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Two-cover descent on hyperelliptic curves and
generalizations

Abstract

A curve over a field k is a smooth, projective, and absolutely irreducible 1-dimensional k-variety,
whereas a hyperelliptic curve is a curve with an affine patch of the form y2 = f(x), where f(x)
is a polynomial of degree≥ 3 without repeated roots, and char(k) ̸= 2. According to a theorem
by Faltings, for any curve C over Q of genus ≥ 2 there are at most finitely many rational points
satisfying the equation of the curve C; the set of those points is denoted as C(Q). None of the
proofs of Faltings’ Theorem are effective, ie. they do not provide an algorithm that guarantees to
find C(Q). In particular, finding C(Q) for a specific hyperelliptic curve happens to be a difficult
task in general.

In this Bachelor thesis I present a special case of the two-cover descent, that is an approach
which can be used to demonstrate that the set C(Q) is empty if some favorable conditions are
met. In further sections I discuss the possibility to generalize the method, so that it can determine
whether a curve of the form y3 = f(x) has no rational points. To do the above mentioned
generalization I considered two possible approaches that mimic the two-cover descent in the cubic
case; namely a factorization of f into two polynomials, and a factorization into three polynomials.

The text is written so that it should be comprehensible to most bachelor students who have
completed some abstract algebra courses, and are familiar with the notion of fields.

Key Words: Two-cover descent, Three-cover descent, 9-cover descent, Descent methods, Hyperelliptic curves, Rational
points on curves
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1 Introduction

1.1 Background

Attempts to find rational points on curves can already be traced back to the third century AD,
namely to some of the methods developed by Diophantus [8, Page 3]. However, unlike the Greek
mathematician who only solved examples of curves of genus 0, this thesis discuses curves of genus
at least 2. More precisely in my Bachelor thesis I investigate ways to compute rational points of
hyperelliptic curve of the form C : y2 = f(x), where f is a polynomial of degree ≥ 5. The set of
those rational points is denoted as C(Q).

A key result for determining the set of rational points of a curve C(Q), was proven by Faltings,
for which he received a Fields Medal in 1986 [8, Page 4]. The theorem by Faltings states that
for a curve of genus 2 or more the set C(Q) is finite. Thus, allowing us to conclude that any
hyperelliptic curve C has either finitely many points or no points at all. It is however important
to set forth that as of today there are no known algorithms for computing C(Q), and no known
algorithms for determining if C(Q) is empty [6, Section 7]. The latter is the focus of the descent
methods, discussed in this Bachelor thesis, which under some favorable conditions allow one to
show that a given curve C has no rational points, and sometimes even compute a non-empty set
C(Q) (see Example 3.6.2).

1.2 Outline

The Bachelor thesis is organized as follows:

Prerequisites: In this section I give brief background information about algebraic geometry
introducing affine varieties, weighted projective space, weighted projective varieties, unramified
n-covers and resultants, along with properties and definitions related to those maps and objects.
The notions discussed in the prerequisites are needed to properly define and describe the descent
methods.

Two-cover Descent: This section presents a simplified version of the two-cover descent, based
on Stoll’s article [9]. Unlike Stoll, the considered method only uses the finite fields Fp, and not the
p-adic numbers. Towards the end of the section I added python code that can find rational affine
points of curves Dd used in the descent method. Also the descent is applied to two examples, one
in which the set of rational points C(Q) is shown to be empty, another where the descent is used
to compute a non-empty C(Q).

Descent Generalizations: In this section I discuss a possible generalization of the two-cover
descent to curves of the from C : y3 = f(x). Two different approaches are considered, one with a
factorization of f into two polynomials, and another with a factorization of f into three polyno-
mials.

Further Generalizations: This section presents a more general version of the two-cover descent,
so that it can also be used to show that a particular curve C has no rational points even if all of its
two-curves Dd have Fp points for all primes p, and real points. In order to do so I briefly describe
the p-adic numbers. Finally I discuss which primes p need to be considered so that to access if a
curve Dd has rational points.

Research Suggestions: A list of suggestions of topics related to this thesis that require further
research.
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2 Prerequisites

This section gives a brief list of definitions that are used throughout the thesis. It is meant to
facilitate the reading for mathematics student at a bachelor level, by grouping all potentially new
concepts for the reader. It is however not meant to be a complete account, but rather just provide
the minimum knowledge that is necessary to understand the two-cover descent discussed in later
sections.

2.1 Varieties

Most of this subsection is based on Siksek’s paper [6].

A variety is a system of polynomial equations, that can be defined either in affine or projective
space.
An affine variety V ⊆ An over a field k is a system of the form:

V :


f1(x1, ..., xn) = 0,
...

fm(x1, ..., xn) = 0

fi ∈ k[x1, ..., xn] where fi’a are non-constant

Definition 2.1 (set of l-rational points on a variety). Let V ⊆ An be a variety over some field k
and let l be a field extension of k. Then the set of l-rational points of V is defined as:

V (l) := {(x1, ..., xn) ∈ V | (x1, ..., xn) ∈ ln}

Remark. This thesis will often consider V (Q), i.e. the Q-rational points of a variety over Q. In
that case instead of calling those ‘Q-rational’ points we simply say ‘rational’ points.

Definition 2.2 (Absolutely irreducible affine variety). A affine variety is absolutely irreducible if
it cannot be written as a union of proper subvarieties over a field extension [6, Example 4.7].

2.1.1 Dimension and smoothness of varieties

In order to introduce a definition for the dimension of a variety, we need to define the transcendence
degree.

Definition 2.3 (Transcendence degree). Let K be a field, and L/K an extension. We define a
transcendence basis S of L/K as a subset of L such that L/K(S) is algebraic and for all subsets
{α1, ..., αn} ⊆ S there are no non-trivial polynomials f ∈ K[X1, ..., Xn] for which f(α1, ..., αn) = 0.
We say that the transcendence degree of L over K is equal to #S [5, Chapter VIII. §1].

Proposition 2.1. The choice of the set S in Definition 2.3 does not affect the transcendence degree
of L/K [5, Thm. 1.1., Chapter VIII. §1].

Then using the above we are able to get the more general definition of dimension of an affine
variety:

Definition 2.4 (Function field). Let V be a absolutely irreducible affine variety over k defined by
the equations:

V :


f1(x1, ..., xn) = 0,
...

fm(x1, ..., xn) = 0

fi ∈ k[x1, ..., xn]

Then the function field of V , denoted k(V ), is defined as the fraction field of k[x1, ..., xn]/(f1, ..., fm)
[6, Section 4.4].

Definition 2.5 (Dimension of affine variety). An affine variety V defined over a field k has
dimension equal to the transcendence degree of k(V )/k.

Page 2 of 34
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Example 2.1. A variety V ⊆ An defined by a single non-constant polynomial V : f = 0, has
dimension n− 1.

Definition 2.6 (Smoothness of affine varieties). Let V ⊆ An be a variety of dimension d over a
field k, and let k be an algebraic closure of k. Given a point P ∈ V

(
k
)
we say that V is smooth

at P if the Jacobian matrix of V has rank n− d when evaluated at P . Otherwise we say that V is
singular at P .
The variety V is called smooth or non-singular if it is smooth at all the points P ∈ V (k) [6, Section
4.2].

2.2 Weighted Projective Space

Let w0, w1, ..., wn be positive integers. The weighted projective space P(w0,w1,...,wn) is a geometric
object whose k-rational points
(a0, a1, ..., an) ∈ kn+1 \ {(0, 0, ..., 0)}, where k is a field, satisfy the equivalence relation:

(a0, a1, ..., an) ∼ (a′0, a
′
1, ..., a

′
n) ⇔ ∃λ ∈ k× such that (λw0a0, λ

w1a1, ..., λ
wnan) = (a′0, a

′
1, .., a

′
n).

The equivalence class of a point (a0, a1, ..., an) ∈ kn+1 \ {(0, 0, ..., 0)} is denoted (a0 : a1 : ... : an),
and the set of k-rational points in P(w0,w1,...,wn) is written as P(w0,w1,...,wn)(k) [8].

Remark. The weighted projective space can contain multiple singularities, however those are not a
concern in this thesis since the curves that are considered in further sections do not intersect with
those singularities in the weighted projective space. An example of such singularity of a weighted
projective space, that does not affect hyperelliptic curves is discussed in Stoll’s lecture notes [8,
page 5].

2.2.1 Varieties in Weighted Projective Space

Before defining varieties in the weighted projective space, one first needs to consider how the notion
of a homogeneous polynomial is affected by weights.

Definition 2.7 (Weighted polynomial ring). A weighted polynomial ring over k with n+1 variables
is defined as a polynomial ring that assigns a degree (i.e. a weight) to each variable. That is given a
weight wi for each variable xi, one states that deg(xi) = wi, or more generally, given non-negative
integers ci one gets:

deg

(
n∏

i=0

xci
i

)
=

n∑
i=0

wici

The weighted polynomial ring, where the weight of each xi is equal to wi is denoted as [4, Section
3]:

k(w0,w1,...,wn)[x0, x1, ..., xn]

Given the above polynomial ring, we say that a polynomial f ∈ k(w0,w1,...,wn)[x0, x1, ..., xn] is w-
weighted-homogeneous of degree d if every monomial in f has degree d, that is for bi ∈ k, and

non-negative integers c
(i)
j , m ∈ N one has

f =

m∑
i=1

bi

 n∏
j=0

x
c
(i)
j

j

 where for all 0 ≤ i ≤ n we get

n∑
j=0

wjc
(i)
j = d

Remark. Notice that for weights (w0, w1, ..., wn) = (1, 1, .., 1) we obtain the standard definition of
a polynomial ring, and a homogeneous polynomial.

With the definitions above we can finally define a weighted projective variety.

Definition 2.8 (Weighted projective variety). A weighted projective variety V ⊆ P(w0,w1,...,wn) is
a system of the form

V :


f1(x1, ..., xn) = 0,
...

fm(x1, ..., xn) = 0

fi ∈ k(w0,w1,...,wn)[x0, x1, ..., xn] are w-weighted-homogenous of deg > 0

Page 3 of 34



2.3 Hyperelliptic Curves s4760999

The relation between affine and weighted projective varieties can be best understood, by considering
standard affine patches. Given a weighted projective variety V ⊆ P(w0,w1,...,wn) over k, of the form

V :


f1(x1, ..., xn) = 0,
...

fm(x1, ..., xn) = 0

A standard affine patch is obtained by setting all of x′
is to 1 for a fixed i, where xi has weight

equal to one. This results in the following affine variety:

V ′ :


f1(x1, ..., xi = 1, ..., xn) = 0,
...

fm(x1, ..., xi = 1, ..., xn) = 0

One can see that the set of all points with xi ̸= 0 on V is in bijection with points on V ′.

Definition 2.9 (Dimension of weighted projective variety). The dimension of a weighted projective
variety is equal to the dimension of any of its standard affine patches.

Remark. All of the standard affine patches have the same dimension.

Definition 2.10 (Smoothness of weighted projective varieties). A weighted projective variety
V ⊆ P(w0,w1,...,wn) is smooth if all of its standard affine patches (i.e. V ∩ {xi = 1}) are smooth.

Remark. The above definition can be used for any of the affine patches since their functions fields
are isomorphic.

Definition 2.11 (Absolutely irreducible weighted projective variety). A weighted projective variety
is absolutely irreducible if it cannot be written as a union of proper subvarieties over a field extension
[6, Example 4.7].

2.3 Hyperelliptic Curves

Definition 2.12 (Curve). A curve is a smooth, weighted projective, and absolutely irreducible
1-dimensional variety over a field k [6].

Definition 2.13 (Hyperelliptic curve). Let g ≥ 2. A hyperelliptic curve of genus g over a field k,
where char(k) ̸= 2, is a variety of the weighted projective space P(1,g+1,1) defined by an equation
of the form Y 2 = F (X,Z) where F ∈ k[X,Z] is a squarefree homogeneous polynomial of degree
2g + 2. We say that the curve C has genus g [8].

Remark. We say that F is homogeneous and not w-weighted-homogenous, since the weights of
X and Z are equal to one. Moreover, the polynomial that actually needs to be w-weighted-
homogeneous for C be a weighted projective variety is Y 2 − F (X,Z), for which it is indeed the
case.

Notice that the way we defined the equivalence class on the weighted projective space is related to
points on C; namely, given some (ξ : η : ζ) ∈ C take any (λξ, λg+1η, λζ) ∈ (ξ : η : ζ), and observe:

η2 − F (ξ, ζ) =
(
λg+1η

)2 − F (λξ, λζ) = λ2g+2η2 − λ2g+2F (ξ, ζ) = λ2g+2
(
η2 − F (ξ, ζ)

)
thus

η2 = F (ξ, ζ) ⇔
(
λg+1η

)2
= F (λξ, λζ)

Consider a hyperelliptic curve C : Y 2 = F (X,Z) defined over Q, with F ∈ Z[X,Z]. We define
the set C(Fp) as the set of Fp points on C : Y 2 = F (X,Z), where F is obtained by reducing the
coefficients of F mod p. One can see that if C(Q) is non empty then C(Fp) is non empty for all
primes p. Namely, using the defined above equivalence relation on points of C, one can see that
any point in C(Q) can be represented by (a : b : c) where a, b, c are coprime integers, allowing us
to reduce those integers mod p, and therefore showing that whenever C has rational points then
C(Fp) is non-empty for all primes p.

Page 4 of 34
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2.3.1 Affine notation of Hyperelliptic Curves

A hyperelliptic curve C : Y 2 = F (X,Z) is covered by two standard affine patches: y2 = F (x, 1), and
w2 = F (1, z). Moreover one can see that there exists a bijection between all points in (ξ : η : ζ) ∈ C
with ζ ̸= 0 and the affine patch y2 = F (x, 1). The bijection is given by the maps:

(ξ : η : ζ) 7→
(
ξ

ζ
,

η

ζg+1

)
and (ξ, η) 7→ (ξ : η : 1)

Thus the first standard affine patch (i.e. y2 = F (x, 1)) can also be denoted using a one-variable
polynomial y2 = f(x), where f(x) = F (x, 1), since all points of the affine patch y2 = F (x, 1) can
be bijectivley mapped to the points of y2 = f(x). This way we can denote hyperelliptic curves
C with a single variate polynomial, i.e C : y2 = f(x). However, even when C is denoted using a
single variate polynomial, the curve is still defined on the weighted projective space, that is C is
always of the form Y 2 = F (X,Z), but in most cases we only need to consider the simpler equation
y2 = f(x). The only time the notation y2 = f(x) is insufficient is when checking for points that
are only present on w2 = F (1, z).

Definition 2.14 (Points at infinity). Let C : Y 2 = F (X,Z) be a hyperelliptic curve. Then
P = (X : Y : Z) ∈ C is a point at infinity if and only if Z = 0.

Notice that the points at infinity are only contained in the w2 = F (1, z) affine patch, and cannot be
found on y2 = F (x, 1) (i.e. cannot be found by only looking for solutions to the simpler equation
y2 = f(x)), since for all points in C with Z ̸= 0 there is a bijection to the affine patch y2 = F (x, 1).
That is why when looking for k-rational points of a curve C : y2 = f(x) we distinguish three possible
answers:

C(k) = {(ξ, η) ∈ k : η2 = f(ξ)} ∪ {∞} if 2 ∤ deg(f) (1)

C(k) = {(ξ, η) ∈ k : η2 = f(ξ)} if 2 | deg(f) and lcf(f) ̸= □ (2)

C(k) = {(ξ, η) ∈ k : η2 = f(ξ)} ∪ {∞s,∞−s} if 2 | deg(f) and lcf(f) = s2, s ∈ k (3)

where lcf(f) is the leading coefficient of f [9, Section 2].

The sets {∞}, and {∞s,∞−s} in (1) and (3) represent the points at infinity in C(k) (there are no
points at infinity in C(k) in case (2)).
In (1), there is only one point at infinity, that is (1 : 0 : 0). Because the degree of f is odd its
homogenization is of the form F (x, z) = 0xn+an−1x

n−1z+ ...+a1xz
n−1+a0z

n, thus F (1, 0) = 0.
In cases (2) and (3) the homogenization of f is F (x, z) = anx

n+an−1x
n−1z+ ...+a1xz

n−1+a0z
n

where an ̸= 0. Therefore the points at infinity are obtained from

y2 = F (1, 0) = 1nan + 1n−1 · 0an−1 + ...+ 1 · 0n−1a1 + 0na0 = an

where an is also the leading coefficient of f . Hence if an is not a square in k there are no points
at infinity in C(k) (case (2)), and if an is a square in k there are two points at infinity in C(k) i.e.
(1 : ±√

an : 0), as described by case (3).

2.4 Unramified n-covers

Definition 2.15 (Unramified n-cover). Let C and D be curves defined over Q and ϕ : C → D be
a rational map, i.e. let ϕ be defined by rational functions. We say that ϕ is an unramified n-cover
if all points in C(Q) have exactly n elements in their ϕ preimage, i.e. for any P ∈ C(Q) one has
#ϕ−1(P ) = n.

Remark. What is defined above as a ‘2-cover’ is refereed to as ‘double-cover’ or ‘two-cover’ in other
parts of this thesis. Similarly, ‘3-cover’ and ‘three-cover’ are used interchangeably.
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2.5 Resultant

The resultant of two single variate polynomials

f(x) = fnx
n + fn−1x

n−1 + ...+ f1x+ f0

g(x) = gmxm + gm−1x
m−1 + ...+ g1x+ g0

is given by the determinant of the following (n+m)× (n+m) matrix:

Res(f, g) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fn fn−1 · · · f1 f0 0 · · · 0

0 fn fn−1 · · · f1 f0 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

... 0 fn fn−1 · · · f1 f0 0
0 · · · 0 fn fn−1 · · · f1 f0
gm gm−1 · · · g1 g0 0 · · · 0

0 gm gm−1 · · · g1 g0 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

... 0 gm gm−1 · · · g1 g0 0
0 · · · 0 gm gm−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Given two homogeneous polynomials

F (x, z) = fnx
n + fn−1x

n−1z + ...+ f1xz
n−1 + f0z

n

G(x, z) = gmxm + gm−1x
m−1z + ...+ g1xz

m−1 + g0z
m

we can define their resultant as the determinant of the (n+m)× (n+m) matrix:

Res(F,G) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fn fn−1 · · · f1 f0 0 · · · 0

0 fn fn−1 · · · f1 f0 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

... 0 fn fn−1 · · · f1 f0 0
0 · · · 0 fn fn−1 · · · f1 f0
gm gm−1 · · · g1 g0 0 · · · 0

0 gm gm−1 · · · g1 g0 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

... 0 gm gm−1 · · · g1 g0 0
0 · · · 0 gm gm−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Notice that both definitions seem very similar, however it is important to point out that both
matrices depend on the degree of the polynomials. Thus, in the single variate case we rely only on
the highest power of x, whereas in the multivariate case the size of the matrix depends on the degree
of homogenization. That is why when we consider a polynomial F (x, z) = 0xn+ fn−1x

n−1z+ ...+
f1xz

n−1 + f0z
n, the resultant of its dehomogenization f(x) = F (x, 1) will give raise to different

result.
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It can be shown that the resultant of the homogeneous polynomials has the following properties
[9, Section 6.2.]:

1. Res(G,F ) = (−1)degF degG Res(F,G)

2. Res(F, c) = cdegF where c is a contstnt

3. Res(F (x, z),−βx+ az) = F (α, β)

4. Res(F,GH) = Res(F,G) Res(F,H)

5. Res(F,G) = Res(F,G+ FH) if degF + degH = degG

6. Res(F◦γ,G◦γ) = det(γ)degF degG Res(F,G) where γ ∈ GL(2, k), and k is the ambient field.

However the two properties that are the most important in this thesis are

Proposition 2.2. Let F and G be two homogeneous polynomials. Then,

1. Res(F,G) = 0 ⇔ F and G have a common factor

2. Let p be a prime, F ,G be the polynomials obtained by reducing the coefficients of F,G ∈ Z[X,Z]
mod p, and Res(F,G) := Res(F,G) mod p. Then, Res(F ,G) = Res(F,G), that is the
resultant of the polynomials with coefficients mod p, is equal to the resultant mod p.

Proof. 1.(⇐:) Assume that F and G have a common factor

h(x, z) = anx
n + an−1x

n−1z + · · ·+ a1xz
n−1 + a0z

n.

Then we can rewrite the polynomials as F = hf and G = hg for some polynomials f, g. It follows
that

Res(F,G) = Res(F, hg) = Res(F, h) Res(F, g)

= (−1)degF deg h Res(h, hf)(−1)degF deg g Res(g, hf)

= (−1)degF (deg h+deg g) Res(h, hf) Res(g, hf)

= (−1)degF degG Res(h, h) Res(h, f) Res(g, hf)

Thus, we can see that Res(F,G) is a multiple of Res(h, h). Observe that Res(h, h) is a 2n × 2n
matrix, where the first n rows are the same as the last n rows, allowing us to conclude that the
determinant is zero i.e. Res(h, h) = 0. It follows that Res(F,G) is zero.

1.(⇒): Assume that Res(F,G) = 0.
Let f(x) := F (x, 1), and g(x) := G(x, 1).

Case 1: Res(f, g) = 0:
By observing the determinant of the matrix from which the resultant of f and g is computed we
conclude that the following terms are linearly dependent:

f, xf.x2f, ..., xm−1f, g, xg, x2g, ..., xn−1g

Thus there must exist some non-zero λi ∈ k for which

0 = λ1f + λ2xf + ...+ λmxm−1f + λm+1g + λm+2xg + ...+ λn+mxn−1g

=
(
λ1 + λ2x+ ...+ λmxm−1

)
f +

(
λm+1 + λm+2x+ ...+ λn+mxn−1

)
g

The above implies that there exist some polynomials in k[X] such that fh1 = gh2, and notice that
deg(h2) ≤ deg(f)−1. Thus, there must exist at least one α ∈ k for which f(α) = 0, but h2(α) ̸= 0.
All of the above allows us to conclude that α must also be a root of g, and thus f and g share a
common factor.
Since we have shown that there exists some α ∈ k such that f(α) = g(α) = 0, it follows that
F (α, 1) = G(α, 1) = 0, allowing us to conclude that F and G share a common factor.
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Case 2: Res(f, g) ̸= 0:
Our assumption implies that Res(F,G) is different from Res(f, g), thus F or G need to have a zero
coefficient next to the term with the highest power of x. Without loss of generality we assume that
F (x, z) = 0xn + fn−1x

n−1z + ...+ f1xz
n−1 + f0z

n. Then using the definition of the resultant and
the definition of the determinant we observe:

Res(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 fn−1 · · · f1 f0 0 · · · 0

0 0 fn−1 · · · f1 f0 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

... 0 0 fn−1 · · · f1 f0 0
0 · · · 0 0 fn−1 · · · f1 f0
gm gm−1 · · · g1 g0 0 · · · 0

0 gm gm−1 · · · g1 g0 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

... 0 gm gm−1 · · · g1 g0 0
0 · · · 0 gm gm−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= gm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fn−1 · · · f1 f0 0 · · · 0

0 fn−1 · · · f1 f0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
0 0 fn−1 · · · f1 f0 0
0 · · · 0 fn−1 · · · f1 f0

gm gm−1 · · · g1 g0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
0 gm gm−1 · · · g1 g0 0
0 · · · gm gm−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Notice that we only obtain one matrix, since all others are multiplied by zeros from the first column.
Moreover, the remaining matrix is equal to Res(f, g), namelt it has the correct dimansions and
starts with the leading coefficient of f (Note if f would have an even smaller degree we can
repeat the process above until obtaining a matrix equal to Res(f, g)). Since by our assumption
Res(f, g) ̸= 0, the equation above implies that gm = 0. Hence, allowing us to state that the
polynomial z is a common factor of both F and G.

Thus, one can observe that Res(F,G) = 0 implies that F and G have a common factor.

2.: Knowing that for any matrix A with coefficients in Z we have that det(A) = det(A), it follows
that Res(F ,G) = Res(F,G).

A related notion to the resultant is the discriminant.

Definition 2.16 (Discriminant). Let k be a filed and let f ∈ k[X], with deg(f) = n, leading
coefficient a, and let f ′ be the derivative of f . Then the discriminant of f is defined as:

disc(f) :=
(−1)n(n−1)/2

a
Res(f, f ′)

Lemma 2.3. A polynomial f ∈ k[x] has a multiple root if and only if its discriminant is equal to
zero.

Proof. Observe that (−1)n(n−1)/2

a is not equal to zero. It follows that whenever disc(f) = 0, then
Res(f, f ′) = 0. By Proposition 2.2 we know that Res(f, f ′) is equal to zero if and only if f and f ′

share a root, i.e. f has a mutiple root.
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3 Two-cover Descent

This section presents a two-cover descent method based on Stoll’s article [9].

3.1 The curves C and Dd

Consider a hyperelliptic curve C : y2 = F (x, 1) over Q, of genus g, with f ∈ Z[X], such that
f(x) = f1(x)f2(x) for some f1, f2 ∈ Z[X] where the degree of f1 or f2 is even.

Remark. The exact reason for the degree of at least one of the polynomials being even is discussed
in detail in Section 3.1.1.

Assume that P = (ξ, η) ∈ C(Q). It follows that:

η2 = f(ξ) = f1(ξ)f2(ξ)

The above implies that for some η1, η2 ∈ Q one has dη21 = f1(ξ), and dη22 = f2(ξ), where d is a
unique non-zero squarefree integer; namely, d is the squarefree part of η, so that

f(ξ) = f1(ξ)f2(ξ) = dη21dη
2
2 = (dη1η2)

2
= η2

The squarefree integer d will allow us to define curves Dd with which information about C(Q) can
be obtained.

3.1.1 The curves Dd

Let d ∈ Z be squarefree. We define Dd as the following variety over Q:

Dd :=

{
dY 2

1 = F1(X,Z)

dY 2
2 = F2(X,Z)

where F = F1F2, fi(x) = Fi(x, 1), deg(Fi) is even, and Fi ∈ Z[X,Z] for i = 1, 2.

Observe that the curve Dd is a weighted projective variety in P
(1,

deg(F1)
2 ,

deg(F2)
2 ,1)

Moreover, one can see that F1 and F2 are:

Homogeneous: F1 and F2 are homogenizations of f1 and f2 respectively, and can be constructed
as follows (taking the example of f1):
Consider

f1(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 where n is a even positive integer.

The polynomial F1(x, z) is the degree n homogenization of f1(x) given by:

F1(x, z) = anx
n + an−1x

n−1z + ...+ a1xz
n−1 + a0z

n where n is a even positive integer.

Remark. n is an even integer, however f1 can still have an odd degree if an = 0.

From the definition above one can see that all the terms of F1 have the same degree allowing us
to conclude that F1 and F2 are homogeneous.

Squarefree: We know that C : Y 2 = F (X,Z) is a hyperelliptic curve, as defined in Definition
2.13 and thus F (X,Z) is squarefree. Knowing that F is squarefree one cannot have F1 and F2 not
squarefree, because of the equation F (X,Z) = F1(X,Z)F2(X,Z). This way we have shown that
F1 and F2 are indeed squarefree.

Coprime (i.e. they do not have common factors in Z[X,Z]): First one can see (as shown above)
that F (X,Z) = F1(X,Z)F2(X,Z) is squarefree. If F1 and F2 were to have a common factor G
then we could get G2

∣∣F1F2 = F , hence contradicting the fact that C is a hyperelliptic curve (since
F is squarefree). Therefore, we can conclude that F1 and F2 are indeed coprime.
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Remark. The above shows the reasons why not both deg(f1) and deg(f2) can be odd. Namely, z
would be a common factor of F1 and F2, contradicting F being squarefree. That is why for the use
of the descent method the assumption that at least one of f1 or f2 has an even degree is required.

Note that the curves Dd can also be considered in their affine versions:

Dd :=

{
dy21 = f1(x)

dy22 = f2(x)

however, for now we will focus on using the weighted projective notation.

Before discussing the relation of Dd and C we give more explanations as to why Dd is a curve,
despite being defined with two equations. To do so we compute the dimension of Dd, that is
computing the transcendence degree of k(Dd), over k, where k is the field on which the curve Dd

is defined on.
To do the above one starts by observing that k(x) has transcendence degree one over k. Namely,
there exists no non-trivial polynomial f in k[X] such that f(x) = 0, thus k(x)/k has indeed
transcendence degree one.
One can see that 1

df1(x),
1
df2(x) ∈ k(x). Moreover, y2i = 1

dfi(x), thus yi is a square root of some
element in k(x), implying that yi is algebraic over k(x). Therefore we deduce that dY 2 − fi(x)
is the minimal polynomial of yi in k(x)[Y ], allowing us to conclude: k(x)[y1]/(dy

2
1 − fi(x)) is an

algebraic extension of k(x).
Similarly one can show that

(
k(x)[y1]/dy

2
1 − f1(x)

)
[y2]/(dy

2
2 − f2(x)) is an algebraic extension of

k(x)[y1]/(dy
2
1 − f1(x)). This way we have obtained the following field tower:

(
k(x)[y1]/(dy

2
1 − f1(x))

)
[y2]/(dy

2
2 − f2(x))

k(x)[y1]/(dy
2
1 − f1(x))

k(x)

k

algebraic extension

algebraic extension

transcendence degree 1

From the above one can see that the extension k(Dd) =
(
k(x)[y1]/dy

2
1 − f1(x)

)
[y2]/(dy

2
2 − f2(x))

over k has transcendence degree one, hence the variety Dd has dimension 1, i.e. Dd is a curve.

The curve Dd can be mapped to C using the unramified double cover πd:

πd : Dd → C

(X : Y1 : Y2 : Z) 7→ (X : dY1Y2 : Z)

The map πd is indeed well-defined, because given a point A = (X ′ : Y ′
1 : Y ′

2 : Z ′) ∈ Dd we get{
dY ′2

1 = F1(X
′, Z ′)

dY ′2
2 = F2(X

′,′ Z ′)
⇒ F (X ′, Z ′) = F1(X

′, Z ′)F2(X
′, Z ′) = (dY ′

1Y
′
2)

2

so indeed πd(X
′ : Y ′

1 : Y ′
2 : Z ′) = (X ′ : dY ′

1Y
′
2 : Z ′) ∈ C, for any (X ′ : Y ′

1 : Y ′
2 : Z ′) ∈ Dd.

We will now show that πd is an unramified double-cover.

Take any (X ′ : Y ′ : Z ′) ∈ C(Q), and notice that evaluating F1 and F2 at (X ′, Z ′) gives a point

on Dd, namely (X ′ :
√

F1(X′,Z′)
d :

√
F2(X′,Z′)

d : Z ′).
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Remark. The numbers
√

F1(X′,Z′)
d and

√
F2(X′,Z′)

d are not necessarily rational since d is squarefree,

however the map πd is not only defined on rational points of the curves, but on all points in Dd(Q).
In fact if we restrict the map πd to only rational points on the curves, the restricted version is not
necessarily surjective on rational points of C, forcing us to consider all the respective maps for any
squarefree d when checking whether C(Q) is empty or not. More explanations are provided in the
proof of Proposition 3.2.

One can see that

πd(X
′ :

√
F1(X ′, Z ′)

d
:

√
F2(X ′, Z ′)

d
: Z ′) = (X ′ : d

√
F1(X ′, Z ′)F2(X ′, Z ′)

d
: Z ′)

= (X ′ :
√
F1(X ′, Z ′)F2(X ′, Z ′) : Z ′).

Thus, knowing that F (X ′, Z ′) = F1(X
′, Z ′)F2(X

′, Z ′) we get:(√
F1(X ′, Z ′)F2(X ′, Z ′)

)2
= F1(X

′, Z ′)F2(X
′, Z ′) = F (X ′, Z ′) = Y ′2

This way have shown that any arbitrary point (X ′ : Y ′ : Z ′) ∈ C(Q) has a non-empty pre-image
in πd

(
Dd(Q)

)
, hence the map πd is surjective.

Assume that for two points (X ′ : Y ′
1 : Y ′

2 : Z ′), (X ′′ : Y ′′
1 : Y ′′

2 : Z ′′) ∈ Dd one has

πd(X
′ : Y ′

1 : Y ′
2 : Z ′) = πd(X

′′ : Y ′′
1 : Y ′′

2 : Z ′′).

By the definition of πd we get X ′ = X ′′ and Z ′ = Z ′′. Hence,

dY ′2
i = Fi(X

′, Z ′) = Fi(X
′′, Z ′′) = dY ′′2

i ⇒ |Y ′
i | = |Y ′′

i | for i = 1, 2

implying that either Y ′
i = Y ′′

i or Y ′
i = −Y ′′

i .
Assume that Y ′

1 = Y ′′
1 , and Y ′

2 = −Y ′′
2 , then

πd(X
′ : Y ′

1 : Y ′
2 : Z ′) = (X ′ : dY ′

1Y
′
2 : Z ′)

πd(X
′′ : Y ′′

1 : Y ′′
2 : Z ′′) = πd(X

′ : Y ′
1 : −Y ′

2 : Z ′) = (X ′ : −dY ′
1Y

′
2 : Z ′)

⇒ πd(X
′ : Y ′

1 : Y ′
2 : Z ′) ̸= πd(X

′′ : Y ′′
1 : Y ′′

2 : Z ′′)

hence the above contradicts our assumption. A similar reasoning can be made with Y ′
1 = −Y ′′

1 ,
and Y ′

2 = Y ′′
2 .

Therefore, we conclude that πd(X
′ : Y ′

1 : Y ′
2 : Z ′) = πd(X

′′ : Y ′′
1 : Y ′′

2 : Z ′′), if and only if

(X ′ : Y ′
1 : Y ′

2 : Z ′) = (X ′′ : Y ′′
1 : Y ′′

2 : Z ′′), or (X ′ : Y ′
1 : Y ′

2 : Z ′) = (X ′′ : −Y ′′
1 : −Y ′′

2 : Z ′′)

Thus, all points in C(Q) have a double-preimage.

This way we have shown that πd is indeed an unramified double cover, i.e. a mapping for which
any point on C has a preimage with exactly two points.

Remark. The above proof shows that πd is an unramified double-cover for curves C and Dd defined
over a field of characteristic 0, however this property of πd can be generalized to any field of
characteristic not equal to 2.

It is also worth pointing out that the map πd restricts to the standard affine patches of the curves
Dd and C as follows:

πd : Dd → C

(x, y1, y2) 7→ (x, dy1y2)

Moreover the map πd can be used to compute the genus of the curveDd using the Riemann-Hurwitz
formula. This thesis applies the above mentioned formula only to unramified n-covers, and thus
only this particular case is stated below.

Theorem 3.1 (Simplified Riemann-Hurwitz formula). Let C1 and C2 be smooth curves defined
over a field of characteristic zero, with genus g1 and g2 respectively. Let π : C1 → C2 be an
unramified n-cover. Then [2, Theorem 8.7.3]:

2g1 − 2 = n(2g2 − 2)
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3.2 C(Q) as a union

Proposition 3.2. Given a hyperelliptic curve C : Y 2 = F (X,Z), with F ∈ Z[X,Z], such that
F (X,Z) = F1(X,Z)F2(X,Z) for some F1, F2 ∈ Z[X,Z], and curves defined the same way as in
the previous section for all squarefree integers d Dd : dY 2

1 = F1(X,Z), dY 2
2 = F2(X,Z), one has

C(Q) =
⊔

d squarefree

πd(Dd(Q)),

where the union of πd(Dd(Q))’s is disjoint.

Proof. Take any affine point (ξ, η) ∈ C(Q). Then we obtain a curve Dd : dy1 = f1(x), dy2 = f2(x),
where d is the squarefree part of η, and for which (ξ, η) ∈ πd(Dd(Q)). Thus, the union of πd(Dd(Q))
contains all affine points of C. Moreover, given any point at infinity (1 : η : 0) ∈ C(Q), one can also
see that there must exist a unique squarefree integer e such that the map πe(1 : η1 : η2 : 0) = (1 : η : 0)
where η1, η2 ∈ Q.
Thus,

C(Q) ⊆
⋃

d sqaurefree

πd(Dd(Q)) =: U.

Take any point (ξ : η : ζ) ∈ U . It follows that there exists at least one squarefree d such that
(ξ : η : ζ) ∈ πd(Dd(Q)), therefore all points of U are in C(Q), that is

U ⊆ C(Q).

All of the above proves
C(Q) = U.

We only need to show that the union U is disjoint to complete the proof. Remember that when
defining the curves Dd, we observed that for any point P = (ξ : η : ζ) ∈ C(Q) there is a unique
squarefree integer d such that F (ξ, ζ) = F1(ξ, ζ)F2(ξ, ζ) = dη1dη2, thus the points P can be found
in at most one set πd(Dd(Q)). Therefore the intersection of any πd(Dd(Q)) and πe(De(Q)) where
d and e are distinct squarefree integers is empty.

3.3 Rational points of Dd

Let p be a prime such that p|d, and assume that there exist a point (ξ : η1 : η2 : ζ) ∈ Dd(Fp).
Then

F 1(ξ, ζ) = dη1 ≡ 0 mod p, and F 2(ξ, ζ) = dη2 ≡ 0 mod p

thus, (ξ, ζ) is a common root of F 1 and F 2, which implies that they have a common factor.

Lemma 3.3. Let p be a prime such that p|d, and assume that there exists a point (ξ : η1 : η2 : ζ) ∈ Dd(Fp).
Then ζx− ξz is a common factor of F 1 and F 2 mod p.

Proof. Let Fi(X,Z) = anX
n + an−1X

n−1Z + ... + a1XZn−1 + a0Z, and F i be the polynomial
defined by reducing the coefficients of Fi mod p.

Case 1: ζ = 0
It follows that F i(ξ, 0) = 0 for i = 1, 2. Thus,

F i(ξ, 0) = anξ
n + an−1ξ

n−1 · 0 + ...+ a1ξ · 0n−1 + 0a0 = 0

⇒ anξ
n = 0

Notice that ξ cannot be zero since the point (0 : 0 : 0) is not part of the weighted projective space
on which C is defined, as discussed in Section 2.2. Thus we conclude that an = 0 mod p, implying
that −zξ = x0− zξ = xζ − zξ is a common factor of F1 and F2.
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Case 2: ζ ̸= 0.
Given the affine polynomials fi(x) = Fi(x, 1), let f i be the polynomials obtained by reducing the
coefficients of f mod p, where i = 1, 2. We compute

0 = F i(ξ, ζ)

⇒ ζ−n0 = ζ−nF i(ξ, ζ)

= ζ−n
(
anξ

n + an−1ξ
n−1ζ + ...+ a1ξζ

n−1 + a0ζ
n
)

= an
(
ξζ−1

)n
+ an−1

(
ξζ−1

)n−1
+ ...+ a1

(
ξζ−1

)
+ a0

= f1(ξζ
−1)

Thus ξζ−1 is a root of f i implying that x− ξζ−1
∣∣f i(x). Moreover since we operate withing a field

( i.e. in Fp) we can multiply x − ξζ−1 by the unit ζ to obtain ζx − ξ
∣∣f i(x). Because ζx − ξ is

dividing f i(x), there must exist a g(x) ∈ Fp[X] for which

f i(x) = (ζx− ξ) g(x) (4)

Let G(x, z) be the deg(Fi) − 1 homogenization of g(x). Then by homogenizing both sides of (4)
we obtain:

F i(x, z) = (ζx− ξz)G(x, z) ⇒ ζx− ξz
∣∣F i(x, z)

Hence ζx− ξz is indeed a common factor of F 1 and F 2.

The above Lemma tells us what happens when a prime p|d and Dd has Fp points, using it we can
state further:

Theorem 3.4. Given a curve Dd : dY 2
1 = F1(X,Z), dY 2

2 = F2(X,Z), and a prime number p one
has:

p|d and Dd(Fp) is non-empty ⇒ p| Res(F1, F2).

Proof. As shown in Lemma 3.3 we know that whenever p|d and Dd(Fp) is non empty, then F1 and
F2 have a common factor mod p, which is equivalent to saying that Res(F1, F2) ≡ 0 mod p i.e.
p| Res(F1, F2); thus proving the theorem.

3.4 C(Q) as a finite union and condition for C(Q) = ∅

So far we have shown that C(Q) can be found using an infinite union of Dd(Q). Such a result
might not seem useful for the moment, however going further we show how the infinite union can
be reduced to finitely many cases, allowing one to feasibly check whether C(Q) is empty in some
cases.

In the previous sections we have shown what happens when there exists a Fp-rational point
on the curve Dd. This section focuses on how this criterion can be useful to make the union⊔

squarefree d πd(Dd(Q)) finite.

As a consequence of Theorem 3.4 we get:

Corollary 3.4.1. Given a curve Dd : dY 2
1 = F1(X,Z), dY 2

2 = F2(X,Z), and a prime number p
such that p|d, one has:

p ̸ | Res(F1, F2) and p|d ⇒ Dd(Fp) = ∅

Proof. Observe that Res(F1, F2) ∈ Z \ {0}, namely F1 and F2 are coprime hence their resultant is
non-zero, moreover they have integer coefficients, so their resultant also needs to be an integer.
Using Theorem 3.4 we get:

p|d and Dd(Fp) is non-empty ⇒ p| Res(F1, F2)

implying: p ̸ | Res(F1, F2) ⇒ p ̸ | d or Dd(Fp) is empty

thus we get: p ̸ | Res(F1, F2) and p | d ⇒ Dd(Fp) is empty
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The above Corollary 3.4.1 allows us to find all curves Dd for which there potentially exists at least
one prime p such that Dd(Fp) is empty.

Another possible approach to check if Dd(Q) is empty consists of verifying if Dd has R points.
Namely, since Q ⊂ R, then Dd(Q) ⊂ Dd(R), so if Dd(R) is empty, then Dd(Q) must also be empty.

Given the above we can finally restrict our problem to a finite set of squarefree integers d, and we
do it as follows:

Theorem 3.5. Let C : y2 = f1(x)f2(x) be a hyperelliptic curve such that f1, f2 ∈ Z[X], and the
degree of f1 or f2 is even. For a squarefree integer d, let Dd : dY 2

1 = F1(X,Z), dY 2
2 = F2(X,Z)

be the curve, defined in the same way as in the earlier sections. Consider the set

S := {d ∈ Z : d squarefree and ∀ primes p one has p|d ⇒ p| Res(F1, F2)}

Then S is finite and

C(Q) =
⊔
d∈S

πd(Dd(Q)).

Moreover if for all d ∈ S one has the curve Dd has no R points, or no Fp points for some prime p
then one can conclude that C(Q) is empty

Proof. Any d ∈ S can only be divisible by the finitely many primes that also divide Res(F1, F2)
which is a non-zero integer. Thus, one can see that there are only finitely many primes that can
divide d, allowing us to conclude that S must be finite.

For any d /∈ S there must exist a prime p such that p|d, but p ̸ | Res(F1, F2). Thus, by Corollary
3.4.1 we get that Dd(Fp) = ∅, which implies that Dd has no rational points. The above in
combination with Proposition 3.2 implies:

C(Q) =
⊔

squarefree d

πd(Dd(Q)) =
⊔
d∈S

πd(Dd(Q))

Moreover, if one assumes that for all d ∈ S there exists a prime p such that Dd(Fp) = ∅, or
Dd(R) = ∅ then for all d ∈ S we get πd(Dd(Q)) = ∅, implying that C(Q) must also be empty.

The above theorem gives us C(Q) as a finite union, and thus provides a method for checking
whether C has no rational points. Still, Theorem 3.5 can be further generalised, as discussed in
Section 5 of this thesis or in Stoll’s article [9].

3.5 Python code

This subsection presents python code that can verify whether a curve Dd has points in Fp for
finitely many primes p on its first standard affine patch. Note that even if one finds a suitable
field Fp for which Dd has no affine points, one still needs to check for points at infinity to conclude
Dd(Q) = ∅.

Python Code:

#Finds a l l p o s s i b l e e lements o f F p o f the form dyˆ2 , with y in F p
de f squares mod p t imes d (p , d ) :

d s qua r e s e t = s e t ( )
f o r i in range (p ) :

d s qua r e i = (d∗( i ∗∗2)) % p
d squa r e s e t . add ( d s qua r e i )

r e turn d squa r e s e t

#Gives a l l the p o s s i b l e s o l u t i o n s o f a one va r i ab l e polynomial mod p
de f so l s mod p ( f , p ) :
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s o l l i s t = [ ]
f o r i in range (p ) :

s o l i = f ( i ) % p
s o l l i s t . append ( s o l i )

r e turn s o l l i s t

#turns a l i s t i n to a s e t
de f l i s t t o s e t ( t h e l i s t ) :

n = len ( t h e l i s t )
t h e s e t = s e t ( )
f o r i in range (n ) :

t h e l i s t e l em = t h e l i s t [ i ]
t h e s e t . add ( t h e l i s t e l em )

return t h e s e t

#This func t i on l i s t s a l l x ’ s at which f y i e l d s s o l u t i o n o f the form dyˆ2 ,
# f o r y in F p
de f good so l s ( s o l l i s t , s qua r e s e t ) :

n = len ( s o l l i s t )
r e s u l t = [ ]
f o r i in range (n ) :

c u r r e n t s o l = s o l l i s t [ i ]
i f c u r r e n t s o l in s qua r e s e t :

r e s u l t . append ( i )
r e turn r e s u l t

#th i s func t i on checks i f with in a l i s t o f primes , D d has F p−r a t i o n a l po in t s
de f Fp r ea t i ona l che ck ( func t i on 1 , funct i on 2 , p r ime l i s t , d ) :

np = len ( p r im e l i s t )
empty = se t ( )
Dd empty primes = [ ]
f o r i in range (np ) :
#the prime number f o r which we want to f i nd x ’ s o f po in t s in D d :
prime = p r im e l i s t [ i ]
squares = squares mod p t imes d ( prime , d) #makes a l i s t o f a l l squares mod p
#get a l i s t o f a l l s o l u t i o n s o f f 1 ( x ) mod p , s t a r t i n g from x = 0 to x = p−1:
s o l u t i o n l i s t f 1 = sols mod p ( funct i on 1 , prime )
s o l u t i o n l i s t f 2 = sols mod p ( funct i on 2 , prime ) #same as l i n e above f o r f 2
#the l i n e below turns a l l the s o l u t i o n s in to a set ,
i n p u t s o f s o l s s e t f 1 = l i s t t o s e t ( good so l s ( s o l u t i o n l i s t f 1 , squares ) )
i n p u t s o f s o l s s e t f 2 = l i s t t o s e t ( good so l s ( s o l u t i o n l i s t f 2 , squares ) )
#i n t e r s e c t the x ’ s f o r which f 1 and f 2 have a squared s o l u t i o n :
x points on Dd = i n p u t s o f s o l s s e t f 1 . i n t e r s e c t i o n ( i n p u t s o f s o l s s e t f 2 )
i f x po ints on Dd == empty :

Dd empty primes . append ( prime )
re turn Dd empty primes

#Example Implementation f o r the curve
#$D 1 : xˆ2 + 10x − 7 = y 1 ˆ2 , 3xˆ4 + 30xˆ3 − 31xˆ2 + 2x + 3 = y 2 ˆ2$ :

de f f 1 ( x ) :
s o l u t i o n = x∗∗2 + 10∗x − 7
return s o l u t i o n

de f f 2 ( x ) :
s o l u t i o n = 3∗( x∗∗4) + 30∗( x∗∗3) − 31∗( x∗∗2) + 2∗x + 3
return s o l u t i o n

d = 1
f i r s t 1 0 p r im e s = [ 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 ]
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empty primes = Fp rea t i ona l che ck ( f 1 , f 2 , f i r s t 1 0 p r ime s , d )
#Note : f 1 and f 2 need to be de f ined in the code
p r in t (” primes f o r which D d(F p ) i s empty ”+ s t r ( empty primes ) )
#Note : the code only checks f o r primes in the l i s t
#so here f o r [ 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 ]

#Output : ” primes f o r which D d(F p ) i s empty [ 5 ] ”

3.6 Examples of descent on hyperelliptic curves

3.6.1 C : y2 = −3x6 − 60x5 − 248x4 + 518x3 − 240x2 − 16x+ 21

We start by observing that the polynomial on the right hand side factors as follows:

−3x6 − 60x5 − 248x4 + 518x3 − 240x2 − 16x+ 21 =
(
x2 + 10x− 7

) (
3x4 + 30x3 − 31x2 + 2x+ 3

)
Let f1(x) = x2 +10x− 7, and f2(x) = 3x4 +30x3 − 31x2 +2x+3, and let F1(X,Z) and F2(X,Z)
be their homogenization of degree 2 and 4 respectively.
We compute the resultant as follows:

Res(F1, F2) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 10 −7 0 0 0
0 1 10 −7 0 0
0 0 1 10 −7 0
0 0 0 1 10 −7
3 30 −31 2 3 0
0 3 30 −31 2 3

∣∣∣∣∣∣∣∣∣∣∣∣
= 1

The above implies that S = {±1}, since there are no primes that divide Res(F1, F2), thus the
only squarefree integers d that satisfy ∀ p one has p|d ⇒ p| Res(F1, F2) are 1 and −1. This way we
obtain the following curves:

D± =

{
±y21 = x2 + 10x− 7

±y22 = 3x4 + 30x3 − 31x2 + 2x+ 3

Using Riemann-Hurwitz formula (Theorem 3.1) we get that D± have both genus 3.

Reducing both curves to F5 gives us:

D± =

{
±y21 = x2 + 3

±y22 = 3x4 + 4x2 + 2x+ 3

where one can see that

f1(0) = 3 ̸= □

f2(1) = 2 ̸= □

f1(2) = 2 ̸= □

f1(3) = 2 ̸= □

f2(4) = 3 ̸= □

thus D+ has no F5 points on its first affine patch (Note: the same example is used in Section 3.5
with the python code). Moreover, since 3 and 2 are additive inverses mod 5, we can see that for
all elements of F5 there is always at least one of the two polynomials that gives a result which is
not of the form −y2, allowing us to conclude that D− has no F5 points on its first affine patch.
We show that there are no points at infinity as follows:

F2(1, 0) = 3 ̸= □

hence D± has no F5 points at infinity. We conclude that D±(F5) = ∅ implying D±(Q) = ∅.

All of the above, along with Thm. 3.5 proves that C(Q) = ∅.

A similar example of descent on a curve C : y2 = (−x2 −x+1)(x4 +x3 +x2 +x+2) can be found
in Stoll’s article [9, Example 6.2].
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3.6.2 C : y2 = (x2 + 1)(x4 + 1)

So far the reader could get the impression that the two-cover descent only allows to confirm a
negative result, namely that C(Q) is empty, however the example below presents a case where a
double-cover descent can be used to find all elements of a non-empty set C(Q).

Let f1(x) = x2 + 1, and f2(x) = x4 + 1, and let F1 and F2 be their respective homogenization.
We start by computing the resultant:

Res(F1, F2) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 4

Thus the set of squarefree integers we need to consider is S = {±1,±2}. We directly discard −1
and −2, because the polynomials F1 and F2 give non-negative results for all (X,Z), allowing us to
conclude that D−1(R) = D−2(R) = ∅. This way we are left with

D1 =

{
Y 2
1 = X2 + Z2

Y 2
2 = X4 + Z4

, and D2 =

{
2Y 2

1 = X2 + Z2

2Y 2
2 = X4 + Z4

where
C(Q) = π1(D1(Q)) ∪ π2(D2(Q))

Using Riemann-Hurwitz formula (Theorem 3.1) we get that D1 and D2 have both genus 3.

One way to compute C(Q) consists of finding all rational points of the curves D′
2 : 2Y 2

2 = X4 + Z4

and D′
1 : Y 2

2 = X4 + Z4. Namely consider the maps

ϕi : Di → D′
i

(X : Y1 : Y2 : Z) 7→ (X : Y2 : Z)

for i = 1, 2. Note that a point in Di(Q) gives raise to a point in D′
i(Q), thus computing

ϕ−1
i (P ) ∩Di(Q) for all P ∈ D′

i(Q) would allow us to find all elements of Di(Q). The diagram
below presents all of the mapping used in this example:

D1 D2

D′
1 D′

2C

ϕ1 π1 π2 ϕ2

For d = 1: all affine solutions of y22 = x4+1, are (0,±1). Namely, consider the following coordinate
transformation:

y 7→ u

2
− v2

4u2
; x 7→ v

2u

By substituting the above transformation in the equation y2 = x4 + 1 we get

y2 = x4 + 1

⇔
(
u

2
− v2

4u2

)
=
( v

2u

)4
+ 1

⇔ u2

4
− uv2

4u2
+

v4

16u4
=

v4

16u4
+ 1

⇔ u3 − v2 = 4u

⇔ v2 = u3 − 4u
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Notice that the above transformations is reversible, by taking

u 7→ 2(y + x2); v 7→ 4x(y + x2)

Moreover both of the transformations presented above are rational, that is they map all rational
points of one curve into the other. Using the theory of elliptic curves one can see that the curve
v2 = u3 − 4u has exactly 4 rational points (for a detailed proof see [7, Chapter III.6, Example
2]). The above implies that D′

1 must also have exactly four rational points. In order to find the
remaining two we check for points at infinity. Observe that y22 = F2(1, 0) = 1 has two solutions:
(±1, 1).
Thus there are exactly four rational points on D′

1. Since we know the x coordinate for which
solutions to y2 = x4 + 1 exists, in order to find all rational points of D1 we need to verify if using
the same x in the curve Y 2

1 = X2 + Z2 also gives raise to a rational point. Notice
that f2(0) = (0)2 +1 = (±1)2, and F2(1, 0) = (1)2 + (0)2 = (±1)2; hence the set of rational points
on D1 is given by

D1(Q) = {(0 : 1 : ±1 : 1), (0 : −1 : ±1 : 1), (1 : 1 : ±1 : 0), (1 : −1 : ±1 : 0)}

For d = 2: all affine solutions of 2y22 = x4 + 1, are (±1,±1), and (±1,∓1). Namely, consider the
following coordinate transformations as outlined in [1, Chapter 8]:
We start with y 7→ y

x2 , and x 7→ 1
x + 1, which gives us

2
( y

x2

)2
=

(
1

x
+ 1

)4

+ 1

⇔ 2
y2

x4
=

1

x4
+ 4

1

x3
+ 6

1

x2
+ 4

1

x
+ 2

⇔ y2 =
1

2
+ 2x+ 3x2 + 2x3 + x4

Notice that the right hand side of the equation above is equal to (x2 + x + 1)2 − 1
2 , therefore we

can transform the equation further to get

(y − x2 − x− 1)(y + x2 + x+ 1) = −1

2

Let t := y + x2 + x+ 1. It follows that

y − x2 − x− x =
−1

2t

⇔ 2(x2 + x+ 1) = t− −1

2t

Let s := xt, and multiply both sides of the equation above by t2 to obtain:

2s2 + 2st+ 2t2 = t3 +
1

2
t

We now map s 7→ 1
4s, and t 7→ 1

2 t to get:

s2

8
+

1

4
ts+

1

2
t2 =

1

8
t3 +

1

4
t

⇔ s2 + 2ts+ t2 + 3t2 = t3 + 2t

⇔ (s+ t)2 = t3 − 3t2 + 2t

then let v := s+ t, and u := t− 1 to obtain

v2 = (u+ 1)3 − 3(u+ 1)2 + 2(u+ 1)

⇔ v2 = u3 − u

All of the above shows that there exists an invertible rational map from 2y2 = x4+1 to v2 = u3−u.
Using the theory of elliptic curves (as described in [7, Chapter III.6, Example 1]) we can see that
v2 = u3 − u has exactly 4 rational points, implying that 2y22 = x4 +1 has exactly 4 rational points
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as well, namely (±1,±1), (±1,∓1). Moreover 2Y 2
2 = X4 + Z4 has no points at infinity, because

F2(1, 0) = 14 ̸= 2Y 2
2 , for any Y2 ∈ Q.

By imputing x = ±1 to the second equation 2y21 = x2 + 1 we get:

D2(Q) = {(1 : 1 : −1 : ±1), (1 : 1 : 1 : ±1), (1 : −1 : 1 : ±1), (1 : −1 : −1 : ±1)}

note that there cannot be any more points in Dd(Q), since the equation 2Y 2
2 = X4 + Z4 has

rational solutions only for X = ±1, and Z = 1.

Using the mappings π1 and π2 we compute:

π1(D1(Q)) = {(0 : ±1 : 1), (1 : ±1 : 0)}
π2(D2(Q)) = {(1 : ±2 : 1), (1 : ±2 : −1)}

Thus all of the above along with Theorem 3.5 allows us to prove

C(Q) = {(0 : ±1 : 1), (1 : ±1 : 0), (1 : ±2 : 1), (1 : ±2 : −1)}
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4 Descent Generalizations

This section focuses on generalising the double-cover descent to curves of the form C : Y 3 = F (X,Z).
In order to do so we begin with restating the problem in terms of the new curve. Then I present
two possible approaches: one that requires F be be factored into two polynomials, and another
which requires F be factored into three polynomials.

4.1 New weighted projective plane

This section will consider curves defined over a field k where chark ̸= 3, of the form C : Y 3 = F (X,Z)
where F ∈ k[X,Z] is squarefree, and degF = 3n where n ≥ 2 is a integer.

The weighed projective space on which C : Y 3 = F (X,Z) is defined is P(1,n,1). Similarly to the
hyperelliptic curves discussed in Section 3 one can see that, for any λ ∈ k× we get

(λnη)
3 − F (λξ, λζ) = λ3nη3 − λ3nF (ξ, ζ) = λ3n (η − F (ξ, ζ))

hence
η3 = F (ξ, ζ) ⇔ (ηλ)

3
= F (λξ, λζ) for all λ ∈ k×

It can also be noted that it is not possible for a standard affine patch of C to be defined by a
polynomial of degree congruent to 1 mod 3. Namely, consider

C : Y 3 = F (X,Z) = amXm + am−1X
m−1Z + ...+ a1XZm−1 + a0Z

m

and assume that deg(f) ≡ 1 mod 3, where f(x) = F (x, 1). Since deg(F ) is divisible by 3, we
conclude deg(f) = deg(F )− 2 = m− 2. From the way we defined f we observe

F (x, 1) = f(x) = amxm + am−1x
m−1 + ...+ a1x+ a0

Since f has degree equal to m− 2, it follows am = am1
= 0. The above implies

F (X,Z) = am−2X
m−2Z2 + am−3X

m−3Z3 + ...+ a1XZm−1 + a0Z
m

hence Z2|F (X,Z), contradicting the assumption that F (X,Z) is squarefree. Therefore it is not
possible for the polynomial f to have a degree congruent to 1 mod 3.

4.2 Points at infinity

Since we consider a new curve C it will have different possible configurations of points at infinity,
analogous to the cases described by the equations (1), (2), and (3). Given the affine
equation y3 = f(x) observe:

C(k) = {(ξ, η) ∈ k : η3 = f(ξ)} ∪ {∞} if deg(f) ≡ 2 mod 3

C(k) = {(ξ, η) ∈ k : η3 = f(ξ)} if deg(f) ≡ 0 mod 3 and lcf(f) is not a cube in k

C(k) = {(ξ, η) ∈ k : η3 = f(ξ)} ∪ {α ∈ k : α3 = lcf(f)} if deg(f) ≡ 0 mod 3 and lcf(f) = s3, s ∈ k

The reasoning of the result above is also analogous to results (1), (2), and (3) discussed in
Section 2.3.1.

4.3 Three-cover descent

4.3.1 The curves C, D
(1)
d , and D

(2)
d

Let y3 = f(x) be the affine equation of a curve C : Y 3 = F (X,Z) defined as above, where
deg(f) ̸≡ 1 mod 3, and deg(f) ≥ 5, with f ∈ Z[X] squarefree, and let f1, f2 be two polynomials
in Z[X] such that f1(x)f2(x) = f(x), and deg(f1) or deg(f2) is divisible by 3.
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Assume that P = (ξ, η) ∈ C(Q). It follows that there exist some cube free integers s1 and s2, and
rational numbers η1 and η2 such that

η3 = f(ξ) = f1(ξ)f2(ξ) = s1η
3
1s2η

3
2 .

We know that s1 and s2 are not cubes in Q, however their product must be a cube. The above
implies that there must be a unique non-zero cubefree integer d such that

s1 = d2, and s2 = d or s1 = d, and s2 = d2.

Thus we define the following two curves:

D
(1)
d :=

{
d2Y 3 = F1(X,Z)

dY 3 = F2(X,Z)
D

(2)
d :=

{
dY 3 = F1(X,Z)

d2Y 3 = F2(X,Z)
,

where fi(x) = Fi(x, 1) for i = 1, 2.

Note that despite being defined by two equations D
(1)
d and D

(2)
d are still curves. Showing that they

have dimension equal to one can be done similarly to the computations of the dimension of Dd in
section 3.1.1.

The polynomials F1 and F2 are homogeneous, coprime, squarefree, of degree divisible by 3. Reach-
ing this conclusion can be made in a manner analogous to Section 3.1.1.

Given the curves above one can also define the following unramified three-covers:

π
(1)
d : D

(1)
d → C π

(2)
d : D

(2)
d → C

(x : y1 : y2 : z) 7→ (x : dy1y2 : z) (x : y1 : y2 : z) 7→ (x : dy1y2 : z)

Our goal is to show that π
(1)
d , π

(2)
d are unramified three-covers such that the rational point P

satisfies:
P ∈ π

(1)
d

(
D

(1)
d (Q)

)
∪ π

(2)
d

(
D

(2)
d (Q)

)
Since the maps are very similar we will show most of the results only on π

(1)
d .

Well defined: Take any (ξ : η1 : η2 : ζ) ∈ D
(2)
d . Then observe π

(1)
d (ξ : η1 : η2 : ζ) = (ξ : dη1η2 : ζ).

Therefore
F (ξ, ζ) = F1(ξ, ζ)F2(ξ, ζ) = d2η31dη

3
2 = (dη1η2)

3

Hence we conclude that for any (ξ : η1 : η2 : ζ) ∈ D
(1)
d we get π

(1)
d (ξ : η1 : η2 : ζ) ∈ C, proving that

the map π
(1)
d is well-defined (the same can be shown for π

(2)
d ).

Triple preimage for all points on C: Take any (ξ : η : ζ) ∈ C(Q), and observe that(
ξ :

3

√
F1(ξ, ζ)

d2
:

3

√
F2(ξ, ζ)

d
: ζ

)
∈ D

(1)
d

it follows that

π
(1)
d

(
ξ :

3

√
F1(ξ, ζ)

d2
:

3

√
F2(ξ, ζ)

d
: ζ

)
=

(
ξ : d

3

√
F1(ξ, ζ)F2(ξ, ζ)

d3
: ζ

)
=
(
ξ : 3
√
F1(ξ, ζ)F2(ξ, ζ) : ζ

)
Thus η3 = F (ξ, ζ) = F1(ξ, ζ)F2(ξ, ζ) allowing us to conclude that there exists a A ∈ D

(1)
d (Q) such

that π
(1)
d (A) = (ξ : η : ζ) for all (ξ : η : ζ) ∈ C(Q), in other words π

(1)
d is surjective. A similar

proof can be used to show that π
(2)
d is also surjective.

Take any two (X ′ : Y ′
1 : Y ′

2 : Z ′), (X ′′ : Y ′′
1 : Y ′′

2 : Z ′′) ∈ D
(1)
d (Q), such that

π
(1)
d (X ′ : Y ′

1 : Y ′
2 : Z ′) = π

(1)
d (X ′′ : Y ′′

1 : Y ′′
2 : Z ′′)

The way π
(1)
d is defined allows us to deduce that X ′ = X ′′, and Z ′ = Z ′′, implying that

d3−i(Y ′
i )

3 = Fi(X
′, Z ′) = Fi(X

′′, Z ′′) = d3−i(Y ′′
i )3 for i = 1, 2
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⇒ (Y ′
i )

3 = (Y ′′
i )3 for i = 1, 2

allowing us to conclude that Y ′′
i = µkY ′

i where µ ∈ Q is a primitive third root of unity, and
k = 1, 2, 3.
Case 1: Y ′

1 = Y ′′
1 :

We know that Y ′′
2 = µkY ′

2 , thus

(X ′ : dY ′
1Y

′
2 : Z ′) = π

(1)
d (X ′ : Y ′

1 : Y ′
2 : Z ′) = π

(1)
d (X ′′ : Y ′′

1 : Y ′′
2 : Z ′′)

= π
(1)
d (X ′ : Y ′

1 : µkY ′
2 : Z ′) = (X ′ : dµkY ′

1Y
′
2 : Z ′)

⇒ dY ′
1Y

′
2 = dµkY ′

1Y
′
2 ⇒ 1 = µk ⇒ k = 3

Thus we conclude that Y ′′
2 = µ3Y ′

2 = Y ′
2 , that is (X

′ : Y ′
1 : Y ′

2 : Z ′) = (X ′′ : Y ′′
1 : Y ′′

2 : Z ′′).

Case 2: Y ′′
1 = µY ′

1 :
We know that Y ′′

2 = µkY ′
2 , thus

(X ′ : dY ′
1Y

′
2 : Z ′) = π

(1)
d (X ′ : Y ′

1 : Y ′
2 : Z ′) = π

(1)
d (X ′′ : Y ′′

1 : Y ′′
2 : Z ′′)

= π
(1)
d (X ′ : µY ′

1 : µkY ′
2 : Z ′) = (X ′ : dµk+1Y ′

1Y
′
2 : Z ′)

⇒ dY ′
1Y

′
2 = dµk+1Y ′

1Y
′
2 ⇒ 1 = µk+1 ⇒ k = 2

Thus we conclude that Y ′′
2 = µ2Y ′

2 , that is (X
′ : µY ′

1 : µ2Y ′
2 : Z ′) = (X ′′ : Y ′′

1 : Y ′′
2 : Z ′′).

Case 3: Y ′′
1 = µ2Y ′

1 :
We know that Y ′′

2 = µkY ′
2 , thus

(X ′ : dY ′
1Y

′
2 : Z ′) = π

(1)
d (X ′ : Y ′

1 : Y ′
2 : Z ′) = π

(1)
d (X ′′ : Y ′′

1 : Y ′′
2 : Z ′′)

= π
(1)
d (X ′ : µ2Y ′

1 : µkY ′
2 : Z ′) = (X ′ : dµk+2Y ′

1Y
′
2 : Z ′)

⇒ dY ′
1Y

′
2 = dµk+2Y ′

1Y
′
2 ⇒ 1 = µk+2 ⇒ k = 1

Thus we conclude that Y ′′
2 = µ1Y ′

2 , that is (X
′ : µ2Y ′

1 : µY ′
2 : Z ′) = (X ′′ : Y ′′

1 : Y ′′
2 : Z ′′).

All of the cases above exhaustively present all possible preimages of points on C(Q), thus allowing

us to conclude that all points in C(Q) have exactly three elements in their π
(1)
d preimage i.e. π

(1)
d

is an unramified three-cover. A similar proof can be done for π
(2)
d .

4.3.2 C(Q) as a union

Proposition 4.1. Let C : Y 3 = F1(X,Z)F2(X,Z) be a curve defined as above, and consider the

curves D
(1)
d : d2Y 3

1 = F1(X,Z), dY 3 = F2(X,Z) and D
(2)
d : dY 3

1 = F1(X,Z), d2Y 3
2 F2(X,Z) defined

as above for any non-zero cubefree integer d, with their respective unramified three covers π
(1)
d and

π
(2)
d . Then,

C(Q) =
⊔

d cubefree

(
π
(1)
d (D

(1)
d (Q)) ∪ π

(2)
d (D

(2)
d (Q))

)

Proof. The curves D
(1)
d and D

(2)
d were defined in such a way that for any P ∈ C(Q) there exists a

unique cubefree d s.t. P ∈ π
(1)
d (D

(1)
d (Q)) ∪ π

(2)
d (D

(2)
d (Q)), hence C(Q) is indeed contained in the

union of π
(1)
d (D

(1)
d (Q))∪π(2)

d (D
(2)
d (Q)) over cubefree d’s. Also one can see that the three-covers π

(1)
d

and π
(2)
d can only map rational points to rational points, thus the union of mappings of rational

points on curves D
(1)
d and D

(2)
d is contained in C(Q). Therefore allowing us to conclude:

C(Q) =
⋃

d cubefree

(
π
(1)
d (D

(1)
d (Q)) ∪ π

(2)
d (D

(2)
d (Q))

)
Moreover observe that since for any P ∈ C(Q) the cubefree integer d is unique, thus there exists

at most one pair of curves D
(1)
d and D

(2)
d such that P ∈ π

(1)
d (D

(1)
d (Q))∪π

(2)
d (D

(2)
d (Q)), allowing us

to deduce that the union over cubefree integers must be disjoint.
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Similarly to the two-cover descent we can develop a criterion to reduce the union in Proposition
4.1 to a finite one, moreover the reasoning is almost analogous to the two-cover descent presented
previously.

Lemma 4.2. Let p be a prime, and D
(1)
d , D

(2)
d curves defined as earlier in this section. Then

Res(F1, F2) ∈ Z \ {0}

Moreover,

p|d, and p ∤ Res(F1, F2) ⇒ D
(1)
d (Q) ∪D

(2)
d (Q) = ∅

Proof. We start by showing that Res(F1, F2) ∈ Z\{0}. Since F1 and F2 are defined to have integer
coefficients, it follows that Res(F1, F2) ∈ Z. We also know that F1 and F2 are coprime, thus by
Proposition 2.2 we know Res(F1, F2) ̸= 0. With the above we conclude that Res(F1, F2) ∈ Z \ {0}.

The second statement of the lemma can be proven as follows:

Assume that p|d, and that there exists a point (ξ : η1 : η2 : ζ) ∈ D
(1)
d (Fp) ∪ D

(2)
d (Fp). Then one

can observe that in Fp we get:

F 1(ξ, ζ) = d3−iη1 = 0, and F 2(ξ, ζ) = d3−iη2 = 0

where i = 1, 2 depending on whether the point (ξ : η1 : η2 : ζ) is in D
(1)
d or D

(2)
d .

It follows that ζx − ξz is a common factor of F1 and F2, that is the polynomials obtained by
reducing the coefficients of F1 and F2 mod p. Therefore, one can conclude:

p|d, and D
(1)
d (Fp) ∪D

(2)
d (Fp) ̸= ∅ ⇒ p| Res(F1, F2)

p|d, and p ∤ Res(F1, F2) ⇒ D
(1)
d (Fp) ∪D

(2)
d (Fp) = ∅

⇒ D
(1)
d (Q) ∪D

(2)
d (Q) = ∅

Finally with all of the above we can state and prove the descent theorem for the three-cover descent.

Theorem 4.3. Let C, D
(1)
d and D

(2)
d be curves defined as earlier in this section, and let

S := {d ∈ Z : d is cubefree, such that for all primes p we get p|d ⇒ p| Res(F1, F2)}.

Then S is a finite set, and

C(Q) =
⊔
d∈S

(
π
(1)
d (D

(1)
d (Q)) ∪ π

(2)
d (D

(2)
d (Q))

)
Moreover, if for all d ∈ S the union D

(1)
d (Fp)∪D(2)

d (Fp) = ∅ for some prime p or D
(1)
d (R) ∪D

(2)
d (R) = ∅

then C(Q) = ∅.

Proof. By Lemma 4.2 we know that Res(F1, F2) ∈ Z \ {0}, thus there are finitely many primes
that divide Res(F1, F2), allowing us to conclude that S is finite.

Observe that for all cubefree d /∈ S there exists at least one prime p that divides d but does
not divide Res(F1, F2); hence, by Lemma 4.2 we conclude that for any cubefree d /∈ S one has

D
(1)
d (Q) ∪D

(2)
d (Q) = ∅. The above along with Proposition 4.1 allows us to conclude

C(Q) =
⊔
d∈S

(
π
(1)
d (D

(1)
d (Q)) ∪ π

(2)
d (D

(2)
d (Q))

)
.

Now assume that for all d ∈ S one has that D
(1)
d (Fp) ∪D

(2)
d (Fp) = ∅ for some prime number p

or D
(1)
d (R) ∪D

(2)
d (R) = ∅. Then it follows that for all d ∈ S we get D

(1)
d (Q) ∪D

(2)
d (Q) = ∅. Since

C(Q) is equal to a union of empty sets we conclude that C(Q) must be empty itself.
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As the reader can see all of the above allows us to generalise the two-cover descent to certain curves
of the form C : y3 = f(x). The main difference between the two methods relies on the restrictions

on the degree of f , and on the fact that we need to operate on two curves D
(1)
d and D

(2)
d instead of

one. However most of the results along with their proofs are similar to their two-cover equivalents.

4.4 Three polynomial factorization descent method

Another possible approach to imitate the two-cover descent on curves of the form C : Y 3 = F (X,Z),
could consist of factoring the polynomial F into three other polynomials. This section does not
provide a discussion with as much depth as for the three- and two-cover descents, it is rather meant
as an outline of a new method, and discusses what differences need to be taken into account.

4.4.1 9-cover descent

Let C : y3 = f(x) be a curve, where deg(f) ̸≡ 1 mod 3, and deg(f) ≥ 5, with f ∈ Z[X] squarefree,
and let f1, f2, f3 be polynomials in Z[X] such that f1(x)f2(x)f3(x) = f(x), and the degree of at
most one of them is not divisible by three.

Assume that there exists a P = (ξ, η) ∈ C(Q). Then there must exist a unique cubefree integer d,
and rational numbers η1, η2, and η3 such that

f(ξ) = f1(ξ)f2(ξ)f3(ξ) = dη31dη
3
2dη

3
3 = (dη1η2η3)

3
= η3

Similarly to the previous methods we define a curve Dd as follows:

Dd :=


dY 3

1 = F1(X,Z)

dY 3
2 = F2(X,Z)

dY 3
3 = F3(X,Z)

where F1, F2 and F3 are homogeneous, coprime and squarefree, and satisfy Fi(x, 1) = fi(x)
for i = 1, 2, 3.
Note that Dd is still a curve despite being defined by three equations, since its dimension is equal
to one.

We also get a rational map πd defined as follows:

πd : Dd → C

(X : Y1 : Y2 : Y3 : Z) 7→ (X : dY1Y2Y3 : Z)

where πd turns out to have 9 preimages for any elements of C, thus πd is an unramified 9-cover.
Namely, the following points on Dd are mapped to the same point on C:

(X : Y1 : Y2 : Y3 : Z) (X : µY1 : µY2 : µY3 : Z) (X : µ2Y1 : µ2Y2 : µ2Y3 : Z)
(X : µY1 : µ2Y2 : Y3 : Z) (X : µY1 : Y2 : µ2Y3 : Z) (X : µ2Y1 : µY2 : Y3 : Z)
(X : µ2Y1 : Y2 : µY3 : Z) (X : Y1 : µY2 : µ2Y3 : Z) (X : Y1 : µ2Y2 : µY3 : Z)

where µ is a primitive third root of unity, and all of the above points are distinct.

The main difference when generalizing the descent method to a triple factorization of the polyno-
mial F arises when looking for fields Fp over which all three polynomials share a common factor.
Namely, the definition of the resultant as discussed previously in this thesis in no longer sufficient,
as it is foreseeable that F1, F2, and F3 have a zero pairwise resultant, but do not share a common
factor between the three of them, for instance consider:

F1(X,Z) = G1(X,Z)G2(X,Z)

F2(X,Z) = G2(X,Z)G3(X,Z)

F3(X,Z) = G1(X,Z)G3(X,Z)
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Therefore in order to apply a descent using a triple factorization one needs to find a new way to
assess whether the polynomials F1, F2 and F3 have a common factor in Fp. A potential way to
approach this problem could consist of using the gcd i.e. instead of checking what primes divide
the resultants of the polynomials themselves, one should instead consider what primes divide the
following gcd:

gcd ( Res(F1, F2), Res(F1, F3), Res(F2, F3))

Nevertheless the above does not exclude cases where F1, F2, and F3 share common factors only
pairwise mod p, and no common factor that would divide all three of them mod p exists. Still the
above criterion could be used to obtain a finite set S of cubefree integers d such that

C(Q) =
⋃
d∈S

πd(Dd(Q))

However it is conceivable that a more efficient way to define the finite set S exists; namely one
could define a resultant for three polynomials, which would allow to prove a theorem where the
cases in which F1, F2, and F3 have only pairwise common factors are not considered in the union
of πd(Dd(Q)).
Unfortunately due to time restrains while writing my thesis I could not develop a notion of three
polynomial resultant, nor rigorously check if the above holds, however if it turns out to be true
then generalizing the descent method to the three polynomial factorization case should be feasible.

Nevertheless, it is worth pointing out that one may not need the three polynomial factorization
method, for the problem phrased as in this thesis. Any set C(Q) that can be solved using the
three factorization method should also be possible to be solved with the method presented in
Section 4.3; namely the conditions of the affine equation are the same on both methods, and if
F can be factorized into three polynomials of which at most one polynomial has a degree non-
divisible by three, then F can also be factorized into two polynomials where at least one has a
degree divisible by three. Thus, any curve that satisfies the conditions for a descent with three
polynomial factorization, also satisfies all of the conditions for the three-cover descent with two
polynomial factorization.
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5 Further Generalisations

5.1 p-adic numbers

This subsection is not indented as a complete account of p-adic numbers, but rather a brief ex-
planation so that a bachelor mathematics student can have a sufficient understanding, to read the
rest of this thesis. Most of the presented results can be found with more detailed explanations in
[3].

5.1.1 p-adic absolute value

Definition 5.1 (p-adic absolute value). The p-adic absolute value on Q is defined by

|ξ|p :=

{
0 if ξ = 0

p−n if ξ = pn a
b with p ∤ ab and ab ̸= 0

The above is indeed an absolute value since:

1. |ξ|p ⇔ ξ = 0
By definition of | · |p one has |0|p = 0. For any ξ ̸= 0 we get that |ξ|p = p−n for some n ∈ Z, and
since p ̸= 0 we conclude |ξ|p ̸= 0.

2. |ξζ|p = |ξ|p · |ζ|p
Take any ξ, ζ ∈ Q and rewrite them as ξ = pn a

b , and ζ = pm c
d , where a, b, c, d, n,m ∈ Z,

and p ∤ abcd. It follows that

|ξζ|p = p−n−m = p−n · p−m = |ξ|p · |ζ|p

3. |ξ + ζ|p ≤ max{|ξ|p, |ζ|p}
Take any ξ, ζ ∈ Q and rewrite them as ξ = pn a

b , and ζ = pm c
d , where a, b, c, d, n,m ∈ Z,

and p ∤ abcd. With out loss of generality assume that n ≥ m.
Then one can see that

ξ + ζ = pn
a

b
+ pm

c

d
= pm

(
pn−m a

b
+

c

d

)
Let k := pn−ma

b + c
d , and notice that p ∤ k. It follows that

|ξ + ζ|p = |pmk|p = p−m = |ζ|p ≤ max{|ξ|p, |ζ|p}

proving 3.

Remark. We show that |ξ + ζ|p ≤ max{|ξ|p, |ζ|p} instead of |ξ + ζ|p ≤ |ξ|p + |ζ|p, since the p-adic
absolute value is a non-archimedean absolute value, that is an absolute value that satisfies property
3, unlike the standard (archimedean) notion of absolute value.

This way we have shown that | · |p is indeed a (non-archimedean) absolute value.

5.1.2 Qp and Zp

Theorem 5.1. (Completion) Let k be a field and | · | an absolute value on k. The completion of k
with respect to | · | is a metric space obtained by taking all all possible limits of Cauchy sequences
defined over k (Note that the sequences are Cauchy with respect to the above defined absolute value
| · |).
The completion of k with respect to | · | is a field that is also a complete metric space (with d(a, b) =
|a− b|), that contains k as a dense subset [8, Page 12].

Remark. The rational numbers R are the completion of Q with respect to the standard absolute
value | · |. Namely, all r ∈ R are limits of Cauchy sequences in Q.
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Given the p-adic absolute value we can now define the field of p-adic numbers Qp as the completion
of Q with respect to |·|p. Still, the p-adic numbers can also be understood as a series

∞∑
i=v

aip
i

where v is a (possibly negative) integer, and 0 ≤ ai < p for all i.

With the p-adic numbers one can further define the p-adic ring of integers by

Zp := {a ∈ Qp : |a|p ≤ 1}

which intuitively can be phrased as all p-adic numbers that are not divisible by negative powers
of p (hence the name of p-adic integers). Similarly to elements of Qp, the p-adic integers can be
represented as a series

∞∑
i=0

aip
i

with 0 ≤ ai < p for all i. Notice however that the powers of p in the series cannot be negative due
to the condition |a|p ≤ 1, otherwise one could get series converging to a p-adic number np such
that |np|p > 1. For example consider a series with ai = 0 for all i’s other then −2, and a−2 = 1,
resulting in |p−2|p = p−(−2) = p2, which is not in Zp.

Lemma 5.2. Let p be a prime, and Zp the ring of p-adic integers. Then the following holds [3,
Corollary 4.2.5]:

Zp/pZp ≃ Z/pZ = Fp

Finally, another property of the p-adic numbers that is used further in this thesis is presented
below:

Theorem 5.3. Let p be a prime, and consider any a ∈ Qp \{0}. There there exist a unique p-adic
unit u ∈ Z×

p , and a unique integer n such that [3, Chapter 4.3]

a = pnu

The proofs of the theorems and lemmas above is omitted in this thesis, however the interested
reader is invited to find them in [3].

5.2 Everywhere Locally soluble

Before introducing the notion of a curve being everywhere locally soluble we motivate it by Os-
trowski’s theorem.

Theorem 5.4 (Ostrowski’s Theorem). All non-trivial absolute values that can be defined on Q
are equivalent to either the p-adic absolute value | · |p for some prime p, or to the usual absolute
value | · |. That is any non-trivial absolute value defines a topology on Q that is equal to a topology
on Q defined by either the standard absolute value or a p-adic absolute value for some prime p [3,
Theorem 3.1.4].

Hence, one of the implications of Ostrowski’s Theorem is that all completions of Q are given by
R, and Qp for all primes p.

Definition 5.2 (ELS). A curve C is everywhere locally soluble (ELS) if C(Qp) ̸= ∅ for all primes
p, and C(R) ̸= ∅.

Put differently one could say that a curve define over Q is ELS when it has k-rational points over
all completions k of Q.

Notice that for any curves being ELS is a necessary condition for C(Q) ̸= ∅ [9, Section 3]. Namely
as shown in the section in p-adic fields Q ⊆ Qp, and thus C(Qp) = ∅ ⇒ C(Q) = ∅, similarly
C(R) = ∅ ⇒ C(Q) = ∅. However it is important to point out that being ELS is not a sufficient
condition for C(Q) ̸= ∅. The rest of this thesis shows a method that can potentially prove whether
a ELS hyperelliptic curve has no rational points.
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5.3 Two-cover descent with p-adics

Recall the curves C and Dd along with the map πd : Dd → C from Section 3.1. By Proposition
3.2 we know that

C(Q) =
⊔

sqaurefree d

πd(Dd(Q))

The next step consists of defining a stronger criterion of Dd(Q) to be empty, using the p-adic
numbers, which can be done as follows:

Theorem 5.5. Given a curve Dd : Y 2
1 = F1(X,Z);Y 2

2 = F2(X,Z), and a prime p one has:

p|d, and Dd(Qp) ̸= ∅ ⇒ p| Res(F1, F2)

Proof. Let p be a prime such that p|d, and assume that there exists a point (ξ : η1 : η2 : ζ) ∈ Dd(Qp),
and consider its image on the projective line P1 := P(1,1) (the projective line is defined as the
weighted projective plane with two coordinates and weights (1, 1)). The image is obtained by the
morphism:

φ : Dd → P1

(ξ : η1 : η2 : ζ) 7→ (ξ : ζ)

Knowing that any p-adic number can be written out as pnu where n ∈ Z, and u is a unique p-adic
unit (as explained in Theorem 5.3), one can observe that ξ and ζ are coprime p-adic integers, where
coprime in this context means not both divisible by p. Namely, we get that (ξ : ζ) = (pnu : pmw),
for n,m ∈ Z, and u,w distinct p-adic units. Without loss of generality we assume that n ≤ m.
One can see that:

(ξ : ζ) = (pnu : pmw)

= (p−npnu : p−npmw)

= (u : pm−nw)

Using our assumption:

|u|p = p0 ≤ 1, and |pm−nw|p = p−(m−n) = p−m+n ≤ 1

implying u and pm−nw are in Zp. This way we have shown that the image of a Qp rational point
on Dd can be represented by a point on P1 with coprime p-adic integers coordinates. It follows
that η1 and η2 are also p-adic integers, because they are the result of addition and multiplication
of other p-adics (F1, F2 ∈ Z[X], and all integers are also p-adic integers). Since Zp/pZp ≃ Z/pZ, as
discussed in 5.2 we get that Dd(Fp) ̸= ∅. Therefore by Theorem 3.4 we conclude that p|Res(F1, F2).

Finally we can generalise Theorem 3.5 as follows:

Theorem 5.6. Let C : y2 = f1(x)f2(x) be a hyperelliptic curve such that f1, f2 ∈ Z[X], and the
degree of f1 or f2 is even. Let d be a squarefree integer, and Dd : dY 2

1 = F1(X,Z), dY 2
2 = F2(X,Z)

be a curve, defined the same way as in the earlier sections. Consider the set

S := {d ∈ Z : d squarefree and ∀ primes p one has p|d ⇒ p| Res(F1, F2)}

Then S is finite and

C(Q) =
⊔
d∈S

πd(Dd(Q)).

Moreover:
∀ d ∈ S : Dd is not ELS then C(Q) = ∅
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Proof. By Theorem 3.5 we know that S is finite and

C(Q) =
⊔
d∈S

πd(Dd(Q)).

Assume that for all d ∈ S the curves Dd are not ELS. Then one can see that Dd(Q) = ∅, as being
ELS is a necessary condition for having rational points. Since in that case C(Q) is equal to the
union of mappings from empty sets, we conclude that C(Q) is indeed empty.

This way we have generalised the two-cover descent to the p-adic numbers, which will allow us
to prove in some cases that Dd has no rational points, even though it may have Fp points for all
primes p. The following sections discuss methods that will allow us to verify whether Dd is not
ELS, and present a finite list of primes which need to be checked before reaching this conclusion.

5.4 Good and Bad Reduction of C

The idea behind good reduction of a curve C consists of verifying over which field (in the de-
scent context over which Fp) C exhibits non-smooth behaviours. The above happens when the
polynomial y2 − f(x) has a vanishing derivative mod p i.e.:

d

dy
y2 ≡ 0 mod p ≡ d

dx
f(x)

Notice that the above happens if f (i.e. the polynomial obtained by reducing the coefficients of
f mod p) has a multiple root, because f ′(x′) ≡ 0 mod p and 2y′ ≡ 0 mod p ⇒ y′ ≡ 0 mod p or
2 ≡ 0 mod p. The first observation that can be drawn is that in F2 deciding whether a curve is
singular only depends on the derivative with respect to x, since d

dyy
2 = 2y ≡ 0 mod 2. Therefore

C has bad reduction in F2 if d
dxf(x) ≡ 0 mod 2 for some x.

A more general and rigorous definition of good and bad reduction can be given as follows:

Definition 5.3. Let p be an odd prime. Given a hyperelliptic curve C : Y 2 = F (X,Z) defined over
Qp such that F ∈ Zp[X,Z], let F be the polynomial obtained by reducing the coefficients of F mod
p. The curve C has good reduction if the curve C : Y 2 = F (X,Z) is smooth.
If C : Y 2 = F (X,Z) is defined over Q, with F ∈ Z[X,Z], we then say that C has good reduction
at p if C has good reduction as a curve over Qp. If C does not have good reduction (at p) then we
say that C has bad reduction (at p) [8, Definition 3.10].

In order to access if C has good reduction at p we prove the following proposition:

Proposition 5.7. Let C : Y 2 = F (X,Z) be a hyperelliptic curve, and p be an odd prime. Let
f(x) := F (x, 1), and h(z) := F (1, z). Then C has good reduction at p if and only if p ∤disc(f) and
p ∤disc(h) [8, page 14].

Proof. Assume that p divides disc(f) or disc(h). Then by Lemma 2.3 we can conclude that f or h
have a multiple root mod p, thus F is not squarefree over Fp.

If p does not divide disc(f) or disc(h), then by Lemma 2.3 f and h do not have any multiple root
mod p, therefore C has good reduction at p, as F does not have multiple roots over Fp.

Since a hyperelliptic curve is defined in such a way that disc(f), disc(h) ∈ Z \ {0}, we conclude
that any hyperelliptic curve C has always finitely many primes of bad reduction.

5.5 Bad reduction on Dd

Let Dd be the curve defined as in the two-cover descent. We defined Dd to have good or bad
reduction as follows:
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Definition 5.4. Let p be a prime, and consider the curve Dd(X) : dY 2
1 = F1(X,Z), dY 2

2 = F2(X,Z)
defined over Qp, with F1, F2 ∈ Zp[X,Z]. Let F 1 and F 2 be the polynomials obtained by respectively
reducing the coefficients of F1 and F2 mod p. Then the curve Dd has good reduction at p if the
curve Dd : dY

2
1 = F 1(X,Z), dY 2

2 = F 2(X,Z) is smooth.
Given a curve Dd(X) : dY 2

1 = F1(X,Z), dY 2
2 = F2(X,Z) defined over Q, we say that Dd has good

reduction at p if Dd has good reduction over Qp. If Dd does not have good reduction (at p), we say
that Dd has bad reduction (at p).

The above implies that using the definition of smoothness (Definition 2.6), one can verifying
whether the curve has bad reduction is done by computing the rank of the matrices:(

f ′
1(x) 2dy1 0
f ′
2(x) 0 2dy2

)
mod p, and

(
h′
1(z) 2dw1 0

h′
2(z) 0 2dw2

)
mod p (5)

where Dd : F1(X,Z) = dY 2
1 , F2(X,Z) = dY 2

2 , fi(x) := Fi(x, 1), and hi(z) := Fi(1, z) for i = 1, 2.

Since Dd has 3 variables (in its weighted projective version) and dimension equal to 1 ( see Section
3.1.1), the Jacobians (5) need to have rank 3 − 1 = 2, as explained in the definition of smooth
weighted projective varieties 2.10. With the above in mind we state the following theorem:

Theorem 5.8. Let C : Y 2 = F (X,Z) be a hyperelliptic curve, Dd : F1(X,Z) = dY 2
1 , F2(X,Z) = dY 2

2

be a curve as defined in the two-cover descent, and let p be an odd prime. Then, Dd has bad re-
duction at p if and only if:

• C has bad reduction at p or

• p|d

Proof. Assume that C has bad reduction at p, then by Proposition 5.7 we know that p divides
disc(f) or disc(h). We assume that p divides disc(f). Because f1(x)f2(x) = f(x) it follows that
one of the polynomials has a multiple root, or f1 and f2 share a root.
Case 1: Let P = (x : 0 : 0 : 1) ∈ Dd(Fp).
Then the Jacobian (5) evaluated at P gives us:(

f
′
1(x) 2d · 0 0

f
′
2(x) 0 2d · 0

)
=

(
f
′
1(x) 0 0

f
′
2(x) 0 0

)
,

implying that the Jacobian has rank at most 1, and thus Dd has bad reduction.

Case 2: One of f1 and f2 has a multiple root.
With out loss of generality assume that f1 has a multiple root at x, and let P = (x : 0 : y2 : 1) ∈ Dd(Fp).
Then the Jacobian matrix (5) evauated at P gives us:(

f
′
1(x) 2d · 0 0

f
′
2(x) 0 2dy2

)
=

(
0 0 0

f
′
2(x) 0 2dy2

)
Implying that the Jacobian has rank at most 1, and thus Dd has bad reduction.

A similar reasoning can be used when p| disc(h), allowing us to state that whenever C has bad
reduction at p, the curve Dd must also have bad reduction at p.

Assume that p|d. Then the Jacobian (5) mod p gives us for any point in Dd(Fp):(
f
′
1(x) 2 · 0y1 0

f
′
2(x) 0 2 · 0y2

)
=

(
f
′
1(x) 0 0

f
′
2(x) 0 0

)
Implying again that the Jacobian has rank at most 1, and thus Dd has bad reduction.

Hence so far we have shown that if C has bad reduction at p, or p|d then Dd also has bad reduction
at p.

Assume that C has good reduction at p, and p ∤ d.
It follows that there is no (x : y1 : y2 : z) ∈ Dd(Fp) such that both y1 and y2 would be equal to
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zero mod p, as p ∤disc(f), i.e. f has no multiple roots. Moreover we know that 2d ̸≡ 0 mod p.
It follows that it is always the case that either the second or third column is non-zero in the
Jacobians (5). Without loss of generality assume that y1 = 0 mod p. In such a case the Jacobian

matrix of the first standard affine patch has a rank less than two only if f
′
(x) ≡ 0 mod p, however

because p ∤disc(f) it is not possible for f1 to have a doubled root. This way we conclude that
f ′
1(x) ̸≡ 0 mod p. A similar proof can be made using h(z), to show that there are no multiple roots
mod p on the second affine patch. This way we have shown that whenever C had good reduction
at p, and p ∤ d, then the curve Dd has good reduction at p.

Remark. In the case p = 2 any curve Dd has bad reduction, since 2dyi ≡ 0 mod p making the
Jacobian have a rank of one or less.

5.6 Bounds on primes p

So for we have discussed what conditions need to be met to conclude the Dd(Qp) is empty, however
we did not discuss what primes p need to be checked. Thus, the question that naturally arises is: Is
there a bound on the primes one needs check, to decide whether a given curve is ELS? An answer
to the above is given by a theorem proved by Helmut Hasse for curves of genus 1, and generalized
to curves of any genus by André Weil.

Theorem 5.9 (Hasse-Weil Theorem). Let C be a smooth absolutely irreducible curve of genus g
over a finite field F with q elements. Then [8, Theorem 3.12]:

|#C(F )− (q + 1)| ≤ 2g
√
q

The above theorem gives us a finite list of primes p for which it is possible to check if Dd(Fp) = ∅.
The following corollary generalizes it to p-adic numbers.

Corollary 5.9.1. Let C be a curve of genus g, and let p be a prime of good reduction for C. Then
if p > 4g2 − 2, one has C(Qp) ̸= ∅ [8, Corollary 3.13].

In other words in order to verify if a curve of genus g is ELS, one only needs to check whether the
curve has Qp-points for primes p < 4g2 − 2, and primes of bad reduction.

Thus, in order to know how many p-adic fields we need to look at before knowing if a given curve
Dd is ELS, we need to know the genus of the curve, which can be obtained from the Riemann-
Hurwitz formula 3.1. Since there exists a unramified two-cover πd between C, and Dd, along with
the previous sections allows one to check in finitely many steps if a curve Dd has rational points.
Namely, one needs to check if the curves Dd have R points and have Qp points for a finite number
of primes (that is all primes less then 4g − 2 and all primes of bad reduction), to know if Dd is
ELS.

5.7 Checking whether Dd is ELS

We have shown that if a certain finite set of curves Dd are not ELS, then C has no rational points.
This section focuses on possible approaches to show that Dd is not ELS, when we know that Dd

has Fp points for all primes in the bounds discussed in section 5.6.

One possible approach to verify whether Dd is ELS could consist of finding an isomorphism
between Dd and some hyperelliptic curve C ′. Since it is always possible to verify whether C ′(Qp)
is empty or not for any hyperelliptic curve [8, Lemma 3.15], thus given a isomorphism φ : Dd → C ′

it could be possible to find a suitable prime p for which C ′(Qp) = ∅ (if such exists), allowing us to
conclude that Dd is not ELS. Nevertheless such an isomorphism might not exist for some curves
Dd, allowing us to apply the above approach in only in certain cases.

The reason for which C ′ might have Fp points but no Qp-points is partially due to Hensel’s Lemma,

and bad reduction. Namely, one can see below that Hensel’s Lemma requires C
′
to have a smooth

Fp point to be able to lift it to C ′(Qp). Hensel’s Lemma along with a proof is presented below to
indicate the key role of good reduction.
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Theorem 5.10 (Hensel’s Lemma). Let f be a polynomial in Zp[X], and let a be a simple root

of f ∈ Fp[X] (i.e. f(a) ≡ 0 mod p and f
′
(a) ̸≡ 0 mod p ), where f is obtained by reducing

coefficients of f mod p. Then f has a unique root α ∈ Zp such that α = a in Fp.

Proof. We start by showing by induction that for all integer n ≥ 1 there exists a sequence (an)≥1

in Zp such that

f(an) ≡ 0 mod pn,

an ≡ a mod p.

Base case: a1 = a.
We get that a1 = a ≡ a mod p, and by the assumptions of Hensel’s Lemma get that f(a1) = f(a) ≡ 0 mod p,
thus the base case holds.

Induction Hypothesis: f(an) ≡ 0 mod pn and an ≡ a mod p.
The following element of the sequence can be defined as follows : an+1 := an+pntn, where tn ∈ Zp.
This way we get that

an+1 = an + pntn ≡ an mod pn ≡ a mod p

To show the other part of the statement (i.e. f(an+1) ≡ 0 mod pn+1) we need to use the formula:

f(X + Y ) = f(X) + f ′(X)Y + g(X,Y )Y 2, where g ∈ Zp[X,Y ]

The above expression can be obtained by using the binomial formula as follows

f(X + Y ) =

deg f∑
i=0

ci (X + Y )
i
= c0

deg f∑
i=1

ci
(
Xi + iXi−1Y + g(X,Y )Y 2

)
=

deg f∑
i=0

ciX
i + Y

deg f∑
i=1

iciX
i−1 + Y 2

deg f∑
i=1

cig(X,Y )

= f(X) + f ′(X)Y + g(X,Y )Y 2

Note that ci are the coefficients of f , and g ∈ Zp[X,Y ].
Using the above formula on an + pntn we get

f(an + pntn) = f(an) + pntnf
′(an) + g(an, p

ntn)p
2nt2n

≡ f(an) + pntnf
′(an) mod pn+1

since 2n ≥ n+ 1.
It follows that

f(an+1) = f(an + pntn) ≡ 0 mod pn+1 ⇔ f ′(an)tn ≡ −f(an)

pn
mod pn+1

Notice that the above indeed has a solution, since −f(an)
pn ∈ Zp, because f(an) ≡ 0 mod pn, as

assumed by the induction hypothesis. Moreover there must be a solution tn in a congruence class
mod p, because f ′(an) ̸≡ 0 mod p.
Given that there exists a tn, which we can adjust for all n, and by defining an+1 := an + pntn we
have shown that there is a an+1 such that f(an+1) ≡ 0 mod pn+1.

All of the above proves that there exists a sequence (an)≥1 in Zp for which

f(an) ≡ 0 mod pn,

an ≡ a mod p.

What remains to be shown is that (an)≥1 converges to a limit α ∈ Zp, and that α ≡ a mod p.

As shown during the induction, all elements of (an)≥1 satisfy an+1 ≡ an mod pn, hence one can
deduce that an+1 = an + bpn, where b ∈ {0, 1, ..., pn−1}, implying

|an+1 − an|p = |an + bpn − an|p = |bpn|p = p−n
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therefore for any n ≥ 1 we get
|an+1 − an|p < p1−n

showing that (an)≥1 is Cauchy, hence convergent.
Moreover one could state that the limit is a point in Zp. Assume that α is the limit of (an)≥1, and
that |α|p > 1 i.e. α /∈ Zp. Since all an’s are p-adic integers we conclude that |an|p ≤ 1 for all n.
Thus

ϵ :=
|α|p − 1

2
< |α|p − |an|p for all n ∈ N

contradicting the fact that α is the limit of the sequence (an)≥1. Hence, we conclude that the
seuqnce indeed converges to a point in Zp.

Observe that because an+1 ≡ an mod pn, implying that for all m > n we get am ≡ an mod pn,
and by taking m to infinity we get α ≡ an mod pn. When n = 1 α ≡ a mod p.
Also, the above implies that for any n ≥ 1 one has

f(α) ≡ f(an) ≡ 0 mod pn ⇒ |f(α)|p ≤ p−n

Because the above holds for all n, we conclude that f(α) = 0.

So far we have shown that if f(a) = 0, and f
′
(a) ̸= 0, then there exists an α in Zp for which α = a

mod p, and f(α) = 0. The last step of the proof shows that α is unique.
Let β ∈ Zp such that f(β) = 0, and β ≡ a mod p. Then

β ≡ a mod p ≡ α mod p

Thus β = α+ bp for some integer 0 ≤ b < p. Using f(X + Y ) = f(X) + f ′(X)Y + g(X,Y )Y 2, we
get

f(β) = f(α+ bp) ≡ f(α) + pbf ′(α) mod p2 (6)

given that α and β are roots of f the equation (6) gives us

0 ≡ 0 + pbf ′(α) mod p2

Since f ′(α) ̸≡ 0 mod p, and p ̸≡ 0 mod p2, it follows that the equation above can only hold when
b = 0, implying

β = α+ 0 · p = α

proving uniqueness.

All of the above proves Hensel’s Lemma.

Given the proof above the reader can see why the good reduction is essential to apply Hensel’s
Lemma, namely we need non-vanishing derivatives, to guarantee a possible sequence of (an)≥1

in Zp, as defined in the proof.

Summing up the procedure to verify of Dd outlined in this thesis is as follows

1. Compute the primes of bad reduction and the genus of Dd to obtain a list of primes p for
which Dd may potentially not have Qp points, using the bound discussed in section 5.6.

2. Verify ifDd has Fp points for all primes obtained in the previous step (which can be facilitated
using the python code from Section 3.5).

3. If there is a prime p such that Dd(Fp) is empty conclude that Dd is not ELS.

4. If Dd(Fp) is non-empty for all primes p find an isomorphism between Dd and some hyperel-
liptic C ′, if such a map exists.

5. Verify if C ′ has no Qp points for primes p of bad reduction. If no such prime can be found
Dd is ELS.
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6 Research Suggestions

A list of suggestions for further research on descent is given below:

• Presenting the 9-cover descent in greater detail, outlining all of the steps, along with a
description of an efficient criterion to access if the polynomials F1, F2, and F3 have a common
factor mod p.

• Finding and working out examples of the descent on C : Y 3 = F (X,Z).

• Development of the descent methods on Y 3 = F (X,Z) with the same level of generality as
Michael Stoll discusses the two-cover descent in [9].

• Generalizing descent methods to curves of the from Y n = F (X,Z) for n > 3.

• Expanding on the code in Section 3.5, so that it also computes points at infinity, and the list
of finitely many primes for which Dd(Fp) can be empty.

• Writing code that can be used in the descent on curves C : Y 3 = F (X,Z).
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