

Prediction of Postnatal Fetal Renal Function:
A Deep Learning Approach

Jeremi Olejnik, BSc

S5728932

Department of Obstetrics and Gynecology / Data Science Center in Health

(DASH), UMCG

Period: 15/04/2024 - 05/07/2024

Internship

1st Examiner: [dr. ir. P.M.A. (Peter) van Ooijen / Faculty of Medical Sciences, RUG]

2nd Examiner: [dr. Federica Fontanella / Obstetrics and Gynecology, UMCG]

Abstract
 Congenital obstructive uropathies present a significant challenge in pediatric care, being the
leading cause of renal failure in children. These anomalies, characterized by urinary tract
obstruction (UTO), underscore the importance of early detection and intervention. Fetal renal
assessment through ultrasound imaging offers the potential for timely diagnosis; however, the lack
of standardized assessment methods makes it difficult to accurately predict renal function. This
internship aimed to explore the integration of deep learning techniques to enhance the ultrasound-
based evaluation of postnatal fetal renal function.
 The project was structured into three comprehensive phases: preprocessing, model
development, and model evaluation. In the preprocessing phase, extensive image corrections,
including inpainting measurements, were performed, ensuring the quality and consistency of input
images. Model development phase involved adjustments to various pertained functional model
architectures and weights, along with hyperparameter tuning using cross-validation to optimize
model performance. Additionally, explainable AI (XAI) techniques, specifically GradCAM, were
incorporated to generate visual explanations of the model's predictions, enhancing interpretability.
The final evaluation phase focused on assessing the model's accuracy and reliability in predicting
renal function from ultrasound images.
 Despite the small size of the dataset, which consisted of only 97 images, the results
demonstrate the potential of deep learning to improve the accuracy of predicting postnatal fetal
renal function from ultrasound images. The best-performing model achieved an accuracy of
68.42%, an F1 score of 66.(6)%, a sensitivity of 75%, a specificity of 63.64%, and an AUC of
69.32%. These promising outcomes highlight the need for further research and larger datasets to
enhance the model's predictive capabilities before they could be used in clinical practice.

2

Table of contents

Abstract 2

1. Introduction 4

2. Materials 6
2.1 Data Description 6

2.2 Data Preprocessing 7

2.2.1 Data Import and Anonymization 7

2.2.2 Standardization of Image Dimensions 8

2.2.3 Image Inpainting 9

3. Methods 13
3.1 Data augmentation 13

3.2 Model architectures 13

3.3 Transfer learning 14

3.4 Hyperparameter tuning 15

3.5 Model training 16

3.6 Explainable AI 16

3.7 Measures of performance 18

4. Results 19
4.1 Hyperparameter tuning 19

4.2 Model training 20

5. Discussion 23

6. Conclusions 25

References 27

3

1. Introduction
 Congenital obstructive uropathies are the most common urinary tract anomalies, which are
the largest recognizable cause of renal failure in infants and children [1]. These anomalies result
from urinary tract obstructions that can occur at different levels (Figure 1): at the renal pelvis or
fetal ureter, in the case of upper urinary tract obstruction (UUTO); below the bladder neck, in the
case of lower urinary tract obstruction (LUTO) [1]. UUTO is typically characterized by unilateral
hydronephrosis and possible dilatation of the renal calyces, with severe cases potentially leading to
massive dilatation, rupture of the collecting system, and perinephric ureter or urinary ascites.
LUTO, often caused by partial or complete blockage of urination due to posterior urethral valves, is
associated with antenatal symptoms such as enlarged urinary bladder, bilateral hydronephrosis,
hydroceles, and oligohydramnios after the second trimester of pregnancy. If untreated, LUTO has a
mortality rate of 45% [2], with approximately 25-30% of surviving infants developing renal failure
requiring dialysis or transplant in childhood [3].

Figure 1. Normal (left) and abnormal (right) urinary tract system, with stenosis (narrowing) between the ureter and the
kidney, inducing accumulation of urine in renal pelvis and calyces (hydronephrosis) [4]

 Congenital defects of the urinary tract constitute 20-30% of all congenital defects detected
antenatally, with detection rates reaching approximately 90% [5]. Despite this high detection rate,
effective diagnosis in the prenatal period is limited by the lack of comprehensive follow-up studies
and a commonly accepted approach to objectively assess fetal renal function. The current best
predictors of postnatal kidney functioning rely on ultrasound imaging to assess renal cortical
parenchymal appearance and renal echogenicity, which refers to the ability of the renal tissue to
reflect ultrasound waves, indicating its density and composition. However, this assessment is based
on the subjective evaluation of the sonographer, which has shown poor agreement between experts
and low accuracy. Therefore, there is a need for standardized diagnostic procedures that allow for a
more precise and objective assessment of fetal renal function, which would significantly improve
early intervention techniques, prenatal care, and outcomes for affected children.
 In recent years, artificial intelligence (AI) has significantly impacted healthcare [6].
Machine learning (ML) techniques, particularly deep learning (DL) [7], utilize artificial neural
networks to process extensive datasets and identify important features that predict outcomes of
interest. Convolutional neural networks (CNNs), a specific DL architecture, are algorithms
specifically designed to process images [8]. CNNs have been widely used in classification tasks
involving ultrasound imaging, demonstrating their ability to detect diverse patterns and subtle
changes in this type of medical images [9]. Each CNN layer contains small matrices of weights,
called filters - or kernels, which are applied to image pixels through a mathematical operation
known as convolution. In this process, each filter slides over the input image,

4

performing element-wise multiplication and summing the results to produce a single value. This
operation is repeated across the entire image, resulting in a new image known as a feature map, that
emphasizes certain patterns or features detected by the filter. These kernels showed an excellent
ability at detecting diverse patterns and changes in ultrasound images, enabling early and precise
identification of kidney abnormalities [10]. Training deep learning networks can be challenging due
to various factors, including the choice of network architecture, the depth of the network, and the
specific parameters used. Different CNN models may perform differently even when trained for the
same task on identical datasets; thus, a thorough evaluation is needed to determine the most
effective one. AI has significantly advanced healthcare by automating complex tasks and analyzing
large datasets; however, a major limitation in this domain is the difficulty in interpreting the models'
outcomes. This lack of transparency can undermine trust and acceptance among healthcare
professionals, who need to understand how decisions are made to confidently use AI in clinical
practice. To address this issue, Explainable AI (XAI) techniques have been introduced, providing a
way to enhance the interpretability of AI models. XAI techniques enable the creation of visual
explanations of the models' predictions, making it easier for clinicians to understand the decision-
making process.
 By leveraging deep learning and XAI, this project attempted to improve the objective
evaluation of fetal renal function, enabling for earlier and more accurate diagnosis with a
consequent improvement of prenatal care and outcomes for children with congenital obstructive
uropathies. This internship aimed to perform ultrasound image classification in obstructive
uropathies by using a deep learning approach based on CNNs. Specifically, the project focused on
addressing the following research questions:
1. How accurately can deep learning models predict fetal renal function based on ultrasound
imaging?
2. Which deep learning framework performs best for the binary classification of fetal renal function
using ultrasound images?
3. What are the strengths and limitations of using deep learning for predicting fetal renal function
based on ultrasound imaging?
4. How can the integration of explainable artificial intelligence (XAI) techniques enhance the
interpretation and decision-making processes in healthcare systems regarding fetal renal health
using ultrasound imaging?

5

2. Materials

2.1 Data Description
 Between 2013 and 2023 a retrospective, cross-sectional study was conducted at the Fetal
Medicine units of the University Medical Center Groningen (UMCG). For this project, fetuses with
unilateral obstructive uropathies were selected, resulting in a total of 97 cases. One ultrasound
image was available for each case, which was selected by the gynecologist based on its quality and
optimal display of the fetal renal pathology. Along each ultrasound image, segmentation masks of
the kidney and renal pelvis (Figure 2) were created by the gynecologist. Each patient's ultrasound
image was categorized into one of two outcome classes based on clinical criteria:

 - “favorable outcome” (label 0): normal renogram (> 40% function of the affected kidney) and no
history of surgical intervention related to the kidney problem

- “not favorable outcome” (label 1): abnormal renogram (≤ 40% function of the affected kidney)
and/or a history of surgical intervention related to the kidney problem

Figure 2. Example ultrasound image with segmentation masks, where the kidney is highlighted in red and the renal
pelvis in yellow

6

2.2 Data Preprocessing
 Preprocessing is a crucial step in the creation of datasets to use to train deep learning
models, particularly for medical applications [11]. This process aims to standardize images,
minimizing variations so the model focuses on relevant features. Effective preprocessing ensures
the dataset is clean and consistent, enhancing the model's accuracy and reliability.
 In the context of ultrasound imaging, preprocessing helps in managing various issues such
as the presence of annotations, patient personal health information (PHI), and inconsistencies in
image dimensions and quality. In the following subsections we will describe all the steps taken in
this study to obtain the final dataset utilized for the analysis.

2.2.1 Data Import and Anonymization

 The first step of data preprocessing involved importing all DICOM ultrasound images and
image segmentations to establish an organized workflow. DICOM (Digital Imaging and
Communications in Medicine) is a standard format for medical imaging that stores both the image
data and extensive metadata, such as patient information and imaging parameters. Ultrasound raw
images are stored in three channels, representing the RGB (Red, Green, Blue) color model, with
each channel containing intensity values for its respective color. To protect PHI and anonymize the
dataset, the pixel array along with relevant imaging parameters were extracted from the DICOM
files, and the images were converted to NIfTI format, which does not retain the sensitive metadata.
Next, all PHI present on the ultrasound images were removed using zero-covering (Figure 3).
Finally the dataset was pseudonymized by renaming all images with a randomly generated number
and split into training (~80%) and testing (~20%) subsets, maintaining the ratio between the two
classes.

Figure 3. Visualization of PHI removal process using zero-covering [12]

7

2.2.2 Standardization of Image Dimensions

 In medical imaging, pixel-spacing (PS) is defined as the physical distance in a patient
between the centers of each two-dimensional pixel, specified by two numerical values (Figure 4):
the vertical and horizontal pixel sizes [13]. In our dataset, each image had same pixel dimensions
(default ultrasound machine output) but different zoom, which resulted in differences in the PS
values across all patients. To address this issue, PS values were collected for all patients from the
(0028,0030) tag of the DICOM header of the ultrasound images. These images were then resized
based on the average PS across all patients to ensure uniformity.

Figure 4. Example of pixel-spacing [13]

Subsequently, to ensure a consistent pixel size and eliminate unwanted elements, a standard region
of interest (ROI) focused on the kidneys was established for the images. Width, height, and centers
of mass of all kidneys were calculated using segmentation masks. The size of the bounding box was
then defined by adding the margin to the maximum kidney dimensions across patients, to ensure
that surrounding tissues were also included. Images smaller than the bounding box size were zero-
padded [14] to match the required dimensions. As result, bounding boxes of a fixed size of (410,
350) pixels were extracted around the calculated centers of mass (Figure 5) per each ultrasound
image.

Figure 5. Example of an extracted bounding box from an ultrasound image
8

2.2.3 Image Inpainting

 In the dataset, many images contained colored annotations, including calipers and texts,
which could introduce bias during the model training process. To address the issue, we performed
inpainting, a technique used in image processing to restore missing or corrupted parts of an image,
by filling in the missing areas in a visually realistic manner. Inpainting is particularly useful in
applications where the image structure is compromised by noise, annotations, or other unwanted
artifacts.
 OpenCV, a popular computer vision library, provides two inpainting algorithms: Navier-
Stokes [15] and Telea [16]. The Navier-Stokes inpainting algorithm is based on fluid dynamics and
aims to propagate linear structures (isophotes) from the boundary of the damaged area inwards,
preserving the continuity of these structures. The Telea algorithm, on the other hand, uses a fast-
marching method to gradually fill in the missing pixels from the boundaries towards the center,
ensuring smoothness and coherence by considering the known pixels' information around the
boundary. MagicInpaint [17] is an algorithm from an open-source inpainting library that uses
variations of the Normalized Cross-Correlation calculation methods [18]. It fills in the pixels from
the missing noisy regions using the data from the undamaged area in the same image, also called
low noise area. This process involves assigning each pixel, or group of pixels, to the so-called
image keys. These keys are extracted from the neighborhood of non-noisy pixels and are then used
to find the best match for the corresponding noisy pixels.

Figure 6. Example results of inpaint algorithms [17]

All three inpainting algorithms cited above require as input an image, the radius of a circular
neighborhood, and a corresponding binary mask that indicates the areas to be inpainted (Figure 6).
For each ultrasound image a mask was created using two different techniques, ensuring that the
algorithms would effectively target the areas needing correction. The following subsections provide
a detailed description of the mask creation process.

9

Color-Based Binary Mask Creation

 Most of the colored annotations were yellow (RGB 255,255,0), with some exceptions in
green (RGB 0,255,0). In order to easily isolate all of them at once, all green measurements were
firstly converted to yellow by setting the red RGB value to 250. Subsequently, a binary mask was
created based on the yellow color bounds (Figure 7). These bounds were carefully chosen through
an iterative process to strike a balance between minimizing image noise and retaining important
information.

Figure 7. Example of a binary mask created based solely on yellow color bounds

The unwanted features in the images not only appeared as yellow annotations, but also included
black shadows which complicated the masking process. To address this problem, the binary mask
was dilated [19] with a 5x5 kernel (Figure 8). A custom dilation algorithm was also tested, which
first detected the boundaries of the shadows and then expanded the mask accordingly. However, the
5x5 kernel showed better overall results.

Figure 8. Example of a binary mask after the delation process

10

Edge-Detection Binary Mask Refinement

 Some binary masks created with the logic described in the previous section either contained
a lot of salt noise [20] or were missing small regions due to the faded yellow color on the input
images. To address these problems, a set of improvement steps was developed.
 Firstly, a Canny edge detection algorithm [21] was used on each RGB channel to identify
measurement edges (Figure 9). Since each RGB channel contained different parts of the
measurements, each Canny edge mask contained different segments. To combine these segments
into one edge mask, a set of mathematical operations (addition and subtraction) was implemented
(Figure 10). The resulted edge mask was dilated and used to remove noise from the binary mask
obtained from the previous subsection. If both masks had a pixel labeled “1”, it was considered
valid; otherwise, it was relabeled as “0”.

Figure 9. Result of a Canny edge detection algorithm

Figure 10. Measurements extracted from edges masks

Secondly, the resulted edge mask was combined with the - now cleaned - binary mask to fill in the
missing regions. Some salt noise was introduced by the last step, therefore eroding [19] was
performed on the final mask with a 3x3 kernel. The resulting final binary masks accurately detect
all annotations present on the ultrasound images, including their shadows.

11

Inpainting results

 Only the blue RGB channel of the ultrasound images was used as the input image for
inpainting. In this channel, in fact, the yellow annotations appear black, since yellow consists of
only red and green components. By using the blue channel, any annotations that were present on
black pixel regions were effectively rendered invisible, improving the overall quality of the
inpainted images. Additionally, by using only one channel, the overall image size was reduced by a
factor of 3 to an 8-bit grayscale format. The MagicInpaint algorithm was selected as it visually
demonstrated to maintain image quality and showed the best performance in blending accuracy,
making it the preferred method for this specific preprocessing task.

Figure 11. Example results of the preprocessing pipeline, with the original image on the left, the binary mask used for
inpainting in the middle, and the resulted image on the right

12

3. Methods
 Deep learning is a subset of machine learning that uses artificial neural networks with
multiple layers to model complex patterns and relationships in data. Neural networks, particularly
convolutional neural networks (CNNs) [22], are designed to process structured grid data, like
images. CNNs are very effective in computer vision because they can learn hierarchical features
from raw pixel values. This makes them suitable for tasks like image classification, object
detection, and segmentation.
 Supervised learning [23] involves training a model on labeled data, where the input data are
paired with the correct output labels. The goal is to enable the model to accurately classify new,
unseen images into these categories. In this project, we focus on a supervised learning binary
classification task, aiming to predict fetal renal function based on 2D ultrasound images.
 In the first part of this chapter, data augmentation techniques and the various model
architectures used in this study are discussed. This is followed by an explanation of transfer learning
and the process of hyperparameter tuning to optimize model performance. The final sections
describe the application of explainable AI methods and outline the measures of performance used to
evaluate the models.

3.1 Data augmentation
 Data augmentation is a technique used to artificially expand the training dataset by applying
various transformations to the input images. Only Random Rotation [24] was considered
appropriate for this study, as other transformations, like flipping, could misrepresent anatomical
structures (e.g., flipping could swap the left and right kidneys). Ultrasound images of fetuses’
kidneys can be captured from various angles, therefore a random rotation layer was added to all pre-
trained models after the input layer to improve the models' ability to handle rotations in the input
images.

3.2 Model architectures
 Based on a literature review of similar studies, four model architectures were selected:
ResNet50 [25], EfficientNetB4 [26], VGG16 [27], and InceptionV3 [28]. Each of these
architectures has unique strengths and weaknesses, making them suitable for different types of
classification tasks. ResNet50 is renowned for its use of residual connections, allowing for the
training of much deeper networks without a significant performance loss, although it demands high
computational resources. EfficientNetB4 uses a compound scaling method that scales all
dimensions of depth, width, and resolution uniformly, providing a balance between accuracy and
computational cost, though due to its complex design implementation can be challenging. VGG16
is characterized by its simplicity, using small (3x3) convolution filters throughout the network,
making it easy to implement but relatively large and computationally expensive. InceptionV3 uses
inception modules that capture multi-scale features with filters of different sizes simultaneously,
leading to a highly efficient model with excellent performance and fewer parameters, though its
complexity can complicate implementation. Throughout this study, each architecture was evaluated
to determine which one offered the best performance for predicting fetal renal function based on
ultrasound images, aiming to identify the most effective model for this classification task.

13

3.3 Transfer learning
 Transfer learning is a technique where a model developed for a particular task is reused as
the starting point for a model on a second task. Fine-tuning is a technique that goes a step further by
allowing the pre-trained model's parameters to be adjusted during training on the new dataset. These
techniques offer significant benefits, such as reducing training time and improving model
performance, as the pre-trained models have already learned useful features from a large amount of
data. This is especially beneficial when working with small datasets, such as the one used in this
study, as it helps to mitigate issues related to overfitting and insufficient training data.
 All four models based on the architectures described in the previous section were pre-trained
on the ImageNet dataset [29] and accessed from Keras [30], a popular deep learning API. Before
they could be used for this study, two main challenges had to be overcome. First, the pre-trained
models were configured to accept 3-channel (RGB) images as input, whereas our dataset consisted
of single-channel (grayscale) images. Therefore, the weights of the first convolutional layer were
averaged across the three channels to fit the single-channel input. Second, each pre-trained model
included different preprocessing layers tailored to their original training, which were removed to
ensure compatibility with our input data (Figure 12). Finally, the architectures’ last dense layer was
modified to suit the binary classification task. The output dense layer of 1000 nodes (corresponding
to 1000 classes from the ImageNet dataset) from the pre-trained models was replaced with a dense
layer of 2 nodes (one for each class) with a softmax activation function [31].

Figure 12. Section of a ResNet50 architecture before (left) and after (right) adjustments

14

3.4 Hyperparameter tuning
 Hyperparameters are settings that are not learned from the data but set before the training
begins. These parameters control the learning process and significantly influence the model's
performance during training. Hyperparameter tuning is the process of choosing a set of optimal
hyperparameters that will result in the best model performance after training. For this study, three of
these parameters were optimized: batch size, learning rate, and model architecture.
 The first one, batch size, refers to the number of training samples processed in one iteration
before the model's parameters are updated. A smaller batch size can lead to more frequent updates
but may introduce more noise. On the contrary, a larger batch size makes the training faster, but
may result in poorer generalization, leading to overfitting, where the model performs well on
training data but fails to capture important patterns and nuances in unseen data.
 The learning rate controls the size of the steps the model takes towards minimizing the loss
function during training. A high learning rate can accelerate training but may overshoot the optimal
solution, while a low learning rate ensures more precise updates but can cause the process to slow
down or even stop making progress towards improving the model's performance.
 The batch sizes of 2, 4, and 8 were chosen based on the dataset size, while learning rates of
1e-2, 1e-3, and 1e-4 were selected because these values are commonly used in optimizing neural
network models across various tasks. A grid search was performed to systematically explore the
combinations of these hyperparameters, resulting in 36 different configurations.
 Cross-validation is a technique where the dataset is divided into k subsets or folds. In each
round of cross-validation, one of these folds is held out as the validation set (also knows as the
testing set), while the remaining k − 1 folds are used as the training set. This process is repeated k
times, with each fold serving as the validation set exactly once. Therefore, each data point ends up
in the validation set exactly once across all rounds of cross-validation. The goal of this technique is
to assess how well the model generalizes to new, unseen data by averaging the performance across
all folds. This is especially useful with small datasets, as it maximizes the use of limited data and
provides a better estimate of the model's performance. In this study, five fold (k = 5) stratified cross-
validation [32] was performed, which ensures that each fold maintains the same class distribution as
the original dataset (Figure 13) in both subsets. Evaluation metrics for each fold were stored, then
averaged and saved for later analysis. This method helps achieve a reliable assessment of model
performance and helps select optimal hyperparameters.

Figure 13. Stratified Cross Validation [32]

15

3.5 Model training
 The training process of a deep learning model involves optimizing its parameters to
minimize a specified loss function. In this study, categorical cross-entropy [33] (1) was used as the
loss function, and the “Adam” optimizer [34] served to update the model's weights during training
to achieve this minimization. The training process was conducted over 150 epochs, which define the
number of complete passes through the entire training dataset. To prevent overfitting and ensure
efficient training, an early stopping callback was implemented, targeting the validation loss. This
feature monitors the specified metric, and if it does not improve after a certain number of epochs
(referred to as "patience"), training is stopped and the model is reverted to the state with the best
performance on the validation set. The training was performed on an external server in a virtual
environment with an 8-core CPU and 56 GB of RAM [35].

 (1)

,where y - actual values, ŷ - model predictions, N - number of samples, K - number of classes in the data

3.6 Explainable AI
 Explainable AI (XAI) [36] refers to techniques and methods that enable human users to
understand and trust the results and output created by machine learning algorithms. In the context of
deep learning, especially in complex models like neural networks, the decision-making process can
be quite difficult to comprehend; thus, it is often described as a "black box”. XAI aims to make
these processes more transparent by providing insights into how the model arrived at its decisions.
This is particularly crucial in the medical field, where the predictions made by the model can
influence clinical decisions and patient outcomes. By making deep learning models more
interpretable, clinicians can gain confidence in using these tools, ensure that these models are
making decisions based on relevant medical information, and identify any potential biases or errors
in the model's logic.
 A popular technique for enhancing explainability in deep learning models, particularly
CNNs, is Gradient-weighted Class Activation Mapping (Grad-CAM) [37]. Grad-CAM generates
visual explanations (heatmaps) for predictions made by CNNs by highlighting the regions in the
input image that were most influential for the model's decision.
 The process of creating such explanations can be divided into three steps. It begins with
feeding the input image into the trained CNN, then, as the image passes through multiple
convolutional and pooling layers (together known as convolutional blocks), the CNN produces
feature maps (Figure 14). These structures capture the presence or absence of specific features at
different spatial locations in the image. Feature maps created on the lower layers may detect basic
features like edges and corners, but as we go deeper, the spatial dimensions tend to decrease; thus,
feature maps recognize more complex patterns, such as objects or abstract patterns specific to the
given dataset.

L oss = −
N

∑
i=1

K

∑
j=1

yij log(̂yij)

16

 Figure 14. Example feature maps from deeper convolutional blocks [38]

 Finally, Grad-CAM computes the gradient of the target class score (i.e., the model’s
predicted probability for the target class) with respect to the feature maps from a specific
convolutional layer of interest (usually the last one). The gradients indicate how much each pixel in
the feature maps influences the target class score. The computed gradients are then averaged over
the spatial dimensions (height and width) of the feature maps to obtain importance weights, which
reflect the significance of each feature map for the particular class being considered.
 The Class Activation Map (CAM) is the weighted sum of the feature maps multiplied by
their corresponding importance weights (Figure 15). The resulted heatmap is resized to match the
dimensions of the input image and is often overlaid on top of the original image for visualization.
Generating these images not only helps in validating the model's predictions but also may help
clinicians to understand and interpret the results, potentially identifying new patterns or features that
are clinically significant.

Figure 15. Example of a Gradient-weighted Class Activation Mapping process [39]

17

3.7 Measures of performance
 In binary classification problems, such as the one in this project, data are classified into two
possible classes (i.e., Positive and Negative). Each data point can be classified correctly (True) or
incorrectly (False). The combination of these classifications forms a confusion matrix, which
compares predicted and true classes. This matrix shows the number of correctly classified data
points (True Positive - TP, or True Negative - TN) and incorrectly classified data points (False
Positive - FP, or False Negative - FN). After each training loop, the following performance metrics
based on the confusion matrix were calculated:

 Accuracy, which measures the proportion of correctly predicted instances out of the total
instances. It provides a general indication of the model's performance on unseen data, but it does
not take into account how data is spread between TP and TN.

 (2)

 Sensitivity (Recall), which measures the proportion of actual positives correctly identified
by the model (true positives). High sensitivity indicates that most of the positive cases are correctly
detected.

 (3)

 Specificity, which measures the proportion of actual negatives correctly identified by the
model (true negatives). High specificity indicates that most of the negative cases are correctly
detected.

 (4)

 F1 Score, which is the harmonic mean of precision (positive predictive value) and recall
(sensitivity), and is ranged between 0 and 1. High F1 score indicates high classification
performance. It is particularly useful when the class distribution is imbalanced, since it takes into
account both FP and FN values.

 (5)

 Area Under the Curve (AUC), which measures the area under the Receiver Operating
Characteristic (ROC) curve. The ROC plots the True Positive Rate (TPR, or Recall) against the
False Positive Rate (FPR) at various threshold settings. A higher AUC indicates better model
performance in distinguishing between the two classes, as it signifies a higher TPR and a lower FPR
across thresholds. Conversely, a lower AUC suggests poorer performance, indicating that the model
struggles to effectively differentiate between the two classes.

 (6)

Accuracy =
TP + TN

TP + TN + FP + FN

Sensit ivit y =
TP

TP + FN

Speci f icit y =
TN

TN + FP

F1 =
TP

TP + 1
2 (FP + FN)

AUC = ∫
1

0
TPR(t) d(FPR(t))

18

4. Results

 In this section, the results obtained from hyperparameter tuning and from the models trained
with the best hyperparameter selection are described. Hyperparameter tuning was performed for
each model architecture to identify the optimal settings. After extensive evaluation, a batch size of 4
and a learning rate of 1e-4 were identified as the most optimal hyperparameters. This
hyperparameter configuration was then used to train the three best-performing architectures.
Additionally, during final evaluation, Grad-CAM heatmaps were generated to provide explanations
for the predictions made by the trained models.

4.1 Hyperparameter tuning
 A total of 180 models were trained, 36 hyperparameter combinations with 5-fold cross-
validation. In order to visualize the hyperparameter tuning results, the metrics stored during training
were uploaded to Weights and Biases (WandB) [40]. This platform is a powerful tool for tracking
experiments and visualizing model performance across different hyperparameter configurations
(Figure 16). This helped in identifying the optimal set of hyperparameters, by assessing their
behavior throughout the training.

Figure 16. Plotted hyperparameter tuning results from WandB platform. Architecture “0.0” corresponds to VGG16,
architecture “1.0” to ResNet50, architecture “2.0” to InceptionV3, and architecture “3.0” to EfficientNetB4.

 The VGG16 model architecture and a batch size of 2 consistently underperformed and were
therefore excluded from further analysis. For the remaining models, although validation metrics
were close across multiple folds, a learning rate of 1e-4 consistently gave the lowest validation loss
for most configurations. While all model architectures trained with a batch size of 8 showed good
validation results, the validation subset contained only 16 images due to the 5-fold cross-validation,
meaning that models were evaluated on just two batches. Therefore, a batch size of 4 was chosen as
the optimal value to ensure a more stable and reliable evaluation of the model's performance.

19

4.2 Model training
 After identifying the optimal set of hyperparameters based on the tuning results, the model
training process was performed on the three best-performing architectures, with the number of folds
decreased to 3, and the patience value for the early-stopping callback set to 20.
 Table 1 summarizes the training results, presenting the averaged performance metrics with a
95% confidence interval (CI) calculated on the validation subset from all three cross-validation
folds. The overall best-performing model architecture, EfficientNetB4, achieved a mean validation
accuracy of 78.2% ± 14.7%, a mean F1 score of 74.91% ± 16.4%, a mean sensitivity of 74.29% ±
19.6%, a mean specificity of 84.44% ± 9.93%, and a mean AUC of 83.88% ± 13.3% (Table 1).

Table 1. Averaged performance metrics of the training process, showing a mean value with a 95% CI

The behavior of the accuracy and loss metrics on the validation subset throughout the training
process is shown in Figure 17, with the shaded region around the line graph representing the
standard deviation.

 Figure 17. Plotted validation accuracy and loss, with the standard deviation, show the individual performance
curves of these two metrics on the validation subset for each of the three best-performing model architectures

Architecture Accuracy F1 Score Sensitivity Specificity AUC

ResNet50 0.5769 ± 0 0 ± 0 0 ± 0 1 ± 0 0.6036 ± 0.0213

InceptionV3 0.7436 ± 0.144 0.6993 ± 0.152 0.6571 ± 0.189 0.8667 ± 0.0729 0.8092 ± 0.119

EfficientNetB4 0.782 ± 0.147 0.7491 ± 0.166 0.7429 ± 0.196 0.8444 ± 0.0993 0.8388 ± 0.133

20

 For the final independent evaluation, the test data subset (n = 19) was used. Predictions
made by each model on the test subset, were averaged across the three cross-validation folds.
Table 2 shows the mean prediction values for both the negative and positive classes for each
considered architecture, along with their corresponding standard deviations (µ ± stdev).

Table 2. Pairs of mean prediction values with standard deviations calculated across the three cross-validation folds.
Each row corresponds to the same image from the test subset.

Table 3 summarizes the performance metrics of the final evaluation. The best-performing model,
again based on EfficientNetB4, achieved a test accuracy of 68.42%, F1 score of 66.(6)%, sensitivity
of 0.75 showing that the model correctly identified 75% of the positive cases, specificity of 0.6364
indicating a 63.64% correct identification of negative cases, and AUC of 69.32% (Table 3).

Table 3. Averaged performance metrics of the final evaluation on the held-out test subset

ResNet50 InceptionV3 EfficientNetB4

Neg Pos Neg Pos Neg Pos

1 0.7166 ± 0.0728 0.2834 ± 0.0728 0.8021 ± 0.0687 0.1979 ± 0.0687 0.8179 ± 0.1885 0.1821 ± 0.1885

2 0.7145 ± 0.0732 0.2855 ± 0.0732 0.4217 ± 0.3941 0.5783 ± 0.3942 0.3719 ± 0.3335 0.6281 ± 0.3335

3 0.7139 ± 0.072 0.2861 ± 0.072 0.9766 ± 0.0114 0.0234 ± 0.0114 0.3895 ± 0.1748 0.6105 ± 0.1748

4 0.717 ± 0.0708 0.283 ± 0.0708 0.4652 ± 0.3261 0.5348 ± 0.3261 0.8094 ± 0.1172 0.1906 ± 0.1172

5 0.713 ± 0.0733 0.287 ± 0.0733 0.4307 ± 0.3114 0.5693 ± 0.3113 0.3243 ± 0.2454 0.6757 ± 0.2454

6 0.7182 ± 0.0712 0.2818 ± 0.0712 0.5353 ± 0.3636 0.4647 ± 0.3636 0.3021 ± 0.2337 0.6979 ± 0.2337

7 0.7174 ± 0.0712 0.2826 ± 0.0713 0.6841 ± 0.0979 0.3159 ± 0.0979 0.824 ± 0.1376 0.176 ± 0.1376

8 0.717 ± 0.0718 0.283 ± 0.0718 0.6233 ± 0.1855 0.377 ± 0.1855 0.3764 ± 0.2431 0.6236 ± 0.2431

9 0.7167 ± 0.072 0.2833 ± 0.072 0.8311 ± 0.1504 0.1689 ± 0.1504 0.4439 ± 0.08 0.5561 ± 0.0800

10 0.7163 ± 0.0724 0.2837 ± 0.0724 0.838 ± 0.1371 0.162 ± 0.1371 0.3363 ± 0.284 0.6637 ± 0.284

11 0.7157 ± 0.0722 0.2843 ± 0.0722 0.8075 ± 0.2203 0.1925 ± 0.2203 0.7935 ± 0.1488 0.2065 ± 0.1488

12 0.7191 ± 0.0728 0.2809 ± 0.0728 0.7354 ± 0.2927 0.2646 ± 0.2927 0.8652 ± 0.1 0.1348 ± 0.1

13 0.7124 ± 0.0741 0.2876 ± 0.0741 0.4039 ± 0.386 0.5961 ± 0.386 0.8383 ± 0.1123 0.1617 ± 0.1123

14 0.7185 ± 0.0713 0.2815 ± 0.0714 0.4743 ± 0.2094 0.5257 ± 0.2093 0.3851 ± 0.2490 0.6149 ± 0.249

15 0.7153 ± 0.0715 0.2847 ± 0.0715 0.4082 ± 0.2969 0.5918 ± 0.2969 0.7203 ± 0.1702 0.2797 ± 0.1702

16 0.718 ± 0.0715 0.282 ± 0.0715 0.714 ± 0.2364 0.286 ± 0.2364 0.7312 ± 0.1363 0.2688 ± 0.1363

17 0.7156 ± 0.0716 0.2844 ± 0.0716 0.5411 ± 0.3562 0.4589 ± 0.3562 0.3533 ± 0.2542 0.6467 ± 0.2542

18 0.7165 ± 0.0722 0.2835 ± 0.0722 0.2983 ± 0.296 0.7017 ± 0.2960 0.5247 ± 0.127 0.4753 ± 0.127

19 0.7167 ± 0.0722 0.2833 ± 0.0721 0.6225 ± 0.0853 0.3775 ± 0.0853 0.3349 ± 0.1128 0.6651 ± 0.1128

Architecture Accuracy F1 Score Sensitivity Specificity AUC

ResNet50 0.5789 0.0 0.0 1.0 0.5

InceptionV3 0.6316 0.5333 0.5 0.7273 0.6136

EfficientNetB4 0.6842 0.6666 0.75 0.6364 0.6932

21

 During the final evaluation GradCAM visual explanations were generated on the instances
from the held-out test subset. The same images were used for each model architecture. Notably, the
model based on the EfficientNetB4 architecture most accurately focused on the relevant regions,
were other two models failed to do so (Figure 18).

Figure 18. Generated GradCAM visual explanations of 4 random images from the negative (left) and positive (right)
classes from the held-out test subset. First row correspond to the ResNet50 model, second to the InceptionV3, and third

to the EfficientNetB4.

22

5. Discussion
 The findings of this study demonstrate the potential of deep learning to improve the
prediction of postnatal fetal renal function from ultrasound images, achieving notable performance
metrics despite the dataset's limited size. The number of images sourced from the UMCG database
is relatively small, which presents a limitation. A larger dataset, collected from the Amsterdam
University Medical Centre (Amsterdam UMC) during the course of this project, could further
validate our model's performance. However, due to time limitations, it could not be incorporated
into this study. This expanded dataset would not only provide more diverse training examples but
also enable fine-tuning of the model for enhanced accuracy. Additionally, it would allow for a
comparison of the model's performance across different clinical settings, ensuring its applicability
and reliability in broader clinical practice.

 The created preprocessing pipeline demonstrated strong results. The inpainted areas of the
images were hardly distinguishable to the naked eye. However, apart from a visual assessment, an
attempt was made to numerically quantify the inpainting results to ensure an objective evaluation of
the different inpainting algorithms. Several quantification methods were tested, including
histogram-based analysis, Structural Similarity Index (SSIM), Mean Squared Error (MSE), Peak
Signal-to-Noise Ratio (PSNR), and Local Binary Patterns (LBP) in both uniform and non-uniform
configurations. These methods were chosen for their ability to measure various aspects of image
quality: histogram-based analysis assesses changes in pixel intensity distribution; SSIM evaluates
perceived changes in structural content; MSE and PSNR measure the average squared differences
and peak signal quality, respectively; and LBP captures texture information (Figure 19). Although
all these methods revealed changes in the images post-inpainting, they shared a significant
limitation: the absence of a golden standard for comparison. Without a reference image of the ideal
outcome, the evaluations could only compare images before and after inpainting, making it
challenging to definitively quantify the effectiveness of each algorithm.

Figure 19. Example results of the LBP analysis

23

 The best-performing model in this study reached a cross-validated accuracy of 68.42% on
the test set, along with an F1 score of 66.67%, a sensitivity of 75%, a specificity of 63.64%, and an
AUC of 69.32%. These results, although promising, are lower than the ones obtained on the
validation set. The drop in the results, at least partially, is likely due to the small size of the test data
subset. Because of that, even a single misclassification had a significant impact on the performance
metrics. The mean prediction results show that ResNet50 consistently predicted the negative class
with a low standard deviation. This suggests that the model did not learn enough features to
effectively distinguish between the negative and positive classes. In contrast, InceptionV3 and
EfficientNetB4 had more variability in their predictions. However, as indicated by the performance
metrics, EfficientNetB4 had a lower standard deviation for each prediction, demonstrating that it is
more stable and reliable in its predictions.

 During the course of this project, we noted a new study [41] published by a Canadian
research team that closely resembled ours. While their study focused on a different classification
task, it involved similar preprocessing steps, such as anonymization and inpainting, and utilized a
comparable approach to training and analyzing deep learning models. Despite achieving higher
performance metrics, with 81.7% mean accuracy on the test set, their study benefited from a dataset
ten times larger than ours. This comparison not only confirms that our preprocessing steps and
modeling approach are effective but also suggests opportunities to improve our results further.

 The selection of EfficientNetB4 as the best-performing model in our study was made based
on the comparison of different architectures selected from the literature review. However, exploring
different model architectures could potentially yield even better results. For instance, DenseNet169,
which has been successfully used in the previously described similar study [41], offers a compelling
alternative. DenseNet's architecture, characterized by densely connected layers, promotes feature
reuse and mitigates the vanishing gradient problem, which could enhance performance on our
classification task.

 Grad-CAM heatmaps generated by the best-performing model on the test data demonstrated
promising results. These visual explanations reveal the model's effective focus on clinically relevant
renal areas associated with renal pathology when applied to a previously unseen test set. This shows
that the model's predictions are based on important clinical details, enhancing the interpretability
and trustworthiness of its predictions. While Grad-CAM provided valuable visualizations, exploring
alternative CAM algorithms such as HiResCAM could offer additional insights. HiResCAM,
known for its higher resolution and precise heatmap generation, has the potential to further improve
the interpretability of our models. By offering clearer and more detailed visual explanations,
HiResCAM could assist clinicians in better understanding the model's decision-making process,
particularly in identifying crucial features in ultrasound images.

 Due to time limitations, certain steps were not feasible during this study. Future work could
involve preprocessing the Amsterdam UMC dataset, so it could be used in fine-tuning and cross-
institutional validation of the models. Additionally, exploring different architectures, such as
DenseNet169, could further enhance model performance and provide insights into optimal
architectural choices for similar tasks in fetal renal function prediction.

24

6. Conclusions
How accurately can deep learning models predict fetal renal function based on ultrasound
imaging?

 This study demonstrated that deep learning models have potential for predicting postnatal
fetal renal function based on ultrasound imaging, but with varying degrees of accuracy. The best-
performing model achieved an accuracy of 68%, which indicates that while it has the ability to
predict renal function from ultrasound images above a random chance, there is still room for
improvement. The best model’s performance highlights the complexity of the task and suggests that
further work with a possibly larger and more diverse dataset could enhance predictive accuracy.
Despite the current limitations, the application of deep learning in this context provides a promising
step toward more objective, accurate and automated assessment methods in prenatal care.

Which deep learning framework performs best for the binary classification of fetal renal
function using ultrasound images?

 Among the various deep learning frameworks evaluated in this study, EfficientNetB4
emerged as the best-performing framework for the given binary classification task. The model
based on this architecture achieved the highest accuracy and F1 score, surpassing other architectures
such as VGG16, ResNet50, and InceptionV3. Additionally, the XAI GradCAM visual explanations
generated for the EfficientNetB4 model demonstrated that it consistently focused on the relevant
areas in the ultrasound images, where the other models failed to do so.

What are the strengths and limitations of using deep learning for predicting fetal renal
function based on ultrasound imaging?

 Deep learning models have shown promising results in predicting fetal renal function,
providing objective assessments that can reduce human error and variability in diagnosis. These
models can learn and extract relevant features from raw ultrasound images, capturing subtle
differences in texture and structure that may be indicative of postnatal renal function. Once trained,
they can process and analyze images quickly, offering faster diagnostic insights compared to
manual evaluations and making them suitable for large-scale screening programs and studies.
However, deep learning models require large amounts of data for training to achieve high accuracy.
In this study, the small dataset size posed a significant challenge, potentially limiting the model's
generalizability and performance. Furthermore, models trained on data from one clinical center may
not perform well on data from different centers due to variations in imaging protocols and
equipment; thus, cross-institutional validation is crucial. In conclusion, while deep learning offers
high potential for enhancing the prediction of postnatal fetal renal function from ultrasound images,
addressing its limitations, particularly concerning data availability and diversity, is essential for its
successful integration into clinical practice.

25

How can the integration of explainable artificial intelligence (XAI) techniques enhance the
interpretation and decision-making processes in healthcare systems regarding fetal renal
health using ultrasound imaging?

 Integrating explainable artificial intelligence (XAI) techniques, such as Grad-CAM visual
explanations of the model's predictions, allows healthcare professionals to understand and trust the
model's decision-making process, reducing the "black box" nature of deep learning models. By
clearly showing which areas of the kidney are influencing the prediction, XAI can help clinicians
verify that the model is focusing on medically relevant features, ensuring that the predictions align
with clinical knowledge and expertise. This transparency not only aids in validating the model’s
reliability but also provides valuable insights that can guide further clinical investigations and
interventions.

26

References
[1] Morris RK, Kilby MD. Congenital urinary tract obstruction. Best Pract Res Clin Obstet Gynaecol. 2008;22(1):97–
122

[2] Cheung KW, Morris RK, Kilby MD. Congenital urinary tract obstruction. Best Pract Res Cl Ob. 2019;58:78-92

[3] Capone V, Persico N, Berrettini A, Decramer S, De Marco EA, De Palma D, et al. Definition, diagnosis and
management of fetal lower urinary tract obstruction: consensus of the ERKNet CAKUT-Obstructive Uropathy Work
Group. Nature Reviews Urology. 2022;19(5):295-303

[4] Pediatric Nephrology
https://mosaiques-diagnostics.de/mosaiques-diagnostics/Pediatric-Nephrology

[5] Grandjean H, Larroque D, Levi S. The performance of routine ultrasonographic screening of pregnancies in the
Eurofetus Study. Am J Obstet Gynecol. 1999;181(2):446-54

[6] Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017;19:221–248.
doi: 10.1146/annurev-bioeng-071516-044442

[7] Hinton G. Deep learning—a technology with the potential to transform health care. Jama. 2018;320:1101–1102.
doi: 10.1001/jama.2018.11100

[8] Soffer S, et al. Convolutional neural networks for radiologic images: A radiologist’s guide. Radiology.
2019;290:590–606. doi: 10.1148/radiol.2018180547

[9] Cheng, P.M., Malhi, H.S. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal
Ultrasound Images. J Digit Imaging 30, 234–243 (2017). https://doi.org/10.1007/s10278-016-9929-2

[10] Sudharson S, Kokil P, An ensemble of deep neural networks for kidney ultrasound image classification, Computer
Methods and Programs in Biomedicine, Volume 197, 2020, 105709, ISSN 0169-2607, https://doi.org/10.1016/
j.cmpb.2020.105709

[11] Get Started with Image Preprocessing and Augmentation for Deep Learning
https://www.mathworks.com/help/images/get-started-with-image-preprocessing-and-augmentation-for-deep-
learning.html

[12] Song SH, Han JH, Kim KS, Cho YA, Youn HJ, Kim YI, Kweon J. Deep-learning segmentation of ultrasound
images for automated calculation of the hydronephrosis area to renal parenchyma ratio. Investig Clin Urol. 2022
Jul;63(4):455-463. doi: 10.4111/icu.20220085. Epub 2022 May 25. PMID: 35670007; PMCID: PMC9262488.

[13] Pixel Spacing Attribute
https://dicom.innolitics.com/ciods/ultrasound-image/image-pixel/00280034

[14] Zero-padding
https://numpy.org/doc/stable/reference/generated/numpy.pad.html

[15] Bertalmio, Marcelo, Andrea L. Bertozzi, and Guillermo Sapiro. "Navier-stokes, fluid dynamics, and image and
video inpainting." In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, vol. 1, pp. I-355. IEEE, 2001.

[16] Telea, Alexandru. "An image inpainting technique based on the fast marching method." Journal of graphics tools
9.1 (2004): 23-34.

[17] Anton Milev, MagicInpaint - image processing Python
https://github.com/antonmilev/magicinpaintpython?tab=readme-ov-file

[18] Briechle K, Hanebeck U. Template matching using fast normalized cross correlation. 2001/03/20, doi:
10.1117/12.421129 Proceedings of SPIE - The International Society for Optical Engineering 4387

[19] Morphological transformations
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html

27

[20] Maity A, Chatterjee R. Impulsive noise in images: a brief review. ACCENTS Transactions on Image Processing
and Computer Vision, Vol 4(10) ISSN (Online): 2455-4707 http://dx.doi.org/10.19101/TIPCV.2017.39025

[21] Canny edge detection
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html

[22] Venkatesan, R., & Li, B. (2017). Convolutional Neural Networks in Visual Computing: A Concise Guide (1st ed.).
CRC Press. https://doi.org/10.4324/9781315154282

[23] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012) Foundations of Machine Learning, The MIT Press
ISBN 9780262018258.

[24] Random Rotation Geometrical Operation
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_rotation/

[25] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition
https://doi.org/10.48550/arXiv.1512.03385

[26] Tan M, Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
https://doi.org/10.48550/arXiv.1905.11946

[27] Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition
https://doi.org/10.48550/arXiv.1409.1556

[28] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision
https://doi.org/10.48550/arXiv.1512.00567

[29] J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical image
database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255,
doi: 10.1109/CVPR.2009.5206848.

[30] Keras - Multi-framework Deep Learning API
https://keras.io/about/

[31] Softmax Activation
https://en.wikipedia.org/wiki/Softmax_function

[32] Cross-validation: evaluating estimator performance, SciKit Learn
https://scikit-learn.org/stable/modules/cross_validation.html

[33] Categorical Cross-Entropy Loss
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CategoricalCrossentropy

[34] Kingma D, Ba J. Adam: A Method for Stochastic Optimization
https://doi.org/10.48550/arXiv.1412.6980

[35] anDREa Research Environment
https://andrea-cloud.com

[36] van der Velden B, Kuijf H, Gilhuijs K, Viergever M. Explainable artificial intelligence (XAI) in deep learning-
based medical image analysis, Medical Image Analysis, Volume 79, 2022, 102470, ISSN 1361-8415
https://doi.org/10.1016/j.media.2022.102470

[37] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R. and Parikh, D., Das (2017). Grad-cam: Visual explanations
from deep networks via gradient-based localization, In Proc. of ICCV (pp. 618-626)

[38] Dertat A, Applied Deep Learning - Part 4: Convolutional Neural Networks
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

[39] Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning Deep Features for Discriminative Localization
https://doi.org/10.48550/arXiv.1512.04150

[40] Weights & Biases
https://wandb.ai/site

28

[41] Miguel OX, Kaczmarek E, Lee I, Ducharme R, Dingwall-Harvey ALJ, Rennicks White R, Bonin B, Aviv RI,
Hawken S, Armour CM, Dick K, Walker MC. Deep learning prediction of renal anomalies for prenatal ultrasound
diagnosis. Sci Rep. 2024 Apr 19;14(1):9013. doi: 10.1038/s41598-024-59248-4. PMID: 38641713; PMCID:
PMC11031588

29

	Abstract
	1. Introduction
	2. Materials
	3. Methods
	4. Results
	5. Discussion
	6. Conclusions
	References

