university of
groningen

/

faculty of science
and engineering

/ artificial intelligence

FROM BRAINWAVES TO ACTIONS: EVALUATING
UNCERTAINTY IN CNNs AND RIEMANNIAN GEOMETRY
MOoDELS FOR BCI

Bachelor’s Project Thesis

Joris Suurmeijer, s4334124, j.m.suurmeijer.1@student.rug.nl,

Supervisor: Ivo de Jong

Abstract: Brain-computer interfaces (BCIs) capture brain signals and transform them into
functionally useful output. In the field of Motor Imagery, a Machine Learning model can learn
from the captured data to predict the imagined movement of a user. This study aims to guide
researchers in their choice for such a Machine Learning model, by comparing the capabilities of
Deep Learning and non-Deep Learning models in terms of their classification performance and
Uncertainty Quantification (UQ). Convolutional Neural Networks (CNNs) are used as the Deep
Learning model and a Minimum Distance to Riemannian Mean (MDRM) model is used as the
non-Deep Learning model. The UQ methods used are Deep Ensembles and DUQ for CNNs, and
two distance-based uncertainty methods for MDRM. Results show that Deep Ensembles have
better accuracy than the other methods, whereas MDRM models offer better UQ despite lower
classification performance. DUQ performs worse than Deep Ensembles and MDRM in both areas.

1 Introduction

The field of Brain-computer Interfaces (BCIs) has
recently gained substantial attention because of the
development of implants like N1 from Neuralink,
which is an array of electrodes inside a person’s
brain to read their brain signals. Brain-computer
interfaces are systems that measure brain activity
and convert it (nearly) real-time into functionally
useful output (BCI-Society, 2024).

A BC(I is, for example, used in the field of Mo-
tor Imagery, where participants imagine a move-
ment and a BCI captures their brain activity. BCIs
are important in this field because they can pro-
vide a way for people with heavy motor disabili-
ties to control a certain device using their brain-
waves (Barachant et al., 2010). How this works is
that, based on the captured brain signals, a pre-
diction can be made about which movement the
person imagined and this prediction can be given
as a command to, for example, a robotic device.
To make such a prediction, a threshold must be
determined to distinguish a movement of the right
hand from a movement of the left hand, for exam-

ple. This threshold can be learned by a Machine
Learning (ML) model.

In the field of Brain-computer Interfaces, two dif-
ferent types of ML models are used: Deep learning
models and Non-Deep learning models. Both types
of models, however, lack research in the domain of
Uncertainty Quantification (UQ) for tasks related
to BCIs (de Jong et al., 2023).

The field of UQ focuses on the confidence of ML
models when making predictions. Confidence here
is the predicted probability by the model of how
likely it estimates its prediction to be correct. The
goal of using UQ is to assess whether the confidence
of a ML model aligns with the actual accuracy of
the model. For example, if a ML model predicts a
right-hand movement with a 60% confidence, this
means that the model thinks that the chance that
this prediction is right is approximately 60%. If the
model, on average, has a confidence of 70% in its
predictions, then it should be right in 70% of the
predictions. To assess if this is the case, the level of
calibration can be measured, which compares the
confidence of the ML model to its actual accuracy.
This comparison to the accuracy is important be-



cause it is desirable for a ML model to be confi-
dent in its predictions when its classification perfor-
mance is strong, and to exhibit low confidence when
it is likely to make incorrect predictions. Without
this, it is hard to incorporate additional observa-
tions, such as human verification, to check the pre-
dictions when the ML model lacks confidence.

An example of how UQ can make an important
difference is to make a ML model that is able to
withhold from making a prediction when it is too
uncertain about the input it got (for example for
out-of-distribution data). It is, for example, unde-
sirable for a ML model to predict that a patient
has a disease if it is not certain that a patient has
this disease, as this causes unnecessary harm to the
patient. In the context of BCI for Motor Imagery,
UQ is important because this can help prevent a de-
vice from making a movement when the model used
is not certain about the prediction. It is necessary
to prevent this, because otherwise a person using a
BCI could think of something unrelated and the de-
vice will make an unwanted movement, although it
was not sure if the person even was thinking about
a movement. UQ can help prevent these unwanted
predictions when we set a boundary to not perform
a movement, unless the model is, for example, 90
percent sure that it is correct. But for this to work
the model’s confidence should follow its actual ac-
curacy, otherwise it will not perform properly. This
alignment of confidence and accuracy is what we
will measure.

In this study, a Convolutional Neural Network
(CNN; LeCun et al., 1989) will be used as the Deep
learning model. Specifically for the CNN, two un-
certainty methods will be used: Deterministic Un-
certainty Quantification (DUQ; Van Amersfoort et
al., 2020) and Deep Ensembles (R. T. Schirrmeis-
ter et al., 2017). For the Non-Deep learning model,
a Riemannian geometry model will be used, more
specifically, a Minimum Distance to Riemannian
Mean (MDRM; Barachant et al., 2011) model.

DUQ is a distance-based uncertainty technique,
which projects samples to a high-dimensional
space. In this high-dimensional space, a distance
function can be used to get the distance from a
sample to a learned class centroid. Based on this
distance the confidence can be calculated for this
prediction. This will be explained further in Sec-
tion 2.5.

Deep Ensembles is an uncertainty technique in

which multiple models are trained. The variance
of the models tells us something about the uncer-
tainty. The confidence value of a prediction is taken
by calculating the mean of the confidence value of
all the individual models. This will be explained
further in Section 2.5.

For the MDRM model, two different methods
to estimate the uncertainty will be used. Both of
the uncertainty methods work similarly to DUQ),
as the distance to learned class centroids in a high
dimensional space will be used. The difference be-
tween the two uncertainty calculation methods for
MDRM will be explained in Section 3.2.2.

The reason DUQ is chosen to be included in this
study is because DUQ works similarly to MDRM
with respect to uncertainty. Therefore, compar-
ing both methods is interesting as this will say
something about the difference between the mod-
els themselves, and thus about Deep Learning and
non-Deep Learning models, instead of solely say-
ing something about the way uncertainty is cal-
culated. Deep Ensembles is chosen because it is
an approximation of Bayesian Neural networks and
it’s been shown to get better predictions compared
to alternative methods (Manivannan et al., 2024),
like MC-Dropout (Gal & Ghahramani, 2016), MC-
DropConnect (Mobiny et al., 2021), and Flipout
(Wen et al., 2018). Including Deep Ensembles is
good for the comparison between Deep Learning
and non-Deep Learning models, because this way
it can be concluded if a difference between the type
of models is the result of the Riemannian geome-
try or Deep Learning aspect, or because of the UQ
strategy that is used.
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Figure 1.1: Overview of the difference between
CNNs and Riemannian geometry models for
Uncertainty Quantification

In Figure 1.1 an overview is shown of how CNNs
and MDRM work with respect to uncertainty quan-
tification. In Section 2 this will be further explained



and compared to each other.

This paper compares the different types of ML
models with their uncertainty techniques to guide
researchers in selecting the appropriate model for a
BCI task. For this comparison, two categories will
be used: First, the classification performance on a
BCI task, and second, the UQ performance on the
same task. To make this comparison on the two
categories, both the classification performance and
the UQ performance of the models should be mea-
sured. As explained, for uncertainty quantification
the level of calibration will be used. To calculate
the calibration of the model, the confidence of the
model is compared to the observed accuracy, using
multiple metrics. More information on this can be
found in Section 4.1.

The hypothesis regarding the comparison is that
MDRM and DUQ will perform similarly with re-
gard to uncertainty quantification, while Deep En-
sembles will perform differently. This is expected
because the uncertainty in MDRM and DUQ is cal-
culated similarly, while Deep Ensembles has a very
different method to estimate uncertainty.

2 Background

2.1 Brain-computer interfaces

There are three types of BCIs: invasive, non-
invasive, and partially invasive. Invasive BCIs are
placed inside the skull, directly on the brain, which
requires surgery. Non-invasive BCIs are placed on
the scalp and do not require surgery to be placed.
Partial invasive BCIs have the device implanted in-
side the skull but outside the brain, which also re-
quires surgery (Alharbi et al., 2023).

In this study, EEG data from non-invasive BClIs
is used. This means that the data that is used in
this study is recorded from the scalp. The spatial
resolution for EEGs is worse than other neuroimag-
ing techniques (Alharbi et al., 2023), due to poor
signal-to-noise ratio (Liu et al., 2020). This means
that it is hard to know whether a signal came from
an area deep in the brain or near the surface. How-
ever, the benefits of not requiring surgery outweigh
the worse spatial resolution of the data, since there
is a lower risk for participants. This results in a
lower barrier of entry for participating in an exper-
iment and for using a BCI.

2.2 Motor Imagery

BCIs have shown useful in studies about the hu-
man brain (Abdulkader et al., 2015). One example
of a sub-field where they are used is Motor Im-
agery. In Motor Imagery tasks, participants imag-
ine a movement without performing it. The BCI
captures the brain signals, which can be used to
predict the imagined movement using for example
a ML model.

Barachant et al. (2010) described that a BCI
might become helpful in the field of Motor Imagery
by providing a new way of non-muscular communi-
cation for people with heavy motor disabilities, like
in Spinal Cord Injury or Locked-In Syndrome. A
ML model can translate brain signals into a com-
mand, which can be given to an external device
(Barachant et al., 2010).

EEG-based BCI systems can have a lot of un-
certainty because the EEG signals can have poor
signal-to-noise ratio, small amplitudes, and high
variability within and between subjects and ses-
sions (Milanés-Hermosilla et al., 2021). This makes
it important for a model to emphasize its uncer-
tainty in these cases, as this can make it possible
to withhold from performing an undesired move-
ment (for example, moving your hand when you do
not want this). In this study, all datasets that are
used belong to the field of Motor Imagery.

2.3 Convolutional neural networks

CNNs are a type of feedforward neural network that
learns features from the data by using filters, which
are also called kernels (LeCun et al., 1989). Kernels
are small matrices that can be used to look at spe-
cific features in a small piece of the input data. Each
kernel can detect specific features, such as edges,
textures, or patterns. The kernels are used by ’slid-
ing’ over the data piece by piece (e.g. in an image it
slides over the pixels) to learn translation-invariant
features. By extracting these features, the model
can learn information that is relevant for predic-
tions.

CNNs consist of multiple layers which all have
a specific function. The convolution layers are the
most important, as they apply the filters to the in-
put sequence to extract meaningful features. How
this works is that the kernels are moved over the
input and the weight for each kernel (meaning



how much influence this kernel has in the pro-
cess) is learned when training the model. Because
of the feature extraction mechanism, CNNs per-
form particularly well in tasks where pattern detec-
tion is needed, such as image processing. For exam-
ple, in the popular MNIST dataset (Deng, 2012), a
CNN can extract features like the brightness of pix-
els or edges of the figure. These features can help
with predicting which digit the picture represents.

In the context of a BCI task, a CNN mostly has
two types of convolution layers: one convolution
layer that uses kernels to slide over the temporal
axis and one convolution layer that does the same
for the spatial dimension of the input data. The
temporal filter is therefore able to learn patterns
anywhere in the sequence, while the spatial filter
performs a convolution across channels to learn
meaningful combinations of channels. The spatial
filter however does not really ’slide’ over the data
as explained, because it has the same length as the
number of channels because the order of the chan-
nels is arbitrary.

Multiple Convolutional Neural Network struc-
tures are used in the field of BCIs. The most used
ones include Shallow Convnet (R. Schirrmeister et
al., 2017), Deep ConvNet (R. Schirrmeister et al.,
2017), and multiple models from the EEG net fam-
ily (Lawhern et al., 2018). The best-performing
CNN model with EEG data, between the just men-
tioned models, is a Shallow ConvNet (K61l6d et al.,
2023). The evidence the paper provides was that
Deep ConvNet and Shallow ConvNet showed the
most improvement in accuracy relative to chance
level. Both Shallow ConvNet and Deep ConvNet
outperformed the other model on one of the tasks,
but the paper states that on half of the datasets,
there was an insignificant difference. Therefore, in
this study, it was chosen to use the Shallow Con-
vNet model, as it is a less complex model.

In Figure 2.1 the architecture of the Shallow Con-
vNet is depicted. Here you can see the temporal and
spatial convolution layers as discussed, and a Mean
Pooling layer, which downsamples the data, with-
out losing important information (Ali et al., 2020).

Next in the structure follows a Dense layer and
Softmax layer, which ensure that a prediction is
done based on a probability distribution over the
classes, made by the Softmax layer.
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Figure 2.1: Image from R. T. Schirrmeister et
al. (2017), showing the architecture of a Shallow
ConvNet

2.4 Riemannian geometry models

In Riemannian geometry, covariance matrices are
used. In the context of BCI, each timestamp in the
EEG data represents a sample, and the channels of
the EEG data correspond to the dimensions of the
covariance matrix. The covariance matrix shows
the variance and correlations between the different
channels. The set of all covariance matrices forms
the Riemannian manifold. We can ’walk’ over this
manifold to get the distances in this high dimen-
sional space, with the distances being invariant so
it should be more generalized. For a Riemannian
geometry model with Motor Imagery, a mean co-
variance matrix is computed for every class (for ex-
ample, a two-class task with right-hand vs left-hand
has a covariance matrix for both). The mean of all
the covariance matrices which belonged to a cer-
tain class in training, form this learned class mean
or centroid. This centroid represents the class on
the Riemannian manifold. An example of the com-
puted covariance matrices can be seen in Figure
2.2.

Figure 2.2: Example of the covariance matrices
for each class, computed by the MDRM model

A Minimum Distance to Riemannian Mean clas-
sifier is used as the Riemannian Geometry model.
This model is chosen because it is a simple model
that shows good generalization compared to other
algorithms (for example CSP spatial filtering al-
gorithm with an LDA classifier; Barachant et al.
2011). The training of this model consists of esti-
mating the mean covariance matrix for each class.



The model makes a prediction by computing a co-
variance matrix for an input and comparing this
covariance matrix to each learned mean covariance
matrix for a class. This comparison is done based
on the distance between those covariance matrices,
which is calculated using the following formula:

34(C1,C) = [[log(C7 V2, Ca, O3 ) |ly = /N (log? An),

(2.1)
where, as explained by Congedo et al. (2017), A,
are the N eigenvalues of matrix 01_1/2702703_1/2
or, equivalently, matrix C| ! C5 and where in both
expressions the indices 1 and 2 can be permuted, as
the distance is symmetric (Congedo et al., 2017).
Riemannian models are often used in BCI tasks
because they are relatively simple to implement and
perform well (Congedo et al., 2017). Recently, Rie-
mannian geometry models have claimed first prices
in BCI classification competitions, thus showing
competitive classification performance (Yger et al.,
2016).

2.5 Uncertainty quantification

Uncertainty quantification is the study of the un-
certainty of computational systems. Neural net-
work models often make predictions without indi-
cating if they are confident about their decision,
even for data that is vastly different from the train-
ing data. Especially in data that differs from most
training data, this is a problem because it causes
generalization errors. This can be tackled by having
a ML model show its uncertainty.

The field of uncertainty quantification aims to
create more interpretable models, by providing a
measure of confidence in the predictions of the
models (Abdar et al., 2021). This helps people un-
derstand when not to trust a model blindly, but
could also be used to stop a model from predicting
if it is uncertain.

Several methods help us add uncertainty quan-
tification to a ML model. As mentioned in Section
1, the UQ methods chosen for the Deep Learning
models are Deep Ensembles (Lakshminarayanan et
al., 2017) and Deterministic Uncertainty Quantifi-
cation (DUQ) (Van Amersfoort et al., 2020).

For the MDRM model, the distances are used
as an uncertainty measure. There has been little
research on Riemannian models with uncertainty.

However, this approach is in line with the proba-
bilistic approach by Barthélemy et al. (2023).

2.5.1 Deep Ensembles

Deep Ensembles work by having multiple models
make a prediction on the same sample and look at
the differences (variance) between the predictions
of the models. Then the confidence of the model can
be calculated to know if it is sure in its predictions
most of the time.

The confidence of a prediction is obtained by tak-
ing the maximum value of a softmax function for
every model and then the mean of all these values
is calculated. The overall confidence of the model
can be calculated by taking the mean of all the pre-
diction confidences, which is calculated like this:

M
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where p;(y | ) is the probabilistic predictive dis-
tribution over the labels, where y are the features
output and z the input features, and M is the num-
ber of models that will be trained.

2.5.2 DUQ

DUQ works by learning a centroid for each differ-
ent class, which represents that class as a point in
a high-dimensional space. What distinguishes the
DUQ model from the normal Shallow ConvNet ar-
chitecture is the use of a Radial Basis Function
(RBF) Layer. This RBF layer is responsible for
projecting the input to a high-dimensional space.
In this high-dimensional space, the distances from
one point to another can be calculated. The out-
put of the RBF layer consists of the distances from
this input point to all class centroids in the high
dimensional space.
These outputs are calculated using equation:

-1 2
K. (fo(x),e.) = exp <n ”WCJ;QU(;T) eCHQ) ;
(2.3)

where, as described by Van Amersfoort et al.
(2020), fo is the model which has input dimension
m and output dimension d : R™ — R?, and pa-
rameters 6. e, is the centroid for class ¢, which is a
vector of length n, W, is a weight matrix of size n



(centroid size) by d (feature extractor output size),
and o is the length scale. This function is also re-
ferred to as an RBF kernel (Van Amersfoort et al.,
2020).

In the original paper, the uncertainty of the
model is calculated using the distance to the clos-
est centroid (Van Amersfoort et al., 2020). How-
ever, in this study, the distances are normalized
and then transformed into a probability-like dis-
tribution over the classes. This transformation to a
probability is done because it is more interpretable
than a distance, as it sums to a value of one. More
information on our implementation will be given in
Section 3.2.1.

2.5.3 UQ for MDRM

The uncertainty in an MDRM classifier works sim-
ilarly to that in DUQ), since an MDRM also makes
use of distances to learned class means (in this case
the distance to each mean covariance matrix, as de-
picted in Equation 2.1 from Section 2.4). Since the
model outputs the distances to each class mean, the
distances are first normalized and then converted
into a probability-like distribution over the classes,
following the same approach as DUQ. For the cal-
culation of the probabilities, there are two distinct
methods used. These methods are further explained
in Section 3.2.2

3 Methods

3.1 Datasets

For this study, data in the field of Motor Im-
agery was used. The datasets that were used
were available through Mother Of All BCI Bench-
marks (MOABB; Aristimunha et al. 2023). Multi-
ple datasets were used to add validity to this study
since the use of multiple datasets makes it less likely
that the results are the consequence of a specific
characteristic of a dataset used.

In this study the following datasets are used: a
Motor Imagery dataset from Steyrl et al. (2016),
a Motor Imagery dataset from Zhou et al. (2016),
Dataset IIB from BCI Competition 4 (Leeb et al.,
2007), and Dataset ITa from BCI Competition 4
(Tangermann et al., 2012). All ML models in this
study use 70% of the data as training data, 10% as
validation data, and 20% as test data.

In Table 3.1 an overview of the different datasets
and their specifications can be seen. None of the
participants were paralyzed in the datasets that
were used. More information on the datasets can
be found in the original papers, or the dataset doc-
umentation on MOABB.*

All data is preprocessed by using a single non-
causal (one pass forward, one pass backward) IIR
Band-pass filter, which uses a high pass filter with a
cutoff frequency of 7.5 Hz and a low pass filter with
a cutoff frequency of 30 Hz. The filtering is done be-
cause for Motor Imagery only the alpha (8 - 12 Hz),
beta (12.5 - 30 Hz) and mu (7.5 - 12.5 Hz) bands
were relevant (Scherer & Vidaurre, 2018), all other
bands could be filtered out. The mu frequency is
not always included in Motor Imagery tasks. How-
ever, in this study, it was included. We decided to
include the mu frequency because it is strongly re-
lated to the motor cortex in the brain (Niedermeyer
& da Silva, 2005).

3.2 Machine Learning Models

The ML models used in this study are trained in a
BCI Motor Imagery task, where participants took
one or more trials in a Motor Imagery task, as is
discussed in Section 3.1. All code from this study
is publicly available to use. f

3.2.1 Shallow ConvNet

As mentioned, two versions of the Shallow ConvNet
model were used in this study (DUQ and Deep En-
sembles), both based on the structure proposed by
R. T. Schirrmeister et al. (2017).

Both models follow the structure from the origi-
nal paper, which means that the following settings
are used:

Both Shallow ConvNet models make use of a
dropout layer, with a dropout rate of 0.5 as this
follows the original paper by R. T. Schirrmeister et
al. (2017). For both of the models, the labels of the
data are transformed into categorical labels using
a Label Encoder.

In addition, both ML models use early stop-
ping, which prevents the model from overfitting

*https://moabb.neurotechx.com/docs/
dataset_summary.html

TAIl code for this project is available at:
https://github.com/Jorissuurmeijer/UQ-motor-imagery



Table 3.1: Summary of Datasets

Dataset Subjects | Sessions | Runs | Classes | Additional Info | Channels ONfutrIr_;zfsr
Motor The participants
Imager were aged between
ot ags ety Right 20 and 30 years, 8
from 14 1 8 hand, naive to the task, | 15 17920
Feet and had no known
Steyrl .
medical or neuro-
2016 . .
logical diseases.
Motor II;Zflt d The intervals be-
Imagery Ri ht, tween two sessions
dataset 4 3 2 & varied from sev- | 14 11496
hand,
from Zhou Both eral days to sev-
2016 eral months
feet
Right-handed
Dataset Loft subjects with nor-
B from hand mal or corrected-
9 5 1 . to-normal vision. | 3 32400
BCI Com- Right
otition 4 hand Only channels C3,
p Cz and C4 were
used
Left
Dataset hand,
ITa  from Right Recorded on two
BCI Com- 0 2 6 hand, different days 22 62208
petition 4 Feet,
Tongue
Original paper Shallow ConvNet: Deep Ensembles
pool_size 1,75 For the model that uses the Deep Ensembles
strides 1,15 method, the structure is the same as in the original
conv filters | 1, 25 paper (R. T. Schirrmeister et al., 2017). The output

Table 3.2: The Shallow ConvNet structure pa-
rameter values used in this study, from the pa-
per by R. T. Schirrmeister et al. (2017)

(Makarova et al., 2021). The patience for early stop-
ping is set to 20. This value was chosen because,
when training the model, we noticed that a too-low
value caused worse results (the training stopped be-
fore the ML model was fully converged). The early
stopping mechanism that is used, ensures that the
weights from the best run are restored, based on
the validation loss.

layer is a softmax layer that provides a probability-
like distribution over all classes. The Deep Ensem-
bles method uses an ensemble size M = 10.

The optimizer used by the model is an Adam
optimizer with a learning rate of 0.001. This value
was selected to use because it performed well on
the classification performance of the used datasets.
The loss we used is the categorical cross-entropy
loss. This loss was chosen because it works well
on categorical tasks (Brigato & Iocchi, 2020). Each
model was trained for a maximum of 100 epochs
if it was not stopped early by the Early stopping
mechanism.




Shallow ConvNet: DUQ
For the DUQ model, the difference in structure is
that the model does not have a softmax layer as the
output layer. Instead, the model uses an RBF layer
that predicts the distances to class centroids. The
RBF layer as used in this study is an implemen-
tation of the Keras-Uncertainty library (Valdene-
gro, 2023). The RBF layer uses a length scale of
0.2, as this is the value in the range suggested by
Van Amersfoort et al.(2020) which gave good clas-
sification performance on the used datasets.

The optimizer used by the model is an Adam
optimizer with a learning rate of 0.01. The learn-
ing rate was changed since DUQ took a long time
to converge and the value of 0.01 made the con-
vergence easier. Because of the convergence prob-
lem, we also increased the number of epochs to 200
epochs (instead of the 100 used for Deep Ensem-
bles), resulting in a possible longer training time
(as long as the validation loss was decreasing, oth-
erwise the Early Stopping mechanism intervened).
The loss we chose is the binary cross-entropy loss
because it follows the original paper by Van Amers-
foort et al.(2020).

As mentioned in Section 2.5, the output layer
gives the distances to the different class centroids.
In this study, we then normalize the distances and
then transform them into a probability-like distri-
bution. The transformation to a probability-like
distribution over the classes is done using a soft-
max function with temperature. This can be seen
in the following equation:

exp(z;/T)

—Zj exp(w;/T) Vi e [0,C —1],

softmax(x;) = [

(3.1)
where the logits zi are divided by a temperature
factor T, and T is a vector of length C' that is opti-
mized to improve the calibration of the model. This
has the effect of softening the output distribution
for increasing T and it can improve calibration (de
Jong et al., 2023). The value of T is determined
dynamically in our implementation. The value is
determined by doing a search over the values from
0.1 to 2 (with steps of 0.1) and choosing the tem-
perature value that gets the best ECE value.
The use of a softmax function results in the fol-
lowing: If a sample is further away from a centroid
or is in between two centroids, the uncertainty in-

creases. The confidence of a prediction can be cal-
culated by taking the value of the class with the
highest probability, using the max operator:

m?‘XKC(fG(x)veC)7 (32)

where ¢ corresponds to the class with the maxi-
mum correlation (minimum distance) between data
point x and class centroids E = {el, . . . , ec }
(Van Amersfoort et al., 2020). The overall confi-
dence of the model is calculated by taking the mean
of all these prediction confidences.

3.2.2 MDRM

For the MDRM model, the structure follows that
of the PyRiemann library (Barachant et al., 2023).
Balanced sample weights were calculated for the
MDRM model, which were used to ensure balanced
results for the predictions. For the calculation of
the covariance matrices, the Ledoit-Wolf estimator
(Ledoit & Wolf, 2004) is used as the covariance es-
timator.

As mentioned in Section 2.4, the MDRM model
outputs the distance to each class centroid for an in-
put sequence, where the prediction is the class that
is closest to the input. These outputted distances
to all class means are normalized to calculate prob-
abilities from them for each class. For this proba-
bility calculation, two different methods were used:
a softmax function that uses the negative squared
distances and a softmax function that uses temper-
ature scaling (Guo et al., 2017).

The softmax of negative squared distances is
chosen because this follows the implementation as
made by the PyRiemann library (Barachant et al.,
2023). The confidence of this method is calculated
using Equation 3.3, where dist(x) are the distances
to all centroids.

softmax (— (dist(x))z) (3.3)

The softmax with temperature scaling, as de-
picted in Equation 3.1, is used as this more closely
follows the way DUQ calculates the probability
distribution over the classes for a prediction. The
temperature value is again determined by doing a
search over the values from 0.1 to 2.

With these probability-like distributions ob-
tained from the softmax function, the confidence
of a prediction is taken by using the max operator,



as earlier described in Equation 3.2. The overall
confidence of the model is calculated by taking the
mean of all the prediction confidences.

As far as we found in this study, the use of a soft-
max with temperature scaling is a novel approach
for calculating the uncertainty of an MDRM model.
Because this approach follows DUQ even more, it
is interesting to see what consequences this has on
the performance of the MDRM model; the results
will be shown in Section 4.

4 Results

To evaluate the Shallow Convnet and MDRM mod-
els, several metrics were used to measure the clas-
sification performance and the UQ performance of
the models. All metrics used will be discussed in
Section 4.1.

The results for all models will be discussed in Sec-
tion 4.2. The calibration plots alongside the perfor-
mances on all used metrics will be depicted there.

4.1 Evaluation methods

For assessing the classification performance of the
models on the BCI task, the F1 score and accuracy
are used.

For the evaluation of UQ performance, metrics
are needed that indicate how well-calibrated the
ML models are. As described in Section 1, cali-
bration is how well aligned a model’s confidence
is with the probability of the model being cor-
rect. In this study, the Expected Calibration Error
(ECE; Naeini et al., 2015), Net Calibration Error
(NCE; Groot & Valdenegro-Toro, 2024), and the
Brier score (Graf et al., 1999) are used. The three
metrics together provide a comprehensive analysis
of the model’s uncertainty quantification.

ECE measures the weighted average of the abso-
lute difference between the accuracy and the con-
fidence of a prediction. It indicates how much the
confidence of the ML model corresponds to its per-
formance. Lower ECE values indicate a better cali-
bration, with a perfect score of 0 and a worst score
of 1. The calculation is done for each bin, where a
bin is a group of samples that fall into a range, mea-
sured over the predicted confidence. For this study,
a bin size of 10% was used, which means that there
is a bin with a 0-10% confidence level, a 10-20%

confidence level, and so on. We chose this value for
the bin size because it ensured enough data points
in most of the bins, without losing important dif-
ferences between bins by having too few. ECE is
defined as:

M Bl
ECE = Z Tm lacc(B;) — conf(B;)|, (4.1)
m=1

where M is the number of bins used to group the
samples, |Bm| is the number of samples that fall
in bin M, and N is the total number of samples.
Ace(B;) and con f(B;) are respectively the accuracy
and mean confidence of the predictions in a bin.

ECE, while insightful for the miscalibration, does
not tell us whether the miscalibration is because
of overconfidence or underconfidence (or a mixture
of both). To know the direction of miscalibration
another metric is needed: NCE.

NCE works similarly to ECE: it takes the dif-
ference between the accuracy and confidence of a
prediction. However, instead of the absolute dif-
ference, the straightforward difference between the
two is taken. This is done because the value now
represents the direction of miscalibration of the
model. This method gives us insight into whether
the model is overconfident or underconfident, based
on the direction. A negative NCE means that the
model is overconfident, while a positive NCE means
an underconfident ML model (Groot & Valdenegro-
Toro, 2024). NCE is defined as:

5 Bl .
NCE =) - (ace(Bm) — conf(By)) . (42)

m=1

NCE alone, however, is not sufficient for repre-
senting the calibration performance of a ML model.
NCE is not sufficient because a value of 0 can oc-
cur even when the ML model is poorly calibrated,
it just is equally over- and underconfident. There-
fore ECE and NCE together can provide a better
understanding of the calibration of a ML model.

Another metric that is used for uncertainty eval-
uation in this study is the Brier score. The Brier
score measures how well the model’s predicted con-
fidence matches the real probabilities. A score of 0
is perfect, while a score of 1 indicates the worst
calibration of the model’s confidence. The formula



for the Brier score works similarly to the mean
squared error, but now on the model’s outputted
confidences and real probabilities. The Brier score
is defined as:

Brier(y,§j = N™" Y (yi — i), (4.3)
where y; is the true probability and g; is the pre-
dicted probability.

If the ML model had a confidence value of
0.8, and it was correct, the Brier score would be
(0.8 — 1)2 = 0.04. However, if it had a confidence
value of 0.8 and it was incorrect, the Brier score
would be (0.8 — 0)? = 0.64. The Brier score helps
to add extra understanding to the uncertainty of
the model, because, contrary to ECE, also the ac-
curacy of the model is incorporated. A perfect ECE
value can happen because a model always predicts
a probability of 0.5 for both classes and the model
is correct 50% of the time. However, a perfect Brier
score also needs perfect predictions of the model.

4.2 Model performances

Table 4.1 provides a comparison of all metrics,
where the results are averaged over all datasets.
It is important to note that there is a high fluctua-
tion between participants per model. This variance
between participants can be seen by the big error
bars in Figure 4.1. The results for every individual
dataset are given in Appendix A.

Additionally, for all ML models, a calibration
plot is depicted, in which the confidence is plot-
ted against the accuracy. This can be seen in Fig-
ure 4.1. In this figure, dataset 2 (the dataset from
Zhou et al., 2016) is chosen because that dataset
best demonstrates the differences between the mod-
els. The calibration plots on all the datasets can be
found in Appendix A.

The diagonal line in the plots represents perfect
calibration of the confidence. If the model’s cal-
ibration is overall higher than the diagonal line,
the model shows underconfident behavior. If the
model’s calibration is overall under the line for per-
fect calibration, the model shows overconfidence. In
Figure 4.1, it can be seen that the MDRM mod-
els are underconfident, while the Shallow ConvNet
models are overconfident.

For the calibration plots, the number of bins used
is 10. This means that the answers were grouped in
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Figure 4.1: Calibration plots for the different
models, on dataset 2. The diagonal line repre-
sents perfect calibration, and the red line the
model’s calibration.
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intervals of 10%. This value was chosen as it has a
balance between enough data points in most of the
bins without losing too much information on the
difference between bins.

The error bars are calculated by taking the vari-
ance between subjects in the dataset. This ap-
proach is chosen because there is high variance be-
tween subjects, and thus the results may not be
consistent for each subject.

4.2.1 MDRM

The accuracy and F1 score for both MDRM models
are the same because the MDRM models only differ
in the way they calculate their confidence. It can
also be seen that the models perform slightly better
than DUQ, but perform eminently worse than Deep
Ensembles on classification performance.

Looking at UQ performance metrics in Table 4.1,
it can be seen that the MDRM model that does not
use the temperature function, performs better on
all metrics than the model with temperature soft-
max. To investigate the difference between the two
different methods of the MDRM model, the cali-
bration plots for these models are depicted next to
each other in Figure 4.2. In this figure, a compari-
son between the two models on their calibration can
be seen on a different dataset than the one depicted
in Figure 4.1. Another dataset was chosen here be-
cause this dataset better shows the difference be-
tween the two MDRM methods. The figure shows
that the MDRM model without temperature more
closely follows the line of perfect calibration and
also has more different bins filled with data in the
plot, indicating that the model has better aligned
confidence with its accuracy. The model that uses
temperature scaling is more underconfident in its
decisions and does not show predictions that have
a high confidence value, although the model does
have predictions with high accuracy (as can be seen
by the line hitting the maximum accuracy value).
This indicates that the MDRM model that does not
use temperature scaling is better at predicting its
confidence. However, there is high variance between
subjects in both models, as can be seen by the big
error bars in both models, so the results may vary
from what is depicted in the graph.

In both Figures 4.1, 4.2, and Table 4.1 we can
observe that the MDRM models are overall under-
confident in their decisions, with an NCE score of
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(b) Calibration plot for the MDRM model with temperature

Figure 4.2: Comparison between MDRM with
and without temperature softmax, on dataset
4. The diagonal line represents perfect calibra-
tion, while the red line represents the model’s
calibration.
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Metric MDRM | MDRM temperature | DUQ | Deep Ensembles
Average accuracy 0.6806 0.6806 0.6556 0.7621
Average F1 score 0.6799 0.6799 0.6553 0.7618
Average Confidence | 0.5917 0.5303 0.9003 0.9097
Average Brier score | 0.1695 0.3332 0.2237 0.1469
Average ECE 0.1080 0.1756 0.2502 0.2199
Average NCE 0.0935 0.1505 -0.2252 -0.2122

Table 4.1: Comparison of the models over the different metrics

approximately 0.09 and 0.15 and a calibration line
mostly above the line of perfect calibration. The
models have an ECE of 0.11 and 0.18, which are
prominently better compared to Deep Ensembles
and DUQ. This means that the models have less
miscalibration between their confidence and accu-
racy.

The Brier score of the MDRM without tempera-
ture is slightly worse than that of Deep Ensembles,
but better than that of DUQ. MDRM using tem-
perature scaling, however, has a much higher Brier
score than that of DUQ and Deep Ensembles. This
indicates worse performance.

Figure 4.1 shows that the MDRM methods dif-
fer a lot in calibration from DUQ, while they work
similarly. This is an interesting observation because
it means that the under/overconfidence is not the
direct result of the uncertainty techniques used in
this study. This observation will be discussed fur-
ther in Section 5.

4.2.2 DUQ

For DUQ), Table 4.1 shows that the model performs
worse than both of the MDRM models as well as
Deep Ensembles on accuracy and F1 Score. Also
on the UQ performance metrics the model did not
perform well; with an NCE of approximately -0.23,
the model shows overconfident behavior. This over-
confident behavior can also be seen when looking at
Figure 4.1, where the calibration line is lower than
the diagonal perfect calibration line.

The model has an ECE of approximately 0.3,
which is substantially higher than the other models.
Therefore the model shows a bigger difference be-
tween the accuracy and confidence and thus has a
bigger miscalibration. The Brier score of the model
is lower than that of the MDRM model with tem-

perature, but remarkably higher than that of Deep
Ensembles and the MDRM model without tem-
perature. From these performances, it can be con-
cluded that DUQ is not the best model choice for a
BCI task, compared to MDRM and Deep Ensem-
bles.

4.2.3 Deep Ensembles

Table 4.1 shows that Deep Ensembles outperforms
both DUQ and MDRM on accuracy and F1 score,
with a remarkably higher performance than both.

On UQ performance, the Deep Ensembles
method performs better than DUQ but worse than
the MDRM models. Although having a better ECE
than DUQ), the NCE is slightly worse than DUQ.
This means that the model is more overconfident
than DUQ in its decisions. The Brier score of Deep
Ensembles is the best among all the ML models.
It outperforms MDRM without temperature only
slightly, as the Brier score is a bit lower. However,
Deep Ensembles outperforms DUQ and MDRM
with temperature substantially when looking at the
Brier score.

5 Discussion

This study aimed to guide researchers in the choice
of a model for a BCI task. The implications of the
results, the limitations of the study, and the sug-
gestions for future research will be discussed below.

5.1 Implications

A primary observation from the average results over
all datasets in Section 4 is that, in terms of accuracy
and F1 score, the Deep Ensembles method performs
the best with scores around 0.76, meaning that the
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model correctly predicts a sample around 76% of
the time. The MDRM model (with and without
temperature) and DUQ are close to each other in
performance; the MDRM models slightly outper-
form DUQ with a difference of around 2% accuracy.

From this, it can be concluded that classifica-
tion performance-wise, Deep Ensembles is the best
choice of the models used in this study. It was ex-
pected that Deep Ensembles has better classifica-
tion performance compared to DUQ), as this follows
findings in literature (de Jong et al., 2023). How-
ever, Riemannian geometry models for BCI tasks
are often well-performing, as they have claimed the
first prize in five international predictive model-
ing competitions (Congedo et al., 2017), so their
substantially worse performance compared to Deep
Ensembles is slightly unexpected.

From Table 4.1 it is also noticeable that both
DUQ and Deep Ensembles are overconfident, as
they have a highly negative NCE value. This is
in line with other literature, as Deep Neural Net-
works often experience overconfidence (Hwang et
al., 2023; Guo et al., 2017).

Unlike DUQ and Deep Ensembles, the MDRM
models are underconfident in their decisions, which
is the opposite issue as the Shallow ConvNet mod-
els showed (which were overconfident). As far as we
are aware in this study, no research has been done
on the evaluation of uncertainty in MDRM models.
There has been research on Riemannian models us-
ing uncertainty (Barthélemy et al., 2023), however,
they did not evaluate the uncertainty performance.
Therefore this study adds to the unstudied field of
Uncertainty Quantification for Riemannian Geom-
etry models, but the findings cannot be compared
to the results in literature.

Seeing that DUQ and Deep Ensembles are both
overconfident, while MDRM is underconfident, is
interesting. This is interesting because both DUQ
and Deep Ensembles have somewhat comparable
UQ performance (they are both overconfident) al-
though they work very differently, while the UQ
performance of MDRM is very different although
it works similarly to DUQ. This means that the
reason MDRM is better at UQ performance is not
because of the density-based method; otherwise,
DUQ would likely also have good UQ performance
(which is not the case). The difference between the
UQ performance of DUQ and MDRM is therefore
likely because of the nature of both models (Deep

Learning vs non-Deep Learning), instead of their
Uncertainty Quantification techniques. Since there
is little to no research done on UQ in Riemannian
geometry models, the findings cannot be placed in
the context of other literature.

On the other hand, although DUQ and Deep En-
sembles work very differently they are both very
overconfident. This might therefore be the result of
the working of CNNs rather than the specific UQ
method used.

For the MDRM model with temperature scaling,
the Brier score is worse by quite some distance com-
pared to the other methods, even when compared
to the MDRM model without temperature scal-
ing. The high Brier score for this MDRM model
indicates that the model is confident in wrong pre-
dictions, and/or not confident with correct predic-
tions. This must be the case since there is no dif-
ference in classification performance compared to
the MDRM model without temperature scaling (so
this does not influence the Brier score).

Comparing all UQ results, it can be concluded
that the MDRM model without temperature most
accurately estimates its uncertainty. Therefore, this
MDRM model is the best choice of the models used
in this study regarding UQ performance.

Therefore the choice of ML model for a BCI task
is dependent on what the main focus is. If the main
goal is to get good performance then a Deep En-
sembles method is best suited. However, if the focus
is to accurately predict the uncertainty of the ML
model, then an MDRM model that does not use
the temperature softmax function is best suited.
This focus on UQ can be important for a BCI task
because, to get a model that will not make a pre-
diction when it is uncertain, the uncertainty should
be well calibrated. Without proper calibration of a
model, the confidence does not say enough about
the model’s performance and thus in real-life sce-
narios it cannot be trusted to reject samples that
are different from the data it was trained on. This
is the case because in real-life scenarios the data
can have a lot of variance, in the form of artifacts
or mind-wandering for example. If the model is not
good at estimating its uncertainty, then setting a
boundary for the model not to predict if it is less
confident than 90 percent, for example, would not
work properly.
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5.2 Limitations

While this study provides an analysis of the perfor-
mances of four different UQ methods, several lim-
itations should be considered when adapting this
study’s findings.

First of all, the study does not focus on data
that is out of distribution. This means that the ML
models tested in this study are not scored on how
well they perform on UQ performance when data
is suddenly very different from what it was trained
on. In real-life scenarios, however, this can happen
when a BCI receives artifacts or off-task EEG data.
It is uncertain that the discovered results hold in
that scenario.

Secondly, the calibration plots were created by
grouping data into bins which represent 10% of
the data. Given that both used Deep Learning
models frequently show high confidence, some bins
contain very little data while others contain al-
most all, leading to potential variability and un-
balanced representations in the calibration plots.
The same holds for the underconfident behavior in
the MDRM models.

Thirdly, two of the chosen datasets only had
two possible classes, which simplifies the classifi-
cation task compared to the categorical nature of
the other two datasets. This binary classification
may not fully represent the models’ capabilities in
more complex, multi-class scenarios (although the
performances weren’t very different from the other
datasets, as can be seen in Appendix A).

Lastly, in this study, there was no hyperparame-
ter tuning performed for any of the models, which
could have led to suboptimal performance. Hyper-
parameter choices were based on literature (as de-
scribed in 3) instead of optimizing them on the val-
idation data. Since this was done for all models, the
comparison is still fair, but the true performances
of each model can be potentially underestimated.

5.3 Future research

An interesting addition to this study would be to
include out-of-distribution data in the study and
see what happens with the UQ performance when
the ML models get this data. It would be interesting
to see the performances of the models in detecting
this and see if the Riemannian geometry model still
performs best.

An interesting thing would be to include a bi-
nary classification task for the ML models to pre-
dict when a sample is out of distribution and com-
pare the performances of the ML models on that
task. For example, a model can be trained on cer-
tain participants and then tested on other partic-
ipants. This causes a shift in data which is out of
distribution for the model. Alternatively, a model
can be trained on data with two possible classes
and we can test if the model can detect the third
class based on its high uncertainty.

Additionally, an interesting addition for future
research can be to include more model structures,
such as a Tangent space model for the Riemannian
geometry models. This can lead to more interesting
results that can not be attributed to only the choice
of a specific structure for the ML models.

Lastly, there has been little research on the com-
bination between Riemannian Geometry and Neu-
ral Networks. A recent study by Gao et al. (2022)
has shown promising results with regard to classifi-
cation performance. Interesting for future research
would be to see how well this combination could
perform UQ performance-wise.

6 Conclusion

In this study it was tried to compare the classifi-
cation performance and UQ performance of Deep
Learning and non-Deep Learning models, to guide
researchers in their choice of a model. The com-
parison was done between an MDRM model with
distance-based uncertainty, and a CNN with either
Deep Ensembles or DUQ as the UQ strategy.
Although DUQ and MDRM work similarly, the
results indicate that the MDRM model, without the
temperature softmax function, outperforms DUQ
in both classification performance and UQ perfor-
mance. This indicates that a DUQ model is less
suited for a BCI task than the MDRM model.
Furthermore, the results show that the MDRM
model without temperature has better uncertainty
estimation than the Deep Ensembles method. The
MDRM model shows better ECE and NCE val-
ues, but Deep Ensembles scored better on the Brier
score. However, Deep Ensembles outperforms the
MDRM models in terms of accuracy and F1 score,
demonstrating substantially higher performance.
The direction of miscalibration is very different be-
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tween both methods. The MDRM models showed
underconfident behavior, while the Deep Ensembles
and DUQ methods showed overconfidence.

From these findings, it can be concluded that an
MDRM model (without temperature) is best suited
for a BCI task if the primary concern is the UQ per-
formance of the model. However, if the main goal is
to maximize the model’s classification performance,
Deep Ensembles is a better fit.
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A Appendix

Dataset | Validation Accuracy | F1 Score | Overall Confidence | Brier Score | ECE NCE
Dataset 1 0.7143 0.7137 0.9291 0.2329 0.2056 | -0.2056
Dataset 2 0.8227 0.8236 0.9473 0.0892 0.3333 | -0.3333
Dataset 3 0.7891 0.7890 0.9144 0.1537 0.1698 | -0.1698
Dataset 4 0.7222 0.7207 0.8481 0.1117 0.1712 | -0.1401

Table A.1: Deep Ensemble performance per dataset

Dataset | Validation Accuracy | F1 Score | Overall Confidence | Brier Score | ECE NCE
Dataset 1 0.5134 0.5132 0.8582 0.4043 0.2440 | -0.2162
Dataset 2 0.7507 0.7517 0.9564 0.1436 0.3270 | -0.2548
Dataset 3 0.7730 0.7729 0.9327 0.1818 0.1894 | -0.1894
Dataset 4 0.5852 0.5833 0.8542 0.1652 0.2402 | -0.2402

Table A.2: DUQ performance per dataset

Dataset | Validation Accuracy | F1 Score | Overall Confidence | Brier Score | ECE NCE
Dataset 1 0.7031 0.7027 0.6390 0.3823 0.0984 | 0.0929
Dataset 2 0.7230 0.7228 0.4402 0.2824 0.2520 | 0.1814
Dataset 3 0.7140 0.7138 0.7120 0.4526 0.0294 | 0.0053
Dataset 4 0.5824 0.5803 0.3299 0.2159 0.3226 | 0.3226

Table A.3: MDRM with temperature scaling performance per dataset

Dataset | Validation Accuracy | F1 Score | Overall Confidence | Brier Score | ECE NCE
Dataset 1 0.7031 0.7027 0.6647 0.1833 0.0772 | 0.0615
Dataset 2 0.7230 0.7228 0.6104 0.1423 0.1232 | 0.1232
Dataset 3 0.7140 0.7138 0.5684 0.2115 0.1535 | 0.1535
Dataset 4 0.5824 0.5803 0.5234 0.1410 0.0783 | 0.0359

Table A.4: MDRM without temperature scaling performance per dataset
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