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Abstract

Thin section analysis is important in determining the physical properties of a rock.
Manual analysis is a time-consuming process, one that can produce inconsistent re-
sults. Deep learning methods promise largely automated analysis procedures, yet such
models require a lot of training data. In order to obtain this training data faster than
can be achieved using manual analysis, one requires an automated approach. In this
thesis we propose to automate most of this process by combining traditional image
segmentation methods, while enabling the user to make corrections. The result is a
novel image segmentation method and a software solution that will assist researchers in
quickly performing thin section analysis. In order to keep the segmentation consistent,
we record the performed actions. Finally, we assessed our results with a user study,
measured the accuracy, and differences within accuracy using the Jaccard distance
compared to a manually segmented version of the image.

From the obtained results we conclude that the current achievable accuracy is sub-
par, user corrections were rarely used because most participants spent their time with
global segmentation. However the method is, in our eyes, still promising, yet needs to
be improved before it can be used in actual lab procedures.
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1 Introduction

Figure 1: Example of a thin section

A rock consists of mineral grains, which determine its physical properties such as porosity,
permeability, and density. Determining these properties involves taking thin slices, often
only micrometres thick, from a rock sample. When observed under a microscope, the indi-
vidual grains become visible. Thin section analysis entails labeling these grains, so they can
be measured. This process is often done manually, which is time-consuming and requires
significant experience. Manual analysis of thin sections can also lead to inconsistent results,
as experts can disagree on actual, individual grain boundaries [1]. Automating this step of
the process is crucial to speeding up research and making results more consistent. Image
processing offers various methods of segmenting an image. These segmentation methods
attempt to partition an image into regions. In our case these regions contain the individual
grains.

A research report conducted by Gerard Vehof compared two Machine Learning (ML) meth-
ods in their ability to segment thin sections. One of which was the U-net model, which is
a Convolutional Neural Network (CNN) model developed by Ronneberger et al. The U-net
model was determined viable for this automatic segmentation task [2, 3]. However applying
such a model needs to be trained for other grain types. Training and improving the accuracy
of such a CNN requires a lot of training data. This leads to our main research question,
namely:

“How to rapidly and reproducibly obtain large sets of training data using image
segmentation 77

The primary objective of this project is to develop a segmentation workflow that combines
traditional parametric image segmentation algorithms with user-guided corrections, with the
aim of significantly accelerating the segmentation process. The correction process is then
recorded so it can be auto-replicated on larger image batches, in order to further speed up
the process.



1.1 Challenges with segmenting thin section images

Segmenting a thin section image is a challenging task. First, the images are densely packed
with objects. While it might be easy to segment a single object from its background, doing
this with hundreds or thousands of objects is not a trivial task. Samples of different grain
types vary wildly in their shapes and sizes. In poorly-sorted samples the grain size can vary
within the sample itself. Grains can also touch each other or overlap, which makes it hard to
properly segment both grains. These challenges make it hard to fully automate the process
of segmentation. Therefore, our model enables the user to set the parameters for global
segmentation, and allows for user-guided corrections to be applied to single regions.

a) Overlapping grains ) Grain with growth

¢) Partially dissolved grain ) Grains with a big size difference

Figure 2: Challenging grains to segment. Sub-images from Botter, 2023



2 Related work

There are a number of methods that can assist us with the segmentation and refinement
processes.

Jungmann et al. used a weighted region competition, used to balance the merging of larger
and smaller regions. Their results look promising as they are not far off compared to their
manual analysis [1].

Felzen et al. used a graph-based method for image segmentation that also uses weighted re-
gion competition to balance intensity differences across boundaries and within regions. The
algorithm produced accurate results and captures non-local image characteristics efficiently.

]

Maitre et al. combined Super Linear Iterative Clustering (SLIC) with three popular non-
parametric classification methods. They compared each SLIC-paired method against a deep
learning CNN. The SLIC-paired methods outperformed the CNN when it was using a 70:30
split for training and testing data. However, it should be noted that their ground truth data
had displacements, which may have affected the accuracy of the evaluation [(]

Yu et al. attempted to generate training datasets for deep learning applications by eval-
uating several superpixel algorithms and introduced MultiSLIC, an extension of the SLIC
algorithm, to work on multispectral images. [7].

One possible refinement method is active contour snakes. First described in a paper by Kass
et al. They made use of an energy-minimizing spline model they call active contour snakes.
Their method allowed for interactive interpretation and accurate localization of image fea-
tures [3].

As mentioned before one of the challenges when segmenting a thin section is touching grains.
Scharf et al. focused specifically on zircon grains, proposed a method which allowed for
manual adjustment of automated segmentation and separates overlapping grains [9].

Tan et al. produced a paper in the agricultural sector about rice grain separation. They
utilized the watershed algorithm to separate and count touching hybrid rice grains. They
concluded that while the watershed algorithm is effective in identifying separation lines be-
tween different regions, it can lead to over- and under-segmentation. To solve these challenges
the study proposes an improved corner point detection algorithm [10].

A method proposed by Van den Berg et al. better preserves the size and shape characteris-
tics of the grain compared to the watershed algorithm [11].

This project is also based on previous research done at the University of Groningen (UG).
The before mentioned report by Gerard Vehof that explored two machine learning approaches
[2]. And a research report by Dennis Botter, who used a combination of more traditional
methods for their segmentation [12].



3 Methodology and workflow

For our global segmentation we decide to use SLIC [13]. SLIC divides an image into same-
sized superpixels and then assigns pixels to the superpixels based on their value and position
using K-Nearest-Neighbor (KNN). We then use a Region Adjacency Graph (RAG) [11] to
combine these over-segmented grains to obtain a good-estimate segmentation. Finally, the
user can refine individual regions to further improve the accuracy.

3.1 Segmentation workflow

The segmentation workflow consists of the following steps:

1. Pre-processing

2. Global segmentation using SLIC

3. Merging over-segmented grains using RAG

4. Applying modifiers to grains to adjust boundaries

5. Post-processing

3.2 Pre-processing

The model uses a minimum luminance value as a threshold for separating the background
and foreground. This is a rough estimate, though the background is generally darker than
the foreground. The threshold is used to generate a mask of the foreground, where any spots
smaller than the minimum grain size get removed. In order to increase the speed of the
segmentation, the image is scaled down using the quality parameter. This allows users to
test out different parameter settings without having to wait for the high-resolution image to
be segmented.

3.3 Global segmentation

Global segmentation is performed using SLIC on a gray scale (mono-channel) version of the
thin section. It is the primary step the user performs.

3.4 Merging regions

In order to merge the over-segmented regions that are supposed to be a single region, we use
an implementation of a RAG that performs hierarchical merging on region boundaries.



3.5 Modifiers

Since the global segmentation is limited in its capability of segmenting the image we enable
users to apply modifiers to individual regions or groups of regions. The infrastructure sur-
rounding modifiers is designed with extensibility in mind, so that other developers can easily
implement their own modifiers. The built-in modifiers include:

Method

Description

Erosion

Shrinks the region by its boundary

Dilation

Enlarges the region by its boundary

Opening

Erosion followed by dilation, opens holes in a segment.

Closing

Dilation followed by erosion, closes internal holes.

Table 1: Built-in Modifiers

Modifiers are not limited to the segmentation however. There are modifiers that can apply
filters to the image, such as the local histogram equalization [15] as a pre-processing step,

possibly improving the global segmentation.

Figure 3: Histogram before local

equalization

3.6 AMG

0.005 4

0.004 4

0.003 4

0.002 4

0.001 4

0.000 -

Figure 4: Histogram after local
equalization

When a user applies a modifier to a segment it will be recorded in the Acyclic Modifier
Graph (AMG). The AMG is an implementation of an Directed Acyclic Graph (DAG). This
structure allows the program to traverse the graph and replicate the action without the
possibility of getting stuck in a loop. Aside from that, it also makes it possible to switch

between workflows and compare them.
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4  Design and implementation

In order to make the workflow more user-friendly, we have developed a program with a user
interface. This section covers the design and implementation of the program.

4.1 Technology stack

The program is completely written in Python'. The user interface has been made using
PyQt5%. For image processing tasks, we mainly make use of the NumPy?® and scikit-image®
libraries.

4.2 User interface

(D)

Figure 5: Screenshot of the main window showing the UI elements:
(A) viewport, (B) tutorial, (C) outliner, (D) segmentation panel

The figure above shows the main window. The viewport (A) enables user to interact with the
segmentation. They can zoom and pan around the image, switch between different views,
and select regions using the mouse. The tutorial (B) was used during the user study to
explain participants how they could use the program. The outliner (C) lists the regions.
The segmentation panel (D) contains 3 tabs. The first tab shows the global segmentation
parameters. The second tab, contains the parameters for the RAG. The last tab is the re-

thttps://www.python.org/
Zhttps://doc.qt.io/qtforpython-5/
3https://numpy.org
4https://scikit-image.org
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finement tab. It shows the modifiers that can be applied to individual regions.

4.3 AMG Visualization

Figure 6: AMG Concept design

While the AMG does register the modifiers applied by users, there is currently no UI ele-
ment for it. Figure 6 shows a concept of how the AMG would be visualized. In this example
the first (left-most) node shows global segmentation and the other nodes are erosion and
dilation modifiers. Selecting a node would load the segmentation at that state. When a

new modifier is applied a branch is created, allowing users to switch between branches and
compare workflows.



12

5 Results and discussion

In order to evaluate our workflow, we conducted a user study to measure the accuracy and
difference in accuracy within a constrained time frame. Participants were each given 20
minutes to segment a sub-image taken from a thin section. Their result is then compared
against a manually segmented image. The manually segmented image as shown in figure 7
is our ground truth. We compute the accuracy as the similarity between the segmentation
result and the ground truth. For our measure of similarity we used the Jaccard distance.
The Jaccard distance is a measure of set similarity and is calculated as follows:

|AN B
1
|AU B (1)

A Jaccard distance of 0 means that the sets are equal thus regions are the exact same shape
and size, while a distance of 1 means that there is no overlap between the regions.

Jaccard distance =1 —

Figure 8: Analysis of a single grain with
ground truth segment shown in purple,
segmentation result in pink, and
intersection in white

Figure 7: Ground Truth, Botter, 2023

In order to know what regions should be compared, we calculate the Jaccard distance be-
tween a region in the ground truth and every region in the result and take the lowest distance.
This gives us the best fitting region. This does mean that a single region in the result can
be the closest to multiple regions in the ground truth. However, in such a case there will
also be a greater number of false positives, so ultimately this will not affect the distance.

In order to calculate the difference in accuracy, we compare the first and last segmentation
from each participant with the ground truth.
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5.1 Results

5.1.1 Accuracy analysis results

User 3
Start | End | Difference
Mean | 0.778 | 0.781 0.003
Median | 0.878 | 0.883 0.005
Std 0.248 | 0.252 0.004
Min 0.075 | 0.075 0.000
Max | 0.998 | 0.998 0.000

User 4
Start | End | Difference
Mean | 0.651 | 0.630 0.022
Median | 0.711 | 0.708 0.002
Std 0.263 | 0.289 0.026
Min 0.048 | 0.048 0.000
Max | 0.998 | 0.998 0.000
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User 5
Start | End | Difference
Mean | 0.689 | 0.761 0.072
Median | 0.728 | 0.829 0.101
Std 0.234 | 0.218 0.016
Min 0.115 | 0.101 0.014
Max | 1.000 | 1.000 0.000

User 6
Start | End | Difference
Mean | 0.679 | 0.720 -0.041
Median | 0.704 | 0.821 -0.117
Std 0.210 | 0.261 -0.051
Min 0.148 | 0.059 0.089
Max | 1.000 | 1.000 0.000

User 7
Start | End | Difference
Mean | 0.995 | 0.663 0.332
Median | 0.999 | 0.704 0.295
Std 0.022 | 0.248 -0.226
Min 0.710 | 0.090 0.620
Max | 1.000 | 1.000 0.000

User 8
Start | End | Difference
Mean | 0.695 | 0.627 0.068
Median | 0.728 | 0.666 0.062
Std 0.234 | 0.239 -0.005
Min 0.116 | 0.065 0.051
Max | 1.000 | 1.000 0.000
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User 9
Start | End | Difference
Mean | 0.695 | 0.687 0.008
Median | 0.728 | 0.737 -0.008
Std 0.234 | 0.249 -0.015
Min 0.116 | 0.082 0.033
Max | 1.000 | 1.000 0.000

User 10
Start | End | Difference
Mean | 0.697 | 0.945 -0.248
Median | 0.726 | 0.981 -0.255
Std 0.196 | 0.106 0.091
Min 0.182 | 0.242 -0.061
Max | 1.000 | 1.000 0.000
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Start | End | Improvement

Mean | 0,735 | 0,727 0,008

Median | 0,775 | 0,791 ~0,016
Std | 0,205 | 0,233 20,028
Min | 0,189 | 0,096 0,003
Max | 0,999 | 0,999 0,000

Table 2: Jaccard distances (Averaged over all participants)

5.1.2 AMG analysis results

By analysing the AMG’s we extracted the following information:
Participants performed on average 74 actions, this includes global segmentation, applying a
modifier and merging segments.

Modifier | Uses
Erosion 21
Dilation 26
Opening | 104
Closing 32

Table 3: Modifier occurrence.

It is clear from Table 3, that the opening modifier is used most.

Value ranges for the global segmen- Value ranges for the global segmen-
tation: tation(final values only):
e Number of Segments: 20 - 2500 e Number of Segments: 200 - 2500
(default value: 800) (default value: 800)
e Compactness: 0,1 - 0,8 e Compactness: 0,1 - 0,8
(default value: 0,1) (default value: 0,1)
e Minimum Luminance: 0,1 - 0,3 e Minimum Luminance: 0,1 - 0,2
(default value: 0,2) (default value: 0,2)
e Minimum Grain Size: 10 - 5000 e Minimum Grain Size: 10 - 5000
(default value: 500) (default value: 500)

Quality: 0,1 - 1,0 Quality: 0,4 - 1,0
(default value: 0,1) (default value: 0,1)
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5.2 Discussion

As shown in Table 2, the average accuracy is not significant. Despite having the lowest mean
distance at the end, Participant 8 still was not able to obtain a high accuracy. This may
be due to the fact that our method did not account for over-segmentation. Consequently, a
rough estimate would score significantly higher than an over-segmented version with accu-
rate boundaries.

Furthermore, there was no significant difference in accuracy. This can be attributed, at least
in part, to the fact that participants tended to remain in the global segmentation step for
the majority of their time, only progressing to the refinement step towards the end of their
time. The participants who achieved the best mean scores made extensive use of the feature
to manually merge segments. This suggests that implementing a fully functional RAG could
enhance the accuracy and enable users to dedicate more time to the refinement phase.

Going back to our research question: "how to rapidly and reproducibly obtain large sets of
training data using image segmentation” At present, our solution does not fully answer this
question. However, we believe the issue lies not in our overall methodology but rather in the
specific aspects of our implementation and analysis. By addressing these areas, we might
achieve a more definitive answer in the future.

5.3 Limitations

While originally meant for people with a background in geology, due to time constraints and
a lack of participants, the study was expanded beyond geology students to include anyone
with a university-level education or higher. Our final results did not include any geology
students or anyone with expertise in thin section analysis as participants.

The user study resulted in 10 segmented thin section sub-images. However we discovered
later that 2 of those results were performed on a different image and thus could not be used
in the assessment. These results are still present in appendix, however they have not been
used in the results.

Because using a high-resolution thin section image would be very resource intensive, we de-
cided to use a lower quality sub-image. The color channels of the image were removed to
make it compatible with our segmentation model.

We wrongly assumed that the ground truth image we used Figure 7 would be the same size
and had the same amount of detail as the image segmented by the participants. However in
actuality it was half of the size. Therefore our analysis is slightly less accurate. Secondly in
the ground truth the edges were anti-aliased. That meant that selecting the regions by color
would introduce a lot of non-existent regions. In view of time constraints it was decided
upon to still go through with this method and to threshold the size of the ground truth



18

regions®.

5.4 User feedback and improvement suggestions

Participants often spent most of their time in the global segmentation step. Many of the
participants noted that they found it hard to determine when the global segmentation was
sufficient to move on. Therefore modifiers were not used often, possibly impacting the im-
provement in accuracy. The regions often needed to be manually merged because the RAG
did not seem to have much impact. This might be caused by the weight function used in
the current implementation of the RAG. Users also commented on the fact that they did
not get immediate feedback when the program was busy performing the slow task of global
segmentation. Adding a loading bar or icon has been suggested by multiple participants.
One participant suggested highlighting regions when the mouse hovered over them. Sadly,
selection of segments via the viewport did not work in all cases. This inconvenienced some
participants and made it harder to apply modifiers, because they were forced to select the
regions using the outliner.

5The specific value used was 100 pixels in area.
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6 Conclusion

The aim of this project was to develop a method that could rapidly and reproducibly seg-
ment thin sections. The results of the user study have shown that the current state of the
program is not sufficient for the intended purpose and that current limitations have to be
overcome first.

However, the result from a small subset of user study participants indicate that the method
of combining SLIC with user-guided corrections can produce accurate segmentations, and
that the low accuracy score is due to both our implementation of the workflow and the way
in which we analysed the results.
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7 Future Work

As mentioned in our discussion, the method we used for analysing the results of our user
study could be improved upon. Performing the user study again with more participants and
using multiple different images would also improve the validity of the results.

There are several improvements that can be made to extend the current programs ability to
segment the thin sections. First of all, adding the option to further segment a region could
improve the accuracy of the region boundaries. This can for example be achieved by adding
a watershed modifier or a localized version of SLIC. Other ways of improving the boundaries
include using active contour snakes [8] or MSLIC [16]. The user study showed that the
impact of the RAG was insignificant. Finding a good weight function for the RAG would
likely increase the accuracy significantly and save users time they would have otherwise spent
merging regions by hand.

One of the biggest current limitations with our program is that it can not handle the full
sized thin section images. Adding this capability is not a trivial task as it introduces even
more challenges, such as dealing with the borders around the thin section image.
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A Link to Github Repository

https://github.com/Drasath/thin-section-segmentation

B User study results

User 1 User 2

Note: Users 1 and 2 were given a different image, thus their results were not
used


https://github.com/Drasath/thin-section-segmentation
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