
Reward Machines: Effects of Noisy Labelling

Functions in Complex Grid Environments in

Reinforcement Learning

Bachelor’s Project Thesis

Andro Erdelez, s4297237, a.erdelez@student.rug.nl,

Supervisor: prof D. Grossi

Abstract: Reinforcement learning (RL) commonly treats reward functions as black boxes, re-
quiring extensive interaction with the environment for discovering rewards. Recently, a novel
approach called reward machines (RM) has been introduced. These are finite state machines
that make reward functions explicit, exploiting their internal structure. Innovative algorithms
that enhance RL efficiency using reward machines have emerged, demonstrating better perfor-
mance than standard Q-learning. These RM algorithms rely heavily on a labeling function to
determine the next state in a reward machine. However, it is assumed that the event detectors,
defining the labeling function, operate perfectly, which is rarely the case in real-world scenar-
ios. Moreover, these algorithms are tested with reward machines that do not provide much free
choice to the RL agent. This thesis addresses two main research questions: (1) How does noise
at different levels affect the performance of the RM algorithms when introduced to the labeling
function? and (2) How do these RM algorithms perform in a complex grid environment with
significant free choice for the RL agent? To answer these questions, different levels of noise are
introduced into the labeling function and the RM algorithms are evaluated in a new complex
grid environment. Our results show the extent to which noise affects the RM algorithms’ perfor-
mance, robustness and adaptability under more realistic conditions. These contributions enhance
the understanding of using reward machines in RL and identify potential problems that can be
encountered in practical applications.

1 Introduction

The usual RL problem involves an agent interacting
with its environment (Sutton & Barto, 2018). For
each action taken by the agent, the environment
sends feedback to the agent as a reward which is
generated by a reward function. In this manner,
the agent accumulates experience for learning the
most optimal policy. Typically, a common assump-
tion is that the reward function is obscure to the
agent and, hence, treated as a black box. However,
considering that the reward function is always de-
signed by the programmer due to the fact that usu-
ally there are no real-world applications where the
environment naturally provides rewards, the inter-
nal structure of the reward function could be ex-
posed to possibly facilitate more efficient learning
by the agent.

Previous research has focused on utilizing re-
ward specifications through task definitions. Singh
(1992a, 1992b) defined tasks based on sub-goal se-
quences whilst other research has given more em-
phasis on defining tasks using linear temporal logic
(Li et al., 2017; Littman et al., 2017; Toro Icarte et
al., 2018a; Hasanbeig et al., 2018; Camacho et al.,
2019; De Giacomo et al., 2019; Shah et al., 2020).
However, these previous works focused on generat-
ing the reward function rather than exposing it. In
order to expose the reward function, one needs to
use reward machines.

Reward machines are finite state machines which
expose the internal structure of a reward function.
They were first introduced by Icarte et al. (2018b)
who have proposed an extension of Q-learning algo-
rithm, Q-learning for reward machines (QRM), as

1

the first algorithm that can exploit the reward ma-
chine structure. The results showed that algorithms
that use reward machines (i.e. QRM) learn much
faster optimal policies compared to the standard
RL algorithms such as Q-learning. Further research
on reward machines (Icarte et al., 2022) found new
ways to utilize reward machines by combining es-
tablished RL techniques and algorithms with the
capabilities offered by the reward machines.
Given that the reward machines are based on

the finite state machines, they rely on proposi-
tional symbols for enabling state transitions. These
propositional symbols are formal description of
events that can occur in agent’s environment. Event
detectors identify these events which are converted
to their formal description by a labelling function.
The labelling function in the aforementioned re-
ward machine research is an optimal function whose
event detectors have 100% accuracy in detecting
correct events in the agent’s environment. However,
in the real-world applications such function is not
always flawless and can encounter noise to some ex-
tent. Hence, the first research question of this thesis
is: how does noise at different levels affect the per-
formance of the RM algorithms when introduced to
the labeling function?
Furthermore, the reward machines in Icarte’s

most recent research (Icarte et al., 2022) do not
offer significant free choice to the agent in discrete
domains. That means that the RM algorithms have
not been tested thoroughly in highly-complex envi-
ronments. Therefore, the second research question
of this thesis is: How do these RM algorithms per-
form in a complex grid environment with significant
free choice for the RL agent?
Now knowing what our research is, before delving

into our methodology, we will cover the necessary
background for understanding our research in the
next section.

2 Preliminaries

In order to understand the idea behind the reward
machines and its algorithms, we need to define the
RL problem that reward machines tackle. In the
standard RL problem, there is an RL agent which
interacts with the environment over a series of dis-
crete time steps. A classical formalization of agent’s
sequential decision making, known as Markov de-

cision process, is usually used to model the en-
vironment. A Markov decision process is a tuple
⟨S,A, r, p, γ⟩ where S denotes a set of states, A
denotes a set of actions, r is the reward function
with signature S ×A× S → R, p(st+1|st, at) is the
probability distribution of possible transitions and
γ ∈ (0, 1] is the discount factor.
The agent follows a certain structure in order to

interact with the environment. The agent is situ-
ated in state s at time step t where it chooses a
next action a in order to move to a new state s′ at
time step t+1. It selects its next action by following
a policy π(·|s), a probability distribution of actions
a ∈ A from state s. Once action a has been chosen,
the agent executes it and ends up in a new state s′

according to a transition probability p(·|s, a) and
receives a reward r(s, a, s′) from the environment
as an evaluation of its most recent choice. The de-
scribed process continues until the agent reaches a
terminal state which marks the end of an episode.

To keep track of agent’s progress in the envi-
ronment, a Q-value qπ(s, a) is defined as the ex-
pected utility of taking action a in state s fol-
lowing a policy π. The objective of the agent is
to discover an optimal policy π∗ that maximizes
the expected discounted cumulative reward Gt =
Eπ[

∑∞
k=0 γ

krt+k|St = s] from any state s ∈ S at
any time step t. Once the optimal policy has been
discovered, it will satisfy the Bellman optimality
equations for every state s ∈ S and action a ∈ A:

qπ
∗
(s, a) =

∑
s′∈S

p(s′|s, a)(r(s, a, s′)+

γmax
a′∈A

qπ
∗
(s′, a′))

(2.1)

This will ensure that the best possible action will
be chosen in any state s ∈ S.

2.1 Tabular Q-learning

Considering that this research focuses only on
the grid environments which are discrete domains,
an RL approach known as tabular Q-learning
(Watkins & Dayan, 1992) will be used. Tabular
Q-learning is an off-policy∗ learning method that
evaluates each state-action pair using Q-values es-
timations q̃(s, a), generated by the agent’s experi-
ence that is utilized to find the most optimal policy.

∗I.e. it can learn from experience generated by any policy.

2

When the agent is in a state s, it takes an action a
based on some exploratory policy. The exploratory
policy that will be used in our research is ϵ-greedy
policy where the agent takes the most optimal ac-
tion a following the highest Q-value q̃(s, a) with the
probability 1−ϵ; otherwise it takes a random action
(probability ϵ). Once the agent receives the result-
ing state s′ and its reward r(s, a, s′), the Q-value
estimations q̃(s, a) are updated as follows:

q̃(s, a)← q̃(s, a) + α · (r(s, a, s′)+
γmax

a′
q̃(s′, a′)− q̃(s, a))

(2.2)

where α is a hyperparameter called learning rate
which regulates how much new experiences change
q̃(s, a).
Tabular Q-learning is assured to converge to the

most optimal policy, ensuring that with infinite vis-
its to all state-action pairs, the agent will always
discover the best solution.

2.2 Reward machines

Reward machines (Icarte et al., 2022) are finite
state machines where states represent a specific
atomic step of a given task in an environment
and transitions between the states are triggered by
events. As a result, the reward machines take the
events as an input, together with a current state-
action pair, outputting an appropriate reward func-
tion.
Reward machines are defined as a tuple

⟨U, u0, F, δu, δr⟩ where, given a set of states S, a
set of actions A and a set of propositional symbols
P, U denotes a set of RM states, u0 denotes an RM
initial state which is an element of the set U , F de-
notes a set of terminal states such that U ∩ F = ∅,
δu : U × 2P → U ∪ F denotes the function describ-
ing state transitions, and δr : U → [S×A×S → R]
denotes the function outputting an appropriate re-
ward function. Additionally, a labelling function L
is defined as follows: L : S × A × S → 2P , which
is responsible for assigning truth values to proposi-
tional symbols in P based on the agent’s experience
(s, a, s′).
However, Icarte et al. (2022) have proven that a

particular case of reward machine, namely simple
reward machine, showcases the same capabilities as
classic reward machines, and have used it in their

own research. Therefore, we will be using only sim-
ple reward machines in our research as well and
we will refer to them as reward machines. Simple
reward machine is a tuple ⟨U, u0, F, δu, δr⟩ where,
given a set of propositional symbols P, everything
is defined as in classic reward machines, except δr
whose signature is different: δr : U×2P → R. Note,
how now deltar also depends on 2P and, instead of
returning a function, returns a number. Moreover,
as input, the reward machine only needs a propo-
sitional symbol(s) describing an event(s). An ex-
ample of a reward machine is shown in Figure 3.3.
An example of how a reward machine works in a
specific environment will be given in Section 3.5.

2.3 RM algorithms

In order to utilize reward machines, Icarte et al.
(2022) constructed the following algorithms: cross-
product baseline (QL), counterfactual experiences
for reward machines (CRM) and hierarchical RL for
reward machines (HRM). Furthermore, a technique
known as automated reward shaping (RS) has been
used as a complement to the aforementioned al-
gorithms†. These algorithms and techniques were
used in our research and are discussed in more de-
tail in the following subsections.

2.3.1 Cross-product baseline

Cross-product baseline is an RM algorithm that can
be identified as standard Q-learning which utilizes
reward machines. To make use of reward machines,
cross-product baseline extends Q-value estimations
with one additional entry, RM state u, leading from
a 2D array storing each q̃(s, a) to 3D array storing
each q̃(s, u, a). Note how the algorithm uses reward
machines only to extract its reward, not exploiting
the exposed structure of the reward specification.
The algorithm’s pseudocode can be found in Figure
B.1 in Appendix B.

2.3.2 CRM

CRM is an RM algorithm that is an extension of
cross-product baseline. Unlike cross-product base-
line where the agent only receives experience for
the current RM state, in CRM the agent generates

†If an algorithm A uses automated reward shaping, its
abbreviation is A-RS

3

synthetic experiences for each RM state. These ex-
periences are used to update Q-value estimation
for each RM state, enabling more efficient learn-
ing to the agent by completely utilizing reward ma-
chines’ structure. The algorithm’s pseudocode can
be found in Figure B.2 in Appendix B.

2.3.3 HRM

HRM is an RM algorithm that is based on the idea
of hierarchical RL, namely the options framework
(Sutton et al., 1999). The underlying concept of
HRM is that a complex problem can be divided
into simple subproblems which are easier to solve
and less time-consuming for the agent. This intro-
duces a hierarchy of policies where a high-level pol-
icy is a policy that chooses which subproblem is
going to be solved while a low-level policy is a pol-
icy that is used to solve the chosen subproblem. In
HRM (based on the options framework), these sub-
problems, called options, are formally described as
a tuple ⟨I, π, β⟩ where I denotes a subset of the
state space where the option can be initiated, π is
the low-level policy that selects actions while the
option is executed, and β is the likelihood of the
option ending in each state. β is defined as follows
in HRM:

β⟨u,ut⟩(s
′, u′) =

{
1 if u′ ̸= u or s′ is terminal

0 otherwise

(2.3)
where ⟨u, ut⟩ is an option being followed. Addi-

tionally, the low-level policy is trained using the
following reward function:

ru,ut
(s, a, s′) =

δr(u)(s, a, s

′) + r+ (1)

δr(u)(s, a, s
′) + r− (2)

δr(u)(s, a, s
′) (3)

(2.4)

where r+ and r− are hyperparameters, (1) is if
ut ̸= u and ut = δ(u, L(s, a, s′)), (2) is if ut ̸= u
and ut ̸= δ(u, L(s, a, s′)), and (3) is otherwise. The
algorithm’s pseudocode can be found in Figure B.3
in Appendix B.

2.3.4 Automated reward shaping

Automated reward shaping is a technique that fo-
cuses on providing intermediary rewards to the

agent to facilitate easier and more efficient learn-
ing. The concept of reward shaping (Ng et al., 1999)
is based on the idea that certain reward functions
make it easier for an agent to learn effective policies,
even if these reward functions ultimately lead to
the same optimal policy as the original, unshaped
reward function. Hence, the reward function is de-
fined as the following:

r′(s, a, s′) = r(s, a, s′) + γΦ(s′)− Φ(s) (2.5)

where Φ denotes a potential function with signa-
ture S → R that promotes learning optimal policies
faster. Icarte et al. (2022) used value iteration over
RM states as a potential function and, therefore, we
will as well in order to have the same experimental
setup as them. The pseudocode for value iteration
can be found in Figure B.4 in Appendix B.

3 Methods

In order to answer the first research question, noise
needed to be infused in the labelling function of
the reward machine. To answer the second ques-
tion, a complex environment was created where
more decision-making was required from the agent.
Moreover, once the agent was tested on this en-
vironment with the optimal labelling function (no
noise), it was tested with different levels of noise,
following the same experimental structure of the
first research question. This section discusses these
methodologies in more detail.

3.1 Modernizing the system

All of the aforementioned preliminaries have
been already programmed by Icarte et al. (2022).
Therefore, the system that was used for this
research is an extension of the system cre-
ated by Icarte et al. (2022) and can be found at
https://github.com/aerdelez/reward machines.
However, the original system used an outdated
version of Python, namely Python 3.6, and, thus,
it had to be modernized to meet the standards of
modern Python 3.11 and have the most up-to-date
libraries for the experiment.

This proved to be a challenge due to the fact
that the baselines library, whose Logger class is
utilized to keep track of agent’s progress, has not

4

been updated since 2020 and, hence, the most re-
cent version of Python accepted by it is Python
3.7. To solve this problem, baselines library was
replaced with the stable-baselines3 library, im-
proved version of the baselines library that uses
up-to-date Python. Unfortunately, this library is
not complete meaning that its usage led to un-
expected behavior of logging every single detail
of the agent’s progress as in the original experi-
ment (Icarte et al., 2022). Nonetheless, it did cap-
ture agent’s most important milestones (progress
on every 10000th step) which were used to calcu-
late agent’s performance. This led to our replicated
results being marginally different than the original
results. These differences are thoroughly discussed
in Section 4.
Next to this, we encountered problems with

the gym‡ library’s functionality within the system
where old functions had to be replaced with up-
dated functions. All outdated functions were re-
placed, but there were some discrepancies in the
step§ function within the gym library itself due to
the system having environments which were many-
layered extensions of the original gym’s environment
class. The reason behind these discrepancies was
the usage of the old step API¶ with the combi-
nation of the new step API. The new step API
has been used only for QL which required no addi-
tional environment wrappers, whereas the old step

API has been used for the other RM algorithms.
However, this proved to have no effect on the fi-
nal results because the new step API has an addi-
tional return argument which is not utilized by the
original experiment, thus not being utilized by this
paper as well.

3.2 Implementing noise

In our methodology we want to introduce different
levels of noise to the labelling function in order to
see how they affect the RM algorithms and whether
RM algorithms that utilize more reward machines
are more robust than the basic QL. In our experi-
ment, there are 10 different levels of noise, ranging
from 0 to 90 in increments of 10. These levels repre-

‡A library that provides environments for RL algorithms.
§A function that enables agent’s interaction with an en-

vironment.
¶An API that offers the functionality of the step func-

tion.

sent the probability of noise affecting the labelling
function, e.g. 30 means that there is 30% chance of
having noisy detection of the events.

The method of introducing noise into the labeling
function does not change the labelling function it-
self; in fact, the labelling function always produces
the correct output. Based on the given noise proba-
bility, once the labelling function outputs a propo-
sitional symbol, which describes the event in the
agent’s current state, it might change that propo-
sitional symbol. The probability of changing the
output is generated using the Mersenne Twister
pseudorandom number generator algorithm (Mat-
sumoto & Nishimura, 1998) which generates inte-
gers ranging from 0 to 99. For example, when the
noise probability is 30%, if the generated integer is
lower than 30, then a random propositional sym-
bol will be generated. The random propositional
symbol is generated from the pool containing all
propositional symbols of the given environment us-
ing the same pseudorandom number generator al-
gorithm. When generating the propositional sym-
bol, each propositional symbol is marked as an in-
teger, ranging from 0 to n − 1, where n denotes
the total number of distinct propositional symbols
in the given environment. If no events have been
detected originally, that state will not trigger the
random event detection.

3.3 Environments

We tested our RM algorithms on two environments,
namely the Office world and the Mordor world.
These are 12 × 9 grid environments where each
square is a possible state. Bold lines mark the walls
while symbols in some of the squares are proposi-
tional symbols that represent the events. The agent
can move in any cardinal direction (diagonal move-
ments are forbidden) as long as it does not hit the
wall. In both worlds, the agent’s starting point is
marked with X. In the following subsections, we
will discuss these environments in detail.

3.3.1 Office world

The Office world (Icarte et al., 2022) mimics an en-
vironment where the agent is a laborer who works
in an office and has daily tasks that it needs to
perform. It consists of 12 3 × 3 rooms in which
is possible to encounter a specific event in specific

5

squares. There are eight events which the agent can
encounter: it can pick up coffee (marked with c), it
can pick up mail (marked with m), it can break
decorations (marked with d), it can visit its office
(marked with o), and it can visit environment land-
marks (marked with A, B, C and D). For example,
a task that can be given to the agent is to pick up
a coffee and bring it to its office whilst avoiding
breaking decorations. Figure 3.1 depicts such task
in the Office world. In the figure, agent has two pos-
sible paths to take in order to achieve its goal due
to the fact that coffee can be found in two different
rooms. It is agent’s goal to find the most optimal
path, in this case the green path, which maximizes
the cumulative reward that is gained from the re-
ward machines.

A X

d

B

d d D

d

Cddd

o m

c

c

Figure 3.1: Office gridworld.

3.3.2 Mordor world

The Mordor world is an environment inspired by
the Lord of the Rings series where the agent is a
protagonist who needs to complete certain tasks
before it leaves the world of Mordor. It consists
of rooms of random shape which contain walls in
random locations, and in which is possible to en-
counter a specific event in specific squares. There
are six events which the agent can encounter: it can
leave the world of Mordor (marked with E), it can
get killed by an orc‖ (marked with O), it can col-
lect a prison key (marked with K), it can save its
companion Sam from the prison (marked with S), it
can collect a ring (marked with R), and it can visit
a volcano (marked with V). For example, a task

‖A fantasy creature.

that can be given to the agent is to pick up the
ring and destroy it in the volcano whilst avoiding
orcs. Figure 3.2 depicts such task with red arrow in
the Mordor world. Next to that task, the agent can
also have a task where it needs to pick up the prison
key and save its companion Sam (marked with red
arrow in Figure 3.2). It is the agent’s goal to learn
which order of tasks yields the highest cumulative
reward.

E O O S

X O

O

K V O

O O O

O R

O O

O

Figure 3.2: Mordor gridworld.

3.4 Reward machines

Unlike in usual RL tasks where the agent relies on
opaque reward function, in the aforementioned en-
vironments the agent receives reward through re-
ward machines. Reward machines depict important
events during the agent’s episode, i.e. necessary
steps that the agent needs to take in order to reach
its goal and steps that need to be avoided. This also
means that atomic steps in the tasks can be viewed
as states in the reward machines. The information
that the reward machines convey is exploited by
each RM algorithm in this experiment except QL.
Hence, their careful construction is crucial.

The reward machines for the Office world were
already constructed (Icarte et al., 2022). There are
four reward machines, each depicting four possi-
ble tasks that can be assigned to the agent. These
tasks can be found in Table 3.1, assigned to its re-
spective reward machine. For example, for the task
where the agent needs to collect the mail and go to
the office, the reward machine in Figure A.4 feeds
the agent with the necessary experience for suc-
ceeding its goal. The most complex task (the third

6

task from Table 3.1) is covered by the reward ma-
chine in Figure 3.3. In that task, the agent has a
choice between collecting either the mail or the cof-
fee first. Throughout episodes, the generated expe-
rience from the reward machine will teach the agent
that collecting the coffee first is more optimal due
to the fact that the coffee is on the way to the room
where the mail is located.

RM Office world tasks

#1 Collect coffee and go to the office.
#2 Collect the mail and go to the office.
#3 Collect coffee, collect the mail and go

to the office.
#4 Visit landmark A, visit landmark B,

visit landmark C and visit landmark D.

Table 3.1: Possible tasks in the Office world with
their respective reward machine (RM).

For the Mordor world, there are three reward
machines, each depicting three possible tasks that
can be assigned to the agent. These tasks can be
found in Table 3.2, assigned to its respective re-
ward machine. For example, for the task where the
agent needs to collect the ring, destroy it in the
volcano and leave Mordor, the reward machine in
Figure A.2 feeds the agent with the necessary ex-
perience for succeeding its goal. Each atomic step
in a task is ordered for every task except the third
task from Table 3.2. The aforementioned task is
the most complex task and is covered by the re-
ward machine in Figure 3.3. In that task, due to
the fact that it is a mixture of tasks covered by
the reward machines #1 and #2 and the tasks are
not ordered, the agent has significant free choice.
Furthermore, because tasks consist of more atomic
steps than tasks from the Office world, the com-
plexity of the agent’s choices is much higher, i.e.
it leads to more possibilities. Note that the agent
cannot destroy the ring in the volcano if it has not
collected the ring, nor it can save Sam from the
prison if it has not collected the prison key. There-
fore, for some atomic steps in this task, the order
still matters.

RM Mordor world tasks

#1 Collect the ring, destroy it in the vol-
cano and leave Mordor.

#2 Collect the prison key, save Sam and
leave Mordor.

#3 Collect the ring, collect the prison key,
destroy the ring in the volcano, save
Sam and leave Mordor.

Table 3.2: Possible tasks in the Mordor world
with their respective reward machine (RM).

3.5 Design

To grasp the complete idea of the design of our
methodology, it will be explained using an example.
The agent is situated in the Mordor world (Figure
3.2) with a staring position in the square marked
with X. Its goal is to accomplish the third task
from Table 3.2 with the highest cumulative reward
using the information generated from the reward
machine in Figure 3.3. The RM algorithm selected
for the agent’s training is CRM, meaning that at
each step the reward machine will feed the agent
with one experience per RM state. The noise prob-
ability of 10% will be incorporated into the labelling
function, i.e. the labelling function will have a prob-
ability of 90% of the correct event detection. In one
test run, the agent has a limit of 100000 steps, the
same limit as in Icarte’s paper (Icarte et al., 2022)
because we wanted to have the same conditions for
the both environments.

According to the reward machine, the agent is in
state q0 and it needs to either find the prison key or
the ring in order to achieve progress (move to the
next state) while avoiding the orcs. To get to the
key, it would follow the green path from Figure 3.2.
However, once the agent gets to the K square, in
this episode the labelling function gets affected by
noise, detecting an orc instead of the key. There-
fore, the first episode terminates with zero reward
(failure) due to the reward machine having no pos-
sible transitions from state q0 (each transition has
negated propositional symbol O).

The second episode starts with the agent at-
tempting to get the ring instead due to the bad ex-
perience it received in the previous episode. Hence,
it follows the red path from Figure 3.2 until it
reaches the ring. When it is in the square R, this

7

q0start

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11 q12!K&!R&!O

R&!O

!V&!K&!O

K&!R&!O

!S&!R&!O

!R&!O

S&!R&!O

!S&!V&!O

R&!O

!K&!O

V&!K&!O

!V&!S&!O

K&!O

!V&!O

S&!V&!O

R&!O

!S&!O

V&!O

!S&!O

K&!O

V&!S&!O

!V&!O

S&!O

!E&!O

V&!O

S&!O

S&!O

V&!O

E&!O

Figure 3.3: RM #3 in the Mordor world.
Its (terminal) states are defined as follows: U =
{q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11}, F = {q12}. Each
edge represents a possible transition and their labels
follow a specific notation that describes conditions that
need to be satisfied in order for the transition to exe-
cute. Each transition returns a reward of 0; the only ex-
ception is the transition E&!O which returns a reward
of 1. To explain the specific notation, here is an exam-
ple: the transition K&!R&!O that returns a reward of 0
would be translated to a tuple ⟨K ∧¬R∧¬O, 0⟩ where
the first tuple element represents the condition, and the
second tuple element represents the reward.

time the labelling function gives the correct out-
put, the propositional symbol R. That makes the
agent transition from state q0 to state q2, getting
new options to choose. This continues until the
agent either has no possible transitions in the re-
ward machine (failure) or reaches the terminal state
q12 where it receives the reward of value one. Note
that self-loops in each RM state make sure that the
agent finds the appropriate event in that moment
while avoiding the orcs.

Once the agent has reached its step limit, its RM
algorithm, in this case CRM, is evaluated. The eval-
uation, together with the hyperparameters’ values,
is discussed in the next section, namely Section 4.

q0start q1

q2 q3 q4

!m&!c&!d

m&!d

!c&!d

c&!d!m&c&!d

!m&!d

m&!d

!o&!d

o&!d

Figure 3.4: RM #3 in the Office world. Refer to
Figure 3.3 for the notation explanation. Note that each
transition returns a reward of 0; the only exception is
the transition o&!d which returns a reward of 1.

4 Results

In this section, the evaluation of our methods and
their initial settings will be discussed, together with
the results they produce and consequences of the
modernization of the system with no noise induced
into the labelling function. Once that has been
dealt with, the methods will be evaluated on the
different levels of noise and their difference will be
interpreted through performance plots.

Our research questions were tested on two grid-
worlds, namely the Office world and the Mordor
world. In order to evaluate the questions, 60 inde-
pendent runs were conducted, each requiring the
agent to solve one or more tasks: single-task en-
vironments are an environment variation that re-
quired solving only one task, while multi-task en-
vironments are an environment variation that re-
quired solving all available tasks in that envi-
ronment. All environments were discrete domains,
meaning that tabular Q-learning served as the fun-
damental off-policy learning method for all the RM
algorithms. The RM algorithms that were used in
the runs are the following: the cross-product base-
line (QL), the cross-product baseline with auto-
mated reward shaping (QL-RS), Q-learning with
counterfactual experiences (CRM), Q-learning with
counterfactual experiences and automated reward
shaping (CRM-RS), hierarchical RL with reward
machines (HRM) and hierarchical RL with reward
machines and automated reward shaping (HRM-
RS). As for the hyperparameters, α = 0.5 and
γ = 0.9 were used for adjustment of learning speed,
and ϵ = 0.1 was used for exploration. In the case
of HRM and HRM-RS, r+ = 1 and r− = 0 were
used. Additionally, every initial Q-value was set to

8

Figure 4.1: Replicated results for the Office
world (multi-task variation) with no noise. The
line represents medians over the 60 independent runs
per step. The shaded area represents the area between
their 25th and 75th percentiles.

an optimistic value of 2. In order to get the perfor-
mance plots for the algorithms with a certain level
of noise, the average reward per step was normal-
ized to be 1 for an optimal policy, pre-calculated
using value iteration, and the median performance
over the 60 runs was shown. The 25th and 75th
percentiles were also shown in the shadowed area
to understand the variability and range of rewards
per step.

4.1 Office world results

Considering that the Office world is from the orig-
inal experiment (Icarte et al., 2022), once we had
modernized the system, we replicated the results
from their experiment to see whether the system
will produce the same results. The replicated re-
sults were very similar to the original results for
the single-task variation, however, the results were
different for the multi-task variation of the Office
world. Particularly in that variation, the algorithms
performance would converge to average reward per
step higher by ≈0.2 than in the original results, ex-
ceeding the normalized value of 1 for each algorithm
except QL and QL-RS. This is shown in Figure 4.1.

Still, when ignoring the y-values, the replicated
performance plot looks the same as the one in
the original experiment and the difference in the

Figure 4.2: Bland-Altman plot for HRM-RS in
the Office world (multi-task variation).

replicated results for each algorithm appears to be
consistent. Therefore, we have decided to create a
Bland-Altman plot for each algorithm in the multi-
task variation of the Office world to verify whether
that consistency is indeed consistent, meaning that
the replicated results are credible.

Considering that Bland-Altman plots are fairly
similar, we will concentrate on the Bland-Altman
plot for HRM-RS, shown in Figure 4.2 (the rest
can be found in Appendix A). The Bland-Altman
plot showed a mean difference of ≈0.17 between the
original and replicated results, indicating a small
but insignificant systematic bias. The differences
formed a logarithmic-function-like pattern within
the lines of agreement, suggesting a proportional
bias. This can be interpreted in a following way: as
the median value rises, the bigger is the difference
between the results. However, as all the differences
fell within the acceptable range, the discrepancy
between the results can be considered consistent,
not affecting any further research.

One might notice in Appendix A that the low-
est median values for some algorithms do not fall
within the lines of agreement. Nonetheless, the dif-
ferences almost do not exist for such values, thus
not affecting the final interpretation of the Bland-
Altman plot.

Considering that our Office world results with no
noise (Figures 4.1 and A.11) are almost the same
as in Icarte’s paper (Icarte et al., 2022), we refer
to that paper for a detailed interpretation of the

9

results. Now we will focus on the interpretation of
the noise results.
The performance thorough different levels of

noise, ranging from 0% noise to 90% noise in the la-
belling function, is shown in Figure 4.3 and Figure
4.4. Figure 4.3 shows how the performance of each
algorithm with higher noise decreases for the multi-
task variation (each task must be completed from
Table 3.1 in the shown order). Each algorithm is
experiencing a gradual decline due to the noise in-
creasingly affecting the labelling function. However,
unlike the other algorithms, QL-RS and HRM-RS
have a steeper decline when introducing only 10%
noise to the labelling function. A cause of this could
be the way reward shaping is feeding the agent with
intermediate rewards, a topic that will be tackled
in Section 5.
In the single-task variation the agent was tasked

with the most complex task in the Office world, the
third task from Table 3.1. The effects of noise on
each algorithm running in the aforementioned vari-
ation of the Office world is shown in Figure 4.4.
In the figure, we notice more differences than in
the multi-task variation. Again, all algorithms are
roughly having a gradual decline. Particularly, QL
has the steepest decline, showcasing how other algo-
rithms are much more robust than QL for complex
tasks. Furthermore, CRM-RS, as noise increases,
slightly outperforms CRM in certain situations, es-
pecially with 90% noise. QL-RS, which had slightly
better performance than CRM and CRM-RS when
there is no noise, has been outperformed by CRM
and CRM-RS for every other noise level. HRM-RS
still performs the worst for all noise levels (except
for 70% where it is better than QL) while HRM
manages to outperform QL for the noise range 50-
90%.

4.2 Mordor world results

In this section, considering that the Mordor world
is a completely new environment, we will first dis-
cuss performance of each algorithm when no noise
is induced in the labelling function. We will start
with the multi-task variation of the Mordor world.
The multi-task variation of the Mordor world

required the agent to solve all tasks from Table
3.2 in the shown order. Due to the moderniza-
tion of the system, as for the multi-task variation
of the Office world, the most optimal algorithms

Figure 4.3: Performance results of the algo-
rithms across different noise levels in the Of-
fice world (multi-task variation). The line repre-
sents the median at the 100000th step per noise level
(there are only 10 noise levels and they are labelled on
the x-axis). The shaded area represents the area be-
tween their 25th and 75th percentiles.

Figure 4.4: Performance results of the algo-
rithms across different noise levels in the Office
world (single-task variation). The line represents
the median at the 100000th step per noise level (there
are only 10 noise levels and they are labelled on the
x-axis). The shaded area represents the area between
their 25th and 75th percentiles.

10

converge at value 1.2 as well. Hence, the perfor-
mance evaluation is scaled up from 0-1 to 0-1.2.
For the multi-task variation, HRM-RS learns a pol-
icy extremely rapidly. Still, this policy is marginally
worse than the most optimal policy which is learned
at a slightly slower pace by CRM and CRM-RS.
HRM-RS converges to the same policy as HRM
but at a slower rate, showing that reward shap-
ing might not contribute to faster learning in ev-
ery situation. QL-RS and QL converge to subopti-
mal policies where QL-RS’ policy has better per-
formance and is learned faster when compared to
QL.
For the single-task variation, the third task from

Table 3.2, which is the most complex task in this
thesis, was required to be solved by the agent.
Note that the single-task variation has a scale 0-
1, not 0-1.2, due to the fact that the moderniza-
tion differences are not visible for single tasks. Once
more, HRM converges extremely rapidly to a sub-
optimal policy, but, unlike in the multi-task vari-
ation, its performance is slightly worse. CRM and
CRM-RS converge again to the most optimal pol-
icy whilst HRM-RS converges to the same policy as
HRM but at a much slower learning rate. However,
in the single-task variation, QL and QL-RS per-
form poorly, almost learning nothing new in 100000
steps. This is due to the task complexity which will
be thoroughly discussed in Section 5. We can also
notice that the task complexity affects the range
of the 25th and 75th percentiles, showing that for
complex tasks, the performance of each algorithm
(except QL and QL-RS) is much more inconsistent.
Now that we have interpreted the results where

no noise affects the labelling function, we can delve
into understanding the performance of the algo-
rithms in the Mordor world across different lev-
els of noise induced in the labelling function. Each
algorithm in the multi-task variation experiences
a gradual decline due to the increase of noise.
The performance of each algorithm when compared
with one another stays roughly consistent. CRM-
RS performs the best with 90% noise whilst QL-RS
performs the same as QL on that same noise level.
Interestingly, HRM outperforms HRM-RS, CRM
and CRM-RS (QL and QL-RS do not perform well,
thus not taken into account) for the noise range 10-
30%, showing more robustness to such noise levels
than the others.
As for the single-task variation, the differences

Figure 4.5: Performance results for the Mordor
world (multi-task variation) with no noise. The
line represents medians over the 60 independent runs
per step. The shaded area represents the area between
their 25th and 75th percentiles.

Figure 4.6: Performance results for the Mordor
world (single-task variation) with no noise. The
line represents medians over the 60 independent runs
per step. The shaded area represents the area between
their 25th and 75th percentiles.

11

Figure 4.7: Performance results of the algo-
rithms across different noise levels in the Mor-
dor world (multi-task variation). The line repre-
sents the median at the 100000th step per noise level
(there are only 10 noise levels and they are labelled on
the x-axis). The shaded area represents the area be-
tween their 25th and 75th percentiles.

between the algorithms are much more visible when
the noise is increased. Each algorithm exhibits
steep decline when the noise is increased to 10%
(except QL and QL-RS whose performance without
noise was already poor). HRM-RS has the steepest
decline, having a significant loss of ≈0.7 average
reward in the 100000th step. As for the range 20-
90%, each algorithm converges to their own per-
formance score which stays the same during the
aforementioned noise levels. The only exception is
HRM, which continues gradually dropping its per-
formance score. Moreover, QL and QL-RS for the fi-
nal noise levels show increase in their performance,
but due to the fact that their score is very low from
the start, this small increase is the consequence of
random noise.

5 Discussion

The aim of this study was to evaluate the RM algo-
rithms on different noise levels and compare them
in order to see how noise affects them and to eval-
uate the performance of the RM algorithms in a
complex grid environment which offers significant
free choice to the agent with and without noise.
The results have shown that noise and environ-

ment complexity are important factors that need
to be taken into account when building the reward
machines and choosing the RM algorithms for the

Figure 4.8: Performance results of the algo-
rithms across different noise levels in the Mor-
dor world (single-task variation). The line repre-
sents the median at the 100000th step per noise level
(there are only 10 noise levels and they are labelled on
the x-axis). The shaded area represents the area be-
tween their 25th and 75th percentiles.

agent. In the both environments (all variations)
without noise, CRM performs the best, finding ex-
tremely fast the most optimal policy. This is due
to the facilitation of efficient learning by generat-
ing much more experience than the other RM algo-
rithms. This also promotes enhanced exploration,
having a higher probability to find the most opti-
mal policy than the other algorithms. However, as
shown by Icarte et al. (2022), the average runtime
of the algorithm, especially in the Mordor world, is
very high meaning that when having very complex
reward machines CRM can be very time-inefficient,
i.e. CRM has scalability issues. Furthermore, CRM
depends the most on reward machines out of all
the RM algorithms meaning that when the reward
machines have errors, which is very plausible in the
real-world applications, CRM’s performance will be
affected the most by it. Still, by performing the best
on almost all noise levels as well, CRM has shown
that it is very robust against the noise in the la-
belling function when compared to the other RM
algorithms. Therefore, we can say that only a poor
construction of the RM states and transitions can
rapidly degrade the performance of CRM. Finally,
in the Mordor world single-task variation, unlike
any other RM algorithms, CRM converges to the
same performance score for the noise level ranging
20-90% due to having additional experience. This
shows that, when searching for both optimal per-

12

formance and unaffected performance across higher
noise levels, CRM would be the best option.
In the Office world single-task variation, HRM

has shown that it performs the worst across almost
all noise levels. It converges to a suboptimal policy
because of the options framework being myopic, i.e.
the learned option (low-level) policies will consis-
tently aim to transition as quickly as possible, trap-
ping themselves on a local optimum. Nonetheless,
when disregarding the low starting performance,
HRM shows similar robustness as CRM, managing
to outperform QL with high-level noise. However,
in the Mordor world single-task variation, due to
the much higher task complexity, we see how really
fast, compared to the other RM algorithms, can
HRM learn a policy due to its structured learning.
This means that if a complex real-world application
requires a well-performing policy (not necessarily
optimal) in a short amount of time, HRM would be
the best option. When introducing noise to the la-
belling function, HRM exhibits similar robustness
to CRM in the Office world, but, in the Mordor
world, when complexity is much higher, it shows
that dividing a problem into smaller subproblems
might not be as robust as the CRM’s additional
experience.
As for the both Office and Mordor multi-task

variation, HRM is slighlty worse than CRM and
learns its policy the fastest. This is due to, next to
the most complex task, having simple tasks as well
that are robust to the myopic property. Note that in
the Mordor world, HRM outperforms CRM for the
lower noise levels. We could not find an explanation
for this, it could be just pure coincidence in the way
random noise is generated, or the structured learn-
ing is more robust to the noise for multiple tasks.
In order to get certain answers, this should be fur-
ther researched in a different complex environment
with more data points.
As anticipated, QL has the worst performance

(except for the Office world single-task variation
due to the task simplicity). Considering how sparse
reward is in our reward machines and how more
complex environments have, it is of upmost impor-
tance that an algorithm completely utilizes the re-
ward machines which is not the case for QL. This
also means that it lacks a certain degree of robust-
ness to the noise, offered by the reward machines,
which is visible across all the noise levels in the
both environments.

Automated reward shaping has accelerated
learning for most of the RM algorithms with its in-
termediary rewards. However, in terms of the differ-
ent noise levels, its contribution is usually not vis-
ible and would not mean much to any algorithm’s
performance if it was avoided (except for QL due to
the sparsity of reward). However, there is an excep-
tion to this observation, namely HRM-RS. HRM-
RS learns the same policy much slower than HRM.
This could be due to the interference with HRM’s
hierarchical nature: reward shaping could encour-
age actions that do not effectively contribute to
achieving the main task by choosing unnecessary
options. Icarte et al. (2022) have already shown
that experimenting with different hyperparameter
values of HRM-RS does not do much. Therefore, in-
stead of value iteration, some other potential func-
tion should be tested to see the HRM-RS’ perfor-
mance such as propositional logic-based functions
that can utilize the events in the environments.

In general, higher complexity has shown how ro-
bustness provided by the reward machines rapidly
drops when only 10% of noise is introduced to the
labelling function. Complex environments usually
involve many possibilities for the agent in order to
complete its task. These possibilities can result in
diverse reward patterns that are particularly vul-
nerable to the noise. As a result, the agent may
struggle to distinguish meaningful rewards from
noise-induced signals. Therefore, if noisy reward
machines are unavoidable, either new RM algo-
rithms or extensions of the current RM algorithms
that are trained to distinguish between the noise
and true information must be developed.

The main limitation of our research was explor-
ing the effects of noise and environment complex-
ity only in discrete domains. Icarte et al. (2018b,
2022) have done research in continuous domains
and continuous control task domains, however, due
to a time constraint, we were not able to extend on
such experiments as well. Modernizing the system
for only discrete domains already proved to be a
challenge and led to some discrepancies in the re-
sults, meaning that modernizing neural networks in
continuous domains could lead to even more differ-
ences, possibly making Icarte’s research (Icarte et
al., 2022) not extendable anymore in Python 3.11.
Furthermore, the simulated noise was generated

by a pseudorandom number generator (Matsumoto
& Nishimura, 1998) which does not completely cap-

13

ture the complexity of the real-world applications.
Hence, for more plausible results, this kind of ex-
perimentation should be done in the applications
that already have a known noise model.

To conclude this thesis, we will look into poten-
tial future work that can be derived from this. The
current reward machine research uses only positive
terminal states, having no negative rewards. Cur-
rently, when the agent detects a failing event, the
ongoing episode only terminates. However, intro-
ducing negative rewards could facilitate faster and
more efficient learning and, hence, it should be ex-
plored. One note, in that case, the way reward shap-
ing is implemented should be reconsidered due to
the fact that it is currently adapted only to the
reward range of 0-1.

Additionally, the noise probability distribution
depends on the amount of events that can be de-
tected by the agent. For example, in the Mordor
world there are 17 events while there are 14 events
in the Office world. This means that there is a much
higher chance to detect an orc in the Mordor world
than to detect a decoration in the Office world.
Moreover, the amount of distinct events and what
their purpose is also affects the noise probability
distribution and should be studied further.

Finally, reward machines are built manually, re-
quiring a programmer to design it themselves. How-
ever, it might be possible to automate this pro-
cess considering that the reward machines are con-
structed from the available tasks in the environ-
ment. As long as these tasks can be divided into
atomic steps (in case of our research, these steps
are easy to detect because they are divided by co-
mas) and they are translated into regular language,
states and transitions should be derivable from that
information. However, this is not straightforward
and, hence, should be looked into with more de-
tail.

References

Camacho, A., Icarte, R. T., Klassen, T. Q., Valen-
zano, R. A., & McIlraith, S. A. (2019). Ltl and
beyond: Formal languages for reward function
specification in reinforcement learning. In Ijcai
(Vol. 19, pp. 6065–6073).

De Giacomo, G., Iocchi, L., Favorito, M., & Patrizi,
F. (2019). Foundations for restraining bolts:
Reinforcement learning with ltlf/ldlf restraining
specifications. In Proceedings of the international
conference on automated planning and scheduling
(Vol. 29, pp. 128–136).

Hasanbeig, M., Abate, A., & Kroening, D.
(2018). Logically-constrained reinforcement
learning. arXiv preprint arXiv:1801.08099 .

Icarte, R. T., Klassen, T., Valenzano, R., & McIl-
raith, S. (2018b). Using reward machines for
high-level task specification and decomposition
in reinforcement learning. In International con-
ference on machine learning (pp. 2107–2116).

Icarte, R. T., Klassen, T. Q., Valenzano, R., &
McIlraith, S. A. (2022). Reward machines: Ex-
ploiting reward function structure in reinforce-
ment learning. Journal of Artificial Intelligence
Research, 73 , 173–208.

Li, X., Vasile, C.-I., & Belta, C. (2017). Reinforce-
ment learning with temporal logic rewards. In
2017 ieee/rsj international conference on intelli-
gent robots and systems (iros) (pp. 3834–3839).

Littman, M. L., Topcu, U., Fu, J., Isbell, C., Wen,
M., & MacGlashan, J. (2017). Environment-
independent task specifications via gltl. arXiv
preprint arXiv:1704.04341 .

Matsumoto, M., & Nishimura, T. (1998). Mersenne
twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM
Transactions on Modeling and Computer Simu-
lation (TOMACS), 8 (1), 3–30.

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy
invariance under reward transformations: The-
ory and application to reward shaping. In Icml
(Vol. 99, pp. 278–287).

Shah, A., Li, S., & Shah, J. (2020). Planning with
uncertain specifications (puns). IEEE Robotics
and Automation Letters, 5 (2), 3414–3421.

Singh, S. P. (1992a). Reinforcement learning with
a hierarchy of abstract models. In Proceedings of
the national conference on artificial intelligence
(p. 202).

14

Singh, S. P. (1992b). Transfer of learning by com-
posing solutions of elemental sequential tasks.
Machine learning , 8 , 323–339.

Sutton, R. S., & Barto, A. G. (2018). Reinforce-
ment learning: An introduction. MIT press.

Sutton, R. S., Precup, D., & Singh, S. (1999).
Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning.
Artificial intelligence, 112 (1-2), 181–211.

Toro Icarte, R., Klassen, T. Q., Valenzano, R., &
McIlraith, S. A. (2018a). Teaching multiple tasks
to an rl agent using ltl. In Proceedings of the 17th
international conference on autonomous agents
and multiagent systems (pp. 452–461).

Watkins, C. J., & Dayan, P. (1992). Q-learning.
Machine learning , 8 , 279–292.

15

A Appendix A

q0start q1 q2 q3

!K&!O

K&!O

!S&!O

S&!O

!E&!O

E&!O

Figure A.1: RM #1 in the Mordor world. Refer to
Figure 3.3 for the notation explanation. Note that each
transition returns a reward of 0; the only exception is
the transition E&!O which returns a reward of 1.

q0start q1 q2 q3

!R&!O

R&!O

!V&!O

V&!O

!E&!O

E&!O

Figure A.2: RM #2 in the Mordor world. Refer to
Figure 3.3 for the notation explanation. Note that each
transition returns a reward of 0; the only exception is
the transition E&!O which returns a reward of 1.

q0start q1 q2

!c&!d

c&!d

!o&!d

o&!d

Figure A.3: RM #1 in the Office world. Refer to
Figure 3.3 for the notation explanation. Note that each
transition returns a reward of 0; the only exception is
the transition o&!d which returns a reward of 1.

q0start q1 q2

!m&!d

m&!d

!o&!d

o&!d

Figure A.4: RM #2 in the Office world. Refer to
Figure 3.3 for the notation explanation. Note that each
transition returns a reward of 0; the only exception is
the transition o&!d which returns a reward of 1.

q0start q1 q2 q3 q4

!A&!d

A&!d

!B&!d

B&!d

!C&!d

C&!d

!D&!d

D&!d

Figure A.5: RM #4 in the Office world. Refer to
Figure 3.3 for the notation explanation. Note that each
transition returns a reward of 0; the only exception is
the transition D&!d which returns a reward of 1.

Figure A.6: Bland-Altman plot for CRM in the
Office world (multi-task variation).

Figure A.7: Bland-Altman plot for CRM-RS in
the Office world (multi-task variation).

16

Figure A.8: Bland-Altman plot for HRM in the
Office world (multi-task variation).

Figure A.9: Bland-Altman plot for QL in the
Office world (multi-task variation).

Figure A.10: Bland-Altman plot for QL-RS in
the Office world (multi-task variation).

Figure A.11: Performance results for the Office
world (single-task variation) with no noise. The
line represents medians over the 60 independent runs
per step. The shaded area represents the area between
their 25th and 75th percentiles.

17

B Appendix B

Algorithm B.1 The cross-product baseline using tabular Q-learning. This pseudocode is the same as
the one presented by Icarte et al. (2022).

1: Input: S,A, γ ∈ (0, 1], α ∈ (0, 1], ϵ ∈ (0, 1],P, L, U, u0, F, δu, δr.
2: For all s ∈ S, u ∈ U and a ∈ A, initialize q̃(s, u, a) arbitrarily
3: for l← 0 to num episodes do
4: Initialize u← u0 and s←EnvInitialState()
5: while s is not terminal and u /∈ F do
6: Choose action a from (s, u) using ϵ-greedy
7: Take action a and observe the next state s′

8: Compute the reward r ← δr(u)(s, a, s
′) and next RM state u′ ← δu(u, L(s, a, s

′))
9: if s′ is terminal or u′ ∈ F then

10: q̃(s, u, a)
α← r

11: else
12: q̃(s, u, a)

α← r + γmaxa′∈A q̃(s′, u′, a′)
13: end if
14: Update s← s′ and u← u′

15: end while
16: end for

Algorithm B.2 Tabular Q-learning with counterfactual experiences for RMs (CRM). This pseudocode
is the same as the one presented by Icarte et al. (2022).

1: Input: S,A, γ ∈ (0, 1], α ∈ (0, 1], ϵ ∈ (0, 1],P, L, U, u0, F, δu, δr.
2: For all s ∈ S, u ∈ U and a ∈ A, initialize q̃(s, u, a) arbitrarily
3: for l← 0 to num episodes do
4: Initialize u← u0 and s←EnvInitialState()
5: while s is not terminal and u /∈ F do
6: Choose action a from (s, u) using ϵ-greedy
7: Take action a and observe the next state s′

8: Compute the reward r ← δr(u)(s, a, s
′) and next RM state u′ ← δu(u, L(s, a, s

′))
9: Set experience ← {⟨s, ū, a, δr(ū)(s, a, s′), s′, δu(ū, L(s, a, s′))⟩|∀ū ∈ U}

10: for ⟨s, ū, a, r̄, s′, ū′⟩ ∈ experience do
11: if s′ is terminal or u′ ∈ F then
12: q̃(s, ū, a)

α← r̄
13: else
14: q̃(s, ū, a)

α← r̄ + γmaxa′∈A q̃(s′, ū′, a′)
15: end if
16: end for
17: Update s← s′ and u← u′

18: end while
19: end for

18

Algorithm B.3 Tabular hierarchical RL for reward machines (HRM). This pseudocode is the same as
the one presented by Icarte et al. (2022).

1: Input: S,A, γ ∈ (0, 1], α ∈ (0, 1], ϵ ∈ (0, 1],P, L, U, u0, F, δu, δr.
2: A(u)← {ut = δu(u, σ) for some ut ∈ U ∪ F, σ ∈ 2P} for all u ∈ U
3: For all s ∈ S, u ∈ U and ut ∈ A(u), initialize the high-level q̃(s, u, ut) arbitrarily
4: For all s ∈ S, u ∈ U, ut ∈ A(u) and a ∈ A, initialize option q̃u,ut(s, a) arbitrarily
5: for l← 0 to num episodes do
6: Initialize u← u0, s←EnvInitialState() and ut ← ∅
7: while s is not terminal and u /∈ F do
8: if ut = ∅ then
9: Choose option ut ∈ A(u) using ϵ-greedy policy derived from q̃

10: Set rt ← 0 and t← 0
11: end if
12: Choose action a from s using ϵ-greedy policy derived from q̃u,ut

13: Take action a and observe the next state s′

14: Compute the reward r ← δr(u)(s, a, s
′) and next RM state u′ ← δu(u, L(s, a, s

′))
15: for ū ∈ U, ūt ∈ A(ū) do
16: if δ(ū, L(s, a, s′)) ̸= u or s′ is terminal then

17: q̃ū,ūt
(s, a)

α←− rū,ūt
(s, a, s′)

18: else
19: q̃ū,ūt

(s, a)
α←− rū,ūt

(s, a, s′) + γmaxa′∈A q̃ū,ūt
(s′, a′)

20: end if
21: end for
22: if s′ is terminal or u′ ̸= u then
23: if s′ is terminal or u′ ∈ F then
24: q̃(s, u, ut)

α←− rt + γtr
25: else
26: q̃(s, u, ut)

α←− rt + γtr + γt+1 maxu′
t∈A(u′) q̃(s

′, u′, u′
t)

27: end if
28: Set ut ← ∅
29: end if
30: Update s← s′ and u← u′

31: Update rt ← rt + γtr
32: Update t← t+ 1
33: end while
34: end for

19

Algorithm B.4 Value iteration for automated reward shaping. This pseudocode is the same as the one
presented by Icarte et al. (2022).

1: Input: U,F,P, δu, δr, γ.
2: for u ∈ U ∪ F do
3: v(u)← 0
4: end for
5: e← 1
6: while e > 0 do
7: e← 0
8: for u ∈ U do
9: v′ ← max{δr(u, σ) + γv(δu(u, σ))|∀σ ∈ 2P}

10: e = max{e, |v(u)− v′|}
11: v(u)← v′

12: end for
13: end while
14: return v

20

