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Abstract: The subject of theory of mind has come up in a lot of modern research, but mainly
in regard to relatively simple games. In this study a different approach is taken, where theory
of mind functionality is added upon an existing minimax algorithm with alpha beta pruning for
the two-player board game of Onitama. A possible advantage of theory of mind could hereby be
found for more complex games. However, in this study the addition of theory of mind did not
prove to provide its user with an advantage. Further research into the usage of theory of mind
in more complex game settings is necessary to better understand the effectiveness of theory of
mind.

1 Introduction

Theory of mind (Premack & Woodruff, 1978) has
extensively been studied in numerous papers (see,
e.g., Rabinowitz et al. 2018 for an overview). How-
ever, these investigations often rely on relatively
simple zero-order models. In this paper we look at
the advantage of theory of mind in the two-player
strategic game Onitama, using a sophisticated zero-
order model.

Previously, agent-based modelling has been used
to analyze theory of mind in the game of rock-
paper-scissors and variations of this game like the
Mod game (De Weerd et al., 2013; De Weerd et
al., 2014), but also more social games like Were-
wolves (Aylett et al., 2014). Since in real-world
multi-agents environments individual agents often
have to work together, studies in which coopera-
tive games were modelled should not go overlooked.
For example, the benchmark cooperative card game
Hanabi has extensively been subjected to numerous
agent-based models using theory of mind (Lerer et
al., 2020; Dupuis, 2022; Bard et al., 2020).

Before going into more detail about what type
of model would be the right approach for the game
of Onitama, we will first delve into the concepts of
theory of mind and agent-based modelling.

Theory of mind is the ability to attribute mental

states to people outside of ourselves. We all have
our own beliefs, desires and intentions, but to ac-
tively reason about the mental contents of other
people is what we call theory of mind. Theory of
mind can be used on many levels, so-called or-
ders. The higher the order of theory of mind, the
deeper the agent reasons about the mental states
of other agents. Zero-order theory of mind (ToM0)
is the lowest possible level of theory of mind. ToM0

does not involve reasoning about other people’s
mental states. However, this does not mean one
does not take the actions of other’s into account.
For example, in the game of rock-paper-scissors
a ToM0-agent can still discover that playing rock
against someone who often plays scissors is the su-
perior strategy (De Weerd et al., 2013). For this
the ToM0-agent does not need to reason about the
other agent’s beliefs and intentions. A first-order
theory of mind (ToM1) agent expands on this by
also reasoning about the decision-making process of
other agents. For example, in rock, paper, scissors
this would mean that a ToM1-agent first thinks
about what the other agent would do based on
the ToM1-agent’s own actions. It can do this by
reasoning as a ToM0-agent from the other agent’s
perspective. For example, if the ToM1 agent knows
that they themselves have played rock for the past
three games, they reason from the perspective of
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their opponent to reach the conclusion that their
opponent will most probably play paper to counter
the rock. Based on this prediction from the perspec-
tive of the opponent the ToM1 will play scissors.
A first-order theory of mind (ToM1) agent ‘puts
themselves in the shoes’ of another agent. When
we think about a ToM2-agent, you could say that
a they even go a step further by first putting them-
selves in the shoes of another agent, and after that
putting themselves in their own shoes again from
the viewpoint of that other agent. This continues
so on for theory of mind agents at higher levels.
According to the Machiavellian Intelligence Hy-

pothesis as described by Byrne & Whiten (1988),
individuals that make use of higher orders of the-
ory of mind are equipped with an advantage in the
evolutionary process. De Weerd et al. concluded in
2013 that this is not always the case, as they found
that in the game of rock-paper-scissors, ToM4-
agents did not have an advantage against ToM3-
agents. Still, the main result was that an advan-
tage was present for ToM1 and ToM2 agents. In the
same paper by De Weerd et al. another relatively
simple game (although more advanced than rock,
paper, scissors) called limited bidding was also put
to the test, which yielded the same results as the
rock-paper-scissors game.
The benefits of ToM have thus far (in the stud-

ies mentioned above) mainly been investigated us-
ing “toy models” and with the use of ad-hoc ToM0

models. It is interesting to see whether benefits ex-
ist on top of sophisticated ToM0 models, since it is
necessary that this pattern is also prevalent in more
complex games in order to effectively support (or
challenge) the Machiavellian Intelligence hypothe-
sis. To obtain a better understanding of the benefits
of higher-order theory of mind reasoning, we there-
fore take a different approach in this paper. Rather
than using a simple game, we investigate the game
of Onitama.
To simulate the game of Onitama, agent-based

modeling (ABM) will be used. ABM is the pro-
cess of modeling a complex scenario by simulat-
ing individual agents and how they interact with
their environment using actions. In this scenario
the agents will be the players, the environment will
be the game and the actions will be the different
moves with which the players can influence their
environment. In the game of Onitama, moves are
made by playing cards. Once a card corresponding

to a move is played, the other player will get to use
this card in their next turn. Playing a strong card
therefore does not only come with the downside of
losing that card, but also provides your opponent
with that same card. This same principle can be ap-
plied to many real-world scenario’s, like economics
and political decision-making. By using the game
of Onitama, I hope to simulate a scenario that is
more likely to imitate real-world decision-making
processes.

The remainder of this paper is structured as fol-
lows. We will first explore the game of Onitama
and how it can be implemented as an agent-based
model in Sections 2.1 and 2.2. Then the zero-order
model will be described in detail (Section 2.3.1), af-
ter which we elaborate on the higher orders of the-
ory of mind used in this study (ToM1 and ToM2) in
Sections 2.3.2, 2.3.3 and 2.3.4. After running some
experiments using these models, the results are pre-
sented and analyzed in Section 3. From this a con-
clusion is drawn (Section 4) and several pecularities
are discussed (Section 5).

2 Methods

2.1 Rules of Onitama

Onitama is a two-player strategic board game that
was designed by Shimpei Satio and got published in
2014 by Arcane Wonders. Thematically the game
entails controlling a group of martial artists that
need to outmaneuver each other to prove their su-
periority.

The game is played on a 5x5 square grid, with
each player controlling five pieces. Four of them
are so called ‘Students’, and one the ‘Master’. The
pieces are initially placed on the board as shown in
Figure 2.1, with the Masters residing on the ‘Tem-
ple Arch’-square (from now on simply referred to as
‘Temple’). Next to this, all the cards are shuffled,
each player receives two cards, and an additional
one is placed in the middle. The rest of the cards
are not used for this game. Thus only five cards are
used each game.

The goal of the game is to either capture the op-
ponent’s Master piece, or to reach the opponent’s
Temple with your own Master. This is done by play-
ing cards. When it is a player’s turn, they must
play one of the two cards in front of them to make
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Figure 2.1: The setup of a game of Onitama. The
Masters are placed on the middle squares (the
Temples) on both sides of the board, flanked by
their students. Each player receives two cards,
and one card is played in the middle.

a move with one of their pieces. For example, with
the ‘Frog’ card shown in Figure 2.2, the player can
move one of their pieces either one square diag-
onally to the top left or bottom right relative to
their current position. Or the piece can move two
squares to the left. Pieces cannot land outside of
the grid or on pieces of their own color. They can,
however, jump over all pieces (like the knight in
chess). When a piece lands on a piece of the en-
emy’s color, the enemy piece is captured, removed
from the board and the piece that captured it is
now placed on that square. If the captured piece
was the Master, the player that captured the piece
has won the game.

Figure 2.2: One of the possible playing cards in
the game of Onitama. It shows all the possible
moves that can be made using this card.

After a player’s turn they put the card they just
played in the middle to the side of the board. They
take the card that was already laying at the side
of the board as their new second card. When the
other player played their turn they follow the same
procedure, and thus the five cards constantly rotate
between the two players.

The game continues until either a Master piece is
captured, or as soon as a player manages to place
their Master on the opponent’s Temple square.

2.2 Implementation of Onitama

To implement Onitama into a virtual environment
where simulations with different agents could be
run, the third-party model by Weiner (2018) was
used. This model contained a lot of the basic func-
tionality needed to play the game of Onitama. In
Figure 2.3 you can see the user interface of this
model.

Figure 2.3: General user interface of the Oni-
tama board game as implemented by Weiner
(2018).

With this model, you can play with two humans,
against an AI player, or let two AI players play
against each other. The computer-controlled agents
could be set to three different difficulty levels: easy,
medium and hard. The AI model makes its moves
using a basic search tree algorithm which utilizes
the minimax algorithm with alpha-beta pruning
(see Section 2.3.1). The difficulty of the AI agents
was determined by the maximum depth that they
explored in the search tree (respectively 3, 4, and
5).

For the purpose of this study, the model was fur-
ther expanded to include simulation functionality.
With this function, two ToM -agents could be made
to play a predefined number of games against each
other, after which the amount of wins for both play-
ers was recorded. This made it easy to check which
agent had the upper hand.

In the initial model all the cards from the basic
game were used. At the start of each game the deck
is shuffled and five random cards are used for each
round. However, some combinations of cards will
lead to the model getting stuck in a loop, where
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the same sequence of moves is played over and
over again. Why this happens is explained in Sec-
tion 2.3.1. After some experimentation with sev-
eral computer-controlled agents (at varying mini-
max depths) playing against each other, a selec-
tion of five cards was found that did not lead to a
stalemate situation. And thus these cards are used
throughout the rest of this research. The five cards
are the tiger, frog, rooster, monkey and dragon. The
corresponding moves are shown in Figure 2.4.

Figure 2.4: The five cards used for the model in
this paper.

2.3 Theory of Mind Models

2.3.1 Zero-Order Theory of Mind (ToM0)
& Minimax Algorithm

Zero-order theory of mind agents (ToM0) are not
capable of using theory of mind functionality. They
do not reason about the intentions and decision-
making processes of their opponent and therefore
have no real use for the prediction values as de-
scribed in Section 2.3.2. ToM0-agents base their ac-
tions solely on a standard minimax with alpha-beta
pruning algorithm.
The minimax algorithm can be represented as a

search tree (as shown in Figure 2.5), where an agent
goes down the branch that yields the largest utility
value. Nodes represent states of the game, and the
color (blue or red) of the node indicates whose turn
it is. The example in Figure 2.5 is based on a two-
player game where each player can only take two ac-

tions during their turn. The bottom four nodes’ val-
ues match the utility values for the blue player. So
when both players play optimally, the blue player
always goes down the branch that yields the high-
est utility, and the red player acts vice versa. This
is why 20 is the highest possible utility value that
can be achieved for the blue player.

Figure 2.5: An example search tree of the mini-
max algorithm.

To get the earlier mentioned utility value, the
current state of the game is evaluated using an eval-
uation function. Below is the evaluation function
used in this study, which was directly adapted from
the code by Weiner. Here the values with cur in
front of them correspond with values of the current
player’s piece count and distance from their mas-
ter to the opponent’s temple square, whilst values
with off in front of them correspond with values of
the off player’s piece count and distance from their
master to the current player’s temple square.

evalutionscore = (curCount− curCloseness)−
(offCount− offCloseness)

In this case, the game state is evaluated based
on two factors. One is the remaining pieces on the
game board (curCount and offCount). If it is the
blue player’s turn, blue pieces yield a positive util-
ity function of simply 1 per piece, whilst red pieces
contribute negatively. Secondly, the distance be-
tween a player’s master piece and the opponent’s
temple square is measured using a simple Euclid-
ian distance function ((xm − xt)

2 + (ym − yt)
2),

where xm and ym are the coordinates of the cur-
rent player’s master, and xt and yt of the op-
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posing player’s temple). These correspond to the
curCloseness and offCloseness values in the for-
mula. The closer the master is to the temple square,
the higher the utility value will be.
It is easy to imagine that Onitama’s search tree

would be much larger than the one in Figure 2.5.
Every turn a player can pick between two cards,
which both allow for an average of 3.6 possible
moves, which can be applied to five playing pieces.
This amounts to one node expanding into 2·3.6·5 =
36 nodes. With a branching factor of 36, each level
deeper into the tree would require the algorithm to
go over 36k nodes for depth k. For a depth of only
3 (the lowest depth used in this study) this would
already amount to just shy of 50.000 nodes. To go
over all these nodes would be too inefficient, hence
why alpha-beta pruning is used.
Alpha-beta pruning is a method that is com-

monly used to limit the search space of the mini-
max algorithm (Russell & Norvig, 2016). Branches
of the search tree that are not worth exploring are
‘pruned’. This is done by keeping track of two extra
values, α and β. The α value represents the high-
est utility that the player trying to maximize the
utility (the blue player in Figure 2.5) has found so
far, and the β value represents the lowest utility
that the player trying to minimize the utility (the
red player in Figure 2.5) has found so far. If at any
point the utility at the current node becomes lower
than α for the maximizing player or higher than β
for the minimizing player, the branch is not further
explored since there will not be a utility value that
can help the players in making a decision. A branch
can also be cut off if α ever is equal or greater than
β. This means the branch is not worth exploring,
as it will not influence the final decision made by
the maximizing player.
As mentioned in Section 2.2, the agents could

get stuck in a loop with a certain setup of cards.
When this happens, both agents continue playing
the same sequence of moves and the game essen-
tially reaches a stalemate where the same state of
the game board is visited over and over again. Since
all information is open and there is no random-
ness involved with the minimax algorithm, a cer-
tain position of pieces and cards will always yield
the same optimal move when running the minimax
algorithm at the same depth. Hence, it can happen
that if our hypothetical blue player starts playing
and both players have played two moves, the board

will be in the same state as it was at the beginning
of blue’s first turn. Thus blue will play the same
move again and the game reaches a looped state.
Luckily a combination of cards was found which did
not lead to these types of scenarios, as mentioned
in Section 2.2.

In summary, zero-order theory of mind agents
always make their moves based solely on the previ-
ously described minimax with alpha-beta pruning
algorithm at a depth of three. In the model used for
this study, ToM0-agents actually were able to make
predictions about the depth that other agents were
playing at. This was done to warrant the simplicity
of the model’s implementation. Since they them-
selves cannot use the minimax algorithm at a depth
higher than three, the use of predictions about their
opponent’s beliefs and intentions is inconsequen-
tial. They essentially function in the same way as
an agent with a predefined depth of 3.

2.3.2 Higher Orders of Theory of Mind

Before going into more detail regarding the sep-
arate orders of theory of mind, we will first look
at the general implementation of theory of mind in
this study. The ToM architecture in this study was
greatly inspired by the formulation in De Weerd et
al. (2013).

As each game is initialized, all theory of mind
agents are equipped with three prediction values:
d2, d3 and d4. These prediction values can each
take a value between 0 and 1 and represent the con-
fidence of an agent regarding the depth d at which
their opponent uses the minimax algorithm, as was
explained in Section 2.3.1. If d2 = 0.2, d3 = 0.2 and
d4 = 0.8, the agent believes that their opponent is
most likely an agent that reasons at a depth of 4.
Note that the prediction values do not necessarily
add up to a value of 1. They are merely used as a
hierarchical indication of what depth an agent be-
lieves its opponent to reason at. Also note that the
prediction values do not correspond directly with
the real maximum depths of the ToM -agents. For
the ToM0-agent, ToM1-agent and the ToM2-agent
the maximum reasoning depths respectively are 3,
4 and 5, whilst the prediction values are used to
predict one’s opponent to reason at depth 2, 3 or
4. This is done because agents will always try to
reason at a depth which is one higher than that of
their opponent (as will be described later in this
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Section), and therefore it is necessary that a d2 ex-
ists. Otherwise agents would never choose to reason
at depth 3. Furthermore, a d5 would be futile, since
no agents used in this study can reason at a depth
of 6. Please keep this design choice in mind when
reading through the rest of this Section.
Every turn, after an agent has performed their

own action (ai) utilizing a minimax algorithm with
alpha-beta pruning (as was described in more detail
in Section 2.3.1) and depth n, they make a predic-
tion (âj) about what action they believe the other
player is going to take. They choose n = i + 1 for
an i that corresponds with the highest di value. If
there is a tie for the highest prediction value, the
di is chosen with the lowest i. This means that rea-
soning at lower depths is preferred when there is
a tie. For example, if d3 is equal to d4, the agent
chooses to use a depth three model for their oppo-
nent. The logical support for this design choice is
that when two models are both supposed to be the
best, the one that is most efficient to use (hence
the simpler model) should be chosen. To make the
prediction aj about the opponent’s move, they will
again use the same minimax algorithm they used
for determining their own move, but they will now
reason at depth i. This means that they predict
their opponent to reason at depth i as well. Hence
why they choose i according to the highest di pre-
diction value. Then, next turn, after the opponent
has performed their action aj , the agent will com-
pare the aj to the prediction they made in their
own turn (âj). The prediction value that was used
for making the prediction is then updated accord-
ing to the formula below. This means that only the
highest prediction value di is updated according to
this formula. The update formula for the other two
prediction values is described below. This formula
is the same formula that is used for updating the
confidence levels in the study by De Weerd et al.
(2013).

dk :=

{
λ+ (1− λ) · dk aj = âj
(1− λ) · dk aj ̸= âj

Here λ represents the learning speed, which can
be a value between 0 and 1, and impacts how
quickly agents adjust their prediction values. For
the experiments done in this study λ was set to
0.6.
If aj ̸= âj , along with the highest prediction

value declining, the other two prediction values in-

crease with the learning speed, following the for-
mula dk = dk+λ. As mentioned earlier, this means
that the update function is different for the two
prediction values that were not used for making the
prediction than the update function that was used
for the highest prediction value. For example, in the
scenario where d2 = 0.8, d3 = 0.2 and d4 = 0.2, the
agent will believe their opponent to be reasoning at
a depth of 2, as d2 is the highest prediction value.
So first, the agent will play at their own move us-
ing the minimax algorithm at a depth of 3, as this
is one higher than they believe their opponent to
be. The agent then makes a single prediction about
what move their opponent is going to play. This
prediction is based on the model they believe their
opponent to be. In the case where d2 is the highest,
a model of depth 2 will be used for making this pre-
diction. In the end, the agent will have made only
one prediction about the action of their opponent,
which is an innovation on already existing work by
De Weerd et al. (2013), where a prediction is made
based on all an agent’s models of their opponent.
If it turns out that the prediction the agent made
(assuming that their opponent reasoned as a depth
2 agent) was incorrect, d2 will be adjusted to 0.32
((1 − λ) · d2), and the other prediction values will
be increased to 0.8 (dk + λ).

Again, it should be noted that the way in which
prediction values are used in this study substan-
tially differs from how the confidence levels (which
could be understood as the same concept as the pre-
diction values) are used in the studies by De Weerd
et al. that were mentioned in the introduction.
Whereas De Weerd et al. use confidence levels to
represent an agent’s confidence in its own order of
theory of mind, in this study prediction values are
used to represent an agent’s confidence in the order
of theory of mind/depth of their opponent. To un-
derstand the core of this project, it is important to
be aware of this difference and what it entails. For
example, in the studies of De Weerd et al. c1 in-
dicated an agent’s confidence in its own first order
theory of mind model, which was used to discern
ToM0 opponents. c1 could therefore also be seen as
a representation of the confidence in the opponent
being a ToM0-agent. However, in this study d3 is
used to indicate the same thing. The prediction val-
ues correspond directly with the opponents’ order
of theory of mind/depth, instead of with an agent’s
own theory of mind models.
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How each separate type of ToM -agent utilizes
the prediction values to make accurate predictions
and adjust their own course of actions accordingly
is clarified in the Sections below.

2.3.3 First-Order Theory of Mind (ToM1)

First-order theory of mind agents have the abil-
ity to utilize the alpha-beta pruning minimax algo-
rithm at a depth of either three or four. To decide
at which depth they will use the algorithm, they
make use of the prediction values as described at
the start in Section 2.3.2. After a ToM1-agent has
decided on what move to make, they make a pre-
diction of what they think their opponent is going
to play after them.
The agents in this study can only discern the

depth of their opponent if their opponent uses a
lower order of theory of mind than the agent itself.
For example, ToM1-agents can only really discover
whether their opponent is a ToM0-agent or not.
First-order theory of mind agents are not able to
make a distinction between other ToM1-agents and
ToM2-agents.
ToM1-agents and ToM2-agents make the pre-

dictions of their opponents’ actions up to a max-
imum depth nj that is equal to their own maxi-
mum depth (ni) minus 1. Thus nj ≤ ni − 1. This
feature is present in the model to ensure the con-
sistency of predictions about the opponent’s depth.
If an agent would be able to make predictions at
the same depth as what they play their own moves
at, they would essentially use a different prediction
model for their opponent when using the minimax
algorithm.
The problem that would arise if both the pre-

diction about the opponent’s move and the deci-
sion about an agent’s own move are made using
the same depth is made clear in Figure 2.6. Here
the squares with a P in it represent a turn of the
current player/agent, whilst the squares with an O
in it represent the moves of the current player’s op-
ponent. The illustration should be seen as a point
of view of the current player as it looks into the
future (using the minimax algorithm) at a specific
depth (four in this case), to decide on both its own
optimal move and the most probable move of its
opponent. As can be seen in Figure 2.6, in the case
that the same depth is used, the prediction of the
opponent’s move is first made at an effective depth

Figure 2.6: An example of why the prediction
depth nj should be one lower than the depth ni

used for an agent’s own move.

of three (as indicated by the red outline in the up-
per part of the illustration), after which a depth of
four is used to make the actual prediction of the op-
ponent’s move. The red outline in Figure 2.6 shows
that these two predictions do no match. Therefore
the prediction of the opponent’s move is made at a
maximum depth which is one lower than the max-
imum depth used for deciding on a player’s own
move. In this way the P-square in Figure 2.6 that
falls outside of the red outline is not taken into ac-
count and thus the two predictions will match.

In summary, ToM1-agents can reason using a
depth of 3 or 4, and can adjust their depth to the
accuracy of the predictions they make about the
opponent’s behavior. They can only distinguish a
ToM0/depth 3 agent.

2.3.4 Second-Order Theory of Mind
(ToM2)

Second order theory of mind agents, also the high-
est order theory of mind agents that will be cov-
ered in this study, are able to reason at depths of
three, four and five. Essentially their implementa-
tion is exactly the same as ToM1-agents. The only
difference is that ToM2-agents are able to use the
minimax algorithm at a depth of five. This also
means that the same issue arises that was illus-
trated in Figure 2.6. Fortunately the same solution
to the problem (limiting the maximum depth that
is used when making a prediction about the oppo-
nent’s move) also proved effective for ToM2-agents.

To decide at what depth a ToM2-agent will use
the minimax algorithm, they see whether their d2,
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d3 or d4 is higher. Depending on which prediction
value has a greater value, the ToM2-agent will re-
spectively reason at a depth of 3, 4 or 5.

Just like ToM1-agents are not able to discern
other ToM1-agents, ToM2-agents are not able to
discern other ToM2-agents. This is the case be-
cause agents can only make predictions about their
opponent at a depth that is one lower than their
own maximum depth, as described in Section 2.3.2.
What impact this has on the game play and results
will be further explored in Section 3.

2.3.5 The difference between ToM and
minimax

To an attentive reader the question may have arisen
what exactly the difference is between theory of
mind and the minimax algorithm. This is a very in-
teresting question. After all, the minimax algorithm
essentially is a form of theory of mind in itself.
Making predictions about what the opponent is go-
ing to do by reasoning like your opponent precisely
aligns with the definition of theory of mind given
in Section 1. However, in this study ToM is used to
show a possible advantage that ToM brings to the
competition in a varying way. Here, the term ToM
specifically relates to the ability of ToM -agents to
not only use the minimax algorithm, but to also try
to work out what type/depth of minimax algorithm
their opponent is using to adjust their own depth
accordingly. It is true that minimax resembles ToM
in a lot of ways, but the ToM mechanism described
in the past section can be seen as an extra type of
theory of mind.

Now one might be left to wonder why this ad-
dition should prove to provide an advantage. The
supposed advantage is that the issue as illustrated
with Figure 2.6 would be circumvented. This type
of ToM should ensure that agents use the minimax
algorithm in a way that is consistent with the depth
of their opponent.

3 Results

After having completed the full implementation of
Onitama and theory of mind (ToM) agents that
can play the game according to the mechanisms
described in Section 2.3, the experiment was run.
Several simulations were run where varying combi-

nations of ToM -agents played 2000 games against
each other. The same type of simulation was run
for agents that did not use theory of mind, but only
used the minimax algorithm at predefined depth (3,
4 or 5).

Percentage of Games won for
Agents of Equal Depths and

ToM
Depths Agent 1 Agent 2

Depth 3 vs. 3 49.75% 50.25%
ToM0 vs. ToM0 49.05% 50.95%
Depth 4 vs. 4 50.10% 49.90%

ToM1 vs. ToM1 51.35% 48.65%
Depth 5 vs. 5 49.15% 50.85%

ToM2 vs. ToM2 50.50% 49.50%

Table 3.1: The results of 2000 games played be-
tween agents of the same depth or ToM-order

In Table 3.1 the results of agents of the same
depth/ToM -order can be found. It should be noted
that the depth 3 agent and the ToM0-agent are es-
sentially the same type of agent, as they can both
only reason at depth three. It should be expected
that both agents in all of these games win more
or less 50% of the games played against each other.
However, since the starting player is not determined
at random (but rather is dependent on the card
that starts in the middle), there exists a possibility
that a certain combination of cards favors a cer-
tain player at specific depths/ToM -orders. To cir-
cumvent this potential issue, both agents varied be-
tween playing as the blue player for the first 1000
games, and then as the red player for the last 1000
games. For all the results presented in this section
this manner of simulation was chosen when pitting
two agents against each other.

After this method of running the experiment was
applied, the expected results emerged, as can be
seen in Table 3.1 and Figure 3.1. Agents of similar
depths and ToM -levels are an equal match. None
of the results in Table 3.1 are significant, according
to a standard Z-test (proportion test), as none of
the p-values were lower than the significance level
of 0.05. The exact p-values and Z-statistics can be
found in the Appendix.

The results in Table 3.2 were once again ac-
quired from running 2000 games, where both agents
switched color after 1000 games. For example, in
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Figure 3.1: The win percentages after a variety of agents played 2000 games against each other.

Figure 3.2: The win percentages after a variety of agents played 2000 games against each other.

the case where the ToM0-agent played against the
ToM1-agent, for the first 1000 games the ToM1-
agent played as the red player and the ToM0-agent
as the blue player.

It gets more interesting once we start to look at
the results that were produced by pitting agents of
differing depths and ToM -levels against each other,
as can be seen in Table 3.2 and Figure 3.2. Signif-
icance is indicated with a star in Table 3.2. Ex-
act p-values and Z-statistics can again be found in
the Appendix. It becomes apparent that higher or-
ders of theory of mind and greater depths provide
an advantage against agents that reason at lower
depths and ToM -levels. However, the difference in
win rates is significantly (see p-values in the Ap-
pendix) larger for agents that have a greater depth
than their opponent. For example, an agent that
reasons of depth 5 wins 82% of the games they play

against their opponent that reasons at a depth of
4. In contrast, a ToM2-agent (which also can rea-
son at a maximum depth of 5 as described in Sec-
tion 2.3.4) wins only 53.70% of the games against
a ToM1 opponent.

When letting ToM -agents play against agents
that reason at a predefined depth, the results of
which (including statistical significance) can be
seen in Table 3.3 and Figure 3.3, a few particu-
larly interesting results comes to light. The first is
that ToM -agents seem to not only lack an advan-
tage against their more restricted opponents that
reason at a set depth, but in some scenarios are
even clearly at a disadvantage. The most peculiar
result probably comes from the fact that a depth 4
agents proves to do better against a ToM2-agent
than against a ToM1-agent, whilst this is quite
counter intuitive. However, it should be noted that
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Figure 3.3: The win percentages after a variety of agents played 2000 games against each other.

Percentage of Games won for
Agents of Differing Depths and

ToM
Depths & ToM -orders Agent 1 Agent 2

Depth 4 vs. 3* 71.30% 28.70%
ToM1 vs. ToM*

0 67.90% 32.10%
Depth 5 vs. 3* 91.30% 8.70%
ToM2 vs. ToM*

0 66.60% 33.40%
Depth 5 vs. 4* 82.00% 18.00%
ToM2 vs. ToM*

1 53.70% 46.30%

Table 3.2: The results of 2000 games played
between agents of differing depths and ToM-
orders. Significant results are marked with a *,
meaning the p-value is below the significance
level of 0.05.

there is a large difference between the amount of
games the ToM2-agent won as the red player and
the amount of games they won as the blue player.
Namely, as the red player they won 590 of the 1000
games (59%), whilst as the blue player they only
won 318 of the 1000 games (31.8%), which is a con-
siderable difference that was not seen for any other
pairing of agents. No clear explanation could be
found for why this pairing is so colour dependent.

4 Conclusions

Following the results that were acquired in Section
3, no clear evidence could be found which proves
that ToM -agents (as they are implemented in this
study) are at an advantage when playing the two-

Percentage of Games won for
Agents of Differing Depths and

ToM
Depths & ToM -orders Agent 1 Agent 2
ToM1 vs. Depth 4 50.10% 49.90%
ToM1 vs. Depth 5* 13.70% 86.30%
ToM2 vs. Depth 4* 45.40% 54.60%
ToM2 vs. Depth 5 49.15% 50.85%

Table 3.3: The results of 2000 games played
between agents of differing depths and ToM-
orders. Significant results are marked with a *,
meaning the p-value is below the significance
level of 0.05.

player board game of Onitama in respect to agents
that reason at a predefined depth. If anything, us-
ing theory of mind proved to be a disadvantage in
some cases.

Especially ToM -agents that have a maximum
depth that is higher than that of their non-ToM op-
ponent would be better off if they just constantly
reasoned at their maximum depth. For example,
a ToM2-agent (that has a maximum depth of 5)
wins only 45.40% of the games against an agent
that reasons at a predefined depth of 4, whilst a
regular depth 5 agent that does not used theory of
mind wins 82.00% of their games against that same
depth 4 opponent.

One interesting finding is that a ToM1-agent per-
forms slightly better against a depth 3/ToM0-agent
(they function in essentially the same manner) than
a ToM2-agent performs against this type of op-
ponent. It should be noted that both the ToM1-
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agent and the ToM2-agent do not perform as well
as their predefined depth counterparts that reason
at depths 4 and 5 respectively. However, the depth
5 agent does perform significantly better against a
depth 3 agent than a depth 4 agent does. This con-
trast with ToM -agents is quite interesting, and at
a first glance it could be explained by the fact that
a ToM agent that reasons at a depth of 5 (such
as a ToM2-agent) uses a model of depth 4 to pre-
dict the behavior of the opponent, whilst this is not
correct for a depth 3 agent. For a more detailed ex-
planation about how the agents used in this study
reason you can read Section 2.3. However, if this
was the case then it would also be expected that a
regular depth 4 agent also performs better against a
depth 3 agent than a depth 5 agent does, but this is
not the case. Therefore the precise reason for this
anomaly remains unknown, although there is one
possible explanation. As was explained in Section
3, the colour dependency was extraordinarily high
when a ToM2-agent played against a regular depth
4 agent. Why this phenomenon only occurred here
could not be explained with certainty. One possibil-
ity is that there is a specific starting configuration
of the five cards that grants the depth 4 agent a
quick or hard to counter winning combination of
moves when playing as the red player, which would
explain the low win rate of 31.80% for the ToM2-
agent when playing as the blue player.

Furthermore, ToM -agents with a maximum
depth n that played against opponents with a set
depth of n had about the same win chance. This
is a further indication that ToM does not provide
an advantage in this particular game, and with this
particular implementation. There was not one case
that could be found where ToM -agents had an edge
over their simpler opponents. The hypothesis that
the usage of theory of mind in the two-player board
game of Onitama would provide an advantage is
therefore not supported by the results of this study.

Possible explanations and faults of the approach
that was taken, along with what these results say
about the usage of theory of mind in complex games
and possibilities for future research will be explored
in the next Section.

5 Discussion

Whereas in the research of De Weerd et al. (2013)
theory of mind did prove to be a significant advan-
tage in more simple games, in this study theory of
mind did not have such an impact. Let us explore
why this might be the case.

But first it must be stated that in the end, the
effectiveness of theory of mind really comes down
to what we define as theory of mind. There are
many possible ways to go about inserting theory of
mind in an agent-based model. As described in Sec-
tion 2.3.5, in this study the theory of mind aspect
was implemented as an addition on the minimax
algorithm, by giving agents the possibility to alter
the depth at which they use the algorithm. How-
ever, one could also make a solid argument for the
case that the minimax algorithm is a form of the-
ory of mind in itself (as was also briefly discussed
in Section 2.3.5). In this case, theory of mind would
have a considerable impact/advantage in the game
of Onitama. For now, however, let us focus on why
theory of mind does not have an impact in the way
that it was implemented in this study.

One of the possible reasons might be that the
evaluation function of the minimax algorithm is in-
correct. If it were correct, the expectation would be
that a ToM2-agent plays better against a depth 3
agent than an agent that reasons at a predefined
depth of 5 will play against that same agent, be-
cause the ToM2-agent will adjust its depth to level
4 if playing an opponent of depth 3. This may seem
counter intuitive, but since a ToM2-agent will rea-
son at depth 4, they use a more accurate model of
the opponent’s behavior. If, however, the evalua-
tion function in the minimax algorithm (which de-
termines the utility function for each game state)
is specified in a wrong manner this could impede
the workings of the algorithm. Currently, the eval-
uation function only considers the amount of pieces
on the board and the proximity to the opponent’s
temple square. Since there are no cards that allow
a piece to move one square in the forward direction,
a possible flaw immediately comes to light. For ex-
ample, if a player’s master pawn is one square in
front of the opponent’s temple but has no card to
reach it, this game state still receives a higher util-
ity value than if a player’s master would be two
spaces away but could reach the temple in one move
with the tiger card. A faulty evaluation function
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might therefore lead to the malfunctioning of the
entire model.
It could also very well be the case that adding

theory of mind functionality on top of an already
existing minimax algorithm is simply not benefi-
cial. However, to further support this theory more
research that involves using theory of mind in com-
plex game settings needs to be done. If one were to
do another study regarding the game of Onitama,
a different evaluation function should probably be
used. Different configurations of cards could also
be taken into account. Along with this, theory of
mind could be implemented in a different way al-
together. There are a lot of ways to go about this,
but for one, a closer resemblance could be held with
the research by De Weerd et al. (2013) from which
this study took a lot of inspiration. Theory of mind
should also be explored regarding other complex
game settings.
All in all, the Machiavellian Intelligence Hypoth-

esis as described by Byrne & Whiten (1988) is not
supported by this study. Using theory of mind does,
according to the experiments performed, not pro-
vide an advantage in the two-player board game of
Onitama. When utilizing the minimax algorithm,
reasoning at higher depths should be preferred over
utilizing theory of mind.
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A Appendix

p-values and Z-statistics for all agent pairs
Agent Pair p-value Z-statistic

Depth 3 vs. 3 0.823 -0.224
ToM0 vs. ToM0 0.395 -0.850
Depth 4 vs. 4 0.929 0.089

ToM1 vs. ToM1 0.227 1.208
Depth 5 vs. 5 0.447 -0.760

ToM2 vs. ToM2 0.655 0.447
Depth 4 vs. 3* 1.95 · 10−98 21.058
ToM1 vs. ToM*

0 6.65 · 10−66 17.147
Depth 5 vs. 3* 0.000 52.241
ToM2 vs. ToM*

0 8.01 · 10−56 15.740
Depth 5 vs. 4* 1.07 · 10−303 37.250
ToM2 vs. ToM*

1 0.00091 3.318
ToM1 vs. Depth 4 0.899 0.126
ToM1 vs. Depth 5* 0.000 -45.916
ToM2 vs. Depth 4* 0.00073 -5.819
ToM2 vs. Depth 5 0.282 -1.075

Table A.1: The results of all the proportion tests
performed in Section 3. Significant results are
marked with a *, meaning the p-value is below
the significance level of 0.05.
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