] as well as Tadeusz Kaczorek [4]. The tutorial
paper [5] is a good starting point for those who seek a shorter introduction.

The goal of this thesis is to provide an overview of the foundational results for positive LTI systems
in continuous and discrete time. We, then, prove them in an accessible manner. In the last part of the
thesis, we expand the literature on positive systems by moving to a data-based setting. Furthermore,
there are several numerical examples, which illustrate the results. In what follows, we discuss the
structure of the thesis in more detail.

In Chapter 2, we introduce a model in continuous and in discrete time. We express interest in the
conditions under which they are positive and asymptotically stability. The next chapter is dedicated
to investigating these system properties.

Chapter 3 opens with a formal definition of a positive system, after which we check when an LTI
system is positive. Then, we provide tests for asymptotic stability, which show that positive systems
remain tractable as the system dimensions increase. Moreover, they reveal a method to reformulate
certain problems, so that they have a lower computational cost. We also discuss their application to
Lyapunov stability theory. To exemplify the main statements, we verify whether numerical examples
of the aforementioned models are positive and asymptotically stable.

Under the assumption of positivity and asymptotic stability, we continue with the celebrated
Kalman-Yakubovich-Popov (KYP) lemma in Chapter 4, which we adapt to positive systems. This is
a cornerstone result in modern control theory, which connects the frequency domain and state space.
Meaningful differences arise between the version we state and the one for unconstrained systems. We
prove the KYP lemma with the help of duality theory for linear matrix inequalities.

When a system is neither positive nor asymptotically stable, we seek to design a state feedback
controller, which achieves both. We devote Chapter 5 to solving the positive stabilisation problem.
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We leverage the results in Chapter 3 in order to derive necessary and sufficient conditions for the
existence of such a controller by means of semidefinite programming. Subsequently, we restate the
conditions in terms of linear programming.

In contrast to the previous chapters, in Chapter 6, we shift our attention to data-driven analysis
and control. This has been a recently emerging paradigm, inspired by the rise in complexity of modern
systems as well as the wide availability of data. Research has been dedicated to developing data-based
methods, which allow us to work with systems without going through the modelling process. One
of the approaches to data-driven control involves the intermediate step of system identification. In
Chapter 6, we consider an unknown positive system and assume that we have access to data, which
are generated by the system. We state necessary and sufficient conditions under which the positive
system can be uniquely identified from the data.

In Chapter 7, we recapitulate the main results in the thesis. We conclude with a list of possible
future research topics.

1.1 Notation

Let ei be the ith standard basis vector in Rn and 1n be the vector of length n, whose entries are
all equal to 1. Consider a matrix A ∈ Rn×n and a vector a ∈ Rn. We indicate the ith element of a by
ai. The set σ(A), called the spectrum of A, is the one containing the eigenvalues of A and the spectral
radius of A is defined as ρ(A) := max{|λ| | λ ∈ σ(A)}. We denote the trace of A by tr(A). We define
diag(A) as the vector containing the diagonal elements of the matrix A. Conversely, we define diag(a)
as the diagonal matrix, whose elements correspond to the vector a.

We denote by Sn the set of real symmetric n×n matrices. Let A ∈ Sn. If xTAx > 0 for all nonzero
x ∈ Rn, then we call A positive definite, denoted by A ≻ 0. If instead xTAx ≥ 0 for all x ∈ Rn,
then we call it positive semidefinite, denoted by A ⪰ 0. Negative definiteness (A ≺ 0) and negative
semidefiniteness (A ⪯ 0) are defined similarly. By A ≻ B, where B ∈ Sn, we mean that A − B ≻ 0.
The meaning of A ⪰ B, A ≺ B and A ⪯ B is similar.

We use Z+ and R+ to denote the set of nonnegative integers and the set nonnegative real numbers,
respectively. We call a matrix A ∈ Rn×m and a vector a ∈ Rn nonnegative, if all of their elements are
nonnegative. We denote this by A ≥ 0 and a ≥ 0. If all of their elements are positive instead, then
we call them positive and denote this by A > 0 and a > 0. If −A ≥ 0, −a ≥ 0, −A > 0 and −a > 0,
then we denote this by A ≤ 0, a ≤ 0, A < 0 and a < 0. For all A,B ∈ Rn×m and a,b ∈ Rn, by
A ≥ B and a ≥ b we mean that A − B ≥ 0 and a − b ≥ 0. The meaning of A − B > 0, a − b > 0,
A−B ≤ 0, a− b ≤ 0, A−B < 0 and a− b < 0 is similar.

For a matrix A ∈ Cn×m, AT is its transpose and A∗ is its conjugate transpose. We indicate its
ith row by Ai•, its ith column by A•i and its (i, j)th element by aij . We denote the real part of a
complex number λ ∈ C by Re(λ).
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Chapter 2

Motivation

We begin by motivating the study of positive systems in both continuous (Section 2.1) and discrete
time (Section 2.2) with the help of two specific models, namely, radioactive decay and the Leslie model.
For each one, we ask two very natural questions, which determine the first two topics positive systems
theory starts off with.

2.1 Radioactive Decay

The nuclei of an unstable isotope decay over time. For a radioactive isotope, it may happen that
the result of the decay is not itself stable and this can be modelled as a chain of reactions [6, Example
2.4.5], which ends with a stable isotope. More specifically, consider the Uranium-238 decay chain

238U
λ1−→ 234Th

λ2−→ 234Pa
λ3−→ 234U

λ4−→ 230Th
λ5−→ 226Ra

λ6−→ 222Rn
λ7−→ 218Po · · ·

· · · λ8−→ 214Pb
λ9−→ 214Bi

λ10−−→ 214Po
λ11−−→ 210Pb

λ12−−→ 210Bi
λ13−−→ 210Po

λ14−−→ 206Pb,

where λi > 0 (i = 1, . . . , 14) is the decay rate of the nuclei of the ith isotope. If we assume that the
decay rate is proportional to the nuclei density, then we can mathematically describe the number of
nuclei for each isotope in the chain as the system of ordinary differential equations

ẋ1(t) = −λ1x1(t),

ẋ2(t) = λ1x1(t)− λ2x2(t),

ẋ2(t) = λ2x2(t)− λ3x3(t),

...

ẋ14(t) = λ13x13(t)− λ14x14(t),

ẋ15(t) = λ14x14(t),

which can be rewritten as a continuous-time linear system:

ẋ(t) = Λx(t), (2.1)

Λ :=


−λ1

λ1 −λ2

λ2 −λ3

. . .
. . .

λ13 −λ14

 , x =


x1

x2

x3

...
x14

 .

We remark that (2.1) excludes the dynamics of Lead-206, which is a stable isotope, as we are interested
in the behaviour of the unstable nuclei. Because radioactive decay is a natural process, firstly, we
express interest in the following question:
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1. Does the number of nuclei stay nonnegative, i.e. under what conditions does x remain nonneg-
ative for all times?

Secondly, in the context of decay, we can ask

2. Do the unstable nuclei decay fully, i.e. under what conditions does x converge to 0 as t → ∞?

2.2 Leslie Model

A common example of positive systems are population models – population density is a variable
with a nonnegativity constraint. In particular, we explain the Leslie model [3, Chapter 13], which is
concerned with age-structured populations. For such populations, fertility and survival rates strongly
depend on age. The Leslie model calculates the population level yearly (or per reproduction season),
which implies that it is a discrete-time model. Suppose that the survival rates of males and females
are the same and that the sex ratio is balanced. Then, we can express the number of females at age
i = 1, . . . , n as

xi(t+ 1) = si−1xi−1(t),

where sj ≥ 0 (j = 0, . . . , n− 1) denotes the survival rate at age j. Let fk ≥ 0 (k = 1, . . . , n) be the
fertility rate of females at age k. The number of newborns at time t is

x0(t) = f1x1(t) + · · ·+ fnxn(t).

We can describe the population dynamics as a discrete-time linear system:

x(t+ 1) = Lx(t),

where L, called the Leslie matrix, is

L :=


s0f1 s0f2 · · · s0fn−1 s0fn
s1 0 · · · 0 0
0 s2 · · · 0 0
...

...
...

...
0 0 · · · sn−1 0

 and x =


x1

x2

x3

...
xn

 .

We can extend the model to include exogenous inputs biu(t) = si−1u(t) from immigration or stocking
of a population of age i as well as an output y that serves as a population indicator, where the type
of indicator depends on the choice of the vector c:

x(t+ 1) = Lx(t) + bu(t),

y(t) = cTx(t).
(2.2)

For system (2.2) we are interested in the question

1. Are the population levels and indicator always nonnegative, i.e. under what conditions do x
and y remain nonnegative for all times?

Note that, here, the survival and fertility rates are constant. Many factors, e.g. lack of food and
epidemics (and modern medicine, in the case of human beings), make it hard to calculate survival
and fertility rates accurately when looking at large time horizons. For this reason, the Leslie model is
best suited for short-term forecasts and low population species, possibly doomed to extinction:

2. Does the species become extinct at some point, i.e. under what conditions does x converge to 0
(as t → ∞)?
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Chapter 3

Positive Systems

In this chapter, we answer the questions posed in Chapter 2, starting with a formal definition of
the concept of positivity. Section 3.1 is dedicated to answering the questions concerning the positivity
of systems. Section 3.2 studies the long-term stability of positive systems. The results in that section
lead to important implications, which are discussed in Subsection 3.2.2. Lastly, we use numerical
examples of both models in Chapter 2 to illustrate the main results.

We are interested in the following two linear time-invariant systems:

Σc :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, t ∈ R+ Σd :

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, t ∈ Z+

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and (u,x,y) ∈ Rm+n+p. Informally, the variables
of a positive system are subject to a positivity (or nonnegativity) constraint. The literature on positive
systems theory, however, differentiates between two notions of positivity.

Definition 3.1. Systems Σc and Σd are called internally positive if, for every initial condition x(0) ≥ 0
and every input u ≥ 0, the state x and output y remain nonnegative for all times.

Definition 3.2. Systems Σc and Σd are called externally positive if the state x and output y remain
nonnegative for all times when the initial condition is x(0) = 0 and every input u is nonnegative.

Evidently, internal positivity implies external positivity. In the rest of the thesis, we study the former,
so we refer to internally positive systems as positive systems.

3.1 Characterisation

In continuous-time models with a positivity constraint on the variables, typically, a so-called
Metzler1 matrix with a special structure appears.

Definition 3.3. A real square matrix is called Metzler if its off-diagonal elements are nonnegative.

Now, we present and prove the following result, which characterises positive systems.

Theorem 3.4. Consider systems Σc and Σd. Then,

1. Σc is positive if and only if A is Metzler and B, C, D are nonnegative;

2. Σd is positive if and only if A, B, C and D are nonnegative.

1Named after the American economist Lloyd A. Metzler (1913-1980). His main contributions lie in international
trade theory, money, interest and prices, business cycles and economic fluctuations as well as mathematical economics
and statistics.
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Proof. (1|⇒): Assume Σc is positive. Firstly, let the system be subject to zero inputs at all times.
If we take ei as an initial condition, then

ẋ(0) = Aei = A•i,

i.e. the rate of change of the elements of ei is determined by the ith column of A. Because the system
is positive, the derivatives at the zero elements of ei need to be nonnegative. In other words, we need
that Aji ≥ 0 for all j ̸= i. Repeating this argument for all i = 1, . . . , n, by Definition 3.3, A is Metzler.
Looking at the output equation, in order for

y(0) = Cx(0)

to be nonnegative, given an arbitrary x(0) ≥ 0, we need that C ≥ 0.

Secondly, take the zero initial condition. For an arbitrary input u(0) ≥ 0, we have

ẋ(0) = Bu(0),

y(0) = Du(0).

By the same rate of change and output nonnegativity arguments, we conclude that B ≥ 0 and D ≥ 0.

(1|⇐): Conversely, suppose A is Metzler and B, C, D are nonnegative. It is clear from the general
solution of the system

x(t) = eAtx(0) +

∫ t

0

eA(t−s)Bu(s) ds,

y(t) = CeAtx(0) + C

∫ t

0

eA(t−s)Bu(s) ds+Du(t)

that we only need to make sure that the matrix exponential of a Metzler matrix is nonnegative.
Because of the structure of A, we can choose a sufficiently large α > 0 such that A + αI ≥ 0. By
using the definition of matrix exponential, note that

e(A+αI)t :=

∞∑
k=0

(A+ αI)ktk

k!
≥ 0,

e(−αI)t =

e
−αt

. . .

e−αt

 ≥ 0.

Lastly, by [7, Corollary 15.1.6], it follows that

e(A+αI)te(−αI)t = eAt ≥ 0.

(2|⇒): Let Σd be positive. We can again assess the properties of A and C by selecting zero inputs
as well as those of B and D if the initial condition is x(0) = 0:

x(1) = Ax(0),

y(0) = Cx(0),

arbitrary x(0) ≥ 0

⇒ A ≥ 0, C ≥ 0,

x(1) = Bu(0),

y(0) = Du(0),

arbitrary u(0) ≥ 0

⇒ B ≥ 0, D ≥ 0.

(2|⇐): The reverse implication is immediate from the general solution of the system:

x(t) = Atx(0) +

t−1∑
k=0

At−(k+1)Bu(k),

y(t) = CAtx(0) + C

t−1∑
k=0

At−(k+1)Bu(k) +Du(t).

■
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Consider again the decay chain system (2.1) and the Leslie model (2.2). Clearly, Λ is Metzler and
L ≥ 0. The physical meaning of the term bu(t) implies that it always has a nonnegative contribution
to the dynamics, i.e. b ≥ 0. A common population indicator is the total population, which can be
modelled by selecting c = 1n > 0. Therefore, as expected, both systems are positive.

3.2 Asymptotic Stability

We turn our attention to the stability property of positive systems. Consider the autonomous
systems

Σauto
c : ẋ(t) = Ax(t), Σauto

d : x(t+ 1) = Ax(t),

which are the systems Σc and Σd if the zero input is applied. We define asymptotic stability as follows.

Definition 3.5. The positive systems Σauto
c and Σauto

d are called asymptotically stable if, for every
nonnegative initial condition, the state evolution x converges to 0 as t → ∞.

It is worth noting that the standard eigenvalue characterisation of asymptotic stability remains the
same even for positive systems. In addition, we include the characterisation from Lyapunov stability
theory.

Proposition 3.6. The following statements are equivalent:

1. The positive system Σauto
c is asymptotically stable;

2. A is Hurwitz, i.e. Re(λ) < 0 for all λ ∈ σ(A);

3. There exists a P ≻ 0 such that ATP + PA ≺ 0.

Proposition 3.7. The following statements are equivalent:

1. The positive system Σauto
d is asymptotically stable;

2. A is Schur, i.e. |λ| < 1 for all λ ∈ σ(A);

3. There exists a P ≻ 0 such that ATPA− P ≺ 0.

To start with, we provide a quick test one can perform in order to check whether a positive system
is not asymptotically stable.

Theorem 3.8. Let Σauto
c and Σauto

d be positive.

1. If A is Hurwitz, then aii ≤ 0 for all i = 1, . . . , n.

2. If A is Schur, then 0 ≤ aii ≤ 1 for all i = 1, . . . , n.

Proof. To prove (1), suppose that the ith diagonal element of A is positive. Additionally, from the
positivity of Σauto

c , we know that aij ≥ 0 for all j ̸= i. Choose an initial condition x(0) such that
xi(0) > 0 and consider the ith element of ẋ(t):

ẋi(t) =

n∑
k=1

aikxk(t) > aiixi(t) > 0 for all t ∈ R+.

Therefore, limt→∞ xi(t) = ∞.

To prove (2), assume that aii > 1. Take x(0) = ei and using the fact that A ≥ 0, we can show the
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following by induction:

xi(1) =

n∑
k=1

aikxk(0) = aii,

xi(2) =

n∑
k=1

aikxk(1) ≥ a2ii,

...

xi(t) ≥ atii,

but because aii > 1, we know that the ith element diverges as t → ∞. ■

Asymptotic stability of positive systems has been extensively studied with [2, Chapter 6] serving as
a prime example – the authors provide 50 necessary and sufficient conditions (for continuous-time
systems). Nevertheless, in this thesis, we focus only on a few, which have important consequences
(see Subsection 3.2.2).

Theorem 3.9. Let Σauto
c be positive. The following statements are equivalent:

1. A is Hurwitz;

2. A is invertible and −A−1 ≥ 0;

3. There exists a ξ > 0 such that Aξ < 0;

4. There exists an η > 0 such that ηTA < 0;

5. There exists a diagonal matrix P ≻ 0 such that ATP + PA ≺ 0.

Remark. In other resources, e.g. [2, 4], asymptotic stability of a positive continuous-time system is
studied under the name nonsingular M-matrix instead of Hurwitz Metzler matrix.

Theorem 3.10. Let Σauto
d be positive. The following statements are equivalent:

1. A is Schur;

2. I −A is invertible and (I −A)−1 ≥ 0;

3. There exists a ξ > 0 such that Aξ < ξ;

4. There exists an η > 0 such that ηTA < ηT ;

5. There exists a diagonal matrix P ≻ 0 such that ATPA− P ≺ 0.

We save the proofs of Theorems 3.9 and 3.10 for the next subsection.

3.2.1 Proofs of Theorems 3.9 and 3.10

A paramount result, on which positive systems theory strongly relies, is the Perron-Frobenius
theorem.

Proposition 3.11. Let A be a real square matrix.

1. If A > 0, then there exists an x > 0 such that Ax = ρ(A)x.

2. If A ≥ 0, then there exists a nonzero x ≥ 0 such that Ax = ρ(A)x.

The first statement is part of the results on positive matrices, which Oskar Perron published in 1907
[8] and the second statement is a generalisation of his results to nonnegative matrices. Ferdinand G.
Frobenius’ contribution (which is not included in Proposition 3.11) comes in 1912 [9] when he adds
an additional assumption on A ≥ 0, so that we can guarantee the existence of a positive eigenvector,
but it is out of the scope of this thesis. We refer the interested reader to [10, Chapter 8].
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We begin with the proof of Theorem 3.9.

Proof of Theorem 3.9. We show that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1).

(1 ⇒ 2): The eigenvalues of a Hurwitz matrix are nonzero, so the inverse of A exists. Consider the
equilibrium xeq of the positive system ẋ = Ax+ ū, where ū ≥ 0 is an arbitrary constant input. Then,
0 = Axeq + ū implies that xeq = −A−1ū. The equilibrium is nonnegative due to the positivity of the
system and because the input is arbitrary, we have that −A−1 ≥ 0.

(2 ⇒ 3): A Metzler matrix can be written as A = B− cI, where c > 0 is a scalar and, depending on
A, either B > 0 or B ≥ 0. If B > 0, by Proposition 3.11, there exists a ξ > 0 such that Bξ = ρ(B)ξ.
Then, Aξ = (B − cI)ξ = (ρ(B)− c)ξ. After multiplying by −A−1 on both sides, we have

(ρ(B)− c)(−A−1)ξ = −ξ < 0,

which is possible only if ρ(B)− c < 0, because −A−1ξ is nonnegative and nonzero. This implies that
Aξ < 0.

If instead B ≥ 0, by Proposition 3.11, there exists a nonzero v ≥ 0 such that Bv = ρ(B)v.
Similarly, we conclude that

(ρ(B)− c)(−A−1)v = −v ≤ 0.

Because −A−1v is nonnegative and nonzero, we know that ρ(B) − c < 0. Using the fact that
eigenvalues are a continuous function of the matrix elements, we can increase the zero elements of B
(and, consequently, those of A) by a small ϵ > 0, the result of which we denote by Bϵ (Aϵ), such that
ρ(Bϵ)− c < 0. Moreover, note that Aϵ ≥ A. Then, by Proposition 3.11, there exists a ξ > 0 such that

Aξ ≤ Aϵξ = (Bϵ − cI)ξ = (ρ(Bϵ)− c)ξ < 0.

(3 ⇒ 4): Let Aξ < 0 for some ξ > 0. We again express A as A = B − cI and distinguish between
the cases B > 0 and B ≥ 0. Suppose that B > 0. By Proposition 3.11, there exists an η > 0 such
that ηTB = ηT ρ(B). Because Aξ < 0 implies that ηTAξ < 0, we have

0 > ηTAξ = ηT (B − cI)ξ = (ρ(B)− c)ηT ξ.

The vectors η and ξ are such that ηT ξ > 0, which means ρ(B)− c < 0. Subsequently,

ηTA = ηT (B − cI) = ηT (ρ(B)− c) < 0.

Now, assume that B ≥ 0. By Proposition 3.11, there exists a nonzero w ≥ 0 such that wTB =
wT ρ(B) and this time

0 > wTAξ = wT (B − cI)ξ = (ρ(B)− c)wT ξ and wT ξ > 0 imply that ρ(B)− c < 0.

Note that the inequalities are strict, because w is nonzero. After using the same ϵ-perturbation
argument as in the proof of (2 ⇒ 3), we conclude that there exists an η > 0 such that

ηTA ≤ ηTAϵ = ηT (Bϵ − cI) = ηT (ρ(Bϵ)− c) < 0.

(4 ⇒ 5): The implication (4 ⇒ 3) can easily be shown by using the same ideas from the proof of (3
⇒ 4). Therefore, we can assume that there exist positive ξ and η such that Aξ and ηTA are negative.

Construct an n×n matrix C with elements cij := −ηiaijξj . From the positivity of Σauto
c , we know

that aij ≥ 0 for j ̸= i. Additionally, Theorem 3.8 ensures that aii ≤ 0. Then, cij ≤ 0 for j ̸= i and
cii ≥ 0. We can show that both C and CT are diagonally dominant:

|cii| −
n∑

j=1
j ̸=i

|cij | =
n∑

j=1

cij = −ηi

n∑
j=1

aijξj = −ηi(Aξ)i > 0,

|cii| −
n∑

j=1
j ̸=i

|cji| =
n∑

j=1

cji = −ξi

n∑
j=1

ηjaji = −ξi(η
TA)i > 0.

(3.2)
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Thus, C+CT is also diagonally dominant. Because C+CT is symmetric, it has real eigenvalues and,
by the Gershgorin Circle Theorem [7, Fact 6.10.22], they are in the union of the n open intervals,
centered around 2cii with length 2

∑n
j=1; j ̸=i |cij |. Furthermore, all intervals are fully contained in the

right half of the real line, due to the diagonal dominance and that cii > 0 (as cii ≥ 0 and (3.2) hold).
Hence, C + CT has positive eigenvalues. By [11, Proposition 4.21], for all nonzero x ∈ Rn,

xT (C + CT )x = 2 · xTCx ≥ λmin(C + CT )∥x∥2 > 0,

where λmin(C + CT ) > 0 denotes the smallest eigenvalue of C + CT and ∥ · ∥ is the Euclidean norm.

Consider the diagonal matrix P with elements pii := ηi/ξi > 0, i = 1, . . . , n. Then, P ≻ 0. It
remains to check whether ATP + PA is negative definite:

−xTPAx = −
n∑

i,j=1

xipiiaijxj =

n∑
i,j=1

xi
ηi
ξi

cij
ηiξj

xj

=

n∑
i,j=1

xi

ξi
cij

xj

ξj
= x̄TCx̄ (x̄ ∈ Rn, x̄i := xi/ξi, i = 1, . . . , n)

≥ λmin(C + CT )

2
∥x̄∥2 > 0

for all nonzero x ∈ Rn, which means that PA as well as ATP are negative definite. Therefore,
ATP + PA ≺ 0.

(5 ⇒ 1): This follows from Proposition 3.6. ■

Next, we prove Theorem 3.10 in a similar fashion.

Proof of Theorem 3.10. The proof strategy is the same as the one for Theorem 3.9.

(1 ⇒ 2): If λ ∈ σ(A), then 1− λ ∈ σ(I − A). In addition, A is Schur, which means that 1− λ ̸= 0
and, thus, I − A is invertible. Consider a positive system with an arbitrary constant input ū ≥ 0
and its equilibrium xeq. Then, xeq = Axeq + ū, leading to xeq = (I − A)−1ū. Because the system is
positive, the equilibrium has to be nonnegative, so we have that (I −A)−1 ≥ 0.

(2 ⇒ 3): On the one hand, if A > 0, by Proposition 3.11, there exists a ξ > 0 such that Aξ = ρ(A)ξ.
Then, (I −A)ξ = (1− ρ(A))ξ and after multiplying both sides by the inverse of I −A, we have

(1− ρ(A))(I −A)−1ξ = ξ > 0,

which implies that ρ(A) < 1, because (I −A)−1ξ > 0. Therefore, Aξ < ξ.

On the other hand, if A ≥ 0, by Proposition 3.11, there exists a nonzero v ≥ 0 such that Av =
ρ(A)v. Similarly,

(1− ρ(A))(I −A)−1v = v ≥ 0,

from which we again derive that ρ(A) < 1. After increasing the zero elements of A by a small ϵ > 0
such that ρ(Aϵ) < 1, we see that

Aξ ≤ Aϵξ = ρ(Aϵ)ξ < ξ,

where ξ > 0 is the right Perron eigenvector of Aϵ.

(3 ⇒ 4): Assume Aξ < ξ for some ξ > 0. Firstly, let A > 0. By Proposition 3.11, there exists an
η > 0 such that ηTA = ηT ρ(A). After right multiplication by ξ, we have ρ(A)ηT ξ = ηTAξ < ηT ξ
implying that ρ(A) < 1 and, thus, ηTA < ηT .

Secondly, let A ≥ 0. By Proposition 3.11, there exists a nonzero w ≥ 0 such that wTA = wT ρ(A).
As before, right multiplication by ξ leads to ρ(A)wT ξ = wTAξ < wT ξ and we again conclude that
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ρ(A) < 1. After applying the same ϵ-perturbation argument on A as in the proof of (2 ⇒ 3), we know
that

ηTA ≤ ηTAϵ = ηT ρ(Aϵ) < ηT ,

where η > 0 is the left Perron eigenvector of Aϵ.

(4 ⇒ 5): By following the ideas from the proof of (3 ⇒ 4), the implication (4 ⇒ 3) becomes
straightforward. Then, we know that there exist positive ξ and η such that Aξ < ξ and ηTA < η.

Define E := diag(η) and X := diag(ξ). Construct an n×n matrix D with elements dij := ηiaijξj ,
i.e. D = EAX. The positivity of Σauto

d ensures that dij ≥ 0 for all i, j = 1, . . . , n. Now, we show that
the matrix

F :=

[
EX DT

D EX

]
is diagonally dominant:

i = 1, . . . , n : |fii| −
2n∑
k=1
k ̸=i

|fik| = ηiξi −
n∑

j=1

ηjajiξi = (ηT − ηTA)iξi > 0,

i = n+ 1, . . . , 2n : |fii| −
2n∑
k=1
k ̸=i

|fik| = ηiξi −
n∑

j=1

ηiaijξj = ηi(ξ −Aξ)i > 0.

Arguing in the same way as in the proof of (4 ⇒ 5) from Theorem 3.9, we can deduce that L has
positive eigenvalues, which implies that L ≻ 0. Hence, by [12, Lemma A.2.1], the Schur complement
[7, Definition 8.1.13] of L is also positive definite:

EX −DTX−1E−1D ≻ 0.

Let z ∈ Rn be arbitrary and nonzero. Note that

zT
(
EX−1 −ATEX−1A

)
z = zTX−1EXX−1z− zTX−1XATEX−1E−1EAXX−1z

= z̄TEX z̄− z̄TDTX−1E−1Dz̄

= z̄T
(
EX −DTX−1E−1D

)
z̄ > 0,

where z̄ ∈ Rn is defined as z̄ := X−1z. By taking P := EX−1 > 0, which is diagonal and positive
definite, we have shown that ATPA− P ≺ 0.

(5 ⇒ 1): This follows from Proposition 3.7. ■

3.2.2 Discussion

When comparing the Lyapunov equation conditions for asymptotic stability of positive and uncon-
strained systems, we can see a very notable difference concerning the P matrix. Namely, for positive
systems, P is diagonal. This phenomenon can also be seen in the results in Chapters 4 and 5. The
diagonal structure of P offers a great advantage in the context of large-scale systems. Indeed, the
number of parameters scales linearly with the number of states instead of quadratically. Furthermore,
the proofs of Theorems 3.9 and 3.10 provide a way to construct it using the left and right Perron
eigenvectors of A (or Aϵ):

pii :=
ηi
ξi
.

Statements (3) and (4) from Theorems 3.9 and 3.10 are also of significant interest. They allow
us to reformulate semidefinite programming (SDP) problems into linear programming (LP) ones. For
example, we do this for the stability verification and (positive) stabilisation (see Chapter 4) problems.
While the solutions from SDP and LP are theoretically the same, LP has a lower computational
complexity compared to SDP.
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Lastly, we comment on the geometric interpretation of statements (3), (4) and (5) from Theorems
3.9 and 3.10. Consider the following Lyapunov functions, which correspond to each statement:

V3(x) = max
i=1,...,n

xi

ξi
, ξ > 0,

V4(x) = ηTx, η > 0,

V5(x) = xTPx, P ≻ 0.

Asymptotic stability of a positive system is equivalent to the existence of a Lyapunov function Vi

(i = 3, 4, 5) such that V̇i(x) < 0 (in continuous time) or Vi(Ax)− Vi(x) < 0 (in discrete time) for all
nonzero x. For the sake of illustration, we look at the two-dimensional case n = 2. Consider the level
curves Ck (k ∈ Z+), where Vi is constant, i.e.

Ck :=
{
x ∈ R2 | Vi(x) = ck

}
,

which are shown in Figure 1. Then, the trajectories of an asymptotically stable system penetrate the
level curves in a decreasing order (0 = c0 < c1 < c2 < · · · ), converging to the origin as t → ∞.

Figure 1: Level curves of the Lyapunov functions V3, V4 and V5.

3.2.3 Examples

In this subsection, we look at specific numerical examples of (2.1) and (2.2) and check whether the
systems are asymptotically stable.

Generally, the process of radioactive decay does not happen over the span of a few days or months.
The half-life of Uranium-238, for instance, is 4.5 billion years. Therefore, we consider an unrealistic,
yet illustrative example of Λ:

Λ =


−1
1 −2

2 −3
. . .

. . .

13 −14

 .

It can easily be verified that the following ξ and η satisfy statements (3) and (4) from Theorem 3.9:

ξ =


1
1
1
...
1

 , η =


14
13
12
...
1

 .

Additionally, instead of calculating a matrix P that satisfies statement (5) from Theorem 3.9 using
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SDP, we can do so directly with ξ and η and verify that ATP + PA ≺ 0:

P =


14

13
12

. . .

1

 .

For the Leslie model, we examine the first 10 age groups of a fish population [3, Chapter 13]:

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
6 · 10−5 0.45 0.27 0.26 0.26 0.25 0.25 0.25 0.25 0.25

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
0 5000 11000 18000 24000 31000 34000 41000 45000 46000

While survival rates are quite low, the fish compensate with a high fertility rate that increases with
age, which makes it an interesting case study. After checking the statements in Theorem 3.10 in
MATLAB, we conclude that the fish go extinct:

σ(L) = {0.6485, 0.2047 + 0.2205i, 0.2047− 0.2205i, 0.0463 + 0.3206i, 0.0463− 0.3206i,

− 0.3384,−0.2663 + 0.1768i,−0.2663− 0.1768i,−0.1398 + 0.2905i,−0.1398− 0.2905i},

(I − L)−1 =



1.3632 0.8071 1.4745 2.2109 2.8411 3.5126 3.9081 4.5087 4.6212 3.7624
0.6134 1.3632 0.6635 0.9949 1.2785 1.5806 1.7586 2.0289 2.0795 1.6931
0.1656 0.3681 1.1792 0.2686 0.3452 0.4268 0.4748 0.5478 0.5615 0.4571
0.0431 0.0957 0.3066 1.0698 0.0898 0.1110 0.1235 0.1424 0.1460 0.1189
0.0112 0.0249 0.0797 0.2782 1.0233 0.0288 0.0321 0.0370 0.0380 0.0309
0.0028 0.0062 0.0199 0.0695 0.2558 1.0072 0.0080 0.0093 0.0095 0.0077
0.0007 0.0016 0.0050 0.0174 0.0640 0.2518 1.0020 0.0023 0.0024 0.0019
0.0002 0.0004 0.0012 0.0043 0.0160 0.0630 0.2505 1.0006 0.0006 0.0005
0.0000 0.0001 0.0003 0.0011 0.0040 0.0157 0.0626 0.2501 1.0001 0.0001
0.0000 0.0000 0.0001 0.0003 0.0010 0.0039 0.0157 0.0625 0.2500 1.0000


and by using YALMIP [13] with MOSEK [14], we obtain

ξ =



2.9010
1.4054
0.4795
0.2247
0.1584
0.1396
0.1349
0.1337
0.1334
0.1334


, η =



0.2200
0.2667
0.3730
0.4915
0.5919
0.7001
0.7636
0.8590
0.8709
0.7073


, P = diag





0.0333
0.0809
0.7782
1.1521
1.2575
1.3727
1.4295
1.5634
1.6409
1.5852




.
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Chapter 4

Kalman–Yakubovich–Popov Lemma

The Kalman–Yakubovich–Popov lemma is a fundamental result in modern control theory, which
was first formulated and proven by Vladimir A. Yakubovich in 1962 [15]. The initial formulation was
the equivalence between a strict frequency inequality and a matrix inequality. The result is extended
to the nonstrict case by Rudolf E. Kalman in 1963 [16]. However, until then, Yakubovich and Kalman
only consider one-dimensional inputs. The constraint on the control dimensionality is removed by
Vasile M. Popov in 1964 [17]. We refer the interested reader to a historical essay about the KYP
lemma [18].

Ultimately, the KYP lemma creates a bridge between the frequency domain and state space.
Later, this connection is extended to positive systems in both continuous and discrete time by Anders
Rantzer, originally, in 2012 [19] and in the later iterations [20, 21]. The results are presented below.

Theorem 4.1. Assume A is a Hurwitz Metzler matrix, B ≥ 0 and the pair (A,B) is controllable.
Let M ∈ Sn+m be a matrix whose off-diagonal and first n diagonal elements are nonnegative. The
following statements are equivalent:

1. For all ω ∈ R, [
(iωI −A)−1B

I

]∗
M

[
(iωI −A)−1B

I

]
⪯ 0;

2. The following inequality holds: [
−A−1B

I

]T
M

[
−A−1B

I

]
⪯ 0;

3. There exists a diagonal P ⪰ 0 such that

M +

[
ATP + PA PB

BTP 0

]
⪯ 0.

If all inequalities in (1), (2) and (3) are replaced with strict ones, then the statements remain equivalent
even without the controllability assumption.

Theorem 4.2. Assume A ≥ 0 is Schur, B ≥ 0 and the pair (A,B) is controllable. Let M ∈ Sn+m be
a matrix whose off-diagonal and first n diagonal elements are nonnegative. The following statements
are equivalent:

1. For all ω ∈ R, [
(eiωI −A)−1B

I

]∗
M

[
(eiωI −A)−1B

I

]
⪯ 0;
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2. The following inequality holds:[
(I −A)−1B

I

]T
M

[
(I −A)−1B

I

]
⪯ 0;

3. There exists a diagonal P ⪰ 0 such that

M +

[
ATPA− P ATPB
BTPA BTPB

]
⪯ 0.

If all inequalities in (1), (2) and (3) are replaced with strict ones, then the statements remain equivalent
even without the controllability assumption.

Firstly, we note the importance of the controllability assumption for the nonstrict case. Consider
the following counterexample for Theorem 4.1:

A = −1, B = 0, M =

[
0 1
1 0

]
.

Then, [
−A−1B

I

]T
M

[
−A−1B

I

]
= 0 ⪯ 0,

but the eigenvalues of

M +

[
ATP + PA PB

BTP 0

]
=

[
−2p11 1

1 0

]
are −p11 ±

√
p211 + 1, so statement (3) cannot be satisfied for any p11 ≥ 0.

Secondly, we mention two differences to the version for unconstrained systems. Similarly to state-
ments (5) from Theorems 3.9 and 3.10, here, we require the P matrix to be diagonal. Additionally,
while we still have a frequency inequality and a matrix inequality, in the case of positive systems, it
is enough to verify whether the frequency inequality holds only for ω = 0.

4.1 Preliminaries

In this section, we provide the tools we use to prove the KYP lemma for positive systems. The
following is a result from [21, Theorem 4].

Proposition 4.3. Let M ∈ Sn and N ∈ Rn×n be Metzler. Then,

max
{
zTMz | z ≥ 0, Nz ≥ 0, zT z ≤ 1

}
= max {tr(MZ) | Z ⪰ 0, diag(NZ) ≥ 0, tr(Z) ≤ 1} . (4.1)

Moreover, (4.1) holds if the constraint Z ⪰ 0 on the right-hand side of (4.1) is relaxed to Z ∈ P, where

P :=
{
Z ∈ Sn | zii ≥ 0, z2ij ≤ ziizjj for all i, j = 1, . . . , n

}
.

Proof. If we choose Z = zzT , where z satisfies the constraints on the left-hand side of (4.1), then we
can show that Z satisfies the constraints on the right-hand side:

xTZx = (zTx)T zTx ≥ 0 for all nonzero x ∈ Rn;

z ≥ 0 and Nz ≥ 0 imply that diag(NzzT ) = diag(NZ) ≥ 0;

tr(Z) = tr(zzT ) = zT z ≤ 1.

Hence, the right-hand side of (4.1) is greater than or equal to the left-hand side.
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Suppose Z ⪰ 0, i.e. xTZx ≥ 0 for all nonzero x ∈ Rn. Note that Z ∈ P. Indeed, for all
i, j = 1, . . . , n and v, w ∈ R, we have

x = ei ⇒ zii ≥ 0;

x = vei + wej ⇒
[
v
w

]T [
zii zij
zji zjj

] [
v
w

]
≥ 0 ⇒

[
zii zij
zji zjj

]
⪰ 0

⇒ det

([
zii zij
zji zjj

])
= ziizjj − z2ij ≥ 0 ⇒ z2ij ≤ ziizjj ⇒ zij ≤

√
ziizjj .

Select z :=
[√

z11 · · · √
znn
]T ≥ 0. Then, zzT ≥ Z, though, they have the same diagonal elements.

In addition, zT z = tr(Z) ≤ 1. Using the fact that the off-diagonal elements of M are nonnegative, we
see that

zTMz =

n∑
i,j=1

√
ziimij

√
zjj ≥

n∑
i,j=1

mijzij = tr(MZ).

Consider the (k, k)th element of NzzT . Because N is Metzler and diag(NZ) ≥ 0, we see that

(NzzT )kk =

n∑
j=1

nkj
√
zjj

√
zkk ≥

n∑
j=1

nkjzjk = (NZ)kk ≥ 0.

Due to the fact that
√
zkk ≥ 0, for all k = 1, . . . , n, we have

∑n
j=1 nkj

√
zjj = Nk•z ≥ 0 or, equivalently,

Nz ≥ 0. Therefore, the left-hand side of (4.1) is at least as big as the right-hand side. We conclude
that both sides of (4.1) are equal. ■

Next, we briefly present some duality theory for linear matrix inequalities (LMIs) from [22]. Denote
by Sn the space of n×n Hermitian matrices and by S the space of block diagonal Hermitian matrices,
i.e. S := Sn1 × · · · × SnL , with inner product

⟨

A1

. . .

AL

 ,

B1

. . .

BL

⟩S =

L∑
k=1

tr(AkBk).

Consider the linear mapping A : V → S, where V is a finite-dimensional vector space with an inner
product ⟨·, ·⟩V . The adjoint mapping Aadj : S → V of A is such that ⟨A(x), Z⟩S = ⟨x, Aadj(Z)⟩V for
all x ∈ V and Z ∈ S. We make use of the following theorems of alternatives.

Proposition 4.4. Let A0 ∈ S. Exactly one of the following statements is true:

1. There exists an x ∈ V such that A(x) +A0 ≻ 0;

2. There exists a nonzero positive semidefinite Z ∈ S such that Aadj(Z) = 0 and ⟨A0, Z⟩S ≤ 0.

Proposition 4.5. Let A0 ∈ S. At most one of the following statements is true:

1. There exists an x ∈ V such that A(x) +A0 ⪰ 0;

2. There exists a positive semidefinite Z ∈ S such that Aadj(Z) = 0 and ⟨A0, Z⟩S < 0.

Moreover, if A0 = A(x0) for some x0 ∈ V or if there exists no x ∈ V such that A(x) is nonzero and
positive semidefinite, then exactly one of the two statements is true.

The statements in Proposition 4.4 are called strong alternatives, because exactly one of them is true,
whereas the ones in Proposition 4.5 are called weak alternatives. The additional assumptions under
which weak alternatives become strong alternatives, are called constraint qualifications.
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4.2 Proofs of Theorems 4.1 and 4.2

Now, we are ready to prove the KYP lemma for positive systems.

Proof of Theorem 4.1. Introduce two additional statements:

5. The inequality [
x
u

]T
M

[
x
u

]
≤ 0

holds for all x,u ≥ 0 satisfying Ax+Bu ≥ 0;

6. The inequality tr(MZ) ≤ 0 holds for all Z ⪰ 0 satisfying

diag
([

A B
]
Z
[
I 0

]T) ≥ 0.

We show that (3) ⇒ (1) ⇒ (2) ⇒ (5) ⇒ (6) ⇒ (3).

(3 ⇒ 1): Let ω ∈ R and u ∈ Cm and define x := (iωI − A)−1Bu. We obtain the desired inequality
as follows:[

x
u

]∗(
M +

[
ATP + PA PB

BTP 0

])[
x
u

]
=

[
x
u

]∗
M

[
x
u

]
+

[
x
u

]∗ [
I 0
A B

]T [
0 P
P 0

] [
I 0
A B

] [
x
u

]
=

[
x
u

]∗
M

[
x
u

]
= u∗

[
(iωI −A)−1B

I

]∗
M

[
(iωI −A)−1B

I

]
u ≤ 0.

(1 ⇒ 2): Take ω = 0.

(2 ⇒ 5): By Theorem 3.9, we know that −A−1 ≥ 0. So if Ax + Bu ≥ 0, where x,u ≥ 0, then
x ≤ −A−1Bu. Due to the structure of M , we have[

x
u

]T
M

[
x
u

]
≤ uT

[
−A−1B

I

]T
M

[
−A−1B

I

]
u ≤ 0.

(5 ⇒ 6): Define

N :=

[
A B
0 0

]
, z :=

[
x
u

]
and note that N is Metzler. If x,u ≥ 0 are such that Ax + Bu ≥ 0, then z ≥ 0 and Nz ≥ 0. By
assumption, we know that

max
{
zTMz | z ≥ 0, Nz ≥ 0

}
≤ 0.

We can scale z such that zT z ≤ 1 and, consequently, obtain

max
{
zTMz | z ≥ 0, Nz ≥ 0, zT z ≤ 1

}
≤ 0.

Hence, by Proposition 4.3,

max {tr(MZ) | Z ⪰ 0, diag(NZ) ≥ 0, tr(Z) ≤ 1} ≤ 0,

where

diag(NZ) = diag

([
A B
0 0

]
Z

)
= diag

([
A B

]
Z
[
I 0

]T) ≥ 0.

Similarly, because Z is subject to scaling, we can conclude that tr(MZ) ≤ 0 for all Z ⪰ 0 satisfying

diag
([

A B
]
Z
[
I 0

]T) ≥ 0.
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(6 ⇒ 3): Consider the spaces V := Rn and

S :=

Q :=


Q11 Q12

QT
12 Q22

Q33

 | Q11 ∈ Sn, Q22 ∈ Sm, Q12 ∈ Rn×m, Q33 := diag(q), q ∈ Rn


with inner products ⟨x,y⟩V = xTy and ⟨A,B⟩S = tr(AB). We can rephrase statement (3) as follows:
there exists a p ∈ V such that

A(p) +A0 :=

 −ATP − PA −PB

−BTP 0

P

+

[
−M

0

]
⪰ 0, (4.2.1)

where P := diag(p). Note that

⟨

 −ATP − PA −PB

−BTP 0

P

 ,


Q11 Q12

QT
12 Q22

Q33

⟩S
= tr

([
−ATP − PA −PB

−BTP 0

] [
Q11 Q12

QT
12 Q22

])
+ pTq

= − tr(ATPQ11)− tr(PAQ11)− tr(PBQT
12)− tr(BTPQ12) + pTq

= −pT (diag(Q11A
T ) + diag(AQ11) + diag(BQT

12) + diag(Q12B
T )) + pTq

= −2 · pT diag(AQ11 +BQT
12) + pTq

= ⟨p,−2 · diag(AQ11 +BQT
12) + q⟩V .

Therefore, the adjoint mapping of A is Aadj(Q) = −2 ·diag(AQ11+BQT
12)+q. Additionally, if Q ⪰ 0,

then [
Q11 Q12

QT
12 Q22

]
⪰ 0 and q ≥ 0,

so Aadj(Q) = 0 implies that

diag(AQ11 +BQT
12) = diag

([
A B

] [Q11 Q12

QT
12 Q22

] [
I 0

]T) ≥ 0.

Assume that there exists a p ∈ V such that A(p) is nonzero and positive semidefinite or, equiva-
lently, P ⪰ 0 and [

−ATP − PA −PB
−BTP 0

]
⪰ 0

are nonzero. By [7, Corollary 10.2.3], we must have that −BTP = 0 and, consequently, −PB = 0.
Thus, ATP +PA ⪯ 0. From the assumption that (A,B) is controllable, by [11, Theorem 9.2], we can
choose a matrix K such that all eigenvalues of A+BK are distinct and have positive real parts. This
means its eigenvectors are linearly independent. However, if all of them are in the kernel of P , then,
by the rank-nullity theorem [7, Corollary 3.6.5], P has to be the zero matrix. Hence, there exists a v
such that Pv ̸= 0 and (A+BK)v = λv. Then,

v∗ (ATP + PA
)
v = v∗ ((A+BK)TP + P (A+BK)

)
v ≤ 0,

2 · Re(λ)(v∗Pv) ≤ 0.

From the positive semidefiniteness of P , we conclude that Re(λ) ≤ 0, which is a contradiction.

Finally, by Theorem 4.5, exactly one of the following two statements is true:
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1. There exists a p ∈ V such that (4.2.1) holds;

2. There exists a Q̂ ⪰ 0 such that diag
([

A B
]
Q̂
[
I 0

]T) ≥ 0 and ⟨−M, Q̂⟩S = − tr(MQ̂) < 0.

By assuming (6), clearly, we see that the second statement is false.

In case of strict inequalities, proving the equivalence between (1), (2) and (3) is a matter of
replacing nonstrict inequalities with strict ones and, instead of Proposition 4.5, we invoke Proposition
4.4 and skip the arguments involving the controllability of (A,B). ■

Theorem 4.2 can be proven in a similar way, but we show a shorter proof, which utilises the already
proven Theorem 4.1.

Proof of Theorem 4.2. We can use the Cayley transform (1 + iω)/(1 − iω) to map the real numbers
to the unit disk, instead of eiω. By following the ideas in the proof of (3 ⇒ 1) from Theorem 4.1, we
see that statement (1) is equivalent to [

x
u

]∗
M

[
x
u

]
≤ 0, (4.2.2)

where (x,u, ω) are such that x = (((1 + iω)/(1− iω))I −A)−1Bu. Define

Â := (A− I)(A+ I)−1,

B̂ := 2 · (A+ I)−1B,

x̂ := x+Ax+Bu,

S :=

[
(A+ I)−1 −(A+ I)−1B

0 I

]
,

M̂ := STMS.

Then, we can rewrite (4.2.2) as [
x̂
u

]∗
M̂

[
x̂
u

]
≤ 0,

where (x̂,u, ω) are such that x̂ = (iωI − Â)−1B̂u, and, thus, we return to the setting of Theorem
4.1. After taking ω = 0, we obtain the inequality from statement (2). By Theorem 4.1, we know that
there exists a diagonal Q ⪰ 0 such that

M̂ +

[
ÂTQ+QÂ QB̂

B̂TQ 0

]
⪯ 0.

Let P := 2Q and note that[
A+ I B
0 I

]T (
M̂ +

[
ÂTQ+QÂ QB̂

B̂TQ 0

])[
A+ I B
0 I

]
= M + 2 ·

[
ATQA−Q ATQB
BTQA BTQB

]
= M +

[
ATPA− P ATPB
BTPA BTPB

]
⪯ 0.

Proving the version of Theorem 4.2 with strict inequalities is again a matter of replacing nonstrict
inequalities with strict ones. ■
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4.3 A Numerical Example

Consider an example of a continuous-time system provided in [23, Section V]1:

A =


−0.3329 0.0800 0 0.0700
0.0800 −0.2800 0.1000 0

0 0.1000 −0.9650 0.0900
0.0700 0 0.0900 −0.2000

 , B = I,

M =



0.2400 0.3613 0.2197 0.3400
0.3613 1.5323 0.8102 1.4203
0.2197 0.8102 0.7826 0.8622
0.3400 1.4203 0.8622 2.1021

−151.7824
−151.7824

−151.7824
−151.7824


.

We use MATLAB to calculate the eigenvalues of[
−A−1B

I

]T
M

[
−A−1B

I

]
,

which are {−151.2841, −151.6803, −151.7716, −151.7603}. After verifying that A is Hurwitz, by
Theorem 4.1, we know that [

(iωI −A)−1B
I

]∗
M

[
(iωI −A)−1B

I

]
≺ 0

for all ω ∈ R and that there exists a diagonal P ≻ 0 such that

M +

[
ATP + PA PB

BTP 0

]
≺ 0.

We find P by using YALMIP with MOSEK:

P = diag



18.7093
25.4319
27.6458
22.0076


 .

1In this paper, the authors apply the KYP lemma for positive systems to the problem of synthesising stabilising
controllers with guaranteed performance, i.e. the H∞ problem.

22



Chapter 5

Positive Stabilisation

In general, unstable behaviour of physical systems is undesirable. This chapter deals with the
problem of stabilisation by state feedback, i.e. we seek to design a controller u(t) = Kx(t), which
makes the continuous- or discrete-time closed-loop system

Σcl
c :

{
ẋ(t) = (A+BK)x(t),

y(t) = (C +DK)x(t),
Σcl

d :

{
x(t+ 1) = (A+BK)x(t),

y(t) = (C +DK)x(t),

asymptotically stable. However, the standard stabilisation problem does not guarantee that the
resulting system remains positive. Hence, in the context of positive systems, we discuss the problem
of positive stabilisation – we require that A+BK is Hurwitz Metzler or nonnegative Schur as well as
C +DK ≥ 0. In Section 5.1, we provide a method, originally formulated in [24], to compute such a
K by SDP. In Section 5.2, based on [25], we reduce the computational complexity by transforming it
into an LP problem instead. Finally, we would like to stress the following: (1) we do not assume that
the original system is positive (see Section 5.3) and (2) the results in this chapter provide necessary
and sufficient conditions for the existence of K.

5.1 By Semidefinite Programming

The next two results provide a necessary and sufficient LMI condition for the existence of a state
feedback controller. The basis for the first result is statement (5) from Theorem 3.9.

Theorem 5.1. Given the system Σc, there exists a feedback gain K, which makes the closed-loop
system Σcl

c positive and asymptotically stable if and only if there exist an n×n diagonal matrix Q ≻ 0
and a matrix R ∈ Rm×n such that AQ+BR is Metzler, CQ+DR ≥ 0 and

(AQ+BR)T +AQ+BR ≺ 0.

Moreover, a feedback gain, which achieves the desired objective, is given by K = RQ−1.

Proof. (⇒): Suppose there exists a K such that A + BK is Hurwitz Metzler and C + DK ≥ 0.
Firstly, by Theorem 3.9, there exists a diagonal P ≻ 0 such that

(A+BK)TP + P (A+BK) ≺ 0.

After applying the following congruence transformation, we obtain

P−1
(
(A+BK)TP + P (A+BK)

)
P−1 = ((A+BK)P−1)T + (A+BK)P−1

= (AQ+BR)T +AQ+BR ≺ 0,
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where we define Q := P−1 ≻ 0 and R := KQ, i.e. K = RQ−1.

Secondly, because Q > 0, note that if A + BK = A + BRQ−1 is Metzler and C + DK =
C +DRQ−1 ≥ 0, then also AQ+BR is Metzler and CQ+DR ≥ 0.

(⇐): Let K = RQ−1. Because Q ≻ 0, consequently, Q > 0 and Q−1 > 0. Thus, if AQ + BR is
Metzler and CQ+DR ≥ 0, then so are A+BK and C +DK, respectively. Substituting R = KQ in
the matrix inequality and applying a congruence transformation gives us

Q−1
(
Q(A+BK)T + (A+BK)Q

)
Q−1 = (A+BK)TQ−1 +Q−1(A+BK) ≺ 0.

Take the diagonal matrix P := Q−1 ≻ 0. Thus, by Theorem 3.9, we know that Σcl
c is asymptotically

stable. ■

For the discrete-time counterpart, we resort to statement (5) from Theorem 3.10 instead.

Theorem 5.2. Given the system Σd, there exists a feedback gain K, which makes the closed-loop
system Σcl

d positive and asymptotically stable if and only if there exist an n×n diagonal matrix Q ≻ 0
and a matrix R ∈ Rm×n such that AQ+BR ≥ 0, CQ+DR ≥ 0 and[

−Q AQ+BR
(AQ+BR)T −Q

]
≺ 0.

Moreover, a feedback gain, which achieves the desired objective, is given by K = RQ−1.

Proof. Similarly as in the proof of Theorem 5.1, we can show that the system is positive if and only
if AQ+BR ≥ 0 and CQ+DR ≥ 0, so we only focus on the condition for asymptotic stability.

(⇒): Assume there exists a K such that Σcl
d is positive and asymptotically stable. By Theorem 3.10,

there exists a diagonal P ≻ 0 such that

(A+BK)TP (A+BK)− P ≺ 0.

By [12, Lemma A.2.1], for its Schur complement, it holds that[
−P P (A+BK)

(A+BK)TP −P

]
≺ 0.

We apply the following congruence transformation to obtain[
P−1 0
0 P−1

]T [ −P P (A+BK)
(A+BK)TP −P

] [
P−1 0
0 P−1

]
=

[
−P−1 (A+BK)P−1

P−1(A+BK)T −P−1

]
=

[
−Q AQ+BR

(AQ+BR)T −Q

]
≺ 0,

where we define Q := P−1 ≻ 0 and R := KQ, i.e. K = RQ−1.

(⇐): Let K = RQ−1. Then,[
−Q AQ+BR

(AQ+BR)T −Q

]
=

[
−Q (A+BK)Q

Q(A+BK)T −Q

]
≺ 0.

We apply the following congruence transformation:[
Q−1 0
0 Q−1

]T[ −Q (A+BK)Q
Q(A+BK)T −Q

][
Q−1 0
0 Q−1

]
=

[
−Q−1 Q−1(A+BK)

(A+BK)TQ−1 −Q−1

]
≺ 0.

After defining P := Q−1 and taking the Schur complement, we verify with Theorem 3.9 that Σcl
d is

asymptotically stable. ■
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5.2 By Linear Programming

Statements (3) from Theorems 3.9 and 3.10 provide a method to convert SDP problems into LP
ones. The following theorems theoretically yield the same controller design, though, Theorems 5.1
and 5.2 are more computationally expensive.

Theorem 5.3. Given the system Σc, there exists a feedback gain K, which makes the closed-loop
system Σcl

c positive and asymptotically stable if and only if there exist an n×n diagonal matrix Q ≻ 0
and a matrix R ∈ Rm×n such that AQ+BR is Metzler, CQ+DR ≥ 0 and

(AQ+BR)1n < 0.

Moreover, a feedback gain, which achieves the desired objective, is given by K = RQ−1.

Proof. Similarly as in the proof of Theorem 5.1, we can show that A+BK is Metzler and C+DK ≥ 0
if and only if AQ+BR is Metzler and CQ+DR ≥ 0, so we only focus on the condition for asymptotic
stability.

(⇒): If Σcl
c is asymptotically stable, then, by Theorem 3.9, there exists a q > 0 such that (A+BK)q <

0. By definingQ := diag(q) > 0, we can rephrase the aforementioned as follows: there exists a diagonal
matrix Q ≻ 0 such that

(A+BK)q = (A+BK)Q1n = (AQ+BKQ)1n < 0.

Taking R := KQ gives us the desired inequality.

(⇐): Let K = RQ−1. Then,

(AQ+BR)1n = (A+BK)Q1n = (A+BK)q < 0,

where q := diag(Q) > 0. Therefore, by Theorem 3.9, we have that A+BK is Hurwitz. ■

The discrete-time analogue of Theorem 5.3 can be easily formulated and proven.

Theorem 5.4. Given the system Σd, there exists a feedback gain K, which makes the closed-loop
system Σcl

d positive and asymptotically stable if and only if there exist an n×n diagonal matrix Q ≻ 0
and a matrix R ∈ Rm×n such that AQ+BR ≥ 0, CQ+DR ≥ 0 and

(AQ−Q+BR)1n < 0.

Moreover, a feedback gain, which achieves the desired objective, is given by K = RQ−1.

Proof. We can derive the proof by using the same reasoning as in the proof of Theorem 5.3, though
we invoke Theorem 3.10 instead:

A+BK is Schur if and only if there exists a q > 0 such that (A+BK)q < q.

■

5.3 A Numerical Example

Consider the following unstable discrete-time system, which is clearly not positive:

A =

 0.2394 0.1327 0.2501
−0.1752 1.4432 0.1018
0.9860 −0.0663 0.3371

 , B =

 0.0701
1.1232
−1.1301

 ,

C =
[
−0.1218 0.7426 0.6789

]
, D = 1.0281.
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After using YALMIP with MOSEK, we obtain from Theorem 5.2

K =
[
0.2853 −0.6698 −0.0439

]
,

σ(A+BK) = {−0.0702, 0.4543, 0.9529},

A+BK =

0.2594 0.0857 0.2470
0.1453 0.6909 0.0524
0.6636 0.6907 0.3868

 ,

C +DK =
[
0.1715 0.0540 0.6337

]
.

Theorem 5.4 instead gives

K =
[
0.2695 −0.6441 −0.0626

]
,

σ(A+BK) = {−0.0665, 0.5130, 0.9394},

A+BK =

0.2583 0.0876 0.2457
0.1274 0.7198 0.0315
0.6815 0.6616 0.4078

 ,

C +DK =
[
0.1552 0.0804 0.6146

]
.
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Chapter 6

Data-Driven Analysis and Control

In this chapter, we extend the literature on positive systems by shifting to a data-based setting.
More formally, we assume that the system of interest is positive, though, we have no a priori knowledge
of the system matrices (A,B). Instead, we have access to finitely many input-state measurements.
In Section 6.1, after introducing the framework for this chapter, we state necessary and sufficient
conditions on the data, which would allow us to uniquely identify the system that generated the data.
We demonstrate the result with two data sets in Subsection 6.1.1. Lastly, in Section 6.2, we set up
future topics for research.

6.1 System Identification

The theoretical foundation of this chapter is the informativity approach [26, 27]. Consider a model
class M, which is a set of systems that contains our system of interest S. Suppose that the “true”
system is unknown, but also that we have access to a data set D generated by the system. Then, we
can define the set of explaining systems ΣD ⊆ M, i.e. systems that could have generated the data
(see Figure 2).

S

ΣD

M

Figure 2: The system of interest S and the set of explaining systems ΣD.

In this section, we solve the problem of system identification. In other words, we seek to identify an
a priori unknown system from data. To this end, we define informative data as follows.

Definition 6.1. The data D are called informative for system identification if ΣD = {S}.

Naturally, we are interested in deriving necessary and sufficient conditions for informativity.

To formalise the problem formulation, consider the system

x(t+ 1) = Asx(t) +Bsu(t), (6.1.1)
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where As and Bs denote the true unknown system matrices. We collect input-state measurements in
the matrices

U− :=
[
u(0) u(1) · · · u(T − 1)

]
,

X :=
[
x(0) x(1) · · · x(T )

]
.

In addition, we define

X− :=
[
x(0) x(1) · · · x(T − 1)

]
,

X+ :=
[
x(1) x(2) · · · x(T )

]
.

Then, by noting (6.1.1), we see that the data matrices are related in the following way:

X+ = AX− +BU− =
[
A B

] [X−
U−

]
, (6.1.2)

where (A,B) is a system consistent with the data. Let all such positive systems be contained in

Σ≥0 := {(A,B) | (6.1.2) holds and A ≥ 0, B ≥ 0} .

We, therefore, look for conditions on the data (U−, X) such that Σ≥0 = {(As, Bs)}.

The system identification problem for unconstrained systems, i.e. systems in

Σ := {(A,B) | (6.1.2) holds} ,

has already been studied in [26, Proposition 6].

Proposition 6.2. The data (U−, X), generated by (As, Bs) ∈ Σ, are informative for system identifi-
cation if and only if

rank

[
X−
U−

]
= n+m.

Intuitively, in the case of positive systems, we can weaken the assumption as it is not necessary that
there is only one system consistent with the data. In fact, there can be many, but we require that
exactly one of them is positive. We demonstrate this insight with the following example:

As =

[
0 0
1 0

]
, Bs =

[
1
0

]
, X =

[
1 0 1
0 1 0

]
, U− =

[
1 1

]
.

Then, [
X−
U−

]
=

1 0
0 1
1 1

 , X+ =

[
0 1
1 0

]
and all system (A,B) that satisfy (6.1.2) are of the form([

−1 + α1 α1

1 + α2 α2

]
,

[
1− α1

−α2

])
for some α1, α2 ∈ R. However, only one system is positive: α1 = 1 and α2 = 0.

Before stating and proving the positive systems version of [26, Proposition 6], we mention some
notation that is to be used. Let (A,B) be any system in Σ≥0. For i = 1, . . . , n, define the sets

Ri :=
{
j |
[
A B

]
ij
= 0
}
. (6.1.3)

Additionally, given a vector v ∈ Rq and a set of indices I = {i1, . . . , ip} ⊆ {1, . . . , q}, define the
following vector:

vI :=


vi1
vi2
...
vip

 ∈ Rp.
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Theorem 6.3. Let (A,B) ∈ Σ≥0 and consider Ri in (6.1.3). The data (U−, X), generated by
(As, Bs) ∈ Σ≥0, are informative for system identification if and only if, for every i = 1, . . . , n,

[
ξT ηT

] [X−
U−

]
= 0 and

[
ξ
η

]
Ri

≥ 0 imply that

[
ξ
η

]
= 0.

Proof. (⇒): Suppose there exists an i and a nonzero
[
ξT ηT

]
such that

[
ξT ηT

] [X−
U−

]
= 0 and

[
ξ
η

]
Ri

≥ 0.

Define a new system

Â := A+ ϵeiξ
T ,

B̂ := B + ϵeiη
T ,

where ϵ > 0 is a scalar. Evidently, (Â, B̂) satisfy (6.1.2). Next, we show that Â ≥ 0 and B̂ ≥ 0 by

studying the ith row of
[
Â B̂

]
. Firstly, if j ∈ Ri, then

[
Â B̂

]
ij
= ϵ

[
ξ
η

]
j

≥ 0.

Secondly, consider all j, for which
[
A B

]
ij

> 0. Note that we can choose a sufficiently small ϵ

such that
[
Â B̂

]
ij

≥ 0. Thus, (Â, B̂) ∈ Σ≥0. However, (Â, B̂) ̸= (A,B), so there are at least two

explaining systems, which leads to a contradiction.

(⇐): Consider the two systems (A,B), (Ã, B̃) ∈ Σ≥0. Because both systems satisfy (6.1.2), we have
that [

Ã−A B̃ −B
] [X−

U−

]
= 0.

Denote the ith row of the matrix on the left by

cTi :=
[
Ã−A B̃ −B

]
i• ,

where c1, . . . , cn are vectors. We know that, for all i = 1, . . . , n and j ∈ Ri,[
Ã−A B̃ −B

]
ij
=
[
Ã B̃

]
ij
≥ 0,

i.e.
(
cTi
)
Ri

≥ 0. By assumption, this implies that cTi = 0 for all i. Hence,
[
Ã−A B̃ −B

]
= 0 and,

consequently, (A,B) = (Ã, B̃) = (As, Bs). ■

Note that data are neither required to be sufficiently rich nor to be nonnegative for them to be
informative (see Subsection 6.1.1). Based on Theorem 6.3, the procedure of verifying informativity
for system identification would go as follows:

1. Generate a positive system (Ā, B̄) row-wise from the data using LP;

2. Define the sets Ri (i = 1, . . . , n) with respect to (Ā, B̄);

3. Check whether there are numbers with opposite signs among the elements, with indices in Ri,

of nonzero vectors in the left kernel of
[
XT

− UT
−
]T

.

In the end, if the data are informative for system identification, then (Ā, B̄) = (As, Bs). We
conclude this section with a straightforward consequence of Theorem 6.3.
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Corollary 6.4. Assume that As > 0 and Bs > 0. The data (U−, X), generated by (As, Bs), are
informative for system identification if and only if

rank

[
X−
U−

]
= n+m.

Proof. By the definition of the sets Ri, we have that Ri = ∅ for all i = 1, . . . , n, so the condition[
ξ
η

]
Ri

≥ 0

is trivially satisfied. Therefore, by Theorem 6.3, only the zero vector is in the left kernel of
[
XT

− UT
−
]T

or, equivalently,
[
XT

− UT
−
]T

is full row rank. ■

6.1.1 Numerical Examples

Consider the two data sets

D1 =

U− =

−29.4678
−18.5209
5.2541

T

, X =

−1.7535 −59.5498 −4.4944 −55.9726
1.9781 8.5859 −118.5480 −843.3192
−0.1535 8.1369 −16.6202 −597.2345


 ,

D1 =

U− =


6.7842 −5.0283
5.2211 −1.2966
−3.0960 −1.7551
10.6810 −3.0800


T

, X =


−1 4.4 1.2 −210.4 −1783.3
−1.5 9.8 −62.4 71.8 −1364
−0.6 3.3 96.9 −40.5 −596.2
−0.3 −22.5 −48 −177.9 −2537.4


 .

We remark that
[
XT

− UT
−
]T

is not full row rank for neither data set. By using MATLAB’s Optimi-
sation Toolbox, we generate from D1 the positive system

Ā =

0 0 4
3 7 0
1 5 0

 , B̄ =

20
0

 .

Then, we have

R1 = {1, 2},
R2 = {3, 4},
R3 = {3, 4}.

The command null() returns the following orthonormal basis for the left kernel of
[
XT

− UT
−
]T

:

−0.1204
0.1432
−0.9821
0.0219


 .

Because the first two and the last two elements have opposite signs, we see that the data in D1 are
informative for system identification and (Ā, B̄) is the true system.

Similarly, from D2, we obtain

Ā =


7.0114 1.5009 0 2.4670
2.4950 0 2.8617 4.1996
4.2369 5.5017 3.1558 0
8.8776 0.0682 0 3.7494

 , B̄ =


2.1501 0
2.2467 0
2.6173 0

0 2.4153

 ,

R1 = {3, 6},
R2 = {2, 6},
R3 = {4, 6},
R3 = {3, 5}.
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An orthonormal basis for the left kernel of
[
XT

− UT
−
]T

is


0.1405
−0.5884
−0.5056
−0.2846
0.2113
0.5027

 ,


−0.1509
0.2967
0.3421
0.2424
0.5533
0.6381




,

but the second vector does not satisfy the conditions in Theorem 6.3. Thus, the data in D2 are not
informative for system identification. The system that we used to generate D2 is

As =


6 3 2 4
2 1 4 5
3 8 6 2
7 5 5 7

 , Bs =


7 6
4 2
7 5
4 6

 ,

so we can also conclude from Corollary 6.4 that the data are not informative.

6.2 On the Stability and Stabilisation Problems

Suppose we are interested in a system property P or a control objective O. In data-driven analysis
problems, we want to verify whether S has property P. But because S is, essentially, indistinguishable
from the rest of the systems in ΣD, we need to ensure that all systems in ΣD have property P. In data-
driven control problems, we seek a data-based design for a controller K, which, when interconnected
with S, makes the closed-loop system satisfy objective O. Similarly, to guarantee this, we want
all systems in ΣD to satisfy objective O when interconnected with K. This leads to the following
definitions.

Definition 6.5. The data D are called informative for property P if all systems in ΣD have property
P.

Definition 6.6. The data D are called informative for objective O if there exists a controller K such
that all systems in ΣD satisfy objective O when interconnected with K.

More specifically, we can refer to P and O as stability and positive stabilisation, respectively.
Firstly, for the data-driven stability problem, we are interested in verifying the stability of the au-
tonomous positive system

x(t+ 1) = Asx(t). (6.2)

We collect state data in the matrix X as defined in the previous section. This time, the set of systems
that are consistent with the data is

Σstab
≥0 := {A : X+ = AX− and A ≥ 0} .

Then, we define informativity for stability as follows.

Definition 6.7. The data X, generated by (6.2), are called informative for stability if all matrices in
Σstab

≥0 are Schur.

Secondly, for the data-driven positive stabilisation problem, we want to find a controller u(t) =
Kx(t), which renders (6.1.1) positive and asymptotically stable. Because we do not require the
system to be a priori positive, the set of explaining systems is Σ as defined in the previous section.
The following is the definition of informativity for positive stabilisation by state feedback.

Definition 6.8. The data (U−, X), generated by (6.1.1), are called informative for positive stabilisa-
tion by state feedback if there exists a feedback gain K such that A+BK is nonnegative Schur for all
(A,B) ∈ Σ.
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Deriving necessary and sufficient conditions for informativity for stability and positive stabilisation
as well as providing a data-based design forK remain open problems. To conclude, we note that in this
chapter we have only considered noiseless data, so an additional research topic is to devise conditions
for informativity, while dealing with noisy measurements.
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Chapter 7

Conclusion

In this thesis, we have created an overview of the fundamental results in positive systems theory. In
addition, we have expanded the literature on positive systems by moving to a data-driven setting and
solving the system identification problem. Alongside the statements, we have also added accessible
proofs. More explicitly, we have done the following.

• We have characterised both continuous- and discrete-time positive systems in Theorem 3.4.

• We have shown 5 methods for verifying asymptotic stability in Theorems 3.6 and 3.7. As a con-
sequence, these theorems have allowed us to reformulate SDP problems for verifying stability
of positive systems into LP ones, leading to a reduction in computational complexity. Further-
more, the theorems have shown that working with positive systems in the context of large-scale
systems remains practically feasible.

• We have stated and proven the Kalman-Yakubovich-Popov lemma for positive systems (Theo-
rems 4.1 and 4.2), which links frequency domain conditions and the solvability of an LMI. We
have also seen that it is enough to verify the frequency domain condition for the zero frequency
only.

• We have shown necessary and sufficient conditions for the existence of a controller, which makes a
(not necessarily positive) system stable and positive. Additionally, we have provided a controller
design, which can be obtained by using SDP (Theorems 5.1 and 5.2) or LP (Theorems 5.3 and
5.4).

• We have derived necessary and sufficient conditions for data to be informative for system iden-
tification in Theorem 6.3. Moreover, we have provided specific steps for verifying informativity,
which have been demonstrated with numerical examples.

Interesting topics for future research are the following.

• Based on the setup in Section 6.2 of Chapter 6, we would like to solve the data-driven stability
and positive stabilisation problems by using the concept of informative data.

• As we have only considered noiseless data, a natural extension would include the use of noisy
data.

• Positive systems are such that if a trajectory enters the positive orthant of Rn, then it stays
there, provided that we apply nonnegative inputs. In other words, the positive orthant can
be thought of as an invariant set. We would like to extend the theory of positive systems by
considering certain classes of convex cones, instead of the positive orthant.
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