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Abstract

There are many versions of the pi-calculus, the calculus of interaction and concurrency.
However, only a few variants based in linear logic can express the non-determinism of
the full (untyped) pi-calculus while ensuring deadlock freedom. In this paper, we
examine the expressive power of sπ+, a typed pi-calculus in which well-typed processes
are deadlock-free by construction. We aim at establishing that sπ+ is as expressive as
the full pi-calculus by considering the leader election problem, i.e., by exhibiting a well-
typed system that describes a symmetric elective network of size five. This document
details five attempts at modeling the leader election in sπ+: each attempt tries to solve
the main challenge of the previous one, while revealing limitations of the typing system.
Our results are negative: they provide evidence of the trade-off between expressiveness
and strong correctness properties for typed processes. We conclude by identifying three
key factors that limit the expressiveness of sπ+.
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1 Introduction

1.1 Background

As the number of critical systems that use software increases, producing correct programs
becomes more and more important. One approach is thorough testing in software develop-
ment, but to quote E. W. Dijkstra: “Program testing can be used to show the presence of
bugs, but never to show their absence!” [1]. Another option is to produce programs that are
correct by design; when we talk about critical systems, it is important that we can prove
that they behave as intended.

In the case of sequential programs, we already have some options for ensuring correctness
by design: Hoare logic provides one system that allows us to reason about correctness with
the use of Hoare triples. The lambda-calculus, another logical framework, uses functions to
express programs, and its rules make it easy to use induction when reasoning about correct-
ness. Strictly sequential programs, however, are quite rare in practice; moreover, verification
tools for sequential programs cannot be used on concurrent and parallel programs. When
considering the correctness in concurrent systems, a well-established approach is based on
process calculi, a family of formal languages able to model parallelism. Each calculus in this
set provides algebraic rules that enable compositional modeling and analysis; this makes
them an attractive tool to effectively reason about program correctness. The pi-calculus is
arguably the most well-known and developed member of the process calculi family.

What lambda-calculus is for functional programming is what the pi-calculus aspires to be
for parallel programming, namely a precise mathematical description, with a minimal set
of rules and operations, that can effectively express all parallel programs. This in itself is
an ambitious task, but there are multiple variants of the pi-calculus, each slightly different
and tailored to analyze certain concrete problems. They proved to be an effective tool for
reasoning about the correctness of parallel programs, especially when coupled with so-called
session types. The mathematical foundation of these types is now known to originate from
Girard’s linear logic, a resource-aware logic. This allows us to use tools of this logical sys-
tem to justify important correctness properties for processes, with the emphasis being on
communication safety (absence of communication errors) and deadlock-freedom (absence of
“stuck” process configurations).

1.2 Aim of the Paper

The focus of this paper is to examine whether an existing version of typed pi-calculus is
expressive enough to describe the leader election problem and, more specifically, an elective
network of five processes. The project can be fitted in a main area of CS: Theoretical Com-
puter Science, more precisely Programming Language Theory and Formal Methods. The
research question that we will answer is: “Can a symmetric leader election problem for five
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processes be described as a well-typed process in sπ+?”. We chose this calculus as our bench-
mark because it is a typed pi-calculus that guarantees deadlock-freedom by construction, as
its type system is rooted in linear logic.

1.3 Motivation

As elective networks are widely used (e.g. in databases), this project could provide solid foun-
dations to already existing or new implementations. The focus of this project is on the un-
derstanding of types, the interplay between concepts such as linearity and non-determinism,
and the possible limitations in expressiveness that come from using linear logic as a base for
our parallel systems.

1.4 Proposal

There is a number of preexisting research articles that present solutions to the leader election
problem, but in an untyped setting. We will use these works as the starting point for our
work. The proposed project will make use of the tools of experimental mathematics, in the
following way. We take the existing solutions for the problem from a different version of the
pi-calculus and rewrite it in a typed system. Once we have done this, we examine it and look
for typing or reduction rule conflicts. We are hopefully left with a typeable expression by
eliminating these one by one, by rewriting the expressions in different formats. This process
will lead to a better understanding of the problem, and to discover the necessary properties
to express it. If a language is developed that can describe an elective network, a compar-
ative analysis will be carried out, to assess which features are the ones that enable it to do so.

We expect three possible outcomes: a positive result would be finding a well-typed system in
sπ+ that describes the leader election problem; a semi-positive result is if we find a process
that is typeable under some minor assumptions; and a negative result is if we do not find a
well-typed program, and we cannot identify assumptions that make it typeable, but we can
explain the restricting factors.

1.5 Paper Structure

Section 2 provides the foundational knowledge that is necessary to understand the related
works and the research question. In Section 3 we provide an overview of relevant previous
research papers, that separate both typed and not typed pi-calculi by their expressive powers.
Section 4 describes attempts and results with a focus on what types actually do, and some
possible limiting factors in using them. Section 5 presents and debates the outcome of the
research project. Finally, Section 6 presents questions that emerged during our work, with
possible directions for future research.
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2 Background

To help understanding the context of the project, we provide an overview of relevant fields.
We will build heavily upon these foundational pieces.

2.1 Linear Logic

In most logical settings (in the following we will take intuitionistic logic as an example) truth
is free. In other words, once a judgement is derived it can be freely used in the proof, as
many times as one wants. However, not all things are free or unlimited, therefore when we
want to reason about resources (e.g. money) we have to default to a different logical system
and linear logic (introduced by Girard in [2]) provides a good framework for us.

We chose intuitionistic logic as an example of traditional logical system with a good rea-
son. As Curry and Howard discovered, proofs in this logic correspond to function types in
functional programs. It also means that proofs can be run and checked automatically. This
landmark theoretical result is named Curry-Howard correspondence (or isomorphism) [3].
The following judgement holds in intuitionistic logic (here A → B means ‘from A it follows
that B’, and A×B is ‘A and B’):

A,A → B ⊢ A×B (1)

Note how A is used twice in this proof and because in this setting truth does not have a
cost, it is valid.

Things work differently in linear logic. As mentioned earlier, we have to carefully monitor
resource usage. We cannot have our money and spend it too, this is captured by the following:

A,A⊸ B ⊬ A⊗B (2)

where A⊸ B reads as ‘consuming A yields B’ and A⊗B as ‘both A and B’. If we assume
that for 10 Euros we can buy a pizza and we know that we have 10 Euros, we can deduce,
that we will either have the 10 Euros or a pizza, but not both:

A,A⊸ B ⊢ ANB (3)

Linear logic has two types of disjunctions and conjunctions: additive and multiplicative.
The multiplicative conjunct is the connective ⊗, the additive conjunct of A and B is ANB
(this means A or B, but we have a choice over which one). The types of disjunctions work
similarly: the multiplicative one (A NB) describes that exactly one of A or B will happen,
but we do not know which one, and we have to be ready for both; whereas the additive
(A ⊕ B) means the alternative occurrence of A and B, a choice which we have no control
over.
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P,Q ::= 0 inaction | x(y);P input

| x[y];P output | x.ℓ;P select

| x.case{i : Pi}i∈I branch | (νx)(P |Q) connect

| P +Q non-determinism | P |Q parallel

.........................................................................................................................................................

(νx)(x[a];P +M1 | x(y);Q+M2) → (νx)(P |Q{a/y}) communication

x.ℓ;P | x.case{i : Qi}i∈I → P |Qℓ, where ℓ ∈ I selection

Figure 1: π-calculus: syntax (top) and reduction rules (bottom)

2.2 Pi-calculus

When talking about formal description of parallelism, we have to mention the process calculi
family. Process calculi are precise mathematical models, that provide a set of algebraic rules
with which we can express a wide variety of behaviours.

The pi-calculus is a member of this family. It treats parallelism and the communication
between parallel processes as message-passing algorithms. Parallel process communicate
through channels (each channel provides two-way communication option for two processes),
with the sending of names (these can be values, names of channels, etc.). When it was intro-
duced by Milner, Parrow, and Walker, the motivation was to create the ‘lambda-calculus of
parallelism’ [4]. This meant a minimal set of simple rules that can still describe potentially
complex systems.

Usually in the pi-calculus P,Q, . . . are used to denote processes, and x, y, . . . are used for
channel names, therefore we will use this as well. Figure 1 describes the syntax (top) of a
simple pi-calculus. 0 means inaction (the process that can take no action anymore), x(y)
waits for an input y on channel x, conversely x[y] sends a name y along channel x. x.ℓ
chooses a label ℓ, whereas i : Pi.casei∈I offers branches with labels from I. (νx)(P | Q)
connects the processes P and Q with the channel x, and restricts its usage to those two
processes. P +Q describes the process that can behave as P or Q. P |Q denotes two parallel
processes, that do not interact with each other.

On Figure 1(bottom) we can see the reduction rules (atomic steps in the computation). The
rule ‘communication’ describes how message-passing works (here Q{a/y} denotes the sub-
stitution of y for a in Q). It also encapsulates the rule for non-determinism. It states that
the process can arbitrarily choose to behave as P (and Q), but the other parts (M1,M2)
are discarded. ‘Selection’ provides a rule for choice; x.ℓ selects the label ℓ on x, and in turn
i : Qi.casei∈I continues with the process Qℓ, that had the label ℓ.
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A, B ::= X propositional variable |X⊥/X dual of a variable

|A⊗B ‘tensor’, output A then behave as B |A NB ‘par’, input A then behave as B

|A⊕B ‘plus’, select from A and B |ANB ‘with’, offer choice from A and B

| 1 unit for ⊗ | ⊥ unit for

N

.........................................................................................................................................................

1 = ⊥ A⊗B = A NB A⊕B = ANB

⊥ = 1 A

N

B = A⊗B ANB = A⊕B

Figure 2: Types, their interpretations (up), and their duals (down)

2.3 Propositions-as-sessions

Session types or propositions-as-sessions connect two seemingly non-related fields. Just as
the Curry-Howard isomorphism provides a solid foundation in logic for lambda-calculus,
and for functional programming, this correspondence establishes a similar link between lin-
ear logic and process calculi. In this case propositions can be viewed as session types, proofs
as processes, and communication as cut elimination.

The type of a name or channel describes the communication protocol on said channel. The
typing of a process P is the collection of the types of the domain of P , meaning all free names
that occur in P . As we want to ensure communication safety, we restrict channels as a two
way channel between exactly two processes. With this restriction, we can expect that if we
have processes P and Q, that communicate on channel x the type of x in P has to be the dual
of the type of x in Q. In other words, if P sends an integer on x and then closes it, our sys-
tem respects communication safety only if Q waits for an integer on x, then waits for closure.

We provide the interpretation of types in linear logic in terms of communication protocol [5]
on Figure 2 (up), together with the formal definition of duality (down). Because this in-
terpretation relates linear logic to a process calculus, the symbols of linear logic get “new”
meanings.

2.4 sπ+, an existing pi-calculus

In this paper we will examine a calculus that provides non-confluent non-determinism, the
sπ+, as described in [6]. To understand the main differences between this calculus and the full
pi-calculus we have to explain the following relation: (▷◁). (i) x[y] ▷◁ x[z], (ii) x(y) ▷◁ x(z),
and (iii) α ▷◁ α otherwise. This allows us to match outputs and inputs that happen on
the same channel. The (simplified) precongurence P ⪰x Q (on channel x is defined as the

following [6]: P =
(
||−
i∈ICi[αi;Pi]

)
||−
(
||−
j∈JCj[βj;Qj]

)
and Q = ||−

i∈ICi[αi;Pi], where

(i) ∀i, i′ ∈ I. αi ▷◁ αi′ and subj{αi} = {x}, and
(ii) ∀i ∈ I.∀j ∈ J. αi ̸▷◁ βj ∧ x ∈ fn(βj;Qj);
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This definition talks about how in the case of non-deterministic composition we can discard
branches. P and Q contain matching prefixes on x, while P may contain additional branches
with different or blocked prefixes on x; x must appear in the hole of the contexts in the ad-
ditional branches in P (enforced with x ∈ fn(. . .)), to ensure that no matching prefixes are
discarded.

This precongurance is what dictates most of the reduction rules in sπ+. For more technical
properties, consult the paper from Heuvel, Paulus, Nantes-Sobrinho, and Pérez.

Another important difference is that we can signal/wait for errors and unavailability in sπ+.
This is done by the messages x.some, x.none, x.someω̃. x.some announces availability on
channel x, conversely x.none means an error signal on x. x.someω̃;P waits for a signal on
x; if it is available, it continues as P , however if x.none is recieved, P is discarded, and the
error is propagated by ω̃.none (where ω̃ is the set of the names appearing in P ). Let us
illustrate this with an example:

PAlice := x[title];x.somey;x(book);x[]; y.some; y[book]; y[]

PBrian := y.some; y(book); y()

PServer := x(title); (x.none ||− x.some;x[book];x())

Sys := (νx)((νy)(PAlice | PBrian) | PServer)

Here, Alice wants to request a book from the server, then she wants to send it to Brian.
However, not all books are available. So Alice sends the title to the server, the server then
(non-deterministically) signals the (un)availability of the book back to Alice. First consider
when the book is available:

PAlice := x(book);x[]; y.some; y[book]; y[]

PBrian := y.some; y(book); y()

PServer := x[book];x()

Sys := (νx)((νy)(PAlice | PBrian) | PServer)

The server synchronized with its available side, sending a ‘some’ signal to Alice. The rest
is straight-forward, Alice will receive the book on x and forward it to Brian on y. But what
happens when the book is not available?

PAlice := x.somey;x(book);x[]; y.some; y[book]; y[]

PBrian := y.some; y(book); y()

PServer := x.none

Sys := (νx)((νy)(PAlice | PBrian) | PServer)

The server signals the error to Alice, who in turn, will discard her “normal” continuation,



9

and will propagate the error to Brian:

PAlice := y.none

PBrian := y.some; y(book); y()

PServer := 0

Sys := (νx)((νy)(PAlice | PBrian) | PServer)

This will cancel the continuation for Brian, and all processes will terminate.

The typing rules of sπ+ (Figure 3) are based on the previously introduced propositions-as-
sessions view. Rule T ||− is introduced to type non-deterministic compositions (the two sides
have to be typeable under the same context, to ensure communication safety and deadlock
freedom), and the rules T&some and T&none type processes that send (un)available sig-
nals. To type a process that waits for a signal T⊕some is introduced, here the subsequent
actions in P have to be typeable under the N monad, meaning the type of every channel in
P (except for x) has to be some NA.

[Tcut]
P ⊢ Γ, x:A Q ⊢ ∆, x:A

(νx)(P |Q) ⊢ Γ,∆
[Tmix]

P ⊢ Γ Q ⊢ ∆

P |Q ⊢ Γ,∆
[T ||−]

P ⊢ Γ Q ⊢ Γ

P ||−Q ⊢ Γ

[Tempty]
0 ⊢ ∅

[T1]
x[] ⊢ x:1

[T⊥]
P ⊢ Γ

x();P ⊢ Γ, x:⊥
[T⊗]

P ⊢ Γ, y:A Q ⊢ ∆, x:B

x[y]; (P |Q) ⊢ Γ,∆, x:A⊗B

[T N]
P ⊢ Γ, y:A, x:B

x(y);P ⊢ Γ, x:A

N

B
[T⊕]

P ⊢ Γ, x:Aj j ∈ I

x.j;P ⊢ Γ, x:⊕{i : Ai}i∈I

[TN]
∀i ∈ I. Pi ⊢ Γ, x:Ai

x.case{i : Pi}i∈I ⊢ Γ, x:N{i : Ai}i∈I
[TNsome]

P ⊢ Γ, x:A

x.some;P ⊢ Γ, x:NA

[TNnone]
x.none ⊢ x:NA

[T⊕some]
P ⊢ NΓ, x:A

x.somedom(Γ);P ⊢ NΓ, x:⊕A

Figure 3: Typing rules for sπ+ [7].



10

3 Expressiveness of Different Calculi

3.1 Expressiveness

As previously seen, there are multiple variants of pi-calculus, some are typed, and some are
not. These calculi that implement session types can be used to show deadlock freedom and
correctness as can be seen from this paper [8], where it was used to design crash-preventing
mechanisms. However, the inclusion of session types is also restrictive in terms of expres-
siveness. One could think about this as a trade-off, where stricter rules mean we can prove
more/stronger properties, but we can express fewer problems altogether.

The standard procedure to establish that two calculi have the same expressiveness is to
provide an encoding (translation) from one calculus to the other and vice versa. To prove
separation result (i.e., to prove that one calculus is strictly more expressive than the other)
we have to show that one can describe certain behaviours while the other cannot. Palamidessi
showed the differnce in expressiveness between the synchronous full pi-calculus and the asyn-
chronous version using a symmetrical version of the leader election problem [9].

Two other patterns are also established as feasible separators, namely the M-configuration
and the star pattern ([10, 11]). As our focus is on the leader election problem, and there
have not been successful attempts in typed settings, we cannot use an encoding to a calculus
that is proved to be expressive enough, we have to construct the system ourselves.

All of these patterns involve non-determinism in the form of choice. As we have seen, in the
full (untyped) pi-calculus non-deterministic choice is exclusive once made: it commits to one
alternative and discards the rest. Such a unconstrained/careless discarding of resources does
not go well with the resource-conscious view of linear logic and the session types originated in
it. Henceforth several typed calculi have confluent non-determinism. The confluence lemma
states that a step reducing an output and an alternative step reducing an input cannot be
conflict to each other and thus can be executed in any order. In the full pi-calculus this
confluence lemma is not valid, because inputs and outputs can be combined within a single
choice construct and can thus be in conflict [10].

Traditionally session types include choice, where the server offers options, and each one of
the clients chooses one. The concept of mixed sessions was introduced, which further ex-
panded the approachable problems with typed pi-calculus [12]. With mixed choice, the line
between server and clients became thinner. The only constraint on these sessions is that the
choice determines the active communication channel. As it was showed in recent papers [10],
the leader election problem can be expressed in the full pi-calculus, but not in these typed
calculi variants. This came as a surprising result, as the intuition was that the new options
on choice would be expressive enough.

Another direction to capture the full pi-calculus in a type system is to introduce different
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types of messages that can be sent through a channel. By introducing none and some as
messages, researchers showed effective ways to correctly express error in parallel programs
[13]. Using the new messages, they provided a method to express the familiar ‘try... catch...’
structure using the pi-calculus.

Relying on the previous results, efforts in other directions are shown by Van den Heuvel,
Paulus, Nantes-Sobrinho, and Pérez [6]. They introduced another operation, with its own
reduction and typing rules, which allows for a “lazy” commitment and a choice between
communication on different channels. This operation invalidates the confluence lemma in
the newly proposed calculus but preserves the capability to prove deadlock freedom and type
preservation.

We suspect that the main limiting factor (in terms of expressiveness w.r.t. non-determinism)
is the existence of the confluence lemma in a calculus; therefore we will mainly focus and
base our research on the work in [6].

3.2 Leader election problem

As our research focuses on the leader election problem, it is worth expanding on. A network
P := (νx̃)(P1 | · · · | Pk in the full (untyped) pi-calculus is an elective network of size k iff
for every maximal execution it unguards some output on n (where n is the id of the leader),
and exactly one leader is announced. There are multiple types of electoral systems, but a
symmetric version with five processes has been used to differentiate between exressiveness
([9, 10, 11]).

This system looks like this in the full pi-calculus [9]:

S := (νx, y, z, w, u, a, b, c, d, e)(P1 | P2 | P3 | P4 | P5)

P1 := e[] + a(); (x[] + u(); 1[])

P2 := a[] + b(); (y[] + w(); 2[])

P3 := b[] + c(); (z[] + x(); 3[])

P4 := c[] + d(); (u[] + y(); 4[])

P5 := d[] + e(); (w[] + z(); 5[])

The election happens in two steps. In the first round two processes go through to the
second round, two processes terminate, and one deadlocks. In the second phase one from
the two processes terminates, and the other one announces itself as the leader. Any process
that sends a message is out of the race (as it takes no continuation). Let us see a possible
reduction that elects P1 as the leader. First P1 and P4 have to go through from the first
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stage, so reductions happen on a and d:

P1 := (x[] + u(); 1[])

P2 := 0

P3 := b[] + c(); (z[] + x(); 3[])

P4 := (u[] + y(); 4[])

P5 := 0

Now there is only one possible reduction (on channel u), after which we get the following:

P1 := 1[]

P2 := 0

P3 := b[] + c(); (z[] + x(); 3[])

P4 := 0

P5 := 0

As there are no more possible reductions, and only one observable (1) signals, the leader
P1 is elected. As the processes are symmetrical, each process can be elected in a similar
fashion [9].
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4 Results and Discussion

In this section we describe five of our attempts to achieve a well-typed system in sπ+ that
describes a symmetric elective network of size five. Each attempt has a different focus, and
builds on the main take-aways from the previous attempt.

• The first attempt (section 4.1) describes a naive translation from the full pi-calculus into
the sπ+. This translation fails, because does not respect the pre-congruence introduced
in Section 2.4.

• The second attempt (section 4.2) tries to achieve a system that behaves as an elective
network of size five, but falls short as there are difficulties when it comes to signalling
errors. We fix these problems by introducing new atomic messages together with their
reduction rules.

• The third attempt (section 4.3) focuses on achieving a well-typed system from the pre-
vious attempt. Our main limiting factor is during the second step, as the propagation
of failure is restrictive in its continuation.

• In the fourth attempt (section 4.4) we take a step back, and try to build up the system
starting with the second phase in the leader election. We achieve a set of processes
that sometimes can elect a leader; however, the cyclical nature of the system makes
their parallel composition not well-typed.

• In the fifth and final attempt (section 4.5) we want to achieve a system that is well-
typed (bar the cyclical composition), and always acts an elective network. We discover
that the typing rules for propagating error are too restrictive together with the current
rule for cut. A new rule for cut is proposed, but it cannot guarantee deadlock-freedom.

4.1 First Attempt

As described in the proposal section of the introduction, we started with a naive implemen-
tation (see section 3.2) of the leader election problem into sπ+. Of course we need to change
the operators to match the ones in sπ+. We get these processes:

S := (νx, y, z, w, u, a, b, c, d, e)(P1 | P2 | P3 | P4 | P5)

P1 := e[] ||− a(); (x[] ||− u(); 1[])

P2 := a[] ||− b(); (y[] ||− w(); 2[])

P3 := b[] ||− c(); (z[] ||− x(); 3[])

P4 := c[] ||− d(); (u[] ||− y(); 4[])

P5 := d[] ||− e(); (w[] ||− z(); 5[])

For the sake of readability we introduce the function φ(P ) that takes a process as and re-
names channels. φ = [a → b, b → c, c → d, d → e, e → a, x → y, y → z, z → w,w → u, u →
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[Tval.some]
α = β, α, β ∈ I

x.some(α);P | x.somew(β);Q⇝ P |Q

[Tval.none]
α = β, α, β ∈ I

x.none(α) | x.somew(β);Q⇝ w.none(β)

Figure 4: Reduction rules for “valued” some and none

x, 1 → 2, 2 → 3, 3 → 4, 4 → 5, 5 → 1] Therefore φ(P1) = P2, φ(P2) = P3 . . . φ(P5) = P1.

Our focus at first is that the described system is reducible (i.e. communication can occur)
and describes an electoral system. We have to check the rule for pre-congruence. Definition
3, rule 1.ii in [6] states that the name on which we want to preform reduction has to be
free on both sides of the non-deterministic composition. We have to change our system, as
currently this property does not hold. This attempt fails, as sπ+ has reduction rules different
from the full pi-calculus.

4.2 Second Attempt

Now that we know the first problem we need to fix to achieve an electoral system (the domain
of names should be equal on both sides of ||−), we can modify our processes accordingly. We
also can notice how we will ‘discard continuations’ and so it comes naturally to use the tools
provided for signalling availability. Our prospect system will look like this:

S := (νx, y, z, w, u, a, b, c, d, e)(P1 | P2 | P3 | P4 | P5)

P1 := (νi)
(
(e[]; i.left; a.none) ||− (a(); i.right; e.some)

)
| i.case{left : a.some;Q1; right : e.some;Q1}

P2 = φ(P1),P3 = φ(P2),P4 = φ(P3),P5 = φ(P4)

Q1 := (νi)
(
(x[]; i.left; z.none) ||− (z(); i.right;x.some)

)
| i.case{left : z.some; 1[]; right : x.some; 1[]}

Q2 = φ(Q1),Q3 = φ(Q2),Q4 = φ(Q3),Q5 = φ(Q4)

Here we wanted to achieve a reducible system. The processes are still symmetric, but we
added the second step differently. It would happen in the processes labelled Q..., with the
same structure. The idea is that every process that synchronizes with its left side sends
an unavailable signal, and therefore discards its corresponding second step in the ’internal’
channel named i (note that when parallel composed, we can alpha-rename these internal
channels so that there is no naming conflict). But first let us check, does everything work as
planned?

Unfortunately not. In a scenario, where the left side of P1 and the right side of P5 synchro-
nize on channel e, and the left side of P3 and the right side of P2 synchronize on channel b
the following could happen. We should keep Q5 and Q2, while discarding Q1 and Q3. But
the a.some (from P2) could interact with either a.some - the one from P1 or the one from P2.
This could cause a deadlock in the second step, as Q1 and Q5 do not share any names.
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But notice how the only time when we do not send names or values through a channel is
when we signal availability. What if we had an atomic interaction, a valued some and none,
which could only interact with waitings that have the same value? This would provide us
with a finer control over parallelism. Figure 4 describes the newly proposed reduction rules.
Now we can modify the processes with this new operator:

S := (νx, y, z, w, u, a, b, c, d, e)(P1 | P2 | P3 | P4 | P5)

P1 := (νi)
(
(e[]; i.left; a.none(α) ||− (a(); i.right; e.some(β)

)
|

i.case{left : a.some(α);Q1; right : e.some(β);Q1}
P2 = φ(P1),P3 = φ(P2),P4 = φ(P3),P5 = φ(P4)

Our initial second attempt failed to achieve a (not necessarily well-typed) system that de-
scribes the leader election problem in sπ+. We fixed the minor shortcomings with newly
proposed syntax and reduction rules for some and none.

4.3 Third Attempt

Now that we have a program that describes an elective network of size five we will turn our
attention to whether it is well-typed.

The first conflict is with the non-deterministic composition. The typing rule T ||− states that
the two sides need to be typeable under the same context. In other words they can only
differ in choices (and the subsequent actions on that channel), the order of the operations,
and the available/unavailable signals on a channel.

Secondly, the parallel composition with the “internal” channels is problematic. Tcut tells us
that we are only allowed to parallel compose two process if they share exactly one name, and
the type of that name in one process is the dual of the type of the same name in the other. In
our previous attempt, there where three names shared, which clearly violates this typing rule.

If we now modify our system to adhere to these rules we will get the following:

S := (νx, y, z, w, u, a, b, c, d, e)(P1 | P2 | P3 | P4 | P5)

P1 := (νi)
(
(e.some(α); e.right; a.some(β); a.case

{
left : i[channel1]; i.left; channel1.none(α)
right : i[channel1]; i.right; channel1.some(α)

}
) ||−

(a.some(α); a.case

{
left : i[channel1]; i.left; e.some(β); e.left; channel1.none(β)
right : i[channel1]; i.right; channel1.some(β); e.some(β); e.left

}
)
)∣∣

(i(channel); i.case

{
left : channel.some(α);Q1

right : channel.some(β);Q1

}
)

P2 = φ(P1),P3 = φ(P2),P4 = φ(P3),P5 = φ(P4)

However, there is still one problem with the typing of each process, and it has to do with how
signalling error happens. The typing rule T⊕some describes that every discardable resource
has to start with announcing its (un)availability. So every name in Q1 has to start with
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. . ..some or . . ..none. This would make it impossible to for the processes in the second step
to communicate with each other.

We did not achieve a set of well-typed processes, that when parallel composed describe the
leader election problem. The main obstacle was in propagating the error, as typing rules
restrict us in what messages can be sent first on a channel in processes Q1, . . . , Q5.

4.4 Fourth Attempt

To solve this, we have to take a step back. We decided to discard the previous efforts (tem-
porarily at least) and start afresh. This also means we tried to use the readily available
tools, and did not consider the valued some and none further. Our approach here was to
start with the second step and then to try and build the first step around it.

Our candidate processes looked like this:

P1 :=
(
x.right;x.some;x[]; y.case

{
left : y.some1; y(); 1.none
right : y.some1; y(); 1.none

})
||−

(
y.case

{
left : x.left; y.somex,1; 1.some; y();x.none
right : x.left; y.somex,1; 1.some; y();x.none

})
P2 = φ(P1),P3 = φ(P2),P4 = φ(P3),P5 = φ(P4)

P1 is typeable with P1 ⊢ x : ⊕{l : N1; r : N1}, y : N{l : ⊕⊥, r : ⊕⊥}. We do not type the
observable 1. Notice how x is the dual of y. Because of the symmetry in our system, now
every name appears twice, where one instance is the dual of the other. Another interesting
thing is that if we parallel compose these five processes, they can behave as an electoral
system.

P1 :=
(
x.right;x.some;x[]; y.case

{
left : y.some1; y(); 1.none
right : y.some1; y(); 1.none

})
||−(

y.case

{
left : x.left; y.somex,1; 1.some; y();x.none
right : x.left; y.somex,1; 1.some; y();x.none

})
P2 :=

(
y.right; y.some; y[]; z.case

{
left : z.some2; z(); 2.none
right : z.some2; z(); 2.none

})
||−(

z.case

{
left : y.left; z.somey,2; 2.some; z(); y.none
right : y.left; z.somey,2; 2.some; z(); y.none

})
P3 :=

(
z.right; z.some; z[];w.case

{
left : w.some3;w(); 3.none
right : w.some3;w(); 3.none

})
||−(

w.case

{
left : z.left;w.somez,3; 3.some;w(); z.none
right : z.left;w.somez,3; 3.some;w(); z.none

})
P4 :=

(
w.right;w.some;w[];u.case

{
left : u.some4;u(); 4.none
right : u.some4;u(); 4.none

})
||−(

u.case

{
left : w.left;u.somew,4; 4.some;u();w.none
right : w.left;u.somew,4; 4.some;u();w.none

})
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P5 :=
(
u.right;u.some;u[];x.case

{
left : x.some5;x(); 5.none
right : x.some5;x(); 5.none

})
||−(

x.case

{
left : u.left;x.someu,5; 5.some;x();u.none
right : u.left;x.someu,5; 5.some;x();u.none

})
If we want to ”elect” P5 as the leader, we first have to choose to make a reduction on x.

P1 := x.some;x[]; y.case

{
left : y.some1; y(); 1.none
right : y.some1; y(); 1.none

}
P2 :=

(
y.right; y.some; y[]; z.case

{
left : z.some2; z(); 2.none
right : z.some2; z(); 2.none

})
||−(

z.case

{
left : y.left; z.somey,2; 2.some; z(); y.none
right : y.left; z.somey,2; 2.some; z(); y.none

})
P3 :=

(
z.right; z.some; z[];w.case

{
left : w.some3;w(); 3.none
right : w.some3;w(); 3.none

})
||−(

w.case

{
left : z.left;w.somez,3; 3.some;w(); z.none
right : z.left;w.somez,3; 3.some;w(); z.none

})
P4 :=

(
w.right;w.some;w[];u.case

{
left : u.some4;u(); 4.none
right : u.some4;u(); 4.none

})
||−(

u.case

{
left : w.left;u.somew,4; 4.some;u();w.none
right : w.left;u.somew,4; 4.some;u();w.none

})
P5 := u.left;x.someu,5; 5.some;x();u.none

Now there are three possible reductions: the processes can communicate on u,w, or z. If the
reduction happens on w, the processes will signal availability on 5 and 3, if it happens on z,
5 and 2 will be available, if the reduction happens on u and then w only 5 will be available.
So let us see the different options.

P1 := x.some;x[]; y.case

{
left : y.some1; y(); 1.none
right : y.some1; y(); 1.none

}
P2 :=

(
y.right; y.some; y[]; z.case

{
left : z.some2; z(); 2.none
right : z.some2; z(); 2.none

})
||−(

z.case

{
left : y.left; z.somey,2; 2.some; z(); y.none
right : y.left; z.somey,2; 2.some; z(); y.none

})
P3 := z.left;w.somez,3; 3.some;w(); z.none

P4 := w.some;w[];u.case

{
left : u.some4;u(); 4.none
right : u.some4;u(); 4.none

}
P5 := u.left;x.someu,5; 5.some;x();u.none

And then the only possible reduction:

P1 := x.some;x[]; y.case

{
left : y.some1; y(); 1.none
right : y.some1; y(); 1.none

}
P2 := y.left; z.somey,2; 2.some; z(); y.none
P3 := w.somez,3; 3.some;w(); z.none
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P4 := w.some;w[];u.case

{
left : u.some4;u(); 4.none
right : u.some4;u(); 4.none

}
P5 := u.left;x.someu,5; 5.some;x();u.none

This will ultimately result in sending none on channels 1, 2, and 4; and some on channels 5,
and 3. The reductions to make channels 5, and 2 available are similar. But if we first reduce
on u these are the processes:

P1 := x.some;x[]; y.case

{
left : y.some1; y(); 1.none
right : y.some1; y(); 1.none

}
P2 :=

(
y.right; y.some; y[]; z.case

{
left : z.some2; z(); 2.none
right : z.some2; z(); 2.none

})
||−(

z.case

{
left : y.left; z.somey,2; 2.some; z(); y.none
right : y.left; z.somey,2; 2.some; z(); y.none

})
P3 :=

(
z.right; z.some; z[];w.case

{
left : w.some3;w(); 3.none
right : w.some3;w(); 3.none

})
||−(

w.case

{
left : z.left;w.somez,3; 3.some;w(); z.none
right : z.left;w.somez,3; 3.some;w(); z.none

})
P4 := w.left;u.somew,4; 4.some;u();w.none
P5 := x.someu,5; 5.some;x();u.none

Following this with a reduction on w:

P1 := x.some;x[]; y.case

{
left : y.some1; y(); 1.none
right : y.some1; y(); 1.none

}
P2 :=

(
y.right; y.some; y[]; z.case

{
left : z.some2; z(); 2.none
right : z.some2; z(); 2.none

})
||−(

z.case

{
left : y.left; z.somey,2; 2.some; z(); y.none
right : y.left; z.somey,2; 2.some; z(); y.none

})
P3 := z.left;w.somez,3; 3.some;w(); z.none
P4 := u.somew,4; 4.some;u();w.none
P5 := x.someu,5; 5.some;x();u.none

These processes will ultimately collapse into sending some on 5, and none on channels 1-4.

As we have seen, the processes are typable when considered in isolation. Now let us examine
whether the parallel composition of these processes is well-typed. Cutting on y, z, w, and
composing the first four processes is fine, as the already composed processes and the newly
added one share only one name, i.e., ((νw)((νz)((νy)(P1 | P2)) | P3) | P4). Sadly, when we
want to add P5 we discover that we would need to cut on two names (x and u), which is
not allowed by typing. This does not come as a big surprise: the leader election problem is
inherently circular, and sπ+ disallows circular dependencies to avoid deadlocks.

In this attempt we discovered two big obstacles: the not well-typed nature of circular net-
works in sπ+, and the inherent non-determinism of the order of interactions in parallel sys-
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tems. The first problem is not unsolvable. As shown in other papers [14], the introduction
of priorities in the typing system can facilitate the typing of cyclic networks. The second
problem originates in the operator ||−, as the two sides essentially have to describe the same
session, just with different implementations. A system is an electoral system if it always
behaves as one, therefore we still need to add the second step (as seen in the solution in the
full pi-calculus).

4.5 Fifth Attempt

Our latest attempt took us close to a typeable system, which always elects a leader in one
round. Because of the previously mentioned inherent non-determinism in parallel processes
(we do not know when a communication will occur) we have to include the second step. We
will try to use the same form, that we have in our existing system, but we are bounded by
the typing rule for x.someω. If we change P1 . . .P5 into

P1 :=
(
x.right;x.some;x[]; y.case

{
left : y.somea; y(); a.none
right : y.somea; y(); a.none

})
||−
(
y.case

{
left : x.left; y.somex,a; a.some; y();x.none
right : x.left; y.somex,a; a.some; y();x.none

})
and parallel compose it with the following Q1 . . .Q5, where:

Q1 := a.somec,1
(
(c.some; c[]; a.some1; a(); 1.none) ||− (a.somec,1; a(); 1.some; c.none)

)
Q2 = φ(Q1),Q3 = φ(Q2),Q4 = φ(Q3),Q5 = φ(Q4)

then we get a system that elects a leader in two steps.
However because Q1 starts a.some···;Q

′
1 every other channel that is in the domain of Q

′
1 needs

to be typeable under the & monad. If both sides start with α.some, then there will not be
possible reductions in the second step. This means that one side of the non-deterministic
composition needs to start with β.some···, in that case it must be true that: β = a, as a is
the only channel that is free to continue with anything else than an (un)available signal in
the domain of Q

′
1

Notice how this leads to problems with cut, as now Q1 does not have the dual of a, so we
cannot parallel compose and cut P1 and Q1 with respect to a. One possible solution would be
the introduction of a new rule, that allows for partial cut, with some additional constraints.

[Tcut.par]
P ⊢ Γ, x:A1.A2 Q ⊢ ∆, x:A1 R ⊢ Θ, x:A2

(νx)P |Q |R ⊢ Γ,∆,Θ

Figure 5: Partial typing

This rule allows us to parallel compose and cut w.r.t. a the following: (νa)(P1 |Q1 |Q4), as
P1 has the dual of the first a.some... in Q1 and Q4 carries the rest.
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We would still have a problem with circular compositions, although not unsolvable. But
this newly introduced rule would be a rather drastic change, and would violate the by-
construction guaranteed communication safety and deadlock-freedom: (x.some;x.some;x()) |
(x.some;x[]) | (x.none) would be well typed, but could result in a deadlock (as it can “con-
sume” some two times, one some and a none, or one none, and the order is not specified).
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5 Conclusion

As seen in the previous section, we obtained negative results. We were quite surprised by
this, as our initial assumption (that confluent non-determinism is the limiting factor) looks
wrong. In this section we will summarize our understanding of the limiting factors, as well
as our perception about how great of an obstacle they are.

Circular composition

As we have seen in section 4.4 sπ+ does not allow circular compositions in a well typed
system. Because the leader election problem is inherently symmetric (with respect to the
participating processes), it will introduce circular composition. However, this challenge is
solvable by introducing so-called priorities. As we can see in [14] this is an effective tool to
provide the possibility for typing circular connections. This is extendable to sπ+ but in itself
would not be enough and could not guarantee deadlock-freedom.

Propagation of errors

Another great challenge is the propagation of errors. As sπ+ has non-confluent non-determinism,
the tension between linearity and discarding resources is strong. Signalling that we have
thrown off some resources provides a good solution. It also introduces a new form of non-
determinism (as we could see in section 4.3), where we would want to make sure that certain
parts interact whereas others do not, but we are bounded by the reduction rules of the
non-deterministic operator. We believe this is a problem that would require a different
framework.

Non-determinism in the implementation of sessions

Finally, the last limiting factor can be found in the non-deterministic composition as seen in
section 4.5. The two composed processes must implement the same session, the only differ-
ence allowed is in the order of communication, the choice in labels (and therefore subsequent
actions on that channel), and the available/unavailable signals. We do not have full mixed
choice available: we have to make the same kind of choices, but in different order.

To summarize our findings and answer our research question: we were unable to derive a
typeable system in sπ+ that describes the leader election problem for five processes. The
results are inconclusive (in this case counterexamples are not good enough) as we lack rigid
proof. Our research, however, provided us with a better understanding of what types really
are, how they can be a limiting factor, and where may the boundaries of expressiveness lay
when we use them.
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6 Future Work

During this project we found many possible avenues that we find worth exploring. One
possible direction is the exploration of valued some and none. Do they add expressiveness?
Is our proposed reduction rule in line with the system of linear logic? If so, what would be
the corresponding typing rules? These are all questions that were not closely related to the
aim of this thesis.

Another immediate direction for continuation is the proof that sπ+ cannot express an elective
network of size 5. This project provides a solid foundation for this, and hopefully inspires in
the right direction. A related question is under what assumptions do we have a well-typed
system for the leader election problem?

Finally, the introduction of circularity in sπ+, together with priorities is a lucrative option
for research as well. We think that this might be the least challenging to add, and it would
improve the expressive power of sπ+.
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Pérez. Typed non-determinism in functional and concurrent calculi. In Chung-Kil Hur,
editor, Programming Languages and Systems - 21st Asian Symposium, APLAS 2023,
Taipei, Taiwan, November 26-29, 2023, Proceedings, volume 14405 of Lecture Notes in
Computer Science, pages 112–132. Springer, 2023.

[7] Bas van den Heuvel, Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A.
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