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Abstract

Spin S = 1
2 triangular antiferromagnets are intriguing models that challenge our under-

standing of magnetic ordering. The variety of quantum phenomena they showcase, caused
by their inherently frustrated geometry and quantum fluctuations, are of great interest due
to their application in quantum computing, among others. Here, we discuss the triangular
antiferromagnetic material Ba3TaFe3Si2O14, in which we replace the spin s = 5

2 iron ions, by
spin s = 1

2 ions. This change results in the appearance of a new quantum degree of freedom,
isospin. In the triangle chain, a one-dimensional model of triangles stacked along the c-axis,
spins are in a disordered spin liquid state, whereas isospins show a short ranged helical spiral
ordering. We then extend this model to three-dimensions by adding in-plane Heisenberg
exchange interactions. It results in average spins to rotate along the c-axis, together with
isospins. However, this rotation occurs in an arbitrary plane. The Dzyaloshinskii-Moriya
interaction is responsible for the spins and isospins rotation axes to align, either parallel or
anti-parallel. This thesis opens the door for investigations that go beyond the mean field
approximation and account for quantum spin and isospin fluctuations in the ground state.



CONTENTS 3

Contents

Page

1 Introduction 4

2 Single Spin Triangle 6
2.1 Triangle Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The States of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Spins of ions in terms of spin and isospin operators of a triangle . . . . . . . . . . 9

3 Triangle Chain 10
3.1 Triangle Chain Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Isospin Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Triangle Mean Field 17
4.1 Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Perturbations of the Ground State 21
5.1 Dzyaloshinskii-Moriya Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Exchange Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Discussion 24

7 Conclusion 26



1 INTRODUCTION 4

1 Introduction

Anti-ferromagnetism is the property of materials that favours anti-parallel alignment of neigh-
bouring spins due to the Heisenberg exchange interaction. The order parameter of an antiferro-
magnet is the staggered magnetisation and it is defined as "the difference of the magnetisation
on each sublattice" [1]. In an antiferromagnet, the critical temperature, called the Néel tem-
perature, occurs when the thermal agitation overcomes the interaction effect and the spins of
the magnetic ions become disordered [2]. Near this temperature, the staggered magnetisation is
proportional to (Tc − T )β , where Tc is the Néel temperature of the material and β is a critical
exponent whose value depends on the material [3]. As the material reaches the critical temper-
ature, the staggered magnetisation becomes zero and the ferromagnet turns into a paramagnet
[2]. During this phase transition, an anomalous sharp increase in the heat capacity is observed,
due to the long range magnetic ordering of the ions [4].
A similar behaviour is observed in ferromagnets, where the critical temperature is named the
Curie temperature and the order parameter is the magnetisation [5]. However, in contrast to
ferromagnetic materials, the ordered magnetic moment in antifferomagnets cancel each other,
resulting in zero net magnetisation.

Antiferromagnetic spintronics has been an area of very active recent research due to inter-
esting properties of antiferromagnets, such as high speed of magnons and domain walls and the
absence of stray fields [6][7]. Among them, the langasite family is a group of crystal display-
ing unique non-linear optical properties [8][9]. Langasites containing magnetic iron ions show
a complex anti-ferromagnetic ordering [10], as well as an electrical polarisation in the ordered
state [11][12]. In particular, Ba3TaFe3Si2O14 (referred to as Fe-langasite) is a non-collinear an-
tiferromagnet with a triangle based crystal lattice formed by Fe3+ ions with spin s = 5

2 . The
triangles form a triangular lattice in the ab-plane and the antiferromagnetic interaction results
in the 120° angle between spins in the triangles. These triangles are stacked on top of each other
along the c-axis, and the spins form a helical structure, with a 51.4 deg rotation between spins
in neighbouring layers [13]. The Néel temperature for this material is TN = 27.4K [13]. It was
predicted to exhibit unconventional magnetic topological defects, such as coreless vortex tubes
and three-dimensional Skyrmions [14].

Another field of study worth noting is the two dimensional spin 1
2 antiferromagnetic Heisen-

berg model, which was a focus of theoretical research due to, amongst other things, its use for
high Tc superconductors [15] [16]. Multiples investigations have looked at the ground state and
magnetic ordering of quantum antiferromagnets with lattices of various shapes [17][18]. Amongst
these, square lattices have been studied and understood extensively, whereas triangular lattices
still hold many uncertainties, especially regarding their spin ordering in two-dimensions and
higher. Theoretical studies of the latter have suggested the existence of quantum spin liquids
in this lattice [19]. This property could have applications in the growing field of topological
quantum computation, as well as superconductors [20].
Another common area of research is the study of staggered magnetisation, the order parameter
of (quantum) antiferromagnets [15][21][22]. This topic has applications in data storage, since
the orientation of the order parameter can be used to store information in a dense and efficient
way [23]. So, quantum antiferromagnets are theoretical materials that possess many interesting
properties and their study helps us improve our understanding of all antiferromagnets.
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This thesis lies in both of these fields, since it studies an antiferromagnetic material that
possess the triangular structure of Fe-langasite, but in which the iron ions with spin s = 5

2 have
been replaced by spin s = 1

2 ions. Since the small spins cannot be treated classically, a quantum
treatment is necessary when investigating the properties of this theoretical model. The ground
state of such material is explored by means of two different methods. First, to be able to describe
all states of a triangle in the lattice, we need to introduce a new quantum degree of freedom,
isospin. Then, we discuss a one dimensional model of the triangles stacked along the c-axis,
which is referred to as a triangle spin chain. Using the Jordan-Wigner transformations, we find
the rotation of isospins and disordered spins in this model.
The second model extends the previous one to three dimensions by including in-plane interac-
tions. In this model, both spins and isospins order and rotate. However, while isospins rotate in
the xy-plane, the spin rotation plane is arbitrary.
Using first order perturbation theory we discuss effects of internal excitations such as the Dzyaloshinskii-
Moriya (DM) interaction and exchange anisotropy. The DM interaction forces result in the
spin/isospin rotation axe to align parallel or anti-parallel, depending on the sign of the DM in-
teraction.
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2 Single Spin Triangle

Before looking at the triangle chain model, this section aims to introduce important concepts
like the Heisenberg exchange interaction. Its purpose is also to present the tools that will be
used in the later derivations. This is done by examining the simplest possible system: a triangle
that does not interact with its neighbours.

2.1 Triangle Degeneracy

Consider a single triangle formed by three spins s = 1
2 (see Fig.1). We first consider the so-called

Heisenberg exchange interactions. In magnetic insulators, these exchange interactions result from
the virtual hopping of electrons between magnetic ions, Coulomb repulsion and Fermi statistics
of electrons. The spin Hamiltonian describing the Heisenberg exchange interactions is:

Hex =
∑
i,j

Ji,j Si · Sj , (1)

where J is called the exchange constant, and Si is the spin operator of the i-th ion. Since these
interactions do not involve relativistic effects, the Hamiltonian (1) is invariant under rotation of
all spins. Depending on the sign of Jij , there are two different types of materials: those whose
energy is the lowest for parallel spins are called ferromagnets, whereas in antiferromagnets neigh-
bouring spins have opposite directions in the lowest-energy configuration.

Figure 1: Triangle formed by three magnetic ions with spin 1
2 . J12 = J13 = J23 = J1 due to the

120° rotational symmetry

The total spin of the triangle is S = S1 + S2 + S3. Due to the rotational invariance of
Heisenberg exchange interactions, the energy of the spin triangle only depends on the total spin
S and is independent of the spin projection. There are in total eight states of the system of three
spins s = 1

2 . Since there are four S = 3
2 states (Sz = ±1

2 ,±
3
2) and two S = 1

2 states (Sz = ±1
2),

there must be two different Sz = ±1
2 states. Our attention now turns towards finding the spacing

between the S = 3
2 and S = 1

2 energy levels by applying the Hamiltonian (1) to our system. The
exchange constant of the interactions within the triangle is called J1 and the Hamiltonian of the
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triangle can be written as follows:

Ht = J1[S1 · S2 + S2 · S3 + S3 · S1] =
J1
2

[
S2 − S2

1 − S2
2 − S2

3

]
, (2)

where the relation S2 = (S1+S2+S3)
2 = S2

1+S2
2+S2

3+2 (S1 · S2 + S2 · S3 + S3 · S1) and the
fact that S(S+1) is the eigenvalue of Ŝ, were used to obtain the second inequality. Applying this
operator to the states with total spin S = 3

2 and S = 1
2 , the energy difference ∆E = E3/2−E1/2

is:
∆E =

J1
2

[
3

2
· 5
2
− 1

2
· 3
2

]
=

3

2
J1 .

In Fe-langasite, the interactions between the spins of the triangle are antiferromagnetic, corre-
sponding to J1 > 0 [24]. Therefore, the S = 1

2 states have lower energy than the S = 3
2 states.

In what follows, only the manifold of S = 1
2 states on each triangle is considered, assuming that

J1 is larger than all other interactions in the problem.
However, the degeneracy of the S = 1

2 states raises an issue: S = 1
2 implies that the quantum

number of the z-component of spin can only take values: ±1
2 , which is not enough to describe all

four states of the system. This necessitates the introduction of a new quantum number: isospin
(or pseudo-spin) T = 1

2 , to label all states. Importantly, spin and isospin commute: [Ŝi, T̂j ] = 0.
The four S = 1

2 states are then described by the spin and isospin projections, Sz = ±1
2 and

Tz = ±1
2 . This new quantum degree of freedom is extremely important, as it is responsible

for the differences between the classical model (Fe-langasite) and the quantum model discussed
below.
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2.2 The States of the System

Next, we construct the four degenerate S = 1
2 states. They are partly specified by the z-

component of the total spin and for Sz = 1
2 , they are a superposition of |↓↑↑⟩, |↑↓↑⟩ and |↑↑↓⟩,

where ↑= ( 10 ) denotes the sz = +1
2 state and ↓= ( 01 ) is the sz = −1

2 state. To allow for all
four states to be different, as explained above, they must depend on the new degree of freedom,
isospin.
Since the equilateral spin triangle is invariant under 2π

3 rotations around the z axis, the states
should be eigenstates of the operator Dz(α) = exp(−iαℓ̂z), with α = 2π

3 . Applying such an
operator on any wavefunction ψ(φ) results in e−iαℓz |φ⟩ = |φ+ α⟩ and since in this case ℓ =
−1, 0, 1, the wavefunction should obey

∣∣φ+ 2π
3

〉
= λ |φ⟩, where λ = 1, ω or ω̄; ω = exp(i2π3 ).

Taking all these properties into account, we construct the state |Sz, Tz⟩:∣∣∣∣ 12 ,
τ

2

〉
=

1√
3
(|↓↑↑⟩+ ω̄τ |↑↓↑⟩+ ωτ |↑↑↓⟩) , (3)

where tz = τ
2 is the z-component of isospin. The other two S = 1

2 states have z-component spin
Sz = −1

2 and can be obtained by rotating the states given by equation (3) by π around the spin
y-axis:∣∣∣∣ −1

2
,
τ

2

〉
= Ry(π)

∣∣∣∣ 12 ,
τ

2

〉
=

1√
3
(Ry(π) |↓↑↑⟩+ ω̄τRy(π) |↑↓↑⟩+ ωτRy(π) |↑↑↓⟩)

Rn(φ) is the generator of the SU(2) group and is defined as:

Rn = eiφ(n·S) = ei
φ
2 (n·σ) = cos φ

2 1 − i sin φ
2 n̂ · σ .

For φ = π, Ry = −iσy =
(
0 −1
1 0

)
, which when applied to |↑⟩ and |↓⟩ gives:(

0 −1
1 0

)
( 10 ) = ( 01 ) =↓ and

(
0 −1
1 0

)
( 01 ) = − ( 10 ) = − ↑ .

So, the states with Sz = −1
2 read:∣∣∣∣ −1

2
,
τ

2

〉
= − 1√

3
(|↑↓↓⟩+ ω̄τ |↓↑↓⟩+ ωτ |↓↓↑⟩) . (4)

Since these four states with Sz = ±1
2 and Tz = ±1

2 are all orthogonal to each other, they
span the entire Hilbert space of the spin S = 1

2 state on a triangle.
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2.3 Spins of ions in terms of spin and isospin operators of a triangle

Now that the wavefunctions have been constructed, spin operators for a single magnetic ion with
spin 1

2 can be written in terms of the total spin/isospin of the triangle. This is accomplished
by studying the effects of sγ , γ = 1, 2, 3 labels the ion, onto all possible four states and finding
accordingly the matrix elements of ⟨Sz, t|Sγ |S′

z, t
′⟩. In this way we obtain three 4x4 matrices,

from which the following identities appear:〈
Sz, Tz

∣∣Sγ

∣∣S′
zTz
〉
=

1

3

〈
Sz
∣∣S∣∣S′

z

〉
, (5)

〈
Sz,−Tz

∣∣Sγ

∣∣S′
z, Tz

〉
= −2

3
ω(γ−1)τ

〈
Sz
∣∣S∣∣S′

z

〉
. (6)

Note that these results are obtained by projection on the four S = 1
2 states and they do not

hold for S = 3
2 states. Equation (6) can be written as follows:〈
Sz,− τ

2

∣∣S1 + ωS2 + ω̄S3

∣∣S′
z,

τ
2

〉
= −2

3

(
1 + ω−τ+1 + ω−2τ+2

) 〈
Sz
∣∣S∣∣S′

z

〉
.

For τ = 1,
(
1 + ω−τ+1 + ω−2τ+2

)
= 3, and for τ = −1,

(
1 + ω−τ+1 + ω−2τ+2

)
= 0. Hence〈

Sz,− τ
2

∣∣S1 + ωS2 + ω̄S3

∣∣S′
z,

τ
2

〉
= −2δτ,1

〈
Sz
∣∣S∣∣S′

z

〉
.

The operator between the ket and bra states acts as the isospin lowering operator, T− since the
result is nonzero only for the isospin Tz = +1

2 ket, which after the operation, is transformed into
the Tz = −1

2 state. Therefore,

S1 + ω̄S2 + ωS3 = −2 S · T− . (7)

Similarly, the raising isospin operator is given by,

S1 + ωS2 + ω̄S3 = −2 S · T+ . (8)

The raising and lowering isospin operators are defined in the usual manner: T± = Tx± iTy. The
two derived identities are are equivalent to

S1 =
1
3(1− 4T x)S S2 =

1
3(1 + 2T x − 2

√
2T y)S S3 =

1
3(1 + 2T x + 2

√
2T y)S . (9)

Equations (7) and (8) are intriguing, as they relate individual spin components to the total spin
of the three ions system, and to the isospin. These results allow for the triangle systems to be
treated as point-like objects, described by spin and isospin.
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3 Triangle Chain

So far, only a single triangle formed by three magnetic ions with spin 1
2 was considered. We

now create a structure, referred to as a triangle chain, by stacking a multitude of these triangles
on top of each other along the c-axis, as shown in Fig. 2. In this section, we study magnetic
properties of this chain. Since any spin interaction involving individual atoms can be expressed
in terms of the total spin/isospin operators using Eqs. (5-8), each triangle can be thought of as
a site. As a result, the problem becomes one-dimensional, which greatly facilitates calculations.

Figure 2: Left: Triangle chain. Right: Fragment of a triangular spin lattice of Fe-langasite

In chiral Fe-langasite, the intertriangle exchange constant J3 is different from J5, which leads
to a rotation of the ordered magnetic moment of iron ions by 54.1° between layers, resulting in
a helical structure [13]. The origin of the helical spiral is explained in literature by treating the
large spins of Fe ions classically. In contrast, this section treats the triangle chain quantum-
mechanically. We find its ground state, calculate its energy, as well as predict a new spin and
isospin state replacing the classical spin helix.
In Fe-langasite (see Fig. 2), there are five distinct Heisenberg exchange interactions. The
strongest, J1, is the interaction within the triangles. J3, J4 and J5 describe the interactions
between two neighbouring triangles along the c-axis (see Fig. 2). The coupling J2 describes
interactions between triangles within the plane. However, this term is relatively small and does
not appear in the triangle chain.
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3.1 Triangle Chain Ground State

Before discussing the whole triangle chain, consider the simpler case of two adjacent triangles.
In addition to the interactions within the triangle, described by the Hamiltonian (2), three extra
terms appear due to intertriangle interactions depicted in Fig. 2:

Hex = J3 (S1,1 · S2,2 + S2,1 · S3,2 + S3,1 · S1,2)

+ J4 (S1,1 · S1,2 + S2,1 · S2,2 + S3,1 · S3,2)

+ J5 (S1,1 · S3,2 + S2,1 · S1,2 + S3,1 · S2,2) ,
(10)

where the term J1 was dropped, because only the manifold of S = 1
2 states on each triangle

is considered, which means that Eq.(2) is a constant. In the subscript (i, j), i labels ion in
the triangle and j labels to the triangle. The experimental values for the exchange constants
in Ba3NbFe3Si2O14 are: J1 = 1.6 meV, J2 = 0.31 meV, J3 = 0.13 meV, J4 = 0.10 meV and
J5 = 0.33 meV [24]. The constant J1 describes the relatively strong antiferromagnetic interac-
tion compared to the other terms; J1 ≫ |J3|, |J4|, |J5|, which motivated us to consider only the
manifold of low-energy S = 1

2 states on each triangle.

As explained above, the aim is to derive a one-dimensional Hamiltonian written in terms of
the spins and isospins operators that act on the whole triangle, rather than those of individual
ions. To do so, consider the sum of the dot products

∑3
n=1 Sn,1 ·Sn+j,1 expressed through Fourier

transform of spins on triangles:∑3
n=1 Sn,1 · Sn+j,2 =

1√
3

∑
n

∑
k Sn,1 · ei

2π
3 k(n+j)Sn+j,2 =

∑3
k ω

jS−k,1 · Sk,2 ,

which can be written as:∑3
n=1 Sn,1 · Sn+k,2 =

1
3 [(S1,1 + S2,1 + S3,1) · (S1,2 + S2,2 + S3,2)

+ ωk (S1,1 + ωS2,1 + ω̄S3,1) · (S1,2 + ω̄S2,2 + ωS3,2)

+ ω̄k (S1,1 + ω̄S2,1 + ωS3,1) · (S1,2 + ωS2,2 + ω̄S3,2)] .

The purpose of this transformation is clear: it allows for the substitution of the raising/lowering
isospin operators (see Eqs.(8) and (7)):∑3

n=1 Sn,1 · Sn+k,2 =
1
3S1 · S2

[
1 + 4ωk T+

1 T
−
2 + 4ω̄k T−

1 T
+
2

]
.

The interaction described by the constant J4 corresponds to k = 0, J3 corresponds to k = 1
and J5 corresponds to k = 2. The Hamiltonian of two adjacent triangles in the triangle chain is
therefore:

Hex = 1
3S1 · S2

[
J4 + J3 + J5 + 2(2J4 − J3 − J5)(T

+
1 T

−
2 + T−

1 T
+
2 )

+i2
√
3(J3 − J5)(T

+
1 T

−
2 − T−

1 T
+
2 )
]

.
(11)

We can now write down the spin-isospin Hamiltonian of the triangle chain,

Hex = 1
3

∑N
n Sn · Sn+1

[
J4 + J3 + J5 + 2(2J4 − J3 − J5)(T

+
n T

−
n+1 + T−

n T
+
n+1)

+i2
√
3(J3 − J5)(T

+
n T

−
n+1 − T−

n T
+
n+1)

]
,

(12)
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where Sn and T n are the spin and isospin operators of the n-th triangle. At this point , the
spin-isospin model involves a large number of interacting bodies, making it impossible to be
solved exactly. Instead, one can simplify it using the mean field approximation: H = HAHB ≈
⟨HA⟩HB + HA⟨HB⟩ − ⟨HA⟩⟨HB⟩, i.e ⟨H⟩ ≈ ⟨HA⟩⟨HB⟩. This approximation holds only if the
fluctuations of HA and HB are small. In our case, the Hamiltonian of the system is separated
into spin and isospin components, which leads to the approximation: ⟨H⟩ = ⟨HsHt⟩ ≈ ⟨Hs⟩⟨Ht⟩,
where Hs = 1

3N

∑N
n Sn · Sn+1 and Ht = (J4 + J3 + J5) + 2(2J4 − J3 − J5)(T

−
n′ · T+

n′+1 + T+
n′ ·

T−
n′+1) + i2

√
3(J3 − J5)(T

−
n′ · T+

n′+1 − T+
n′ · T−

n′+1). As a result, the ground state energy per layer
E0 = ⟨Hs⟩⟨Ht⟩ is:

E0 =
1

3N

∑N
n=1⟨Sn · Sn+1⟩ ·

[
(J4 + J3 + J5) + 2(2J4 − J3 − J5)⟨T−

n′ · T+
n′+1 + T+

n′ · T−
n′+1⟩

+ i2
√
3(J3 − J5)⟨T−

n′ · T+
n′+1 − T+

n′ · T−
n′+1⟩

]
.

(13)

To find the ground state energy E0 = ⟨Hs⟩⟨Ht⟩, a systematic approach using the extrema of Hs

and Ht is taken. We first calculate the largest and smallest possible expectation values for Hs

and Ht, and then combine them. Out of the four possible combinations, the one with the lowest
energy is the ground state.
In other words, E0 = min(⟨Hs⟩min⟨Ht⟩min, ⟨Hs⟩min⟨Ht⟩max, ⟨Hs⟩max⟨Ht⟩min, ⟨Hs⟩max⟨Ht⟩max).
We start by considering the isospin Hamiltonian Ht.

While spin S = 1
2 systems can be extremely complicated to deal with, in one dimension

they behave like fermions. Consequently, the triangle chain can be thought of as an interacting
one-dimensional gas of fermions [25]. This is then solved by the introduction of Jordan-Wigner
transformation, which consist in mapping all down states |↓⟩ and up state |↑⟩ of the isospin onto
the empty state |0⟩ and the state |1⟩ ocuppied by a spinless fermion, respectively. To go from an
empty to an occupied state, the creation operator b† must be applied: b† |0⟩ = |1⟩. Conversely,
there exists an annihilation operator b, such that b |1⟩ = |0⟩. Using commutation relations, the
isospin operators can be expressed in terms of b†n and bn as [25]:

T+
n = (−1)Σ(1,n−1)b†n ,

T−
n = (−1)Σ(1,n−1)bn ,

T z
n = −1

2 + (−1)Σ(1,n−1)b†nbn ,

(14)

where Σ(1, n−1) =
∑n−1

i=1 b
†
ibi represents the number of occupied fermionic states on the left side

of the site n. The spinless fermion operators obey the anti-commutation relations: {bn, bm} =
δnm. Once substituted into the Isospin Hamiltonian, the Jordan Wigner Transformation yields:

Ht = (J4 + J3 + J5) + 2(2J4 − J3 − J5)
(
b†nbn+1 + b†n+1bn

)
+ i2

√
3(J3 − J5)

(
b†nbn − b†n+1bn

)
.

The Hamiltonian can be further simplified by means of Fourier transform:{
bk = 1√

N

∑
n e

−iknabn ,

bn = 1√
N

∑
k e

iknabk ,

where a is the lattice constant. Then ⟨b†nbn+1⟩ becomes 1√
N

∑
k

∑
k′⟨b

†
kbk′⟩e

i(k−k′)Xneika =∑
k e

ika⟨b†kbk⟩, since ⟨b†kbk′⟩ = δkk′⟨b†kbk′⟩. Similarly, ⟨b†n+1bn⟩ =
∑

k e
−ika⟨b†kbk⟩. In this way,
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we obtain:

⟨Ht⟩ = (J4 + J3 + J5) +
1

N

∑
k

[
2(2J4 − J3 − J5)(e

ika + e−ika)⟨b†kbk⟩+ i2
√
3(J3 − J5)(e

ika − e−ika)⟨b†kbk⟩
]

.

Using the notations: A = (2J4 − J3 − J5), B =
√
3(J3 − J5), cos(koa) = A√

A2+B2
and sin(koa) =

B√
A2+B2

, we get:

⟨Ht⟩ = (J4 + J3 + J5) +
1

N

∑
k 4

√
A2 +B2 cos((k + ko)a)⟨b†kbk⟩ . (15)

As explained above, we need to evaluate both the highest and lowest possible values of ⟨Ht⟩.
The maximum value for ⟨Ht⟩ is reached when all the positive energy k-states are occupied, while
the negative ones are left empty.

⟨Ht⟩max = (J4 + J3 + J5) +
1

N

∑
k 4

√
A2 +B2 cos((k + ko)a)⟨b†kbk⟩ ,

where − π
2a − ko < k < π

2a − ko. Since ∆k = 2π
Na ≪ 1, the Riemann Sum approximation can be

applied:

⟨Ht⟩max ≈ (J4 + J3 + J5) +
2a

π

√
A2 +B2

∫ π
2a−ko

− π
2a−ko

cos((k + ko)a) dk

≈ (J4 + J3 + J5) +
4

π

√
A2 +B2 .

(16)

On the other hand, the lowest expectation value of Ht occurs when only the negative energy
k-states are occupied. Using the same method, we find:

⟨Ht⟩min ≈ (J4 + J3 + J5)−
4

π

√
A2 +B2 .

In the spin term Hs, the spin of the triangles can interact in two different ways: antiferromag-
netically or ferromagnetically. Depending on how the spins couple, the expectation value of Hs

changes. The two possible value for the term Hs are [26]:

1

3N

N∑
n=1

⟨Sn · Sn+1⟩ =

{
1

12N , ferromagnetic
1
3N

(
1
4 − ln 2

)
. antiferromagnetic

(17)

Therefore, the ferromagnetic and antiferromagnetic couplings correspond to ⟨Hs⟩max and ⟨Hs⟩min,
respectively. The absolute value of ⟨Hs⟩max is greater than that of ⟨Hs⟩min, i.e. |14 | < |14 − ln 2|.
In addition, the constants J3, J4 and J5 are positive [24], so |⟨Ht⟩min| < |⟨Ht⟩max|. Therefore,
the combination with the highest absolute value is ⟨Hs⟩min⟨Ht⟩max, and as it turns out, this
term is negative. This means that out of the four possible combinations, this is the one with the
smallest value.
Hence, in the ground state of the triangle chain, spins interactions between triangles is anti-
ferromagnetic, whereas isospin coupling is ferromagnetic. However, one-dimensional Heisenberg
quantum antiferromagnets do not possess Néel long range ordering due to quantum fluctuations
in the system [27]. Therefore, at temperature T = 0K (no thermal excitation), there is no long-
range spin ordering in the triangle chain. Note that isospins are also disordered in the sense that
⟨T n⟩=0. The energy per triangle of the ground state is given by Eqs.(16) and (17):

E0 = −(ln 2− 1

4
)

[
(J4 + J3 + J5) +

4

π

√
(2J4 − J3 − J5)2 + 3(J3 − J5)2

]
. (18)
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Using the values of the exchange constants given in Ref.[24], the ground state energy is of the
order of magnitude ∼ −10−1meV. This energy is not affected by the angle koa that appeared in
the Hamiltonian ⟨Ht⟩ (see Eq.(15)). However, it does impact the ground state, as well as the
structure of the triangle chain. This will be studied in the next section.
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3.2 Isospin Rotation

While spins form a disordered spin liquid state, the isospin shows more structure. Fermi sea of
spinless fermions is shifted by a wave-vector ko, which although has no effect on the ground state
energy, it impacts the isospin structure. To investigate this, consider the correlation functions
⟨T i

nT
i
n+1⟩ and ⟨T i

nT
j
n+1⟩. In particular,

⟨T x
nT

x
n+1⟩ = 1

4⟨(T
+
n + T−

n )(T+
n+1 + T−

n+1)⟩ ,

= 1
4⟨b

†
nb

†
n+1 + b†nbn+1 + b†n+1bn − bnbn+1⟩ .

Recall that ⟨b†nbn+1 + b†n+1bn⟩ = 1
N

∑
k

(
eika + e−ika

)
⟨b†kbk⟩. In the ground state, ⟨b†kbk⟩ = 1, for

− π
2a − ko < k < π

2a − ko, and zero otherwise. In addition, ⟨b†nb†n+1⟩ = ⟨bnbn+1⟩ = 0. Hence, the
previous equation simplifies to:

⟨T x
nT

x
n+1⟩ = − 1

4N

∑
k

(
eika + e−ika

)
, where − π

2a − ko < k < π
2a − ko ,

so that

≈ − a

4π

∫ π
2a

− π
2a

cos((k − ko)a) dk = − 1

2π
cos(koa) . (19)

Similarly:

⟨T y
nT

y
n+1⟩ = −1

4⟨(T
+
n − T−

n )(T+
n+1 − T−

n+1)⟩

= −1
4⟨b

†
nb

†
n+1 − b†nbn+1 − b†n+1bn − bnbn+1⟩

= 1
4⟨b

†
nbn+1 + b†n+1bn⟩

= ⟨T x
nT

x
n+1⟩

Substituting the definition of cos koa into Eq.(19), we obtain

⟨T x
nT

x
n+1⟩ = ⟨T y

nT
y
n+1⟩ = − 1

2π

2J4 − J3 − J5√
(2J4 − J3 − J5)2 + 3(J3 − J5)2

. (20)

Figure 3: Isospin shift between two layers
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In the same way, we obtain

⟨T x
nT

y
n+1⟩ = − i

4
⟨(T+

n + T−
n )(T+

n+1 − T−
n+1)⟩ = ⟨b†nbn+1 − b†n+1bn⟩

= − i

4N

∑
k

(
eika − e−ika

)
≈ a

4π

∫ π
2a

− π
2a

sin((k − ko)a) dk =
1

2π
sin(koa)) .

Concerning ⟨T x
nT

y
n+1⟩, its expectation value is:

⟨T y
nT

x
n+1⟩ = − i

4
⟨(T+

n − T−
n )(T+

n+1 + T−
n+1)⟩ = −⟨b†nbn+1 − b†n+1bn⟩ = −⟨T x

nT
y
n+1⟩ .

As a result, the two correlation functions are given by:

⟨T y
nT

x
n+1⟩ = −⟨T x

nT
y
n+1⟩ = − 1

2π

√
3(J3 − J5)√

(2J4 − J3 − J5)2 + 3(J3 − J5)2
. (21)

Equations (20) and (21) can be interpreted as follows: isospin of the triangle n + 1 is rotated
with respect to the isospin of the triangle n in the xy-plane by the angle β:

tanβ =

√
3(J3 − J5)

2J4 − J3 − J5
. (22)

This result shows the (short ranged) helical spiral ordering of isospins in the ground state; φ.
This isospin rotation is analogous to the spin rotation around the c-axis observed in the Fe-
langasite. In fact, the rotation angle is equal in the classical and quantum models [24]. Still, the
spin-isospin model is very different, since in addition to the isospin (and not the spin) rotating,
there is no long range spin ordering.

The chirality of the material is also showcased, since the reflection accross the ac-plane or bc-
plane of the triangle chain would interchange J3 and J5. The absence of mirrors in the symmetry
group of the Fe-langasites is the source of the helical order. Chirality is also an important
feature of langasites, which gives rise to interesting properties of this class of materials, such as
topologically stable antiferromagnetic skyrmions [11].
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4 Triangle Mean Field

Although the triangle chain model provides a great insight regarding isospin ordering and its
rotation around the z-axis, it misses a key aspect of the material: in-plane interactions. So far,
only the Heisenberg exchange between two vertically adjacent triangles was considered, however
in the Fe-langasite crystal structure, spins also interact with their neighbours lying in the same
ab-plane but in a different triangle. The exchange constant of this interaction is J2. This section
focus on finding the consequences of the in-plane intertriangle interaction for the spin ordering
in the ground state.

4.1 Ground State

To extend the triangle chain model and approach a more realistic situation, we take into account
the interactions between neighbouring spin triangles in the ab-plane. As for the previous sections,
this crystal structure is inspired by the Fe-langasite, in which the spin triangles form a triangular
lattice in each ab-layer (see Fig.4).

Figure 4: Interactions between spins of neighbouring triangles in the ab-plane

By adding a new interaction in the model, a new term must appear in the Hamiltonian. It
describes the four J2 Heisenberg exchange interactions experienced by each magnetic ion in the
triangle and it is given by:

Hp =− J2[S1,1 · (S2,2 + S3,2 + S3,3 + S2,7) + S2,1 · (S1,4 + S3,4 + S3,3 + S1,5)

+ S3,1 · (S1,6 + S2,6 + S1,5 + S2,7)] .

Similarly to the triangle chain case, finding the exact ground states of this Hamiltonian is im-
possible and we have to resort to an approximation. Mean field theory is once again used to
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simplify the Hamiltonian but now we assume that in the ground state spins are ordered. Instead
of dividing the Hamiltonian into spin and isospin components, the mean field applied to the spins
of a given triangle is created by spins from neighbouring triangles. The mean field Hamiltonian
for spins in the triangle 1 has the form:

Hp =− J2[S1,1 · ⟨S2,2 + S3,2 + S3,3 + S2,7⟩+ S2,1 · ⟨S1,4 + S3,4 + S3,3 + S1,5⟩
+ S3,1 · ⟨S1,6 + S2,6 + S1,5 + S2,7⟩] ,

where the brackets denote the average over the ground state that has to be calculated in a self-
consistent way. The interactions between spin triangles in the same and different layers make the
problem three-dimensional and result in a long range ordering or spins. In the Fe-langasite, the
exchange constant is J2 > 0, corresponding to an antiferromagnetic interaction [24] favouring
antiparallel spins. However, it is impossible to have all neighbouring spins antiparallel in a
triangle – geometric frustration. As a result, spins in the lowest-energy state form the Y-type
structure with 120° between spins. Consequently, in the ground state of the three dimensional
model, the average total spin of each triangle is zero: ⟨S1⟩+ ⟨S2⟩+ ⟨S3⟩ = 0.
Since the sum of the three average spin vectors is equal to zero, they must lie in the same plane.
Let this plane be the XY-plane, then:

⟨S1⟩ = SoX̂ , ⟨S2⟩ = So

(
−1

2X̂ +
√
3
2 Ŷ

)
, ⟨S3⟩ = So

(
−1

2X̂ −
√
3
2 Ŷ

)
. (23)

Where So is the length of the ordered spins. Note that the XYZ coordinates in the spin space
are arbitrary and, in general, different from the xyz axes of the coordinate system spin used for
isospin, and relation between the two has yet to be established. Importantly, the spin ordering
is the same for all triangles: ⟨Si,j⟩ = ⟨Si,k⟩, which makes it possible to simplify the in-plane
interaction Hamiltonian:

Hp = −2J2
∑3

n Sn · ⟨Sn⟩

= −2J2So

(
SX
1 − 1

2(S
X
2 + SX

3 ) +
√
3
2 (SY

2 − SY
3 )
)

= 4J2So
[
T xSX + T ySY

]
,

where Eq.(9) was used to go from the second to the third line. The next step is to add the
interactions between the triangles stacked along the c-axis, which we also treat in the mean field
approximation. Along the c-axis, spins are coupled via the J3, J4 and J5 interactions with spins
in the triangle above and below. The mean field Hamiltonian describing these interactions is:

Hz = J4
∑

n Sn · (⟨Sn,+z⟩+ ⟨Sn,−z⟩)
+ J3

∑
n Sn · (⟨Sn+1,+z⟩+ ⟨Sn−1,−z⟩)

+ J5
∑

n Sn · (⟨Sn−1,+z⟩+ ⟨Sn+1,−z⟩) .
(24)

An expression for ⟨Sn,±z⟩ is now needed to proceed further. Although the sum of the averaged
spin in a triangle is zero no matter the layer, there is no reason for the individual expectation
values to be the same in all layers. Since only the direction and not the magnitude of the average
spin will change, let φ be the rotation angle of ⟨Si⟩ around the Z-axis when going up a layer. As
a result, the vectors transform to:

⟨S1,±z⟩ = So(cos(±φ)x̂+ sin(±φ)ŷ) ,

⟨S2,±z⟩ = So

(
(−1

2 cos(±φ)−
√
3
2 sin(±φ))x̂+ (

√
3
2 cos(±φ)− 1

2 sin(±φ))ŷ
)

,

⟨S3,±z⟩ = So

(
(−1

2 cos(±φ) +
√
3
2 sin(±φ))x̂− (

√
3
2 cos(±φ) + 1

2 sin(±φ))ŷ
)

.

(25)
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These values are then substituted into the Hamiltonian (24). Then, Hz and Hp are combined to
obtain the full mean field Hamiltonian of the whole triangle mean field. The resulting expression
is given by:

H = 2So

[
2J2 − 2 cosφJ4 + (cosφ+

√
3 sinφ)J3 + (cosφ−

√
3 sinφ)J5

]
(T xSX + T ySY )

= So

[
2J2 − 2 cosφJ4 + (cosφ+

√
3 sinφ)J3 + (cosφ−

√
3 sinφ)J5

]
(T+S− + T−S+) ,

where S± are the spin raising and lowering operator and are defined as S± = Sx ± iSy . Note
that since the spin and isospin operators act on different subset, it must also be the case for
the lowering and raising operators. To simplify this expression, let A = (−2J4 + J3 + J5) and
B =

√
3(J5 − J3), along with cos(θ) = A√

A2+B2
and sin(θ) = B√

A2+B2
. Then

H = So

[
2J2 +

√
A2 +B2 cos(θ − φ)

]
(T+S− + T−S+) .

We now have to find the ground state of the mean field Hamiltonian. Clearly, none of the states
constructed in section 2.2 is an eigenstate of the operator Â = T+S− + T−S+. As a result, a
new quantum number called the total angular momentum, J , is introduced. It is the sum of
spin and isospin: J = S + T . This allows for a change of basis where the four new states of the
triangle are now expressed in the form |J, Jz⟩, where Jz is the z-component of the total angular
momentum. This gives rise to three triplet states: |1 1⟩ =↑↑, |1 0⟩ = 1√

2
(↑↓ + ↓↑), |1 − 1⟩ =↓↓

and a singlet |0 0⟩ = 1√
2
(↑↓ − ↓↑), where the first arrow denotes the Z-component of the total

spin and the second one is the z-component of the total isospin. This new set of states spans the
whole Hilbert space, since they are all orthogonal to each other. These four state are eigenstates
of Â: Â |1 0⟩ = |1 0⟩, Â |1 1⟩ = Â |1 − 1⟩=0 and Â |0 0⟩ = − |0 0⟩.

Next we select the lowest-energy eigenstate. Immediately, the states |1 1⟩ and |1 − 1⟩ can
be discarded, since their eigenvalue is zero and it is obvious that by using one of the other two
states, a lower energy ground can be reached. For positive J2, the lowest energy state is the state
with the eigenvalue of the operator Â λ = −1. In addition, the angle φ must be such that it
minimises the energy, consequently it is chosen to make the term cos(θ − φ) as large as possible.
This occurs when cos(θ − φ) = 1, which corresponds to φ = θ. Therefore, the ground state is
the singlet state |0 0⟩, the ground state energy is:

E0 = −So[2J2 +
√
(2J4 − J3 − J5)2 + 3(J3 − J5)2] ,

and the angle φ is:

φ = arctan

( √
3(J3 − J5)

2J4 − J3 − J5

)
. (26)

The magnitude of the average spin So is found from the self consistency conditions. This is done
by calculating the expectation value of S1, S2 and S3 in the ground state |0 0⟩. The result is:

⟨S1⟩ =
1

3

1
0
0

 , ⟨S2⟩ =
1

3

−1/2√
3/2
0

 , ⟨S3⟩ =
1

3

 −1/2

−
√
3/2
0

 .

Using Eq.(23), we obtain So = 1
3 . Therefore, the ground state energy per triangle is:

E0 = −1
3 [2J2 +

√
(2J4 − J3 − J5)2 + 3(J3 − J5)2] . (27)
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This clarifies an important property of the spin ordering. In addition to the 120° spin ordering
in each triangle, average spins also rotate from layer to layer. They rotate around the Z-axis and
the angle between spins in two consecutive planes is given by Eq.(26). Intriguingly, the angle
φ is equal to the angle of rotation of isospin β in the spin chain model. In three dimensional
model spins and isospins rotate at the same rate. However, since the XYZ axes in spin space are
arbitrary, spins and isospins do not necessarily rotate in the same plane.
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5 Perturbations of the Ground State

Although the Heisenberg exchange is the governing interaction behind spin ordering in quantum
antiferromagnets, other effects such as the Dzyaloshinskii-Moriya interaction or the exchange
anisotropy, are known to have important effects on magnetic ordering. Still, those interactions
are much weaker than the Heisenberg exchange in materials with 3d transition metal ions, which
is why they could be initially ignored when the ground state is discussed. These relatively weak
interactions can be treated using first-order perturbation theory, which is done in this section.

5.1 Dzyaloshinskii-Moriya Interaction

We first discuss the Dzyaloshinskii-Moriya (DM) interaction, which is an antisymmetric exchange
interaction favouring spin canting, spirals and skyrmions [28]. This exchange coupling is the
first-order correction of the Heisenberg exchange interaction due to the spin–orbit coupling [29].
Although the DM interaction is relatively weak, it is of great importance due to its tendency
to favour twisted spin pairs, leading to the formation of various chiral topological magnetic
structures [29]. We are interested in effects of the DM interaction on the helical structure formed
by spins and isospins. The DM interactions between spins on sites i and j has the form

ĤDM =
∑

i,j Dij · (Si × Sj) . (28)

Some components of this Hamiltonian may disappear due to symmetries of the (i,j)-bond
[30]. For a quantum antiferromagnet with the structure of Fe-langasite, there exists a 2π

3 discrete
rotational symmetry around the z-axis, which results in the vanishing of the x and y components
of the vector Dij in spin triangles. Hence, the Dzyaloshinskii-Moriya in this triangular lattice is
given by:

HDM = Dz ([S1 × S2]z + [S2 × S3]z + [S3 × S1]z)

= Dz
∑3

n S
x
nS

y
n+1 − Sy

nSx
n+1

= i
2Dz

∑3
n S

+
n S

−
n+1 − S−

n S
+
n+1 ,

where S4 = S1. To understand the effects of this operator, let us apply it to the spin/isospin
states of the individual triangles (see Eqs.(3) and (4)):

HDM

∣∣∣∣ 12 ,
τ

2

〉
= i

2
√
3
Dz

(∑3
n S

+
n S

−
n+1 − S−

n S
+
n+1

)
(|↓↑↑⟩+ ωτ |↑↓↑⟩+ ω̄τ |↑↑↓⟩)

= i
2
√
3
Dz ((ω̄

τ − ωτ ) |↓↑↑⟩+ (1− ω̄τ ) |↑↓↑⟩+ (ωτ − 1) |↑↑↓⟩)

= i
2Dz(ω̄

τ − ωτ )

∣∣∣∣ 12 ,
τ

2

〉
= τ

√
3

2
Dz

∣∣∣∣ 12 ,
τ

2

〉
,

HDM

∣∣∣∣ −1

2
,
τ

2

〉
= − i

2
√
3
Dz ((ω

τ − ω̄τ ) |↑↓↓⟩+ (ω̄τ − 1) |↓↑↓⟩+ (1− ωτ ) |↓↓↑⟩)

= −τ
√
3

2
Dz

∣∣∣∣ 12 ,
τ

2

〉
.
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Thus in terms of the spin and isospin operators of the triangle, the Dzyaloshinskii-Moriya inter-
action is given by:

HDM =
√
3Dz T

zSz . (29)

To find the change in energy of the triangle due to the DM interaction, we calculate the
expectation value

√
3Dz ⟨00|T zSz|00⟩. However, the XY-plane is an arbitrary plane that differs

from xy plane and Sz ̸= SZ . To account for this, ẑ must be transformed into XYZ coordinates,
using ẑ = (ẑ · X̂)X̂ + (ẑ · Ŷ )Ŷ + (ẑ · Ẑ)Ẑ. In this manner, the operator Sz = S · ẑ is expressed
in the coordinate system XYZ as:

Sz = (ẑ · X̂)SX + (ẑ · Ŷ )SY + (ẑ · Ẑ)SZ .

When evaluating ⟨00|T zSz|00⟩, the terms ⟨00|T zSX |00⟩ and ⟨00|T zSY |00⟩ vanish since |00⟩ is
not an eigenstate of these operators, and is instead transformed into a state orthogonal to itself.
Therefore, the perturbation simplifies to:

δEDM =
√
3Dz ⟨00|T zSz|00⟩ ẑ · Ẑ = −

√
3

4
Dz ẑ · Ẑ . (30)

In the ground state, this term of the Hamiltonian should be minimised in order to reach the lowest
energy configuration. However, since it contains T zSz, doing so implies that the isospin and spin
z axes must align. Thus, we found that, depending on whether Dz is positive or negative, the z
axes of the two coordinates systems are anti-parallel or parallel:{

if Dz < 0, ẑ ↑↑ Ẑ
if Dz > 0, ẑ ↑↓ Ẑ

.

The previously unrelated z and Z axes, around which isospin and spin rotate, are now coupled by
the DM interaction. Therefore, the DM interaction forces the average spins and isospins of the
magnetic ions to lie in the same plane. If the constant Dz is positive, the z and Z axes align and
hence the isospin and spin rotate in the same direction, whereas if the DM constant is negative,
they will rotate in opposite directions.
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5.2 Exchange Anisotropy

So far, it was assumed that the exchange constants in Eq.(1) for the Heisenberg exchange are
the same for all spin directions. However, due to the low symmetry of the Fe-langasite, this is
not the case. The exchange interaction between the two spins in triangles splits into two distinct
parts: J∥ and J⊥:

Hex = J⊥(S
x
1S

x
2 + Sy

1S
y
2 ) + J∥S

z
1S

z
2

= J⊥(S
x
1S

x
2 + Sy

1S
y
2 + Sz

1S
z
2) + (J∥ − J⊥)S

z
1S

z
2 .

After substitution, J⊥ = J and J∥ − J⊥ = ∆, an extra term, called the exchange anisotropy,
appears. Even though this splitting is present for all exchange constants Ji, since J1 is the
greatest term and this is already a relatively small perturbation, it is sufficient to consider the
anisotropy only within spin triangles and ignore the less significant exchange interactions. The
Hamiltonian of this perturbation is:

HA = ∆
∑3

n S
z
nS

z
n+1 .

Applying HA to the four states in the triangle, we obtain

HA

∣∣∣∣ 12 ,
τ

2

〉
= −1

4
∆

∣∣∣∣ 12 ,
τ

2

〉
,

HA

∣∣∣∣ −1

2
,
τ

2

〉
= −1

4
∆

∣∣∣∣ −1

2
,
τ

2

〉
.

Clearly, the exchange anisotropy, when projected on S = 1
2 states, is simply a constant, which

does not depend on the state the operator is acting on. Hence, HA simplifies to:

HA = −∆

4
. (31)

We thus found that the exchange anisotropy does not affect the spin ordering in the quantum
antiferromagnet.
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6 Discussion

A new quantum degree of freedom appear, when the spins s = 5
2 iron ions in Fe-langasite are

replaced by spins s = 1
2 . This quantum number, called isospin, gives rise to new physics. The

first noticeable difference occurs when looking at the ground state of the triangle chain: while
spins form a disordered spin liquid state, isospin shows a short ranged helical spiral ordering.
Between two ab layers, the average isospin rotates around the z-axis by an angle β, such that
tanβ =

√
3(J3−J5)

2J4−J3−J5
. This helical order is the result of the lack of reflection symmetry across the

ac-plane or bc-plane, which leads to J3 ̸= J5. By contrast, in Fe-langasite there is no isospin.
Instead, the classical spin rotates with the same angle β around the c-axis.

Adding in-plane interactions causes the configuration of average spins to change. The lowest
energy configuration occurs when the average total spin of the triangle is zero and the three
spins show a noncollinear 120° spin ordering. It corresponds to the state of the quantum spin-
isospin model, in which the sum of spin and isospin in each triangle is zero. In contrast to the
one-dimensional model, this ground state allows for spins to be ordered. In fact, just like for the
helical isospin ordering, the average spins rotate along the c-axis. The angle of rotation φ equals
β, which means that the average spin and isospin rotate together. However, the axis around
which spins rotate, the Z-axis, is arbitrary. In other words, although they rotate with the same
rate, the plane of rotation is not necessarily the same.

The DM interaction in this triangular crystal lattice structure favours the alignment of the
the isospin z-axis and the spin Z-axis. Whether they are parallel or anti-parallel is dictated by
the sign of the DM constant. As a result, the average spin rotates in the same xy-plane as
isospin. Depending on the axes alignment, the spin rotation is clockwise or anti-clockwise. This
is in agreement with the classical model, in which the chirality of the spin spiral also depends on
Dz. The exchange anisotropy turned out not to affect the spin and isospin ordering.

These results were obtained using mean field approximation. It involves averaging all inter-
actions acting on a system and it works well as long as the fluctuations of these interactions are
small. However, quantum Heisenberg antiferromagnets are known to show significant quantum
fluctuations in their ground state [31]. In low-dimensional quantum spin systems, these fluctua-
tions can be strong enough to destroy magnetic ordering or give rise to new phases [32]. However,
three dimensional quantum triangular spin models are often ordered in the ground state. At ab-
solute zero, this ordering is only a locally stable minimum in the total energy, but it is not the
absolute minimum, because long range ordering is disrupted by the quantum fluctuations [33].
Consequently, the use of mean field only allows for the prediction of spin-isospin short range
ordering. Whether the long range orders discussed in this thesis survive spin fluctuations is an
interesting question.

Another important aspect to consider is thermal fluctuations. In the derivations, we have
assumed that the spin lattice was at temperature T = 0 K and, hence, there were no thermal
excitations. Thermal fluctuations reduce the value of the ordered spins. However, even if the
spin order is entirely suppressed, the isospin order may still persist. It would be interesting to
consider this possibility.
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This investigation opens the door for multiple topics of further research. One interesting
direction would be to go beyond the mean field approximation. This approximation is rather
crude, since it does not account for quantum spin and isospin fluctuations in the ground state.
In the antiferromagnetic spintronics research, the use of various approximation methods is often
needed to solve a many body problem. Among those, there are a few that capture quantum
fluctuations, such as quantum Monte Carlo simulations [34][35], renormalisation group theory
[36][37] and dynamical mean field theory [38][39].

Numerous applications of antiferromagnets involve making use of their relative insensitivity
to external magnetic fields. Therefore, it is interesting to study behaviour of the quantum tri-
angular antiferromagnet under an applied magnetic field. In this investigation, the anisotropy
exchange was quickly discussed and put aside due to its limited influence on the structure. How-
ever, it plays an extremely important role when an external magnetic field is applied to the
system. The effects of magnetic exchange anisotropies have to be studied in more detail.

The theoretical study of Fe-langasite has suggested existence of three-dimensional skyrmions
and coreless vertex tubes in Fe-langasite [14]. It would be intresting to understand if these
fascinating topological defects also exist in the the quantum spin-isospin model. The study of
differences between topological defects in the classical and quantum models could yield interesting
results.
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7 Conclusion

In this thesis, we explored the effects of replacing the spins s = 1
2 irons ions by spins s = 1

2 ions
in the Fe-langasite, a triangular antiferromagnet. This substitution resulted in the emergence
of a new quantum degree of freedom, isospin. We first examined a structure that consists in
triangles stacked on top of each other along the c-axis. In this one-dimensional model, called the
triangle chain, we found that spins form a disordered spin liquid state, whereas isospins exhibit
short ranged helical spiral ordering. Between two ab layers, the average isospin rotates around
the z-axis by an angle β, such that tanβ =

√
3(J3−J5)

2J4−J3−J5
.

Then, the triangle chain was extended by taking into account the interactions between neigh-
bouring spin triangles in the ab plane. This caused the average total spin of triangles to be
equal to zero, and the ions to form a noncollinear 120° spin ordering. In the resulting ground
state, spins rotate along the c-axis with an angle φ, where φ = β. However, the spins plane of
rotation is arbitrary and is not necessarily the same as the isospins plane of rotation. To estab-
lish a relation between the two, the DM interaction must be introduced. Depending on the sign
of the DM constant, the spins Z-axis and isospins z-axis will either be parallel or antiparallel.
The anisotropy exchange was also examined, however it does not affect the spin ordering in the
quantum antiferromagnet.

To obtain these results, a simplification was needed and we chose the mean field approxima-
tion. However, this approximation ignores quantum fluctuations, which are known for destroying
magnetic ordering in antiferromagnets. Consequently, it is uncertain whether long range spin-
isospin ordering survives against these fluctuations. Nonetheless, it is expected for the short-range
orders discussed in this thesis to exist in the ground state.

Finally, we discussed potential topics for further research. These include going beyond the
mean field approximation to account for possible quantum spins and isospins fluctuations using
more powerful tools. Studying the effects of external magnetic fields on quantum triangular
antiferromagnet could prove useful for potential applications. Additionally, investigating the
potential existence of topological defects in the spin-isospin model would be of interest.
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