
UNIVERSITY OF GRONINGEN, THE NETHERLANDS

A MASTER THESIS ON:

Uncertainty in Semantic Language
Modeling with PIXELS

BY:

S, tefania Radu

Internal Supervisors:
Dr. Matias Valdenegro-Toro,

Dr. Marco Zullich

Abstract

Traditional Language Models like BERT are trained using raw text, split into separate
chunks using a tokenizer. These models suffer from 3 main challenges: a lack of con-
text understanding, a bottleneck in the vocabulary, and unreliable predictions caused by
high epistemic uncertainty. This study investigates a new approach – Visual Language
Models (VLMs) – by rendering text as an image and replacing the masked language
modeling task with patch reconstruction at the pixel level. The novelty of this work con-
sists of analysing uncertainty and confidence in VLMs models across 18 languages and
7 scripts, all part of 3 semantically challenging tasks: Named Entity Recognition (NER),
Sequence Classification (SC), and Question-Answering (QA). This is achieved through
several Uncertainty Quantification methods such as Monte Carlo Dropout, Transformer
Attention, and Ensemble Learning. The results suggest that VLMs underestimate uncer-
tainty when reconstructing patches, especially when a large proportion of the image is
masked. The uncertainty is also influenced by the script, with Latin languages display-
ing lower uncertainty, compared to the Geez or Chinese Characters scripts. The findings
on ensemble learning show better performance when applying hyperparameter tuning
during the NER and QA tasks across 16 languages, as well as improved overall calibra-
tion.

2

CONTENTS CONTENTS

Contents

1 Introduction 5
1.1 Prologue . 5
1.2 About This Thesis . 6

2 Literature Review 9
2.1 Traditional Large Language Models . 9
2.2 Learning Through Masking . 10
2.3 Text As Visual Representation . 11
2.4 The Semantics Problem . 13
2.5 The Vocabulary Problem . 14
2.6 The Uncertainty Problem . 15

3 Methods 19
3.1 Data . 19

3.1.1 Pretraining Data . 19
3.1.2 MasakhaNER 1.0 . 19
3.1.3 GLUE . 20
3.1.4 TyDiQA-GoldP . 20
3.1.5 Text Renderer . 21

3.2 Model Architecture . 22
3.2.1 Embeddings . 22
3.2.2 Span Masking . 24
3.2.3 Encoder . 26
3.2.4 Decoder . 27

3.3 Training . 27
3.3.1 Pretraining . 27
3.3.2 Finetuning . 28

3.4 Uncertainty Quantification . 28
3.4.1 Monte Carlo Uncertainty . 28
3.4.2 Attention Vizualization . 29
3.4.3 Ensemble Learning . 30

4 Experimental Setup 33
4.1 Monte Carlo Uncertainty . 33

4.1.1 Uncertainty Across Tasks . 33
4.1.2 Uncertainty Across Scripts . 34
4.1.3 Uncertainty Across Languages . 34
4.1.4 Visualizing Uncertainty in Text Reconstruction 35
4.1.5 Calibration Analysis . 35

4.2 Attention Vizualization . 35
4.3 Ensemble Learning . 35

4.3.1 Extractive Question Answering 35
4.3.2 Named Entity Recognition . 36

3

CONTENTS CONTENTS

5 Results 39
5.1 Monte Carlo Uncertainty . 39

5.1.1 Uncertainty Across Tasks . 39
5.1.2 Uncertainty Across Scripts . 44
5.1.3 Uncertainty Across Languages . 49
5.1.4 Visualizing Uncertainty in Text Reconstruction 52
5.1.5 Calibration Analysis . 56

5.2 Attention Vizualization . 56
5.3 Ensemble Learning . 59

5.3.1 Extractive Question Answering 59
5.3.2 Named Entity Recognition . 59

5.4 Results Discussion . 60

6 Discussion & Conclusion 63
6.1 Discussion . 63
6.2 Limitations & Future Work . 64
6.3 Summary . 65

7 Appendix 66
7.1 Multilingual Pretraining . 66
7.2 Examples of Reconstruction with Uncertainty 66
7.3 Code . 69

Bibliography 70

4

1 INTRODUCTION

1 Introduction

1.1 Prologue

”The limits of my language mean the
limits of my world.”

—Ludwig Wittgenstein

One of the many implications of this statement written by Ludwig Wittgenstein in the
Tractatus Logico-Philosophicus (Wittgenstein, 1922) is that language defines the frame-
work through which, we humans, perceive and interpret the world. In other words,
language shapes the way we think, and by that, it changes who we are. To understand
and produce language, humans have evolved specialized brain regions, as well as so-
phisticated language-learning mechanisms. The most important areas are Broca’s area,
involved in speech production and grammar processing, and Wernicke’s area, which is
essential for understanding spoken language and semantic processing. The existence of
a neurological language acquisition device was proposed by Chomsky (1965), who be-
lieves that children are born with the ability to extract underlying grammar rules from
language. Interaction with the environment plays a crucial role in the learning pro-
cess, as well. Children experiment actively with the language and use techniques like
imitation or positive reinforcement (Skinner, 1957), which enables them to gradually
understand the rules of syntax and grammar through trial and error. While imperfect
and prone to errors, this approach is effective nonetheless, at least as far as humans
are concerned. When it comes to machines, teaching them how to communicate in the
same way we do has been a difficult challenge ever since the Turing test was introduced
in 1950.

Advanced natural language modeling (NLP) methods were developed only decades
later. Statistical language models (Jelinek, 1998; Rosenfeld, 2000) originated in the
1990s and rely on next-word prediction given a context. Neural language models ap-
ply neural networks to encode the probability of word sequences (Bengio et al., 2000).
In this context, static word representations were then used to create models such as
word2vec (Mikolov et al., 2013), which proved to be very effective at learning text fea-
tures that generalize across a wide range of NLP tasks. In an attempt to capture context-
aware information, pretrained language models became very popular in 2018. Based on
the transformer architecture (Vaswani et al., 2017) and the self-attention mechanism,
models like BERT (Devlin et al., 2018) can learn general-purpose semantic features dur-
ing pretraining and be finetuned on specific downstream tasks later. The transferable
nature of these models makes them very versatile. To improve their applicability in
real-world tasks where the quantity of text data is large, scaling the model size and the
dataset size is what turned pretrained models into Large Language Models (LLMs), that
are often considered general-purpose task solvers (Brown et al., 2020).

After the release of ChatGPT in 2022, the number of papers published every day on
the topic of LLMs has increased more than 20-fold (Zhao et al., 2023). The number of
parameters in these models jumped from 340 millions in implementations such as BERT
(Devlin et al., 2018) to billions of parameters in models like GPT-3 (Brown et al., 2020)
or LLaMA (Touvron et al., 2023). Despite their obvious popularity, LLMs suffer from

5

1.2 About This Thesis 1 INTRODUCTION

many limitations, some of which will be discussed in more detail in the next chapter.
It is well known that these models require large quantities of training data and huge
computational resources (Abadi et al., 2016), often available only to the industry. This
means that many training details are not revealed to the public. Another critical issue
that came to light shortly after ChatGPT was made available is that of hallucinations
(OpenAI, 2023). This means that during the text generation process, LLMs can produce
incorrect, nonsensical and even harmful answers. However, hallucinations are inherent
to traditional LLMs, considering that they are optimized to generate natural-sounding
language, which does not necessarily entail factual certainty (methods like reinforce-
ment learning from human feedback (Christiano et al., 2017) have been shown to re-
duce this problem). LLMs often do not express uncertainty and display a high level of
confidence in their responses, regardless of their accuracy – the uncertainty problem.
This can mislead users into trusting incorrect or unverified information. For this reason,
it is difficult to engineer models that can utilize the relevant surrounding tokens to per-
form well on semantic tasks, such as word-level or sentence-level understanding – the
semantics problem. A related limitation refers to the finite number of categorical inputs
that LLMs can support – the vocabulary problem.

The next section will first give an overview of language modeling and traditional LLMs,
including how they work and common applications. It will then discuss the previously
mentioned challenges: the vocabulary problem, the context problem and the confidence
problem. Finally, a new type of approach – visual language models – will be introduced,
which is here to solve the limitations of traditional LLMs.

1.2 About This Thesis

This work diverges from traditional language models, as presented in Section 2.1, and
takes a different path towards visual language models, by incorporating image-based
methods, such as MAE and ViT (Section 2.2). The PIXEL model introduced by Rust et
al. (2022) serves as a starting point for this thesis. The main aim is to study uncer-
tainty in visual language models focusing on semantic tasks. This will be achieved by
addressing the three challenges observed by the author: The Semantic Problem, The
Vocabulary Problem, and The Uncertainty Problem, as illustrated in Figure 1.2.1. Given
the challenging nature of semantic processing and the fewer studies dedicated to it, this
research will center on finetuning models to solve tasks like named entity recognition,
sequence classification, and question answering. Solving the vocabulary bottleneck of
traditional language models which rely on a close vocabulary can be achieved by us-
ing pixel-based models which do not require a fixed vocabulary. Finally, to tackle the
uncertainty problem, this work will make use of existing techniques for quantifying un-
certainty, and apply them to visual language models, which also represent the biggest
novelty of this study. This includes uncertainty quantification at the pixel level using
Monte Carlo methods, ensemble learning applied to models finetuned on three seman-
tic tasks across 19 languages, but also an analysis of the attention mechanism in visual
language models, and an attempt to pretrain a multilingual model with improved con-
textual understanding. For a more detailed overview of these issues in the literature,
refer to Section 2.

6

1 INTRODUCTION 1.2 About This Thesis

LLMs state

The Uncertainty
Problem

The Vocabulary
Problem

The Semantics
Problem

long-range dependencies
words ambiguity
implicit meanings

predefined/fixed vocabulary
no multilingual support
brittle models

overconfident predictions
uncalibrated models
lack of explainability

Figure 1.2.1: The current work aims to study three of the (many) existing problems in the
current LLMs landscape: The Semantics Problem (Section 2.4), The Vocabulary Problem
(Section 2.5), and The Uncertainty Problem (Section 2.6). Here, X marks the spot repre-
senting the research area that this thesis falls under.

The research questions to be addressed are:

1. Do visual language models represent a viable solution for the semantic processing
of text?

2. How can uncertainty quantification and calibration methods be integrated into
visual language models?

3. How do visual language models encode uncertainty at the pixel level?

4. How is the attention mechanism represented in visual language models?

5. What is the effect of ensemble learning in finetuning visual language models?

The remainder of this thesis is structured as follows: Section 2 will present the Litera-
ture Review and motivation for this work in the form of three main challenges. Next,
Section 3 describes the Methods, including the data used, the model architecture, and
the training process. Section 4 outlines the Experimental Setup, followed by a presen-
tation of the Results in Section 5. Finally, Section 6 will discuss the results and give a
conclusion.

7

1.2 About This Thesis 1 INTRODUCTION

(a) Original rendered text us-
ing the PyGame renderer.

(b) Original image with un-
certainty.

(c) Reconstructed text with
uncertainty.

Figure 1.2.2: Example of uncertainty quantification at the patch-level for an image con-
taining text from the proposal of this thesis. The uncertainty is measured as the standard
deviation for each patch after Monte Carlo Dropout. Brighter colors indicate more uncer-
tainty.

CLS

CLS

 INPUT:
 "Alchemy (from Arabic: al-kīmiyā; from"

Layer 2, Head 3

Attention Grid

Figure 1.2.3: Model-level (attention grid) and neuron-level (layer 2, head 3) views of
attention in the PIXEL model for a short input text from the English Wikipedia. The attention
grid contains 12 attention layers with 12 attention heads each. Each patch in the attention
cell attends to the other patches in the sequence according to the dot product between the
query (of the attender patch) and the key (of the attended patch).

8

2 LITERATURE REVIEW

2 Literature Review

2.1 Traditional Large Language Models

Tokenization The majority of Large Language Models (LLMs) use raw text data as in-
put, which requires preprocessing. These steps usually involve applying tokenizers and
embedding layers. During tokenization, the text is divided into smaller chunks called
tokens (Jurafsky & Martin, 2023), that range from individual characters to words or
phrases. More advanced tokenizers include Byte-Pair Encoding (BPE) (Sennrich et al.,
2015), WordPiece (Devlin et al., 2018), and SentencePiece (Kudo & Richardson, 2018).

BPE is a compression algorithm proposed by Sennrich et al. (2015), which learns a
tokenization by iteratively replacing pairs of adjacent symbols with a new symbol rep-
resenting that pair. It does this after the desired vocabulary size has been reached.
WordPiece behaves similarly, with the main difference being that it does not choose the
most frequent symbol pair, but the one that maximizes the likelihood of the training
data once added to the vocabulary. Unlike BPE and WordPiece, the Unigram tokenizer
initializes its base vocabulary to a large number of symbols and removes symbols pro-
gressively to obtain a smaller vocabulary. This is achieved using a log-likelihood loss
(Equation 2.1.1), defined over the training data, given the current vocabulary and a
unigram language model, where x1 . . .xN represent words and the set S(xi) contains all
possible tokenizations for word xi . Unigram is usually used in combination with Sen-
tencePiece and it does not rely on the assumption that words are separated through
spaces, which is the case for Chinese or Japanese. It treats the input as a raw input
stream, which makes it applicable in a multilingual context. The output of the tok-
enizer serves as input for the first layer of the transformer model – the embedding layer.

L = −
N∑
i=1

log

 ∑
x∈S(xi)

p(x)

 (2.1.1)

Embeddings The embedding layer is then used to encode tokens (word-embeddings)
or sequences of n-tokens (n-grams embeddings), by projecting them into a dense vec-
tor representation from a continuous space (Bengio et al., 2000). Since this can also
be framed as a problem of maximizing mutual information (Kong, 2019), semantically
similar tokens will also have similar representations in the dense space. This allows
the model to process text in a way that reflects the underlying meanings of words
and phrases and generalize across contexts. Machine learning algorithms like TF-IDF
(Spärck Jones, 2004) are widely used in information retrival tasks and use statistical
measures such as term-frequency and inverse term frequency to find relevant words
in text, given a corpus. Predictive models like word2vec (Mikolov et al., 2013) learn
embedding representations through predicting word w by maximizing the probability
p(w|C), given the context C. Several types of embeddings can also be combined to
improve performance. For instance, BERT (Devlin et al., 2018) summed token embed-
dings with segment and positional embeddings, which provide information about the
position of each token within the sequence.

The Attention Mechanism The text processing abilities of Large Language Models
(LLMs) are based on the transformer architecture, introduced by Vaswani et al. (2017).

9

2.2 Learning Through Masking 2 LITERATURE REVIEW

While previous architectures process text sequentially (Gehring et al., 2017), transform-
ers use the attention mechanism, consisting of three main components: queries (Q), keys
(K) and values (V). During the first step, the dot product is used to compute a score
for each query, given a key. Then, the scores are passed through a softmax function
to generate the weights. Finally, the attention is computed by a weighted sum of the
value vectors, where each value vector is paired with a corresponding key. The com-
plete computation is shown in Equation 2.1.2, where dk is the dimension of K. In the
transformer model, multiple attention functions are performed in parallel, known as
multi-head attention. This mechanism enables the model to attend to information from
different subspaces and positions.

Attention(Q,K,V) = softmax

QKT√
dk

V (2.1.2)

Training Training a language model involves two phases: pretraining and finetuning.
During pretraining, the model has access to a diverse corpus of text data. pretraining
typically utilizes self-supervized learning, that does not require labels. Models like GPT
use a next-word prediction task where the next word in a sequence has to be predicted,
while BERT combined two pretraining tasks: Masked Language Modeling (MLM) –
where random words are masked from the input text and the model learns to predict
them, and Next Sentence Prediction (NSP). During finetuning, the model is trained on
a smaller, more specific dataset. In this phase, the weights are adjusted to specialize on
a particular task.

Evaluation There are a variety of tasks used to test the capabilities of language mod-
els, including syntactic and semantic tasks. Examples of syntactic tasks are part-of-
speech (POS) tagging and dependency parsing using data from Universal Dependencies
v2.10 treebanks (Nivre et al., 2020). Semantic processing requires the model to un-
derstand word-level information through tasks like Named Entity Recognition (NER)
or sentence-level information through tasks like question answering, assessed by the
Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016). The General
Language Understanding Evaluation (GLUE) (A. Wang et al., 2018) dataset is another
popular benchmark, including sentiment analysis, textual entailment, and document
similarity. Despite recent advancements, the semantics problem remains a recurrent
challenge.

2.2 Learning Through Masking

Masked Language Modeling The concept of masking and reconstructing parts of the
data has shown great potential in both NLP and computer vision (CV) related tasks.
Masked language modeling (MLM) used in models such as BERT (Devlin et al., 2018)
involves holding out a part of the input and training the model to predict it while having
access to the left and right context. These models are called bidirectional autoencoders
and can perform more advanced linguistic tasks, such as labeling or parsing, as they
allow the self-attention mechanism to range over the entire input (Jurafsky & Martin,
2023). MLM is a common pertaining task because it enables the model to form useful
representations about the meaning of words, by mapping input embeddings (x1 . . .xn)

10

2 LITERATURE REVIEW 2.3 Text As Visual Representation

to contextualized embeddings of the same length (y1 . . . yn).

During training, a random sample of tokens from each training example is selected to be
part of the learning task. Each token can then be part of one of three categories based on
a set of probabilities. It can be replaced with the [MASK] token, replaced with another
token from the vocabulary, or left unchanged. In the case of BERT, out of 15% of tokens
selected for learning, 80% are replaced with [MASK], 10% are replaced with randomly
selected tokens, and the remaining 10% are left unchanged. While the proponents
of BERT suggest that 15% represents a sweet spot between good representations and
learning efficiency, other studies argue that the exact number is not universal, but rather
depends on different factors, like model size or training strategy (Wettig et al., 2022).
The findings suggest that masking 40% of the input (as opposed to 15%) leads to models
that perform better when finetuned on GLUE and SQuAD (Izsak et al., 2021). Moreover,
even with a masking rate of 80%, the learned representations still preserve up to 95%
of the performance in downstream tasks (Wettig et al., 2022). This is to show that there
is not yet a clear-cut answer about the ideal masking rate to be used in MLM.

Vision Transformer Inspired by the language transformer (Vaswani et al., 2017),
Dosovitskiy et al. (2020) proposed the vision transformer model as an image-based
pipeline. Instead of text tokenization, the input to the ViT is an image, which needs
to be split into fixed-sized patches of pixels. These patches are linearly embedded and
then encoded by a traditional transformer encoder. One of the advantages of transform-
ing the image into a sequence of patches is that no additional image-specific inductive
biases are introduced into the architecture. Variants of ViT are successfully used in CV
tasks, such as object recognition (Touvron et al., 2021) or segmentation (Liu et al.,
2021), and they serve as backbones for various other models, like Masked Autoencders
(He et al., 2022).

Masked Autoencoder In the context of computer vision, masked image encoding
works similarly to MLM, by masking regions of an image and then learning to recon-
struct the whole image. These models have an encoder-decoder architecture and are
referred to as masked autoencoders (MAE) (He et al., 2022). By following the autoen-
coder mechanism, the MAE reconstructs original images given some partial observa-
tions. During masking, the image is divided into non-overlapping patches and masked
using random sampling. The masking rate used by the MAE is 75%, which is considered
high, but it is motivated by the need to learn useful representations of larger elements,
such as objects or scenes. The ViT encoder is applied on the visible patches only and
creates embeddings using a linear projection. Additional positional embeddings are
added and the output is fed to a series of transformer blocks. The input to the decoder
consists of both the visible and masked patches. The model will reconstruct the patches
by predicting a value for each pixel in the masked patch.

2.3 Text As Visual Representation

It is clear that language models feed on language in order to deliver their impressive
results, but the way in which language should be represented remains a matter of debate.
As discussed in Section 2.1, traditional LLMs rely solely on text and use tokenizers to
split sequences of text into smaller units, referred to as tokens. A different approach is to

11

2.3 Text As Visual Representation 2 LITERATURE REVIEW

Figure 2.3.1: Examples of linguistics phenomena that can alter the representation of text
in subword models. Image from Salesky et al. (2021).

focus on the visual representation of words, as opposed to the text-based representation.
This method is tokenization-free and it does not require a vocabulary, making it very
robust against noise. Unlike byte-based models, which depend on observed sequences
and can be susceptible to variations that visually appear very similar (Figure 2.3.1,
Salesky et al. (2021)), visual language models encode similarities between characters,
which is more consistent with the idea that humans perceive text visually, and not from
unicode representations (Salesky et al., 2021).
The first study to use visual features of text in order to create embeddings was applied
to Chinese and used linearizing bitmaps of characters or words (Aldón Mı́nguez et al.,
2016). By using shared character components from Chinese or Korean, it becomes eas-
ier to generalize to new and less frequent characters. Different studies (Dai & Cai, 2017;
Sun et al., 2018; Salesky et al., 2021) used rendering techniques to obtain images of
text. In this context, text rendering involves converting character codes into glyph in-
dices, which are then used to generate the corresponding glyph images, while applying
various styles, fonts, sizes, and colors. A glyph often contains one character only, but
it can also represent accents or multiple characters in languages where ligatures are
common, like Arabic. Dai & Cai (2017) used text rendering in Chinese, Japanese, and
Korean, and extracted visual features from a Convolutional Neural Network (CNN) to
perform text classification. Similarly, Sun et al. (2018) applied convolutions to squared
rendered images to perform sentiment analysis in Chinese and English.

In the context of machine translation, Salesky et al. (2021) suggested a very robust
approach based on a variation of the ViT. The training data is rendered into gray-scale
images using the Pygame backend and a slicing window is applied to create patches,
which act as tokens. Then, a 2D convolutional block followed by linear projection is
used to create embeddings, which serve as input for the transformer encoder. The
translation happens directly from pixel representations, without any word preprocess-
ing. After training on seven language pairs, the approach matches the performance of
traditional language models, with additional advantages. It is more robust to character
permutations or substitutions, and it does not rely on text preprocessing steps, such as

12

2 LITERATURE REVIEW 2.4 The Semantics Problem

Figure 2.4.1: Example of instance when BERT is fooled during a sentiment classification
task. Replacing some words with synonyms can completely change the outcome of the
prediction. Image from Jin et al. (2020).

tokenization or segmentation.

Inspired by Salesky et al. (2021), Rust et al. (2022) proposed a more extensive model
called Pixel based Encoder of Language or PIXEL, which aims to transform language mod-
eling into a visual recognition task. PIXEL does not rely on a predefined vocabulary and
it is trained to reconstruct missing patches of text, by following a ViT-MAE architec-
ture. Similarly to BERT, the model is pretrained on rendered versions of the Wikipedia
and BookCorpus datasets and it is evaluated on 32 topologically diverse languages,
across 14 scripts. The results indicate that PIXEL outperforms BERT in syntactic tasks,
such as part-of-speech tagging and dependency parsing while using fewer parameters.
The model also demonstrates robustness to orthographic attacks and linguistic code-
switching. However, during semantic tasks like named entity recognition, sequence
classification, and question answering, PIXEL is struggling to retain semantic knowl-
edge and transfer it across scripts. Reasons for this might include a lack of multilingual
pretraining, as well as a limited ability to capture contextual information due to the
use of unigram patch embeddings. While raw performance is desirable, it is crucial to
have models that are reliable and explainable. Fortunately, uncertainty and confidence
quantification methods are here to help achieve these goals.

2.4 The Semantics Problem

To evaluate LLMs, research usually relies on a combination of syntactic and semantic
tasks. However, the focus is generally on syntactic tasks, and in models such as BERT,
the studies on how knowledge is processed in semantic tasks are more challenging and
therefore scarce (Rogers et al., 2021). This happens for several reasons, including the
ambiguity of words, long-range dependencies between tokens, world knowledge, and
implicit meanings. Addressing the semantics problem requires a deeper understanding
of the linguistic context, as opposed to syntactic tasks.

Evidence suggests that language models encode semantic information about semantic
roles, entity types and relations (Tenney, Xia, et al., 2019), but it is still unclear how

13

2.5 The Vocabulary Problem 2 LITERATURE REVIEW

the knowledge is encoded into the model weights. In NER tasks, where the goal is to
assign labels to words, such as person names, organizations, locations, etc., LLMs fail to
account for entity replacements, despite showing high F1 scores (Balasubramanian et
al., 2020). In classification tasks, slightly changing the words can alter completely the
prediction result (Figure 2.4.1, Jin et al. (2020)). This suggests that the features learned
by the model are not general enough to support a real understanding of named entities
from sentences (Tenney, Das, & Pavlick, 2019). In the case of word knowledge, mod-
els have trouble reasoning based on their acquired knowledge. For example, BERT can
learn various object attributes, but it cannot make inferences about the relationships be-
tween these attributes (Forbes et al., 2019). In addition, Adelani et al. (2021) indicates
that the performance in downstream tasks decreases with the number of inference steps.

What makes semantic tasks significantly more difficult is the need to maintain context
over longer text spans. This is because relevant information about a word cannot always
be found in its proximity. For instance, in sequence classification tasks where the goal is
to extract a sentiment or thematic content from an entire document, the relevant cues
may be distributed across the text. The most common solution to tackle the long-term
dependency problem is by employing self-attention, allowing each token in the input
sequence to dynamically attend to all other positions. Nevertheless, this is not always
sufficient for large contexts.

Different approaches emerged in the literature to account for larger contexts. When
developing the T5 model, Raffel et al. (2020) proposed a new pretraining task that
integrates more information and involves predicting a missing segment of text given
the surrounding context. Additionally, the authors used a span-based masking strategy
– rather than random masking – where contiguous random spans of tokens are replaced
with a single mask token, thus increasing the length of the segment to be predicted.
To boost memorization capabilities and context understanding, models like CANINE-
C (Clark et al., 2022) included n-gram embeddings, which improved performance in
NER tasks. Given the challenging nature of semantic tasks, this thesis will focus on
investigating these aspects.

2.5 The Vocabulary Problem

A large number of language models use a closed-vocabulary approach when represent-
ing language. This means that the number of tokens in the vocabulary |V | is finite,
leading to a bottleneck when one tries to expand it with new words. Vocabularies are
typically constructed using tokenization methods, such as BPE (Sennrich et al., 2015),
WordPiece (Devlin et al., 2018) or SentencePiece (Kudo & Richardson, 2018). Their
goal is to preprocess the text by cleaning and transforming it into a list of tokens. While
traditional vocabularies can be a viable solution for monolingual contexts, tokenization
becomes a bottleneck in multilingual settings, when trying to scale up the number of
languages (Conneau et al., 2019).

One of the main issues with a finite vocabulary is the occurrence of out-of-vocabulary
(OOV) words – words that were seen very rarely during training or not at all (Mielke et
al., 2021). When a word is not present in the predefined vocabulary, it must be decom-
posed into smaller subword units, resulting in a loss of information. Current solutions
to the vocabulary problem include subword tokenization and extending the closed vo-

14

2 LITERATURE REVIEW 2.6 The Uncertainty Problem

cabulary to an open vocabulary.

Subword tokenization involves splitting the words-like tokens into smaller units, includ-
ing all characters from the training set (Mielke et al., 2021). While using subwords can
improve the processing of morphologically rich languages (Mikolov et al., 2012), it gen-
erally comes at the cost of efficiency (Sennrich et al., 2015). This tokenization process
can lead to longer sequences of tokens, increasing the computational load of the model.
Moreover, it makes the models more susceptible to noise, such as misspellings (Eger et
al., 2019) or character swaps (Belinkov & Bisk, 2017), since small variations in text can
result in different token sequences. Moreover, subword tokenization also introduces an
additional layer of complexity, by requiring the reconstruction of the original meaning
from smaller units (Bostrom & Durrett, 2020).

A different way of tackling the closed vocabulary is extending it so that models can gen-
erate new words. Mielke & Eisner (2019) proposed an approach based on a recurrent
neural network language model, which regularizes word embeddings to be predictive
of their spelling and predicts unknown words dynamically. Kawakami et al. (2017) im-
proved this model, by adding a cache feature to remember predicted words. It is also
possible to expand the vocabulary after training through post-hoc methods like translit-
eration (Moosa et al., 2022) or subword mapping (Vernikos & Popescu-Belis, 2021), but
these do not represent permanent solutions.

The vocabulary problem also poses significant challenges for multilingual language
models. Supporting multiple languages requires a larger vocabulary to cover diverse
linguistic features and scripts, which is often impractical within the constraints of a
fixed vocabulary size. Wu & Dredze (2019) noted that multilingual models struggle
with resource allocation across languages, leading to suboptimal performance in less
represented languages, during tasks like named entity recognition, part-of-speech tag-
ging, and dependency parsing. Furthermore, imbalanced vocabulary representation
can exacerbate biases, resulting in unfair treatment of certain languages (Wan, 2021).
The trade-off in vocabulary allocation means that models either inadequately repre-
sent some languages or become too large in size and computational requirements. The
current work addresses the vocabulary bottleneck problem, with the aim of advanc-
ing the inclusivity of language models, which are often dominated by commonly used
languages.

2.6 The Uncertainty Problem

Handling uncertainty is an open problem in NLP, especially when it comes to very com-
plex language models with billions of parameters. As these models are being applied
more and more to high-stakes scenarios, such as medicine or security (Yang et al., 2019;
Gawlikowski et al., 2023), it is critical that their predictions can be trusted. To under-
stand these predictions and their reliability, it is important to differentiate between the
concepts of uncertainty and confidence. According to Lin et al. (2023), uncertainty refers
to the ’dispersion’ U (x) of the possible predictions for a given input x, while confidence
refers to the model’s estimated probability of a specific prediction being correct and is
expressed in terms of the input and the output as C(x,y). Classical classification models
use a softmax layer σ (z)i to convert logits z = (z1, z2, . . . , zK) into probabilities. The as-
signment class is usually computed as ŷ = argmaxi σ (z)i and it is considered the model’s

15

2.6 The Uncertainty Problem 2 LITERATURE REVIEW

Figure 2.6.1: Empirical distribution (first row) and reliability diagram (second row) ob-
tained by prompting the LLMs to verbalize confidence for a multiple-choice question. The
confidence levels are over 80%, while the accuracy in each bin is much lower, indicating
overconfidence. Image from Xiong et al. (2023).

prediction (Hendrycks & Gimpel, 2016a). The authors of the study also demonstrate
that ignoring the distinction between uncertainty and confidence can lead to incorrect
assessments.
Now that the distinction is clear, it is possible to advance to how research tackles the
lack of expressed uncertainty. For semantic NLP tasks such as extractive question an-
swering, it is common to use models that predict the start and end tokens of an answer
span and provide confidence scores based on the softmax probabilities of these predic-
tions (Devlin et al., 2018; Lan et al., 2019). However, this approach offers no measure
to quantify the uncertainty of the prediction. Several works have been proposed in
the past years to solve this problem (Xiao et al., 2022; Lin et al., 2023). Common
solutions include incorporating uncertainty directly into the model using Bayesian Neu-
ral Networks (BNN) (Blundell et al., 2015) or post-hoc methods such as Monte Carlo
Dropout (Gal & Ghahramani, 2016), Temperature Scaling (Guo et al., 2017) and En-
semble Learning (Lakshminarayanan et al., 2017).

Bayesian Neural Networks (BNNs) incorporate Bayesian inference principles into neural
networks, allowing for the estimation of uncertainty. BNNs treat the weights as distribu-
tions, providing a probabilistic interpretation of the network’s predictions. If the learn-
ing objective is to minimize the negative log likelihood loss L = − 1

N

∑N
i logp(yi |xi ,w),

the probability distribution can be computed as shown in Equation 2.6.1, where M
represents the set of all possible outcomes.

p(yi =m|xi ,w) =
exp(fm(xi ,w))∑
k∈M exp(fk(xi ,w))

. (2.6.1)

For a new input x∗ , the predictive distribution is given by Equation 2.6.2.

16

2 LITERATURE REVIEW 2.6 The Uncertainty Problem

p(y∗|x∗,D) =
∫

p(y∗|x∗,w)p(w|D)dw. (2.6.2)

In practice, due to the high dimensional integral, it is common to approximate Bayesian
inference, with methods such as Monte Carlo or Ensembles. In Monte Carlo (MC)
Dropout (Gal & Ghahramani, 2016), random sets of weights are set to zero with a cer-
tain probability to prevent overfitting. During inference, dropout is applied multiple
times to generate a set of stochastic forward passes. Each forward pass corresponds
to sampling from the approximate posterior distribution of the network’s weights. The
predictive mean and variance are estimated by averaging the outputs from these mul-
tiple forward passes, as presented in Equations 2.6.3 and 2.6.4 respectively, where T is
the number of forward passes, and fwt

represents the network. While models initialized
with a dropout of 0.1 achieve lower uncertainty, Gal & Ghahramani (2016) has shown
that during regression tasks, the uncertainty obtained with a value of 0.1 is indistin-
guishable from 0.2 when the model converges.

ŷ =
1
T

T∑
t=1

fwt
(x∗) (2.6.3)

Var(ŷ) =
1
T

T∑
t=1

(fwt
x∗ − ŷ)2 (2.6.4)

Ensemble methods involve training multiple independent models and combining their
predictions. These models can be initialized differently or trained on different subsets
of the data, using methods such as Bagging, Boosting or Stacking (Breiman, 1996a,b;
Freund et al., 1999). In the inference step, the predictions from each model in the
ensemble are averaged to produce the final prediction. The mean and variance are
computed similarly to Equations 2.6.3 and 2.6.4, where T now represents the number
of models in the ensemble. Xiao et al. (2022) found that ensembles used in pretrained
LLMs increase the computational cost during finetuning or inference significantly.

Temperature scaling (TS) is a simple yet effective method to scale the softmax predicted
probabilities. This is achieved using a temperature parameter τ, which controls the
model’s confidence by changing the sharpness of the distribution, in a way that stops
the predictions from being too overconfident or underconfident (C. Wang, 2023). The
calibration of the probabilities is computed according to Equation 2.6.5, and the optimal
temperature value is learned by minimizing the negative log-likelihood loss (NLL) on
the validation dataset (Equation 2.6.6).

pi =
exp(gi/τ)∑k
j=1 exp(gj /τ)

, i ∈ [1 . . . k]. (2.6.5)

τ∗ = argmin
τ

− N∑
i=1

log(softmax(gi , τ))

 (2.6.6)

One important goal of uncertainty quantification is to improve calibration. According
to C. Wang (2023), calibration is defined as the degree of the match between predicted
probability p and the true correctness likelihood. Under a classification problem with

17

2.6 The Uncertainty Problem 2 LITERATURE REVIEW

an input variable X and a categorical variable Y ∈ {1,2, ..., k} with k classes, the model f
is perfectly calibrated if and only if the condition in Equation 2.6.7 is satisfied.

P (Y = yi |f (X) = p) = pi (2.6.7)

More intuitively, if a model is 90% sure that the sentiment of a document is positive,
the predicted outcome should occur 90% of the time in practice. Frequently, even when
the prediction probabilities are provided, they are often poorly calibrated (Minderer et
al., 2021). This often results in overconfident models (Figure 2.6.1), especially when
faced with out-of-distribution data. Some studies attribute this to over-parameterization
(C. Wang, 2023), while others suggest that larger pretrained language models are sig-
nificantly better calibrated in domain and commonsense reasoning (Xiao et al., 2022).
The Expected Calibration Error (ECE) is used as a calibration measure, which com-
putes the difference between predicted probabilities (conf(Bl)) and observed frequen-
cies (acc(Bl)) by dividing the prediction space into multiple bins B (Naeini et al., 2015),
as shown in Equation 2.6.8. One common way to visualize this metric is using a reli-
ability plot, which shows the confidence of each bin against the accuracy, and reveals
specific regions where the model is overconfident or underconfident.

ECE =
L∑
l=1

|Bl |
n
|acc(Bl)− conf(Bl)| (2.6.8)

To the author’s knowledge, when it comes to language models that rely on a visual rep-
resentation of text, very few studies are dedicated to measuring the levels of uncertainty
and confidence in these models. As the field of LLMs rapidly advances, it is paramount
that research in explainability and interpretability keeps pace to ensure the effective
and transparent deployment of these technologies.

18

3 METHODS

3 Methods

3.1 Data

3.1.1 Pretraining Data

Throughout the majority of the experiments, the model used was the base version of
PIXEL, proposed by Rust et al. (2022), which can be found at https://huggingface
.co/Team-PIXEL/pixel-base. According to the authors, PIXEL was pretrained on the
rendered version of the English Wikipedia with 2B and the BookCorpus with 1.1B
words (Zhu et al., 2015). The Wikipedia dump used is from the 1st of February 2018,
but the exact dataset is not disclosed. However, it is possible to find these dumps at
https://dumps.wikimedia.org/. Each example in the Wikipedia text dataset contains
the content of one full Wikipedia article, after cleaning the markdown and unwanted
sections, such as references. Title lines are filtered out since they are short and do not
provide enough information.

The BookCorpus dataset was introduced by Zhu et al. (2015) as a way to align books
and movies and provide a written explanation for the visual content of a scene. In the
context of this study, only the text descriptions are relevant. The dataset contains 17868
English books of various genres, for instance, Science Fiction, Romance and Adven-
ture. The exact version used to pretrain PIXEL (https://huggingface.co/datasets/
bookcorpusopen) is no longer available at the moment of writing this thesis, but a sim-
ilar one can be found in Table 3.1.4.

The original PIXEL model has been pretrained on English data only. Among others,
this study proposes a multilingual version, which excludes English. Still, it includes
18 other languages (Amharic, Arabic, Bengali, English, Finnish, Hausa, Igbo, Indone-
sian, Italian, Kinyarwanda, Korean, Luganda, Naija Pidgin, Norwegian, Romanian, Rus-
sian, Swahili, Telugu, Wolof, Yorùbá), in an attempt to determine if lower-resource
languages can be successfully used to train a visual language model. This method in-
troduces diversity and speeds up preprocessing, as prerendering is faster on smaller
datasets. For this, the Wikipedia dump from the 1st of November 2023 was used.
lhttps://huggingface.co/stefania-radu. The prerendered datasets are available at https://
huggingface.co/stefania-radu. An overview of all languages used to pretrain the
multilingual is shown in Table 3.1.1, while the distribution can be observed in Figure
3.1.1. The languages come from 10 language families and 7 scripts, with the most
common being Latin.

3.1.2 MasakhaNER 1.0

The dataset used for the Named Entity Recognition (NER) task is MasakhaNER 1.0 (Ade-
lani et al., 2021), a NER benchmark, which includes data from 10 African Languages
obtained from local news sources (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Luo,
Nigerian-Pidgin, Swahili, Wolof and Yorùbá), as well as the ConLL-2003 English dataset.
The task involves classifying named-entities into nine pre-defined categories, as shown
in Table 3.1.2. The MasakhaNER dataset contains labeled entities for each language.
The models are trained on the train split of the data and tested on the eval split.

19

https://huggingface.co/Team-PIXEL/pixel-base
https://huggingface.co/Team-PIXEL/pixel-base
https://dumps.wikimedia.org/
https://huggingface.co/datasets/bookcorpusopen
https://huggingface.co/datasets/bookcorpusopen
https://huggingface.co/stefania-radu
https://huggingface.co/stefania-radu

3.1 Data 3 METHODS

Language ISO 639-3 Language Family Script Pretraining Finetuning
Amharic AMH Afro-Asiatic Ge’ez ✓ ✓
Arabic ARA Afro-Asiatic Arabic ✓ ✓
Bengali BEN Indo-European Bengali ✗ ✓
English ENG Indo-European Latin ✗ ✓
Finnish FIN Uralic Latin ✓ ✓
Hausa HAU Afro-Asiatic Latin ✓ ✓
Igbo IBO Niger-Congo Latin ✓ ✓
Indonesian IND Austronesian Latin ✓ ✓
Italian ITA Indo-European Latin ✓ ✗

Kinyarwanda KIN Niger-Congo Latin ✓ ✓
Korean KOR Koreanic Korean ✓ ✓
Luganda LUG Niger-Congo Latin ✓ ✓
Naija Pidgin PCM English Creole Latin ✓ ✓
Norwegian NOR Indo-European Latin ✓ ✗

Romanian RON Indo-European Latin ✓ ✗

Russian RUS Indo-European Cyrillic ✓ ✓
Swahili SWA Niger-Congo Latin ✓ ✓
Telugu TEL Dravidian Telugu ✓ ✓
Wolof WOL Niger-Congo Latin ✓ ✓
Yorùbá YOR Niger-Congo Latin ✓ ✓

Table 3.1.1: An overview of languages used during pretraining and finetuning. The original
PIXEL model is pretrained on English only, while the multilingual version did not use English
in the pretraining phase.

3.1.3 GLUE

The Sequence Classification (SC) task relies on the The General Language Understand-
ing Evaluation (GLUE) benchmark (A. Wang et al., 2018). It involves nine sentence-
level understanding tasks (CoLA, SST-2, MRPC, QQP, STS-B MNLI-M/MM, QNLI, RTE,
WNLI) in English, across three categories: single-sentence tasks, similarity and para-
phrase tasks, and inference tasks. As this work focuses on semantic processing in visual
language models, the dataset has been chosen due to its wide coverage of semantic
phenomena, such as sentence similarity, sentiment classification, and ambiguity. Table
3.1.3 describes the tasks. The models are trained on the train split of the data and
tested on the eval split.

3.1.4 TyDiQA-GoldP

To assess the ability of the model to perform Question Answering (QA), the TyDiQA-
GoldP dataset was selected (Clark et al., 2020). It contains nine typologically diverse
languages (English, Arabic, Bengali, Finnish, Indonesian, Korean, Russian, Swahili, Tel-
ugu) and provides a realistic information seeking task, as the questions are asked by
people who are looking for an answer but do not know it yet. The structure of the
dataset contains questions written by native speakers, passages with relevant informa-
tion, and answers provided as short spans of text within the passage. Unlike the primary
task, the Gold Passage task focuses more on locating the exact answer within a given
context. The models are trained on the train split of the data and tested on the test

20

3 METHODS 3.1 Data

0 2 4 6 8 10 12 14
Count

Arabic

Bengali

Cyrillic

Ge'ez

Korean

Latin

Telugu
Sc

rip
t

Category
Pre-training
Fine-tuning

0 1 2 3 4 5 6
Count

Afro-Asiatic

Austronesian

Dravidian

English Creole

Indo-European

Koreanic

Niger-Congo

Uralic

La
ng

ua
ge

 Fa
m

ily

Category
Pre-training
Fine-tuning

Figure 3.1.1: The distribution of languages used in this study across scripts and language
family.

NER Label Explanation
B-DATE Beginning of a date entity
B-LOC Beginning of a location name entity
B-ORG Beginning of an organization name entity
B-PER Beginning of a person name entity
I-DATE Inside a date entity
I-LOC Inside a location name entity
I-ORG Inside an organization name entity
I-PER Inside a person name entity

O Outside of a named entity

Table 3.1.2: NER Labels with explanations.

split.

3.1.5 Text Renderer

Visual language models require an image-based representation of text, and a very com-
mon way to achieve this is through pre-processing via a text renderer. Following the
implementation of Rust et al. (2022) and Salesky et al. (2021), The PyGame1 rendering
backend is used to convert the data into 2D images. The original PIXEL model was
trained on images generated with PyGame, so for consistency, the same pre-processing
step is applied throughout the finetuning experiments which rely on PIXEL, as well as
during the zero-shot applications for uncertainty quantification. The renderer supports
hieroglyphs scripts, as well as left-to-right and right-to-left writing systems, and text
that uses ligatures.

The proposed multilingual model uses the PangoCairo backend, which has also been
proposed by Rust et al. (2022). It is based on Pango (Taylor, 2004) and Cairographics

1https://www.pygame.org/

21

https://www.pygame.org/

3.2 Model Architecture 3 METHODS

Name Description Task Type Evaluation Metric

CoLA
Predict if a sentence is
grammatically correct or
not.

Binary classification
Matthews correlation
coefficient (MCC)

SST-2
Predict the sentiment of
a sentence (positive/nega-
tive).

Binary classification Accuracy

MRPC
Determine if two sentences
are paraphrases.

Binary classification Accuracy/F1

STS-B
Predict the similarity score
between two sentences.

Regression
Pearson/Spearman
correlation

QQP
Determine if two questions
are paraphrases.

Binary classification Accuracy/F1

MNLI

Classify the relationship
between two sentences
(entailment, contradiction,
neutral).

Multi-class classifica-
tion

Accuracy

QNLI
Determine if a sentence an-
swers a question

Binary classification Accuracy

RTE
Classify relationships be-
tween sentences (entail-
ment, not entailment)

Binary classification Accuracy

WNLI
Determine the referent of a
pronoun in a sentence pair

Binary classification Accuracy

Table 3.1.3: An overview of GLUE tasks

and supports complex text layout, as well as multiple fallback fonts. Consequently, Pan-
goCairo can cover all Unicode codepoints, which is the reason why it is used in the case
of the multilingual model that is trained on languages across 7 scripts (see Table 3.1.1).

The text is rendered on a blank RGB image with a height of H = 16 pixels, a width of
W = 8464 pixels, and 3 channels (C = 3). Therefore, each image has a resolution of
W ×H×C = 8464×16×3 = 368×368×3 pixels. This results in a sequence of 529 patches,
each with a size of 16×16 pixels. The color of the text is black and the font size is 8 at 120
DPI. The font family used is the Google Noto Sans fonts collection. Black patches serve
as separators and end-of-sequence (EOS) markers. Figure 3.1.2 illustrates examples of
rendered text from Wikipedia and BookCorpus, using the PyGame renderer. Similarly,
Figure 3.1.3 shows examples from Amharic, Arabic, Telugu, and Korean rendered using
PangoCairo. Sequences longer than 529 patches are truncated or split into separate
sentences.

3.2 Model Architecture

3.2.1 Embeddings

The images generated by the text renderer (Section 3.1.5) are converted into a sequence
of non-overlapping patches with a resolution of 16× 16 pixels. The sequence is created
using three types of embeddings inspired by Dosovitskiy et al. (2020): patch, positional,

22

3 METHODS 3.2 Model Architecture

Dataset Name Source
Wikipedia https://huggingface.co/datasets/wikimedia/wikipedia

BookCorpus https://huggingface.co/datasets/bookcorpus

MasakhaNER https://github.com/masakhane-io/masakhane-ner

GLUE https://huggingface.co/datasets/nyu-mll/glue

TyDiQA-GoldP https://huggingface.co/datasets/tydiqa

Table 3.1.4: Dataset used during training and their sources.

Wikipedia BookCorpus

Figure 3.1.2: Examples of English text rendered with the PyGame backend. The black patch
represents the EOS marker.

Figure 3.1.3: Examples of text from different languages rendered with the PangoCairo
backend (see Table 3.1.1 for more information about the languages). The black patch rep-
resents the EOS marker.

and CLS embeddings. Refer to Table 3.2.1 for an overview of the parameters used by
the model.

Patch Embeddings Each image is represented by a 3D image ∈ R
H×W×C , with H =

W = 368 pixels and C = 3 channels. During patch extraction, the image is divided into
patches of size P × P with C channels, where P = 16 pixels represent the dimension of
a patch. The total (and maximum) number of patches N for an image is calculated as
N =

(
H
P

)
×
(
W
P

)
=

(
368
16

)
×
(
368
16

)
= 23 × 23 = 529 patches. This leads to a 2D tensor of

23

https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/datasets/bookcorpus
https://github.com/masakhane-io/masakhane-ner
https://huggingface.co/datasets/nyu-mll/glue
https://huggingface.co/datasets/tydiqa

3.2 Model Architecture 3 METHODS

image patches represented as ximage ∈ R
N×(P 2×C). Then, to create patch embeddings,

each image ximage is projected via a 2D convolutional layer with C = 3 input channels
and Denc = (P 2 ×C) = 768 output channels, representing the encoder hidden size. The
kernel and stride size are both equal to the patch size P . The resulting sequence of patch
embeddings can be written as xpatch ∈RN×Denc . An overview of this process is presented
in Equation 3.2.1.

image ∈RH×W×C Patch Extraction−−−−−−−−−−−−−−→ ximage ∈RN×(P 2×C) 2D Convolution−−−−−−−−−−−−−→ xpatch ∈RN×Denc

(3.2.1)

Positional Embeddings Positional embeddings are added to these patch embeddings
to encode spatial information in the image. The 2D grid coordinates (x,y) are generated
for each patch, and a sine-cosine function is applied to both the x and y coordinates to
compute the positional embedding vectors corresponding to the width and the height
(W = H = 23). These embeddings are concatenated to form a positional embedding
vector for each patch. This results in a positional embedding matrix with a size of
(W ×H)×Denc. Formally, this can be written as shown in Equations 3.2.2 - 3.2.4.

xpos(x,y) = [embx,emby] (3.2.2)

embx = [sin(x ·ωi) ,cos(x ·ωi)]
Denc/2−1
i=0 (3.2.3)

emby = [sin(y ·ωi) ,cos(y ·ωi)]
Denc/2−1
i=0 (3.2.4)

The frequency ω is defined as ωi =
1

100002i/Denc
for i = 0,1, . . . , Denc

2 − 1.

CLS Embeddings An additional empty positional embedding is prepended to xpos(x,y),
as this will contain the classification (CLS) embedding, raising the dimension of em-
bedded patches by one. The CLS token is used for tasks that require the aggregation of
information into one prediction, which is the case for word and sentence classification.
The resulting final embedding, including the positional information, can be rewritten
as xpos ∈R(N+1)×Denc .

3.2.2 Span Masking

The model uses a span masking approach in order to mask a sequence of patches in
each image, which the decoder has to reconstruct. The algorithm proposed by Rust et
al. (2022) and inspired by Raffel et al. (2020) is presented in Algorithm 1. The goal of
span masking is to encode more meaningful blocks of text, as opposed to random mask-
ing, where each patch has a certain probability of being masked (Figure 3.2.1). This is
achieved using the span length parameter S that represents the number of consecutive
patches to be masked. Moreover, different sequences are masked with different prob-
ability values, in such a way that shorter spans are assigned a larger probability than
shorter spans.

Algorithm 1 takes as input a sequence of N patches, the masking ratio R, the span
length S, and the cumulative weights Cw. After selecting the span value based on

24

3 METHODS 3.2 Model Architecture

Parameter Value

Image size (16, 8464, 3)
Patch size P 16
Encoder hidden size Denc 768
Encoder intermediate size 3072
Encoder num attention heads 12
Encoder num layers L 12
Decoder hidden size Ddec 512
Decoder intermediate size 2048
Decoder num attention heads 16
Decoder num layers K 8
Layer norm ϵ (Ba et al., 2016) 1× 10−12
Span masking ratio R 0.25
Span masking max length S 6
Span masking cumulative weights W {0.2, 0.4, 0.6, 0.8, 0.9, 1}
Span masking spacing Dynamic
Dropout probability 0.1
Hidden activation GeLU (Hendrycks & Gimpel, 2016b)
Optimizer AdamW (Kingma & Ba, 2014)
Adam β (0.9, 0.999)
Adam ϵ 1× 10−8
Weight decay 0.05
Peak learning rate 1.5× 10−4
Learning rate schedule Cosine Decay (Loshchilov & Hutter, 2017)
Minimum learning rate 1× 10−5
Learning rate warmup ratio 0.05
Training steps 1M
Batch size 256

Table 3.2.1: The list of parameters used by the model (Rust et al., 2022)

the cumulative weights, the left patch index is randomly chosen from the sequence.
Afterwards, the index of the right patch is computed based on the left index and the
span, and the resulting masked sequence is added to the set. This continues until the
number of masked patches exceeds the allowed number based on the masking ratio.
The method ensures that the masked sequences have a dynamic number of unmasked
patches in between.

The masking ratio is set to R = 25% for the base experiments, taking into account the
findings of Rust et al. (2022), but the study also investigates the effect of different
mask ratios Rn = 0.1n for n ∈ {1,2, . . . ,9} on the reconstruction capabilities of the
model. However, given that the model used has been pretrained using a masking ratio
of 25%, it is expected that a very large ratio will not yield optimal reconstruction results.
Similarly, a set of experiments will be carried out to study the effect of the span length
with values Sn = n for n ∈ {1,2, . . . ,6}. Throughout these experiments, the maximum
sequence length is set to 256 patches, and the spans of s ∈ {1,2,3,4} patches are masked
with a probability of 20%, while spans of s ∈ {5,6} use a probability of 10%. Thus, the
vector of cumulative weights is Cw = (0.2,0.4,0.6,0.8,0.9,1).

25

3.2 Model Architecture 3 METHODS

Original

Random masking

Span masking (S = 6)

Figure 3.2.1: Example of a sentence masked with random masking and span masking,
together with the original. The mask ratio used for both is R = 25%. In the random scenario,
the span length is S = 1 and each patch is masked with a probability of 50%. In the span
masking scenario, the span length is set to S = 6, so the maximum number of consecutive
masked patches is 6. Spans of s ∈ {1,2,3,4} patches are masked with a probability of 20%,
while spans of s ∈ {5,6} use a probability of 10%

Algorithm 1 Span Masking (Rust et al., 2022)

Input: N , R, S, Cw = {w1, . . . ,wS}
Output: Masked patchesM

1: M←∅
2: repeat
3: s← randchoice({1, . . . ,S},W)
4: l← randint(0,max(0,N − s))
5: r← l + s
6: ifM∩{l − s, . . . , l − 1} = ∅andM∩{r +1, . . . , r + s} = ∅ then
7: M←M∪{l, . . . , r}
8: end if
9: until |M| > R

10: returnM

3.2.3 Encoder

The encoder is based on the VIT-MAE architecture and it processes the visible patches
only, which is approximately 396 patches for a masking ratio of 25% and a max sequence
length of 529 (75

100 ∗ 529 = 396). This allows the same encoder to be used for both pre-
training and finetuning, since all patches are visible in the finetuning phase. The input
to the encoder are the final positional embeddings xpos with the concatenated CLS em-
beddings c. This results in the hidden state h0 = [c,xpos] ∈R(1+(1−R)×N)×Denc . Similarly to
the Vaswani et al. (2017) implementation, the encoder contains 12 Transformer layers
with Multi-Head Attention, two residual connections, and a Feed Forward block. Each
Multi-head Attention block consists of 12 attention heads. An overview of the encoder
is shown in Figure 3.2.2.

At the beginning of a Transformer layer, a Normalization layer Norm(h0) =
h0−E[h0]√
Var[h0]+ϵ

∗

γ + β is applied to the hidden state h0, where γ = 1e − 5 is a hyperparameter added
for numerical stability, and β is the learnable bias initialized to 0. This is fed to the
12 parallel attention heads in the Multi-Head Attention block, containing the attention
function which maps a query and a set of of key-value pairs to an output, computed
using the Scaled Dot-Product Attention Vaswani et al. (2017). The outputs of the 12
attention heads are concatenated and projected before applying a second Normalization

26

3 METHODS 3.3 Training

layer. Then, a Feed Forward block consisting of a Dense Layer Linear(x) = xAT +b maps
the hidden size of 768 to the intermediate size of 3072. Finally, a second dense layer
followed by Dropout with phidden = 0.1 is applied to generate the final encoder hidden
states henc ∈ R(1+(1−R)×N)×Denc . The Dropout Layer randomly selects a proportion of the
weights and sets them to 0, according to Dropout(xi) =

di ·xi
phidden

, where di represents a
sample from the Bernoulli distribution. In terms of residual connections, one is used to
add the embedding’s hidden states to the attention outputs, while the second one adds
the attention outputs to the final result of the Dropout layer.

3.2.4 Decoder

The decoder is used during pretraining only, to reconstruct the patches of text masked by
the span masking algorithm (see Algorithm 1). Firstly, the output of the encoder is pro-
jected via a Linear layer to match the decoder hidden size Ddec = 512. This results in the
decoder embedding xdec ∈R(1+(1−R)×N)×Ddec . Given that the decoder does not yet contain
the masked patches, the next step is to insert the mask embeddings xmask at the corre-
sponding position in the sequence, which can be written as

(
xdec ∪ {xmask : i ∈M}Ni=0

)
.

After adding the positional embeddings xpos, the final decoder hidden states become
d0 =

[(
xdec ∪ {xmask : i ∈M}Ni=0

)
+ xpos

]
∈ R

(N+1)×Ddec. The decoder consists of 8 Trans-
former layers with 12 attention heads, which behave the same way as the encoder and
generate the output logits o ∈ RDdec×(P 2C). The logits represent the reconstructed pixel
values for each patch. They are obtained by projecting the outputs of the last Trans-
former layer using a linear mapping which converts the decoder hidden dimension Ddec
into patches with the dimension P 2 ×C, where P was the patch size and C the number
of channels.

3.3 Training

3.3.1 Pretraining

The English PIXEL model is pretrained on a rendered version of the English Wikipedia
and the BookCorpus (Zhu et al., 2015). The text is rendered into images image ∈
R

H×W×C using the PyGame renderer and converted into a sequence of patches with size
P = 16 pixels. The paragraphs are concatenated until the maximum sequence length
of N = 529 patches is reached. Table 3.2.1 presents an overview of the parameters
used during pretraining. The model is trained on a regression-like task to optimize the
reconstruction loss which takes the form of a normalized Mean Squared Error (MSE)
shown in Equation 3.3.1 The loss is computed only for the set of the masked non-blank
patches Q.

L =
1
|Q|

∑
i∈Q

∣∣∣normalize(xiimage)− o
i
∣∣∣2 (3.3.1)

The multilingual model is pretrained on rendered datasets corresponding to Wikipedia
data (https://huggingface.co/datasets/wikimedia/wikipedia) from 18 languages
(Amharic, Arabic, Finnish, Hausa, Igbo, Indonesian, Italian, Kinyarwanda, Korean, Lu-
ganda, Naija Pidgin, Norwegian, Romanian, Russian, Swahili, Telugu, Wolof, Yorùbá),
according to Table 3.1.1. The languages were selected to cover a wide variety of scripts
and language families. Languages with a very large number of words such as English

27

https://huggingface.co/datasets/wikimedia/wikipedia

3.4 Uncertainty Quantification 3 METHODS

have not been included because the resulting rendered images exceed the available
disk storage space. The rendered datasets are available publicly on HuggingFace at
https://huggingface.co/stefania-radu.

3.3.2 Finetuning

The base PIXEL model is finetuned several times throughout the experiments on three
tasks: Named-Entity Recognition (NER), Sequence classification (SC), and Question-
Answering (QA). The training was completed on Nvidia A100 GPU accelerator cards
provided by the Hábrók computing cluster at the University of Groningen, the Nether-
lands. During ensemble learning, multiple variations of the models are trained on the
same data and the predictions are aggregated to combine the knowledge of the different
learners. Hyperparameters are chosen to cover a wide range of values, but a parameter
grid search was not run due to the very large computational resources required. In the
case of tasks such as NER where one word is being rendered at a time, padding is added
to create a bijective function between words and patches, so each word appears at the
start of an image.

3.4 Uncertainty Quantification

3.4.1 Monte Carlo Uncertainty

The first method used to quantify epistemic uncertainty at the patch level is MC Dropout.
Algorithm 2 presents the process of computing patch-level uncertainty in the pretrained
base PIXEL model. The input is a rendered image ∈ R16×16×3 with a sequence length of
256 pixels, and the goal is to obtain an uncertainty map U ∈ R16×16×3, containing the
uncertainty for each patch. For this, the model is used in 100 forward passes to com-
pute a series of predictions P , which contain per-pixel logits. Then, the mean prediction
is created by averaging these logits, resulting in the reconstructed text. A SD image is
obtained by computing the SDs of the predictions for each pixel. Since each patch has a
dimension of 16× 16 pixels, the per-patch uncertainty is defined by averaging the pre-
dictions of all SD values inside a patch, and each pixel inside the patch is assigned that
value. Finally, the uncertainty map U is a collection of patches representing the overall
uncertainty of its pixels. For visualization purposes, the uncertainty map is overlaid on
top of the original image, as well as on the reconstructed text. An example is shown at
the beginning of this thesis in Figure 1.2.2.

An overall mean uncertainty value is also computed to measure uncertainty at the image
level (Equation 3.4.1).

σ̄ =
1

H ×W

H∑
h=1

W∑
w=1

σ (h,w) (3.4.1)

This will be used later on to study the effect of mask ratio and span length on uncertainty
in the PIXEL model. Additionally, to examine the relationship between uncertainty and
performance, two loss functions are computed during the MC inference: the normalized
MSE loss (Equation 3.4.2) used during pretraining and the normalized Gaussian Neg-
ative Log-Likelihood (GNLL) loss (Equation 3.4.3), where eps = 1e − 6 is a clamp value
used for stability. Unlike the MSE, the GNLL loss accounts for epistemic uncertainty, by

28

https://huggingface.co/stefania-radu

3 METHODS 3.4 Uncertainty Quantification

Algorithm 2 Patch-level Uncertainty with MC Dropout

Input: Rendered image I , model M, # MC samples NMC = 100, dropout rate p = 0.1,
patch size P = 16

Output: Uncertainty map U

1: Activate dropout in M
2: for i ∈ {1, . . . ,N } do
3: Pi ←M(I,p) ▷ Compute predictions P with dropout
4: end for
5: Initialize µ and σ with the shape of I
6: for each pixel (x,y) do
7: µ(x,y)← 1

N

∑N
i=1 Pi(x,y)

8: σ (x,y)←
√

1
N

∑N
i=1(Pi(x,y)−µ(x,y))2

9: end for
10: Initialize U with the shape of I
11: for each patch (i, j) in σ do
12: σpatch← 1

P 2

∑i+P−1
x=i

∑j+P−1
y=j σ (x,y) ▷ Compute σ per patch

13: for (x,y) ∈ {(i, j), . . . , (i + P − 1, j + P − 1)} do
14: U (x,y)← σpatch ▷ Assign σpatch to all pixels in the patch
15: end for
16: end for
17: return U

incorporating the variance of the predicted distribution. The predictions are treated as
samples from Gaussian distributions with expectations and variances produced by the
model. The inputs of the functions are three tensors of the same size: the predictions
of the model (reconstructed text), the target image (original text) and a variance image
with the per-pixel variance Var(x,y) = 1

N

∑N
i=1(Pi(x,y)−µ(x,y))2.

MSE =
1

H ×W
(predictions− image)2 (3.4.2)

GNLL =
1
2

(
log(max(variance,eps)) +

(predictions− image)2

max(variance,eps)

)
(3.4.3)

3.4.2 Attention Vizualization

Visualizing the attention mechanism in transformer-like models can help us interpret
how the model makes its predictions, by showing how different weights are assigned to
different parts of the input. For example, attention has been used successfully to detect
patterns or biases in language models, such as gender bias (Vig, 2019). However, vi-
sualizing attention represents a challenge due to the large number of layers and heads.
In the PIXEL model, the encoder contains 12 attention layers with 12 heads, result-
ing in 144 unique attention structures for each input. Vig (2019) proposed a popular
multiscale visualization tool for the text Transformer, that includes a model view and a
neuron view of attention. In the case of visual language models, there are no studies
up to this date which visualize attention. Here, the difficulty lies in the representation
of the input. While, in text models, each attention weight connects two words in the

29

3.4 Uncertainty Quantification 3 METHODS

input, the visual LLM relies on patches consisting of 16×16 pixels. An example is shown
in Figure 1.2.3.

To visualize attention in the PIXEL encoder, a square attention grid A ∈ RL×H×Npatches
2

is
created for the encoded patches, where L is the number of attention layers and H is the
number of heads in each layer. This shows model-level attention across all layers and
heads for a particular input image. Each cell A(l,h) in this grid visualizes the neuron-
level attention weights for a specific head h and layer l. The weights are averaged
over 100 Monte Carlo forward passes. Each patch in the original image attends to all
other patches, according to the dot product q·k√

d
between the query q of the patch that is

paying attention and the key k of the patch receiving attention (Equation 2.1.2). This
results in an attention cell that is a squared image with a dimension of Npatches

2 patches
(Npatches = 256). Considering the increased dimensionality of the attention cell, only
the first 16 patches are visualized, resulting in an image with 16× 16 patches.

3.4.3 Ensemble Learning

Ensemble learning is used to aggregate the predictions of multiple finetuned models. In
the context of this thesis, a series of different learners are trained on the same datasets,
and a larger model combines their results into one final prediction. For this, a hyperpa-
rameter tuning method is used, which involves introducing various values for the batch
size, learning rate, and dropout probability. By using multiple configurations, the aim is
to improve performance through capturing new patterns and to decrease the variance
by combining estimates from different models.

The same overall model architecture is used in solving the QA and NER tasks. This
consists of a classification head attached to the PIXEL encoder (Figure 3.2.2). It is made
out of a ViT block, a Dropout layer, and a Dense layer. However, given the distinct nature
of these tasks, the ensemble learning methods differ in the exact implementation.

QA The QA task involves identifying the correct span (start and end positions) from
the context, by predicting the positions within the sequence of tokens where the answer
to the question begins and ends. Thus, the task can be reduced to a double multi-class
classification over the number of tokens. The loss metric is Cross Entropy (Equation
3.4.4), defined as the average of the individual loss components for the start and end
positions. The best logits candidates for each question are selected based on the highest
values after applying the argmax function. The answer to the question is then the slice
between the start and end token. In a regular non-ensemble setting, there is only one
finetuned model that dictates the output answer for each example.

LQA = −1
2
(logPstart(ystart) + logPend(yend)) (3.4.4)

In the ensemble learning framework, each example has its own set of candidates that
differ between models. There are four main steps to be followed to compute the final
prediction for an input question, as presented in Algorithm 3. Each model Mi is applied
to the input question q to obtain the candidate answers with corresponding confidence
probability values. To reduce the pool of candidates, only the predictions that appear

30

3 METHODS 3.4 Uncertainty Quantification

Algorithm 3 Ensemble QA Prediction

Input: k models {M1,M2, . . . ,Mk}, input question q
Output: Final answer â for the question q

1: C ← ∅
2: for each model Mi in {M1,M2, . . . ,Mk} do
3: Ai ←Mi(q) ▷ Get candidate answers and their confidences
4: for each candidate aj in Ai do
5: C ← C ∪ {aj}
6: end for
7: end for
8: C ←

{
c |

∑k
i=11c∈Ai

= k
}

▷ Keep the candidates that appear in all models
9: for each candidate c in C do

10: confc← 1
k

∑k
i=1 confidenceMi

(c) ▷ Compute average confidence
11: end for
12: â← argmaxc∈C confc ▷ Select candidate with highest confidence
13: return â

in all models are kept. The average confidence confc is computed for each candidate
across all models. Finally, the candidate with the highest confidence is selected.

NER The NER task involves assigning a label to each token from a list of 9 predefined
classes (see Table 3.1.2). A series of models with different hyperparameter configura-
tions are finetuned on the data. Their predicted logits are averaged and combined into
one value for each class. The final label is computed as shown in Equation 3.4.5, where
L is the set of labels (classes) and k is the number of models. The loss metric is Cross
Entropy (Equation 3.4.6), defined based on the number of labels.

label = argmax
l∈L

1k
k∑

i=1

logitsi,l

 (3.4.5)

LNER = −
∑
l∈L

yl logPl (3.4.6)

31

3.4 Uncertainty Quantification 3 METHODS

Patch Embeddings

K

Multi-Head
Attention

x 12

.....

Q V

Normalization Layer

Feedforward Block
dropout

dense x 2

x 12

+

+

ENCODER

R
es

id
ua

l
R

es
id

ua
l

Normalization Layer

Figure 3.2.2: The encoder of the visual language model. Unlike the Transformer encoder
(Vaswani et al., 2017), the current encoder applies the normalization layer before and after
attention. The input to the encoder is a sequence of patch embeddings corresponding to the
visible patches.

32

4 EXPERIMENTAL SETUP

Figure 4.1.1: Distribution of languages used in the MC uncertainty experiments.

4 Experimental Setup

4.1 Monte Carlo Uncertainty

Data from 19 languages and 3 datasets is used to complete the experiments in this
section: MasakhaNER 1.0 (Section 3.1.2), GLUE (Section 3.1.3) (only 1000 datapoints
from the COLA subset are randomly selected) and TyDiQA-GoldP (Section 3.1.4). The
number of samples for each language is shown in Figure 4.1.1. The English samples
come from all three datasets to ensure more semantic diversity and variety in terms of
text length.

The overall MC uncertainty is defined as the mean uncertainty (Equation 3.4.1) across
all images in a specific category: task, language, or script. It is presented in terms of
performance metrics and model parameters. The performance metrics include the MSE
loss (Equation 3.4.2), used to pretrain the PIXEL model, and the GNLL loss (Equation
3.4.3), which incorporates uncertainty in the loss measure. The model was already
trained with a dropout rate of p = 0.1, meaning that 10% of the weights are set to zero.
The number of forward passes or MC samples is NMC = 100, which is enough to get
an accurate estimate of the mean and standard deviation (SD). Given that there is no
scientific consensus about the perfect masking ratio in language models (Wettig et al.,
2022) and that visual language models are still in their infancy, this experiment will
also study the effect on uncertainty of different masking ratios, as well as different span
lengths. An overview of the experiments in this section is presented in Table 4.1.1.

4.1.1 Uncertainty Across Tasks

The first set of experiments looks at uncertainty across tasks: NER (MasakhaNER 1.0),
SC (GLUE), and QA (TyDiQA-GoldP). In NER, the model is required to understand word-
level information and remember long-term dependencies between words. The SC task
tests sentence-level understanding across a wide range of categories, such as sentence

33

4.1 Monte Carlo Uncertainty 4 EXPERIMENTAL SETUP

Experiment Data Hyperparameters Metrics
MCU Tasks
(Section
4.1.1)

NER (MasakhaNER 1.0),
SC (GLUE), QA (TyDiQA-
GoldP)

R ∈ {0.1,0.2, . . . ,0.9},
S ∈ {1,2, . . . ,6},
W = {0,0, . . . ,0,1}, |W | = |S |

MSE
GNLL
Uncertainty (σ̄)

MCU
Scripts
(Section
4.1.2)

Latin, Ge’ez, Chinese
Characters, Arabic, Cyril-
lic, Bengali, Telugu,
Korean

R ∈ {0.1,0.2, . . . ,0.9},
S ∈ {1,2, . . . ,6},
W = {0,0, . . . ,0,1}, |W | = |S |

MSE
GNLL
Uncertainty (σ̄)

MCU Lan-
guages
(Section
4.1.3)

Amharic, English, Hausa,
Igbo, Kinyarwanda, Lu-
ganda, Luo, Nigerian
Pidgin, Swahili, Wolof,
Yoruba, Chinese, Arabic,
Russian, Bengali, Telugu,
Finnish, Korean, Indone-
sian

R ∈ {0.1,0.2, . . . ,0.9},
S ∈ {1,2, . . . ,6},
W = {0,0, . . . ,0,1}, |W | = |S |

MSE
GNLL
Uncertainty (σ̄)

VU (Sec-
tion 4.1.4)

Nigerian Pidgin, Igbo R = 0.25, S = 6, W =
{0.2,0.4,0.6,0.8,0.9,1}

GNLL
Uncertainty (σ̄)

CA (Sec-
tion 4.1.5)

NER (MasakhaNER 1.0),
SC (GLUE), QA (TyDiQA-
GoldP)

R = 0.25, S = 6, W =
{0.2,0.4,0.6,0.8,0.9,1}

RMSE
Uncertainty (σ̄)

Table 4.1.1: Overview of the MC Uncertainty experiments. MCU = Monte Carlo Uncer-
tainty; VU = Visualizing Uncertainty; CA = Calibration Analysis.

similarity or inference. Being able to answer questions and extract relevant information
from text is what makes the QA task anchored in real-life, but also challenging. As
all these tasks measure semantic processing at different levels, they provide a reliable
measure of the overall capacity of the model to process uncertainty.

4.1.2 Uncertainty Across Scripts

Studying uncertainty with respect to different scripts is necessary to build reliable mod-
els that can scale up to real-world applications where many scripts are often encoun-
tered. One of the advantages of understanding the relationship between scripts and
uncertainty is that it can help researchers allocate resources more fairly and increase
the amount of data gathered for less-represented scripts. This experiment will look at
MC uncertainty across 8 scripts: Latin, Ge’ez, Chinese Characters, Arabic, Cyrillic, Ben-
gali, Telugu, and Korean. As mentioned previously, the effect of mask ratio and span
length is also analysed.

4.1.3 Uncertainty Across Languages

To further increase the granularity of the analysis, another experiment focuses on un-
certainty across languages. Similar to scripts, languages have varying complexities and
characteristics, and evaluating uncertainty can help with bias detection and mitigation,
as well as with understanding the causes behind performance imbalances. There are
19 languages used throughout this experiment: Amharic, English, Hausa, Igbo, Kin-
yarwanda, Luganda, Luo, Nigerian Pidgin, Swahili, Wolof, Yoruba, Chinese, Arabic,

34

4 EXPERIMENTAL SETUP 4.2 Attention Vizualization

Russian, Bengali, Telugu, Finnish, Korean, Indonesian. Following the structure of previ-
ous experiments, the hyperparameters mask ratio and span length are also included in
this study.

4.1.4 Visualizing Uncertainty in Text Reconstruction

Apart from a high-level view of uncertainty across different categories, this experiment
proposes a more detailed outlook and aims to visualize MC uncertainty at the patch
level. For this, the top and bottom 5 performances with respect to the GNLL loss have
been selected. Moreover, the experiment includes an example outside of the dataset
consisting of text written by the author for the proposal of this thesis (Figure 1.2.2).

4.1.5 Calibration Analysis

This experiment investigates the calibration of visual language models by examining the
relationship between model performance and uncertainty across tasks and languages.
The same set of tasks and languages as in experiments 4.1.2 and 4.1.3 are used. The
performance of the models is measured using Root Mean Square Error (RMSE =

√
MSE,

Equation 3.4.2), while uncertainty is quantified using MC standard deviation. By ana-
lyzing this data, the goal is to evaluate how well the predicted uncertainties align with
actual performance errors across the different scripts and languages. The findings will
cast light on the robustness of visual language models in multilingual and multi-task
settings, highlighting areas where predictions are more uncertain and potentially less
accurate.

4.2 Attention Vizualization

In this experiment, the goal is to visualize the attention weights in the PIXEL model as an
attention grid. The data was selected based on the findings from the Monte Carlo exper-
iments (Section 4.1.1). To study if there is any difference in the levels of attention and
the patches that the model is paying attention to, the experiment compares the input
image with the lowest MC uncertainty (Nigerian Pidgin) to that with the highest uncer-
tainty (Igbo) across all datapoints from the test split of the three datasets: MasakhaNER
1.0 (Section 3.1.2), GLUE (Section 3.1.3) and TyDiQA-GoldP (Section 3.1.4). A third
example was randomly selected as well for comparison.

4.3 Ensemble Learning

4.3.1 Extractive Question Answering

There are 4 learner models finetuned on each of the 9 languages of the TyDiQA-GoldP
(Section 3.1.4) dataset to perform extractive question-answering, resulting in 36 total
models. Each model is a variation of the PIXEL base, which had been pretrained on
the English Wikipedia and the BookCorpus datasets, according to Table 3.2.1. The 4
finetuning configurations can be seen in Table 4.3.1. Each model is trained on the train

split of a language in the dataset and evaluated on the validation split of the same
language. All models use a sequence length of 128 patches, meaning that all questions
that render to more than 128 patches will be truncated. For each input question, one
model outputs 20 candidate answers. The maximum number of optimization steps is

35

4.3 Ensemble Learning 4 EXPERIMENTAL SETUP

20000, and the optimization measure is the F1 score. The F1 score is defined in terms of
the True Positive tokens (tokens correctly predicted as part of the answer), False Positive
tokens (tokens incorrectly predicted as part of the answer), and False Negative tokens
(tokens that are part of the true answer but not predicted). Only the values of the batch
size (BSZ), learning rate (LR), dropout probability (DP), and the seed are changed as
presented in Table 4.3.1.

4.3.2 Named Entity Recognition

There are 5 learner models finetuned on each of the 10 languages of the MasakhaNER
1.0 dataset (Section 3.1.2) dataset to perform Named Entity Recognition, resulting in 50
total models. Similar to the QA setup, each model is a variation of the PIXEL base, which
had been pretrained on the English Wikipedia and the BookCorpus datasets, according
to Table 3.2.1. The 5 finetuning configurations can be seen in Table 4.3.2. Each model
is trained on the train split of a language in the dataset and evaluated on the test split
of the same language. All models use a sequence length of 196 patches and each token
is renderer at the beginning of the image. The maximum number of optimization steps
is 15000, and the optimization measure is the F1 score. Only the values of the batch
size (BSZ), learning rate (LR), dropout probability (DP), and the seed are changed as
presented in Table 4.3.2.

36

4 EXPERIMENTAL SETUP 4.3 Ensemble Learning

Parameter Value

Common Parameters

Dataset name tydiqa
Dataset config name secondary task
Sequence length 400
Stride 160
Question max length 128
Gradient accumulation steps 1
Max steps 20000
Number of train epochs 10
Early stopping True
Early stopping patience 5
Evaluation metric F1 = 2×TP

2×TP+FP+FN
Doc stride 160
Number of best predictions 20

Model 1

Batch size 32
Learning rate 7× 10−4
Dropout probability 0.15
Seed 101

Model 2

Batch size 16
Learning rate 7× 10−5
Dropout probability 0.15
Seed 102

Model 3

Batch size 8
Learning rate 7× 10−5
Dropout probability 0.05
Seed 103

Model 4

Batch size 32
Learning rate 7× 10−6
Dropout probability 0.1
Seed 104

Table 4.3.1: The finetuning configuration of the QA models, including the common param-
eters and those changed among the 4 learners.

37

4.3 Ensemble Learning 4 EXPERIMENTAL SETUP

Parameter Value

Common Parameters

Dataset name masakhane-ner
Sequence length 196
Gradient accumulation steps 1
Max steps 15000
Number of train epochs 10
Early stopping True
Early stopping patience 5
Evaluation metric F1 = 2×TP

2×TP+FP+FN

Model 1

Batch size 64
Learning rate 5× 10−5
Dropout probability 0.1
Seed 100

Model 2

Batch size 64
Learning rate 5× 10−6
Dropout probability 0.2
Seed 101

Model 3

Batch size 32
Learning rate 5× 10−5
Dropout probability 0.1
Seed 102

Model 4

Batch size 32
Learning rate 5× 10−6
Dropout probability 0.1
Seed 103

Model 5

Batch size 16
Learning rate 5× 10−5
Dropout probability 0.2
Seed 104

Table 4.3.2: The finetuning configuration of the NER models, including the common pa-
rameters and those changed among the 5 learners.

38

5 RESULTS

5 Results

5.1 Monte Carlo Uncertainty

5.1.1 Uncertainty Across Tasks

Mask Ratio The MC uncertainty as defined in Section 4.1 is first presented across
tasks in Figures 5.1.1 – 5.1.6. To study the effect of mask ratio, two loss metrics (MSE
and GNLL) and the overall uncertainty are plotted against the different mask ratio val-
ues. Each line represents a task, corresponding to one of the three datasets. The general
trends can be observed in Figures 5.1.1, 5.1.2, and 5.1.3.

The results from Figure 5.1.1 indicate that the loss increases with the mask ratio. This
is expected as the model was trained to reconstruct the image patches with a mask ra-
tio of R = 0.25 (see the pretraining configuration in Table 3.2.1). There is also a wide
performance gap between the sequence classification task (GLUE) and the rest of the
tasks, which can be attributed to language. The GLUE dataset contains English text, the
language the PIXEL model was pretrained on, while TyDiQA-GoldP and MasakhaNER
are multilingual datasets. In terms of the GNLL loss (Figure 5.1.2), which combines the
performance component with uncertainty, GLUE remains associated with the lowest loss
across all R values. On the other hand, the GNLL loss is highest for the TyDiQA-GoldP
dataset. However, when studying the MC uncertainty results in Figure 5.1.3, GLUE
achieves the highest overall uncertainty, which indicates that pixel-level uncertainty
increases with text that has more semantic complexity, as it is the case in sentiment
classification, semantic similarity or textual entailment tasks.

Apart from the mean values, the distribution of the results is also shown in Figures
5.1.4, 5.1.5, and 5.1.6. When it comes to the pretraining loss (Figure 5.1.4), the spread
of the distribution is generally broad, but it decreases as the mask ratio increases. The
MC uncertainty (Figure 5.1.6) and GNLL loss (Figure 5.1.5) plots suggest that lower
mask ratios (0.1 to 0.3) generally correspond to lower uncertainty across all datasets,
indicating that less masking leads to more certain predictions. In this case, the largest
part of the data is concentrated between uncertainty values of 0.15 and 0.25. As the
mask ratio increases, the distribution becomes more spread out.

Span Length The span length measures the number of consecutive masked patches
the model has to reconstruct. In other words, it can be interpreted as the ability of
the model to deal with larger contexts and predict longer segments of text. Across
datasets (Figures 5.1.7, 5.1.8, and 5.1.9), the performance decreases with larger span
length values (S > 2), especially for the GLUE dataset. This indicates that the model is
struggling to reconstruct multiple patches at the same time, which can be attributed to a
lack of contextual understanding, partly due to the unigram patch embeddings used. In
the case of MasakhaNER and TyDiQA-GoldP, the level of variation in predictions stays
constant across all span length values, with a slight increase for S > 4. The distributions
in Figures 5.1.10, 5.1.11, and 5.1.12 show that there are two peaks within each dataset,
which can represent the difficult and easy examples. This is more pronounced in the
case of the NER task (Figure 5.1.12), where a high proportion of the words fall under
the non-entity (O) class, and less pronounced in GLUE, which contains a multitude of
subtasks.

39

5.1 Monte Carlo Uncertainty 5 RESULTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ea

n
Lo

ss MasakhaNER

 TyDiQA-GoldP

 GLUE

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.1: Mean MSE Loss across the different datasets for each mask ratio value R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0

100

200

300

400

500

600

700

M
ea

n
GN

LL
 L

os
s

 MasakhaNER

 TyDiQA-GoldP

 GLUE

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.2: Mean GNLL Loss across the different datasets for each mask ratio value R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.12

0.14

0.16

0.18

0.20

0.22

M
ea

n
Un

ce
rta

in
ty

 MasakhaNER

 TyDiQA-GoldP

 GLUE

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.3: Mean MC Uncertainty across the different datasets for each mask ratio R.

40

5 RESULTS 5.1 Monte Carlo Uncertainty

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.4: The distribution of the MSE Loss across the different datasets for each mask
ratio R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0

500

1000

1500

2000

2500

3000

3500

GN
LL

 L
os

s Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.5: The distribution of the GNLL Loss across the different datasets for each mask
ratio R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Un
ce

rta
in

ty Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.6: The distribution of the MC Uncertainty across the different datasets for each
mask ratio value R.

41

5.1 Monte Carlo Uncertainty 5 RESULTS

1 2 3 4 5 6
Span Length

0.3

0.4

0.5

0.6

0.7

M
ea

n
Lo

ss

 MasakhaNER

 TyDiQA-GoldP

 GLUE

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.7: Mean MSE Loss across the different datasets for each span length S.

1 2 3 4 5 6
Span Length

50

100

150

200

250

300

350

400

450

M
ea

n
GN

LL
 L

os
s

 MasakhaNER

 TyDiQA-GoldP

 GLUE

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.8: Mean GNLL Loss across the different datasets for each span length S.

1 2 3 4 5 6
Span Length

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

M
ea

n
Un

ce
rta

in
ty

 MasakhaNER

 TyDiQA-GoldP

 GLUE

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.9: Mean MC Uncertainty across the different datasets for each span length S.

42

5 RESULTS 5.1 Monte Carlo Uncertainty

1.0 2.0 3.0 4.0 5.0 6.0
Span Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.10: The distribution of the MSE Loss across the different datasets for each span
length S.

1.0 2.0 3.0 4.0 5.0 6.0
Span Length

0

500

1000

1500

2000

GN
LL

 L
os

s Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.11: The distribution of the GNLL Loss across the different datasets for each span
length S.

43

5.1 Monte Carlo Uncertainty 5 RESULTS

1.0 2.0 3.0 4.0 5.0 6.0
Span Length

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Un
ce

rta
in

ty Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.12: The distribution of the MC Uncertainty across the different datasets for each
span length S.

5.1.2 Uncertainty Across Scripts

Mask Ratio A similar analysis to the one proposed in the previous section is carried
out concerning the different scripts from the datasets. The findings are presented in
Figures 5.1.13 – 5.1.6. The overall trends show that Ge’ez, Chinese Characters, Arabic,
and Korean scripts exhibit high mean loss values and the increase is more pronounced
at mask ratios above 0.6. The Latin and Cyrillic scripts are increasing more gradually
with a sharper uptick around 0.8 – 0.9. The lowest MSE loss and uncertainty are associ-
ated with the Latin and Cyrillic scripts. The main script found in the English Wikipedia
and the BookCorpus is Latin, and there is a high overlap between Latin and Cyrillic
characters, given that both scripts share Greek as a common ancestor. However, the
uncertainty in the Cyrillic script is lower, compared to Latin, while the loss is higher in
Cyrillic, suggesting that there is a lack of calibration inside the model. The scripts with
the highest MC uncertainty (Figure 5.1.15) are Ge’ez and Chinese Characters, both of
which are visually quite distinct from the Latin script.

In terms of the distributions, Figures 5.1.16, 5.1.17, and 5.1.18 show that there is a large
variation in performance, especially for the Latin script (Figures 5.1.16 and 5.1.17).
This demonstrates that some examples are significantly more visually challenging than
others even within a script. The variation decreases with the increase in mask ratio, as
does the loss. The variations in uncertainty (Figure 5.1.18) appear to remain relatively
constant throughout the different mask ratio values. However, there seems to be a slight
decrease in Ge’ez and Chinese Characters around the extreme endpoints of the mask
ratio interval, around 0.1 – 0.2 and 0.8 – 0.9. When looking at the GNLL loss (Figure
5.1.17), Latin has a large number of outliers, when compared to Arabic or Telugu.

Span Length Figures 5.1.19, 5.1.20, and 5.1.21 show little variation in performance
and uncertainty when analyzing the 8 different scripts across different span length val-

44

5 RESULTS 5.1 Monte Carlo Uncertainty

ues. In terms of loss, there is an increase in MSE (Figure 5.1.19) and GNLL (Figure
5.1.20) with span length for the Latin and Cyrillic scripts. The rest of the scripts remain
constant for all span length values. Moreover, there is little to no change in MC un-
certainty (Figure 5.1.21) across span length, which indicates that masking larger text
segments does not reduce the reliability of the predictions. The findings in Figures
5.1.22, 5.1.23, and 5.1.24 do not present any significant variations in the distribution
of the results for the different scripts.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.6

0.7

0.8

0.9

M
ea

n
Lo

ss

 Ge'ez

 Latin

 Chinese characters Arabic

 Cyrillic

 Bengali

 Telugu

 Korean Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.13: Mean MSE Loss across the scripts for each mask ratio value R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0

100

200

300

400

500

600

700

800

M
ea

n
GN

LL
 L

os
s

 Ge'ez

 Latin

 Chinese characters

 Arabic

 Cyrillic

 Bengali
 Telugu

 Korean

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.14: Mean GNLL Loss across the scripts for each mask ratio value R.

45

5.1 Monte Carlo Uncertainty 5 RESULTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Un

ce
rta

in
ty

 Ge'ez

 Latin

 Chinese characters

 Arabic

 Cyrillic

 Bengali

 Telugu

 Korean
Script

Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.15: Mean MC Uncertainty across the scripts for each mask ratio value R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.16: The distribution of the MSE Loss across the scripts for each mask ratio R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0

500

1000

1500

2000

2500

3000

3500

GN
LL

 L
os

s

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.17: The distribution of the GNLL Loss across the scripts for each mask ratio R.

46

5 RESULTS 5.1 Monte Carlo Uncertainty

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.1

0.2

0.3

0.4

Un
ce

rta
in

ty

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.18: The distribution of the MC Uncertainty across the scripts for each mask ratio
R.

1 2 3 4 5 6
Span Length

0.4

0.5

0.6

0.7

0.8

M
ea

n
Lo

ss

 Ge'ez

 Latin

 Chinese characters
 Arabic

 Cyrillic

 Bengali

 Telugu

 Korean

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.19: Mean MSE Loss across the different datasets for each span length S.

1 2 3 4 5 6
Span Length

0

100

200

300

400

500

M
ea

n
GN

LL
 L

os
s

 Ge'ez

 Latin

 Chinese characters

 Arabic

 Cyrillic

 Bengali
 Telugu

 Korean

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.20: Mean GNLL Loss across the different datasets for each span length S.

47

5.1 Monte Carlo Uncertainty 5 RESULTS

1 2 3 4 5 6
Span Length

0.15

0.20

0.25

0.30

0.35

M
ea

n
Un

ce
rta

in
ty

 Ge'ez

 Latin

 Chinese characters

 Arabic

 Cyrillic

 Bengali

 Telugu

 Korean

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.21: Mean MC Uncertainty across the different datasets for each span length S.

1.0 2.0 3.0 4.0 5.0 6.0
Span Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.22: The distribution of the MSE Loss across the different datasets for each span
length S.

48

5 RESULTS 5.1 Monte Carlo Uncertainty

1.0 2.0 3.0 4.0 5.0 6.0
Span Length

0

500

1000

1500

2000

GN
LL

 L
os

s

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.23: The distribution of the GNLL Loss across the different datasets for each span
length S.

1.0 2.0 3.0 4.0 5.0 6.0
Span Length

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Un
ce

rta
in

ty

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 5.1.24: The distribution of the MC Uncertainty across the different datasets for each
span length S.

5.1.3 Uncertainty Across Languages

Mask Ratio When studying the overall trends of loss and uncertainty across lan-
guages, there are clear differences between the groups. These can be seen in Figures
5.1.25, 5.1.26, and 5.1.27. The best-performing language is English (here the English
dataset is an aggregation of multiple English examples from the different datasets),
followed by Indonesian, and Finnish, which all use visually similar characters (Figure
5.1.25). The pixel-level uncertainty (Figure 5.1.27) is low (below 0.15) for these lan-
guages, demonstrating that the model can generalize to different languages within the
same script. Not the same can be stated for languages such as Korean, Chinese, and
Amharic, which show increased uncertainty, as well as reduced performance (with a
MSE loss of over 0.8). The rest of the languages are situated in the middle of the range.
Regarding the effect of mask ratio, the variation in predictions appears to decrease with
the increase in mask ratio (Figure 5.1.27), suggesting that the model becomes more

49

5.1 Monte Carlo Uncertainty 5 RESULTS

confident that it does know the correct answer when large segments of the image are
masked. An analysis of the results regarding the distribution of the different languages
is not included, given that most relevant patterns can be identified by looking at the
distribution of the larger groups.

Span Length Figures 5.1.28, 5.1.29, and 5.1.30 show the main findings for the span
length experiment in terms of the different languages. Increasing the span length to
S ≥ 5 leads to an increase in the MSE loss (Figure 5.1.28) for one group of languages,
while the rest of the languages stay constant. The second group contains languages
which are more challenging for the model to reconstruct, such as Chinese Characters,
Korean, and Bengali. Telugu and Bengali do appear to pose fewer difficulties than
Korean, Arabic, or Chinese Characters, although they all use characters that are very
different from Latin characters. The results on MC uncertainty in Figure 5.1.30 suggest
that the level of uncertainty is not influenced by changes in span length, particularly for
values of S ≤ 6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.5

0.6

0.7

0.8

0.9

M
ea

n
Lo

ss

 Amharic

 Hausa
 Igbo

 Kinyarwanda
 Luganda

 Luo Nigerian Pidgin

 Swahili

 Wolof

 Yoruba

 Chinese Arabic

 Russian

 Bengali

 Telugu

 Finnish

 Korean

 Indonesian
 English (Mean)

Language
Amharic
Hausa
Igbo
Kinyarwanda
Luganda
Luo
Nigerian Pidgin
Swahili
Wolof
Yoruba
Chinese
Arabic
Russian
Bengali
Telugu
Finnish
Korean
Indonesian
English (Mean)

Figure 5.1.25: Mean MSE Loss across all examples for each mask ratio value R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0

200

400

600

800

1000

1200

M
ea

n
GN

LL
 L

os
s

 Amharic

 Hausa
 Igbo

 Kinyarwanda Luganda Luo Nigerian Pidgin

 Swahili

 Wolof Yoruba
 Chinese
 Arabic

 Russian

 Bengali Telugu

 Finnish

 Korean

 Indonesian

 English (Mean)

Language
Amharic
Hausa
Igbo
Kinyarwanda
Luganda
Luo
Nigerian Pidgin
Swahili
Wolof
Yoruba
Chinese
Arabic
Russian
Bengali
Telugu
Finnish
Korean
Indonesian
English (Mean)

Figure 5.1.26: Mean GNLL Loss across all examples for each mask ratio value R.

50

5 RESULTS 5.1 Monte Carlo Uncertainty

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Un

ce
rta

in
ty

 Amharic

 Hausa
 Igbo Kinyarwanda Luganda Luo Nigerian Pidgin

 Swahili

 Wolof

 Yoruba

 Chinese

 Arabic

 Russian

 Bengali

 Telugu

 Finnish

 Korean

 Indonesian

 English (Mean)

Language
Amharic
Hausa
Igbo
Kinyarwanda
Luganda
Luo
Nigerian Pidgin
Swahili
Wolof
Yoruba
Chinese
Arabic
Russian
Bengali
Telugu
Finnish
Korean
Indonesian
English (Mean)

Figure 5.1.27: Mean MC Uncertainty across all examples for each mask ratio value R.

1 2 3 4 5 6
Span Length

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Lo

ss

 Amharic

 Hausa
 Igbo

 Kinyarwanda
 Luganda Luo Nigerian Pidgin
 Swahili

 Wolof
 Yoruba

 Chinese
 Arabic

 Russian

 Bengali

 Telugu

 Finnish

 Korean

 Indonesian

 English (Mean)

Language
Amharic
Hausa
Igbo
Kinyarwanda
Luganda
Luo
Nigerian Pidgin
Swahili
Wolof
Yoruba
Chinese
Arabic
Russian
Bengali
Telugu
Finnish
Korean
Indonesian
English (Mean)

Figure 5.1.28: Mean MSE Loss across the different datasets for each span length S.

1 2 3 4 5 6
Span Length

0

100

200

300

400

500

600

700

800

M
ea

n
GN

LL
 L

os
s

 Amharic

 Hausa

 Igbo
 Kinyarwanda

 Luganda Luo
 Nigerian Pidgin

 Swahili

 Wolof Yoruba
 Chinese

 Arabic

 Russian

 Bengali Telugu

 Finnish

 Korean

 Indonesian

 English (Mean)

Language
Amharic
Hausa
Igbo
Kinyarwanda
Luganda
Luo
Nigerian Pidgin
Swahili
Wolof
Yoruba
Chinese
Arabic
Russian
Bengali
Telugu
Finnish
Korean
Indonesian
English (Mean)

Figure 5.1.29: Mean GNLL Loss across the different datasets for each span length S.

51

5.1 Monte Carlo Uncertainty 5 RESULTS

1 2 3 4 5 6
Span Length

0.15

0.20

0.25

0.30

0.35

M
ea

n
Un

ce
rta

in
ty

 Amharic

 Hausa
 Igbo

 Kinyarwanda Luganda Luo Nigerian Pidgin
 Swahili

 Wolof

 Yoruba

 Chinese

 Arabic

 Russian

 Bengali

 Telugu

 Finnish

 Korean

 Indonesian

 English (Mean)

Language
Amharic
Hausa
Igbo
Kinyarwanda
Luganda
Luo
Nigerian Pidgin
Swahili
Wolof
Yoruba
Chinese
Arabic
Russian
Bengali
Telugu
Finnish
Korean
Indonesian
English (Mean)

Figure 5.1.30: Mean MC Uncertainty across the different datasets for each span length S.

5.1.4 Visualizing Uncertainty in Text Reconstruction

To visualize MC uncertainty at the patch level, the current experiment looks at various
text samples, including the best (Figure 5.1.33) and worst (Figure 5.1.32) performing
samples in terms of the GNLL loss (Equation 3.4.3) across all datasets (see Table 4.1.1
for an overview of the experiments). Additionally, uncertainty is also visualized for a
new piece of text, taken from the proposal of this thesis (Figure 1.2.2).

Figure 5.1.31 shows (a) the original rendered English text generated with the PyGame
text renderer, (b) the original image overlaied with per-patch uncertainty and (c) the
reconstructed text overlaied with per-patch uncertainty. Bright yellow patches suggest
larger variations in predictions. This can be observed in the larger masked segments of
patches from the first 6 lines of the image, as well as in lines 12 and 15. These segments
also translate to less accurate reconstructions, as seen on the corresponding rows of the
reconstructed image. On the other hand, smaller segments of patches (which appear
darker in the image) are associated with lower uncertainty and are reconstructed more
accurately. These patches often contain shorter sequences of letters. In terms of the
mistakes, the model fails to reconstruct patches with numerals, such as 20-fold. Still,
it appears to understand that the most suitable prediction given the context is a num-
ber (the model predicts 20,000). Moreover, longer and less frequent words such as
implementation and publish, as well as punctuation marks (used in (LLMs)) appear to
produce more variation in the prediction, given the increased uncertainty.

Figures 5.1.32 and 5.1.33 present per-patch uncertainty for the worst and best per-
forming examples across all languages. This is calculated with respect to the GNLL loss,
which penalizes the model based on the error and the prediction uncertainty. The most
challenging examples come from Igbo, Swahili and Chinese, which is in line with the
results found in the language analysis (see Section 5.1.3). All of these examples come
from the MasakhaNER dataset and include mostly punctuation marks and numbers,
suggesting that the model does not encode enough relevant features to correctly recon-
struct these symbols. The top 5 performers list contains 4 examples from English and
one from Nigerian Pidgin. This is in line with the findings from Figures 5.1.25 – 5.1.27.
In the case of Nigerian Pidgin (first row in Figure 5.1.33), several unknown glyphs are

52

5 RESULTS 5.1 Monte Carlo Uncertainty

being rendered incorrectly, resulting in segments of text that might resemble English
words, given that Nigerian Pidgin is an English-based creole language.

(a) Original rendered text us-
ing the PyGame renderer.

(b) Original image with un-
certainty.

(c) Reconstructed text with
uncertainty.

Figure 5.1.31: Example of uncertainty quantification at the patch-level for an image con-
taining text from the proposal of this thesis. The uncertainty is measured as the standard
deviation for each patch after Monte Carlo Dropout. Brighter colors indicate more uncer-
tainty.

53

5.1 Monte Carlo Uncertainty 5 RESULTS

Ig
bo

Original Original + SD Predictions + SD

Sw
ah

ili
Ig

bo
Ch

in
es

e
Sw

ah
ili

0.2

0.4

0.6

0.8

1.0

Top 5 Challenges - Overall

Figure 5.1.32: Top 5 challenges in terms of the GNLL loss across all datasets and languages.
Only the encoded patches are shown. Brighter colors are an indicator of increased uncer-
tainty. All pixels are normalized across all 15 images and scaled to the [0,1] range.

54

5 RESULTS 5.1 Monte Carlo Uncertainty

Ni
ge

ria
n

Pi
dg

in

Original Original + SD Predictions + SD

En
gl

ish
En

gl
ish

En
gl

ish
En

gl
ish

0.2

0.4

0.6

0.8

1.0

Top 5 Performers - Overall

Figure 5.1.33: Top 5 performers in terms of the GNLL loss across all datasets and lan-
guages. Only the encoded patches are shown. Brighter colors are an indicator of increased
uncertainty. All pixels are normalized across all 15 images and scaled to the [0,1] range.

55

5.2 Attention Vizualization 5 RESULTS

5.1.5 Calibration Analysis

To further study the relationship between performance and uncertainty, Figure 5.1.34
depicts a hexbin plot with marginal distributions, where the Root Mean Squared Er-
ror (RMSE) loss is plotted against the SD uncertainty from the MC experiments. This
variation of the calibration plot evaluates the calibration of uncertainty estimates in a
regression task, which in this case is pixel value prediction. The x-axis represents the
aggregated per-image standard deviation (uncertainty) of the model after 100 Monte
Carlo samples. The RMSE measures the average of the actual errors between the true
pixel values and the predicted values. Inside each hexagon, the color intensity corre-
sponds to the density of data points within that hexagon. Therefore, darker regions
indicate a higher density of data points. Figure 5.1.34 shows that there is a high den-
sity of points in the top left corner, which suggests that the model underestimates its
performance. In other words, many examples are associated with high loss but low
uncertainty.

The distribution of the points for all three datasets (MasakhaNER, TyDiQA-GoldP, and
GLUE) is shown in the calibration plot from Figure 5.1.35. The highest level of over-
confidence is associated with the question-answering task in TyDiQA-GoldP. However,
there seems to be a subgroup of points for which the uncertainty is high. The points
in the MaskhaNER dataset fall under the category of high uncertainty and high loss.
The GLUE data is located between 0.15 and 0.3 on the uncertainty range and contains
several examples showing decreased loss. While the model can be considered to be
underestimating uncertainty with this group, the majority of the data still fall over the
main diagonal, indicating an underestimation of uncertainty.

5.2 Attention Vizualization

The attention weights of the model are visualized across all 12 heads of the 12 layers of
the encoder. The examples selected are Nigerian Pidgin as the best performing example
and Igbo as the worst samples in terms of the GNLL loss according to Section 5.1.4. The
results can be observed in Figure 5.2.1 and 5.2.2. Each cell in the attention grid shows
the attention weights for the first 16 patches of a specific head h and layer l. In other
words, given a selected patch in each column, the cell contains the attention from that
patch to the rest of the patches in the sequence. The figures zoom in on two randomly
selected cells (L = {2,11}),L = {3,5}) for a clearer comparison.

Overall, the results indicate that there are both differences and similarities in the kind of
information that is encoded in the attention weights when comparing Igbo with Nige-
rian Pidgin. For both languages, the first four layers appear to encode the highest
amount of visual information, given the high activation of the patches. Across all heads
and layers of both examples, the attention weight corresponding to the CLS patch is
high, as it contains the aggregate representation of the input patch sequence. There is
a clear difference in the distribution of attention between the examples. The top 1 per-
former (Nigerian Pidgin) exhibits high activation on the diagonal at the neuron level,
meaning that patches are attending to themselves, possibly to retain positional and con-
textual information. The Igbo example does not show the same pattern, rather a subset
of dominant patches attend to the remaining ones.

56

5 RESULTS 5.2 Attention Vizualization

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Uncertainty (SD)

0.2

0.4

0.6

0.8

1.0

Lo
ss

 (R
M

SE
)

Figure 5.1.34: Calibration hexbin plot showing the RMSE loss in terms of the MC uncer-
tainty.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Uncertainty (SD)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

 (R
M

SE
)

Dataset
MasakhaNER
TyDiQA-GoldP
GLUE

Figure 5.1.35: Calibration kernel density estimate plot showing the RMSE loss in terms of
the MC uncertainty across the three datasets.

57

5.2 Attention Vizualization 5 RESULTS

Figure 5.2.1: Model-level and neuron-level views of attention in the PIXEL model for the
top 1 challenge in terms of the GNLL loss across all datasets.

Figure 5.2.2: Model-level and neuron-level views of attention in the PIXEL model for the
top 1 performer in terms of the GNLL loss across all datasets.

58

5 RESULTS 5.3 Ensemble Learning

ARA BEN FIN IND KOR RUS SWA TEL ENG AVG
PIXEL 57.3 36.3 58.3 63.6 26.1 50.5 65.9 63.4 61.7 52.3

Ensemble 59.5 35.1 59.6 67.3 27.1 53.3 67.1 63.4 62.1 54.0

Table 5.3.1: The results of the QA task. The ensemble learning model finetuned on the
TyDiQA-GoldP dataset is compared with the values reported by Rust et al. (2022). The
metric shown is the F1 score, computed on the validation split of the data. The AVG
score excludes ENG, as required (Clark et al., 2020).

5.3 Ensemble Learning

5.3.1 Extractive Question Answering

The results of the ensemble QA model are presented in Table 5.3.1, which shows the F1
score across all languages in the TyDiQA-GoldP dataset. These findings are compared
with the results obtain by Rust et al. (2022), who finetuned the PIXEL model without
ensemble learning. Overall, the ensemble learning method improves the performance
in the extractive QA task for 6 out of the 8 languages. The average F1 score (exclud-
ing the ENG data) for the ensemble configuration is higher with 1.7 points than in
the case of the regular PIXEL model. In terms of the individual languages, there is a
high improvement for Indonesian (4.3 points), Russian (2.8 points), and Arabic (2.2
points), suggesting that combining multiple learners can improve performance regard-
less of script. At the same time, Telugu is associated with the same F1 score for both
configurations, while the original PIXEL model performs better in Bengali.

Figure 5.3.1 presents the confidence distribution of the best answers in the ensemble
model for all languages in the dataset. In general, the confidence is in the range 0.2 −
−0.4 across the majority of languages, with some distributions indicating slightly higher
confidence, as in the case of Finnish, Indonesian, and Swahili. Lower confidence values
can be seen in Korean and Bengali. These observations are in line with the previous
findings on performance from Table 5.3.1. Figure 5.3.2 shows a clearer overview of the
calibration of the ensemble QA model, measured in terms of the average F1 score and
confidence. The red line indicates perfect calibration. All languages are placed above
the line, suggesting that the finetuned model is slightly underconfident in the extractive
QA task.

5.3.2 Named Entity Recognition

The results of the ensemble NER model are presented in Table 5.3.2, showing the
weighted F1 score across the MasakhaNER 1.0 dataset. Due to hardware limitations
at runtime, the ENG data is not included. For comparison, the results are shown against
the values obtained by Rust et al. (2022). In general, ensemble learning improves the
performance significantly for all 9 languages, resulting in scores > 90. This is also the
case for languages that were previously associated with a low score, such as Amharic
(AMH). The F1 score gap is 24.3 points in favour of the ensemble method, suggesting
that ensemble learning improves the comprehension of long-term dependencies in NER
tasks.

The series of plots in Figure 5.3.3 depict the confidence for each label and language
in the NER classification task. The legends show the label counts for each class and it

59

5.4 Results Discussion 5 RESULTS

Figure 5.3.1: Confidence distribution across all languages in the TyDiQA-GoldP dataset for
the ensemble model.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re Arabic

Bengali

Finnish

Indonesian
Swahili

Korean

Russian

TeluguEnglish

Figure 5.3.2: Calibration plot showing performance in terms of the F1 score versus confi-
dence for the ensemble model finetuned on the TyDiQA-GoldP dataset.

is clear that the majority of words do not represent a named entity. Nevertheless, the
confidence is very high, with mean values of over 0.8 for all languages. Across labels, the
confidence associated with the B−ORG and I −ORG labels is lower in languages such
as Kinyarwanda, Nigerian Pidgin, Swahili, and Wolof. Also, the model is less confident
in identifying the inside of a location (I − LOC) than the beginning of a location (B −
LOC). On the other hand, the DATE entity appears to have a high confidence across
all languages.

5.4 Results Discussion

The results in the MC Uncertainty experiment generally indicate high uncertainty for a
high mask ratio. Still, the most optimal value is a mask ratio of 50%, representing a
reasonable trade-off between uncertainty and loss. Overall, the SC task is linked to the
highest level of uncertainty. The reason might be the amount of text rendered in the

60

5 RESULTS 5.4 Results Discussion

AMH HAU IBO KIN LUG LUO PCM SWA WOL YOR AVG
PIXEL 47.7 82.4 79.9 64.2 76.5 66.6 78.7 79.8 59.7 70.7 70.7

Ensemble 90.2 97.1 96.1 93.9 95.5 93.1 97.1 96.1 95.8 95.2 95

Table 5.3.2: The results of the NER task. The ensemble learning model finetuned on the
MasakhaNER 1.0 dataset is compared with the values reported by Rust et al. (2022). The
metric shown is the F1 score, computed on the test split of the data.

image, as the text in the GLUE dataset takes up more patches than single tokens in the
NER task or single questions in the QA task.

Scripts such as Latin are less uncertain, indicating that multilingual pretraining is nec-
essary but instead of language, one can focus on introducing a new script, as there is
evidence to suggest that there exists knowledge transfer between scripts like Latin and
Cyrillic. For example, finetuning on one language such as Chinese might benefit perfor-
mance in other languages like Korean or Amharic. This approach is more robust than
traditional LLMs, where the transfer of learning happens under stricter conditions, for
instance when languages share syntactic structures or when there is a significant over-
lap between vocabularies.

In terms of the span length, there is not a big difference between shorter or longer se-
quences of patches. This might suggest that the masked autoencoder does not heavily
rely on the extended context of the characters, but rather on the surrounding pixels to
reconstruct a character. One explanation for this is the presence of morphemes within
a language, which carry meaning at the word level. However, when visualizing the
uncertainty for each patch, rather than as an average on the entire image, there are
clear differences between short and long spans, with longer sequences being associated
with higher uncertainty. Thus, different measures of quantifying uncertainty can yield
different results.

Regarding calibration, the pretrained model appears to underestimate uncertainty at
the patch-level. On the other hand, when finetuning ensemble models and evaluating
them on downstream tasks like Named-Entity Recognition and Question-Answerting,
the confidence in the predictions is increased and it matches the F1 score more closely.

Ensemble learning with parameter tuning shows very high performance during the se-
lected tasks, compared to the single model. Moreover, this is achieved using a low
number of individual learners, 4 in the QA task and 5 in NER. The ensemble is also ro-
bust when it comes to class imbalances in the NER task, where only 12% of the tokens
are named entities. Some limitations of this method include the hardware and training
time required to train multiple models. Nevertheless, PIXEL has 20% fewer parameters
than BERT, so an ensemble of PIXEL models remains less complex than the BERT variant
and significantly more lightweight than models like GPT.

61

5.4 Results Discussion 5 RESULTS

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Amharic

O: 6431
B-ORG: 83
I-ORG: 114
B-PER: 142
I-PER: 109
B-LOC: 227
I-LOC: 74
B-DATE: 106
I-DATE: 163

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Hausa

O: 14890
B-ORG: 132
I-ORG: 170
B-PER: 336
I-PER: 177
B-LOC: 508
I-LOC: 94
B-DATE: 162
I-DATE: 295

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Igbo

O: 10821
B-ORG: 351
I-ORG: 126
B-PER: 345
I-PER: 226
B-LOC: 338
I-LOC: 99
B-DATE: 145
I-DATE: 194

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Kinyarwanda

O: 12556
B-ORG: 257
I-ORG: 246
B-PER: 207
I-PER: 136
B-LOC: 374
I-LOC: 124
B-DATE: 130
I-DATE: 166

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Ganda

O: 8402
B-ORG: 153
I-ORG: 113
B-PER: 379
I-PER: 222
B-LOC: 209
I-LOC: 86
B-DATE: 113
I-DATE: 143

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Luo

O: 4281
B-ORG: 66
I-ORG: 107
B-PER: 142
I-PER: 103
B-LOC: 128
I-LOC: 164
B-DATE: 69
I-DATE: 74

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Nigerian Pidgin

O: 14016
B-ORG: 210
I-ORG: 292
B-PER: 267
I-PER: 193
B-LOC: 258
I-LOC: 111
B-DATE: 184
I-DATE: 200

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Swahili

O: 13591
B-ORG: 221
I-ORG: 212
B-PER: 331
I-PER: 186
B-LOC: 463
I-LOC: 136
B-DATE: 160
I-DATE: 47

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Wolof

O: 10798
B-ORG: 55
I-ORG: 13
B-PER: 176
I-PER: 193
B-LOC: 211
I-LOC: 4
B-DATE: 70
I-DATE: 153

O B-ORG I-ORG B-PER I-PER B-LOC I-LOC B-DATE I-DATE
Label

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Language: Yoruba

O: 17410
B-ORG: 224
I-ORG: 337
B-PER: 250
I-PER: 191
B-LOC: 471
I-LOC: 165
B-DATE: 187
I-DATE: 661

Figure 5.3.3: Confidence distribution of the ensemble NER model across languages.

62

6 DISCUSSION & CONCLUSION

6 Discussion & Conclusion

6.1 Discussion

In the beginning, this study asked 5 research questions. According to the findings and
experiments, the answers are as follows:

1. Do visual language models represent a viable solution for the semantic process-
ing of text? Yes, with some observations. The results of Rust et al. (2022) suggested
that the PIXEL model finds semantic tasks more challenging than syntactic tasks and
that further pretraining and additional inductive biases are necessary to close the per-
formance gap between PIXEL and BERT. This work shows that further pertaining can be
ditched in favor of ensemble learning to obtain better performance than BERT, even for
languages that are visually dissimilar from the pertaining language. This comes with
the additional benefit of improved model calibration, as well as reduced training time.
Finetuning the same model is more efficient and robust compared to altering the base
model. However, due to limited computation resources, the comparison on the GLUE
dataset is missing, but given the performance in NER and QA, it is safe to assume that
the ensemble framework will outperform the single-learner variant.

2. How can uncertainty quantification and calibration methods be integrated into
visual language models? This work showed that it is possible to integrate uncertainty
quantification methods and measure calibration in the context of visual text models.
These methods include Monte Carlo Dropout at the patch level, with the observation
that more work should be directed towards finding more effective ways of aggregating
and visualizing uncertainty across longer patch sequences. Attention based methods
can also be used to gain insights into how these models encode information, but there
remains the debate about whether or not attention counts as an explanation (Bibal et
al., 2022). Still, this debate falls outside the scope of this research. Ensemble learning
with a low number of individual learners can also be used successfully within visual text
models, to improve both performance and confidence.

3. How do visual language models encode uncertainty at the patch-level? This
work employed Monte Carlo Dropout methods to study how uncertainty is encoded at
the patch level. According to the results, uncertainty is dependent on the mask ratio
value, with more masking leading to a more uncertain text reconstruction. The findings
on the span length are mixed, partly due to limitations in the current approach, which
are discussed in Section 6.2. The script of the pretraining language has a large influence
on patch-level uncertainty. Latin and Latin-like languages are associated with lower
uncertainty values, while scripts such as Korean or Arabic are more uncertain during
reconstruction.

4. How is the attention mechanism represented in visual language models? While
it is possible to visualize the attention mechanism in visual language models, there are
some comments to be made about this. Unlike traditional language models like BERT
where each token represents a meaningful unit and the relationship between two tokens
can be understood intuitively, the patches in visual language models cannot be mapped
back to text chunks. This makes it more challenging to interpret how attention is paid to

63

6.2 Limitations & Future Work 6 DISCUSSION & CONCLUSION

the different patches and what are the implications of these connections in the context
of the entire model. Moreover, given the large number of attention structures and the
image dimensions, visualizing attention for all patches simultaneously becomes very
difficult.

5. What is the effect of ensemble learning in finetuning visual language models?
Ensemble learning can be applied successfully to improve performance and calibration
in visual language models. The evaluation shows higher F1 scores for 17 of the 19
tested languages across two tasks. The models become more robust and can overcome
individual weaknesses by aggregating predictions from multiple learners using hyper-
parameter tuning. Additionally, ensemble learning improves calibration through better
error diversification and data representation.

6.2 Limitations & Future Work

Limitations The current study is subject to several limitations. Firstly, the way uncer-
tainty is computed at the image level during the MC experiments can be more reliable.
At the moment, uncertainty is averaged across all pixels in an image. However, this
does not account for the difference in span length, as some sequences of patches are
longer than others. Quantifying uncertainty as an average for each span length in the
image could bring more insights into how the model encodes long-term dependencies.
Secondly, the information in the attention plots should be aggregated so that all patches
are visible at once, while keeping a reasonable image size. Using the current method,
visualizing all 256 patches across the 144 attention structures would result in a very
large and difficult to interpret image. Regarding the calibration analysis, it is not com-
pletely clear that the two measurements of performance (loss vs. MC uncertainty during
the pretraining stage and F1 score vs. confidence during finetuning) are quantifying the
same underlying metric. For this reason, additional testing should be performed to
establish the exact effect size of ensemble learning on model calibration.

Future Work One point to be explored in future works on text reconstruction is the
idea of pixels-as-tokens in the context of the Pixel Transformer (PiT) model, introduced
by Nguyen et al. (2024). Instead of training the model to perform patch reconstruction,
PiT treats each pixel as a token and the reconstruction happens at the pixel level. Evi-
dence suggests that this method completely removes locality as in inductive bias. This
can potentially improve long-term context comprehension in the proposed approach,
as the current findings indicate that the reconstruction of characters depends on neigh-
boring pixels. Additionally, the finetuning pipeline can be expanded to more complex
semantic tasks, such as summarization, open-ended question answering where the an-
swer is not always explicitly mentioned in the context, and text generation (Li et al.
(2023) introduced a new method for text generation using GlyphDiffusion). To im-
prove model calibration, post-hoc methods like temperature scaling can be used either
separately or in combination with Monte Carlo (Laves et al., 2019). During pretraining,
the Cross-Entropy loss can be replaced by the Focal Loss, which is effective in calibration
models trained on imbalanced datasets (C. Wang et al., 2022).

64

6 DISCUSSION & CONCLUSION 6.3 Summary

6.3 Summary

Motivation This thesis focused on studying a solution found at the intersection of
three problems in traditional Language Modeling. The semantics problem (Section 2.4)
makes it challenging for models to maintain context over long text spans. The vocab-
ulary problem (Section 2.5) leads to a bottleneck when new words have to be added
to the pool. The uncertainty problem (Section 2.6) is caused by unreliable models,
which are overconfident and lack proper calibration. In this context, Visual Language
Models that use rendered text as input (not to be confused with models that learn from
both text and image data) can be applied to tackle these limitations. The main aim of
this work is analyzing various uncertainty and confidence quantification methods in the
PIXEL model, motivated by the very reduced number of studies on the topic.

Methods & Results These methods included Monte Carlo Dropout (Section 3.4.1) to
measure uncertainty at the patch level in the pretrained model. A series of experiments
looked at uncertainty distribution across the mask ratio and span length hyperparame-
ters, as well as across 3 semantic tasks (Named Entity Recognition, Sequence Classifica-
tion, and Question Answering), 7 scripts, and 18 languages. According to the findings
of Section 5.1, a large mask ratio leads to more uncertain reconstructions, while the
effect of the span length is not yet clear. Scripts that are visually different from Latin,
as well as semantically challenging tasks such as Question Answering are also associ-
ated with higher uncertainty. Visualizing the Attention Mechanism (Section 3.4.2) can
also provide insights into how the ViT encodes patch information. To achieve a model
and neuron view of attention, the attention weights are shown for the first 16 patches
of an image across the 12 attention layers and 12 heads. Ensemble learning (Section
3.4.3) was used to train multiple learners with different parameter configurations on
the MasakhaNER 1.0 and TyDiQA datasets. The results (Section 5.3) indicate that this
method improves F1 performance across most tested languages. In terms of calibra-
tion, the pretrained model appeared to be overconfident when reconstructing text. The
calibration improved during finetuning with ensemble learning.

Conclusion The findings of this study indicate that Visual Language Models repre-
sent a viable and lightweight solution to traditional language modeling, even for tasks
that require semantic understanding of text. The reliability and explainability of VLMs
can also be improved through uncertainty quantification methods, as shown during the
experiments. Future research should focus on perfecting the existing techniques and
exploring new ways of understanding the inner workings of VLMs.

65

7 APPENDIX

Figure 7.1.1: The training loss (MSE) of the multilingual PIXEL model.

7 Appendix

7.1 Multilingual Pretraining

This study also proposes a multilingual pretrained model based on the PIXEL architec-
ture. This uses the PangoCairo backend, which supports both left-to-right and right-to-
left scripts. To enhance context comprehension, the model uses bigram patch embed-
dings instead of unigram patch embeddings, meaning that the embeddings are created
based on pairs of consecutive patches, and not based on single patches. To preserve the
vector size of 768, the embeddings for the two patches inside a pair are averaged to
create one vector. Other aggregation methods are also available in the implementation,
such as vector concatenation, or applying a linear projection.

Due to a lack of computation resources, the model was trained for 3 days only (The
English version needed 8 days according to Rust et al. (2022)), on a dataset consisting
of 18 rendered languages, as shown in Table 3.1.1. The rendered datasets are available
at https://huggingface.co/stefania-radu. The training loss can be seen in Figure
7.1.1, showing that this method carries potential. However, more training and rigor-
ous evaluation are needed to establish how the multilingual approach compares to the
single-language version.

7.2 Examples of Reconstruction with Uncertainty

Additional examples of visualized text reconstruction with uncertainty can be seen in
Figures 7.2.1 and 7.2.2. The text is randomly selected from the Wikipedia dataset of
each language (https://huggingface.co/datasets/wikimedia/wikipedia). The first
column shows the original rendered image, the second column contains the non-masked
patches with uncertainty (Monte Carlo standard deviation), and the final column is the
reconstructed text (mean prediction) with uncertainty. Bright patches indicate higher
uncertainty.

66

https://huggingface.co/stefania-radu
https://huggingface.co/datasets/wikimedia/wikipedia

7 APPENDIX 7.2 Examples of Reconstruction with Uncertainty

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Amharic

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Finnish

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Korean

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Swahili

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Yorùbá

Figure 7.2.1: Examples of uncertainty quantification at the patch-level for various lan-
guages.

67

7.2 Examples of Reconstruction with Uncertainty 7 APPENDIX

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Russian

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Indonesian

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Chinese (simplified)

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Telugu

Original Original + SD Mean Prediction + SD

0.0

0.2

0.4

0.6

0.8

1.0

Hausa

Figure 7.2.2: Examples of uncertainty quantification at the patch-level for various lan-
guages.

68

7 APPENDIX 7.3 Code

7.3 Code

The complete implementation can be found at https://github.com/stefania-radu/
pixel-semantic, which extends the PIXEL repository of Rust et al. (2022). The code
is based on PyTorch (Paszke et al., 2019) and HuggingFace transformers (Wolf et al.,
2020).

69

https://github.com/stefania-radu/pixel-semantic
https://github.com/stefania-radu/pixel-semantic

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . others (2016).
{TensorFlow}: a system for {Large-Scale} machine learning. In 12th usenix symposium
on operating systems design and implementation (osdi 16) (pp. 265–283).

Adelani, D. I., Abbott, J., Neubig, G., D’souza, D., Kreutzer, J., Lignos, C., . . . others
(2021). Masakhaner: Named entity recognition for african languages. Transactions
of the Association for Computational Linguistics, 9, 1116–1131.

Aldón Mı́nguez, D., Ruiz Costa-Jussà, M., & Rodŕıguez Fonollosa, J. A. (2016). Neural
machine translation using bitmap fonts. In Proceedings of the eamt 2016 fifth workshop
on hybrid approaches to translation (hytra) (pp. 1–9).

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Balasubramanian, S., Jain, N., Jindal, G., Awasthi, A., & Sarawagi, S. (2020). What’s
in a name? are bert named entity representations just as good for any other name?
arXiv preprint arXiv:2007.06897.

Belinkov, Y., & Bisk, Y. (2017). Synthetic and natural noise both break neural machine
translation. arXiv preprint arXiv:1711.02173.

Bengio, Y., Ducharme, R., & Vincent, P. (2000). A neural probabilistic language model.
Advances in neural information processing systems, 13.

Bibal, A., Cardon, R., Alfter, D., Wilkens, R., Wang, X., François, T., & Watrin, P. (2022).
Is attention explanation? an introduction to the debate. In Proceedings of the 60th
annual meeting of the association for computational linguistics (volume 1: Long papers)
(pp. 3889–3900).

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty
in neural network. In International conference on machine learning (pp. 1613–1622).

Bostrom, K., & Durrett, G. (2020). Byte pair encoding is suboptimal for language model
pretraining. arXiv preprint arXiv:2004.03720.

Breiman, L. (1996a). Bagging predictors. Machine learning, 24, 123–140.

Breiman, L. (1996b). Stacked regressions. Machine learning, 24, 49–64.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., . . . others
(2020). Language models are few-shot learners. Advances in neural information pro-
cessing systems, 33, 1877–1901.

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017).
Deep reinforcement learning from human preferences. Advances in neural information
processing systems, 30.

70

BIBLIOGRAPHY BIBLIOGRAPHY

Clark, J. H., Choi, E., Collins, M., Garrette, D., Kwiatkowski, T., Nikolaev, V., & Palomaki,
J. (2020). Tydi qa: A benchmark for information-seeking question answering in
ty pologically di verse languages. Transactions of the Association for Computational
Linguistics, 8, 454–470.

Clark, J. H., Garrette, D., Turc, I., & Wieting, J. (2022). Canine: Pre-training an efficient
tokenization-free encoder for language representation. Transactions of the Association
for Computational Linguistics, 10, 73–91.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., . . .
Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale.
arXiv preprint arXiv:1911.02116.

Dai, F. Z., & Cai, Z. (2017). Glyph-aware embedding of chinese characters. arXiv
preprint arXiv:1709.00028.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., . . .
others (2020). An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929.

Eger, S., Şahin, G. G., Rücklé, A., Lee, J.-U., Schulz, C., Mesgar, M., . . . Gurevych, I.
(2019). Text processing like humans do: Visually attacking and shielding nlp systems.
arXiv preprint arXiv:1903.11508.

Forbes, M., Holtzman, A., & Choi, Y. (2019). Do neural language representations learn
physical commonsense? arXiv preprint arXiv:1908.02899.

Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780), 1612.

Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning
(pp. 1050–1059).

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., . . . others (2023).
A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 1–77.

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional
sequence to sequence learning. In International conference on machine learning (pp.
1243–1252).

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern
neural networks. In International conference on machine learning (pp. 1321–1330).

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked autoencoders
are scalable vision learners. In Proceedings of the ieee/cvf conference on computer vision
and pattern recognition (pp. 16000–16009).

Hendrycks, D., & Gimpel, K. (2016a). A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136.

71

BIBLIOGRAPHY BIBLIOGRAPHY

Hendrycks, D., & Gimpel, K. (2016b). Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Izsak, P., Berchansky, M., & Levy, O. (2021). How to train bert with an academic budget.
arXiv preprint arXiv:2104.07705.

Jelinek, F. (1998). Statistical methods for speech recognition. MIT press.

Jin, D., Jin, Z., Zhou, J. T., & Szolovits, P. (2020). Is bert really robust? a strong baseline
for natural language attack on text classification and entailment. In Proceedings of the
aaai conference on artificial intelligence (Vol. 34, pp. 8018–8025).

Jurafsky, D., & Martin, J. H. (2023). Speech and language processing (3rd ed.). Pearson.

Kawakami, K., Dyer, C., & Blunsom, P. (2017). Learning to create and reuse words in
open-vocabulary neural language modeling. arXiv preprint arXiv:1704.06986.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kong, L. (2019). Cyprien de masson d’autume, wang ling, lei yu, zihang dai, and dani
yogatama. a mutual information maximization perspective of language representa-
tion learning. arXiv preprint arXiv:1910.08350, 5.

Kudo, T., & Richardson, J. (2018). Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226.

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable pre-
dictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert:
A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942.

Laves, M.-H., Ihler, S., Kortmann, K.-P., & Ortmaier, T. (2019). Well-calibrated model
uncertainty with temperature scaling for dropout variational inference. arXiv preprint
arXiv:1909.13550.

Li, J., Zhao, W. X., Nie, J.-Y., & Wen, J.-R. (2023). Renderdiffusion: Text generation as
image generation. arXiv preprint arXiv:2304.12519.

Lin, Z., Trivedi, S., & Sun, J. (2023). Generating with confidence: Uncertainty quantifi-
cation for black-box large language models. arXiv preprint arXiv:2305.19187.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., . . . Guo, B. (2021). Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the ieee/cvf
international conference on computer vision (pp. 10012–10022).

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101.

72

BIBLIOGRAPHY BIBLIOGRAPHY

Mielke, S. J., Alyafeai, Z., Salesky, E., Raffel, C., Dey, M., Gallé, M., . . . others (2021).
Between words and characters: A brief history of open-vocabulary modeling and
tokenization in nlp. arXiv preprint arXiv:2112.10508.

Mielke, S. J., & Eisner, J. (2019). Spell once, summon anywhere: A two-level open-
vocabulary language model. In Proceedings of the aaai conference on artificial intelli-
gence (Vol. 33, pp. 6843–6850).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in neural
information processing systems, 26.

Mikolov, T., Sutskever, I., Deoras, A., Le, H.-S., Kombrink, S., & Cernocky, J. (2012).
Subword language modeling with neural networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8(67).

Minderer, M., Djolonga, J., Romijnders, R., Hubis, F., Zhai, X., Houlsby, N., . . . Lucic,
M. (2021). Revisiting the calibration of modern neural networks. Advances in Neural
Information Processing Systems, 34, 15682–15694.

Moosa, I. M., Akhter, M. E., & Habib, A. B. (2022). Does transliteration help multilingual
language modeling? arXiv preprint arXiv:2201.12501.

Naeini, M. P., Cooper, G., & Hauskrecht, M. (2015). Obtaining well calibrated prob-
abilities using bayesian binning. In Proceedings of the aaai conference on artificial
intelligence (Vol. 29).

Nguyen, D.-K., Assran, M., Jain, U., Oswald, M. R., Snoek, C. G., & Chen, X. (2024).
An image is worth more than 16x16 patches: Exploring transformers on individual
pixels. arXiv preprint arXiv:2406.09415.

Nivre, J., De Marneffe, M.-C., Ginter, F., Hajič, J., Manning, C. D., Pyysalo, S., . . .
Zeman, D. (2020). Universal dependencies v2: An evergrowing multilingual treebank
collection. arXiv preprint arXiv:2004.10643.

OpenAI, R. (2023). Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . others (2019).
Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems, 32.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., . . . Liu, P. J. (2020).
Exploring the limits of transfer learning with a unified text-to-text transformer. Jour-
nal of machine learning research, 21(140), 1–67.

Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250.

Rogers, A., Kovaleva, O., & Rumshisky, A. (2021). A primer in bertology: What we know
about how bert works. Transactions of the Association for Computational Linguistics,
8, 842–866.

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do we go
from here? Proceedings of the IEEE, 88(8), 1270–1278.

73

BIBLIOGRAPHY BIBLIOGRAPHY

Rust, P., Lotz, J. F., Bugliarello, E., Salesky, E., de Lhoneux, M., & Elliott, D. (2022).
Language modelling with pixels. arXiv preprint arXiv:2207.06991.

Salesky, E., Etter, D., & Post, M. (2021). Robust open-vocabulary translation from visual
text representations. arXiv preprint arXiv:2104.08211.

Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909.

Skinner, B. F. (1957). Verbal behavior. New York: Appleton-Century-Crofts.

Spärck Jones, K. (2004). A statistical interpretation of term specificity and its applica-
tion in retrieval. Journal of documentation, 60(5), 493–502.

Sun, B., Yang, L., Dong, P., Zhang, W., Dong, J., & Young, C. (2018). Super charac-
ters: A conversion from sentiment classification to image classification. arXiv preprint
arXiv:1810.07653.

Taylor, O. (2004). Pango, an open-source unicode text layout engine. In Proceedings of
25th internationalization and unicode conference.

Tenney, I., Das, D., & Pavlick, E. (2019). Bert rediscovers the classical nlp pipeline.
arXiv preprint arXiv:1905.05950.

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., . . . others (2019). What
do you learn from context? probing for sentence structure in contextualized word
representations. arXiv preprint arXiv:1905.06316.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. (2021).
Training data-efficient image transformers & distillation through attention. In Inter-
national conference on machine learning (pp. 10347–10357).

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., . . . oth-
ers (2023). Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Vernikos, G., & Popescu-Belis, A. (2021). Subword mapping and anchoring across
languages. arXiv preprint arXiv:2109.04556.

Vig, J. (2019). A multiscale visualization of attention in the transformer model. arXiv
preprint arXiv:1906.05714.

Wan, A. (2021). Fairness in representation for multilingual nlp: Insights from con-
trolled experiments on conditional language modeling. In International conference on
learning representations.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). Glue:
A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461.

74

BIBLIOGRAPHY BIBLIOGRAPHY

Wang, C. (2023). Calibration in deep learning: A survey of the state-of-the-art. arXiv
preprint arXiv:2308.01222.

Wang, C., Balazs, J., Szarvas, G., Ernst, P., Poddar, L., & Danchenko, P. (2022). Cali-
brating imbalanced classifiers with focal loss: An empirical study. In Proceedings of the
2022 conference on empirical methods in natural language processing: Industry track
(pp. 145–153).

Wettig, A., Gao, T., Zhong, Z., & Chen, D. (2022). Should you mask 15% in masked
language modeling? arXiv preprint arXiv:2202.08005.

Wittgenstein, L. (1922). Tractatus logico-philosophicus. Routledge & Kegan Paul.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . others (2020).
Transformers: State-of-the-art natural language processing. In Proceedings of the 2020
conference on empirical methods in natural language processing: system demonstrations
(pp. 38–45).

Wu, S., & Dredze, M. (2019). Beto, bentz, becas: The surprising cross-lingual effective-
ness of bert. arXiv preprint arXiv:1904.09077.

Xiao, Y., Liang, P. P., Bhatt, U., Neiswanger, W., Salakhutdinov, R., & Morency, L.-P.
(2022). Uncertainty quantification with pre-trained language models: A large-scale
empirical analysis. arXiv preprint arXiv:2210.04714.

Xiong, M., Hu, Z., Lu, X., Li, Y., Fu, J., He, J., & Hooi, B. (2023). Can llms express their
uncertainty? an empirical evaluation of confidence elicitation in llms. arXiv preprint
arXiv:2306.13063.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. Advances
in neural information processing systems, 32.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., . . . others (2023). A survey of
large language models. arXiv preprint arXiv:2303.18223.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler,
S. (2015). Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of the ieee international conference
on computer vision (pp. 19–27).

75

	1 Introduction
	1.1 Prologue
	1.2 About This Thesis

	2 Literature Review
	2.1 Traditional Large Language Models
	2.2 Learning Through Masking
	2.3 Text As Visual Representation
	2.4 The Semantics Problem
	2.5 The Vocabulary Problem
	2.6 The Uncertainty Problem

	3 Methods
	3.1 Data
	3.1.1 Pretraining Data
	3.1.2 MasakhaNER 1.0
	3.1.3 GLUE
	3.1.4 TyDiQA-GoldP
	3.1.5 Text Renderer

	3.2 Model Architecture
	3.2.1 Embeddings
	3.2.2 Span Masking
	3.2.3 Encoder
	3.2.4 Decoder

	3.3 Training
	3.3.1 Pretraining
	3.3.2 Finetuning

	3.4 Uncertainty Quantification
	3.4.1 Monte Carlo Uncertainty
	3.4.2 Attention Vizualization
	3.4.3 Ensemble Learning

	4 Experimental Setup
	4.1 Monte Carlo Uncertainty
	4.1.1 Uncertainty Across Tasks
	4.1.2 Uncertainty Across Scripts
	4.1.3 Uncertainty Across Languages
	4.1.4 Visualizing Uncertainty in Text Reconstruction
	4.1.5 Calibration Analysis

	4.2 Attention Vizualization
	4.3 Ensemble Learning
	4.3.1 Extractive Question Answering
	4.3.2 Named Entity Recognition

	5 Results
	5.1 Monte Carlo Uncertainty
	5.1.1 Uncertainty Across Tasks
	5.1.2 Uncertainty Across Scripts
	5.1.3 Uncertainty Across Languages
	5.1.4 Visualizing Uncertainty in Text Reconstruction
	5.1.5 Calibration Analysis

	5.2 Attention Vizualization
	5.3 Ensemble Learning
	5.3.1 Extractive Question Answering
	5.3.2 Named Entity Recognition

	5.4 Results Discussion

	6 Discussion & Conclusion
	6.1 Discussion
	6.2 Limitations & Future Work
	6.3 Summary

	7 Appendix
	7.1 Multilingual Pretraining
	7.2 Examples of Reconstruction with Uncertainty
	7.3 Code

	Bibliography

