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Abstract

Huge amounts of power are being transmitted constantly through various electrical circuits
on all scales. In order to minimise transmission losses, we want to control this power flow.
Control is achieved through mathematical models. We cover two models, one based on energy,
the other based on power. We investigate the implications of the presence of non-linear elements.
We consider stability results based on different constraints. Finally, we establish a duality
relation between the models and compare their applicability to real-life situations.
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1 Introduction

This paper deals with two modelling frameworks for non-linear RLC circuits. An RLC circuit is a
kind of electrical network. Often, a network is compared to a graph, with the edges representing
elements and the vertices representing their interconnection points. An important feature of a
circuit is that its graph is connected; it is a closed loop, which means that electric current is
able to flow. Elements of an RLC circuit are resistors, inductors and capacitors. These elements
are defined, and the relations between them explained, in Section 2.1. Electrical circuits appear
everywhere; from tiny microchips in computers and mobile phones to huge power grids stretching over
hundreds of kilometres. It is important that, when current travels through these circuits and power
is transmitted, losses are minimised. This is achieved through the field of control. A mathematical
model for a circuit is created. The model describes the circuit in ideal terms. Then, controllers are
designed to favourably change the behaviour of the system. Two examples of such models are the
port-Hamiltonian model and the Brayton-Moser model. The port-Hamiltonian model has been most
notably treated by van der Schaft ([17], [16], [15] and many more), who was also the first to propose
it in 1992, together with Maschke [12]. The Brayton-Moser model has been around since the 1960s.
It was developed by Moser while he was researching stability of systems with tunnel diodes [13],
and then he generalised it a few years later with Brayton [1], [2]. MacFarlane also did considerable
research on the topic, exploring an approach related to invariant integrals [11]. Both models are
derived and explained on a simple example of an RLC circuit in Sections 2.2 and 2.3. Using these
models, we can also investigate stability properties. Stability is desirable because it allows us to
predict the system’s behaviour. Stability is generally determined with Lyapunov functions and the
functions appearing in these two models happen to be candidate Lyapunov functions. Stability
results are covered in Section 3. One of three theorems by Brayton and Moser is proven, with the
condition of linear resistance. Jeltsema [6] later proved the theorem that was missing from Brayton
and Moser’s original paper. Jeltsema’s work was crucial to the writing of this thesis as he has,
together with Scherpen, done a lot of research on the relations between the two models [7], [6], [8].
In [7], they define a dual relation connecting the two models, which is explored in Section 4.
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2 Modelling frameworks

2.1 Electrical circuits

In this section we lay out the physical quantities pertaining to electrical circuits and the laws dictating
the relations between these quantities. We also introduce standard circuit elements [5].
For the purpose of this text we apply the modelling frameworks to an RLC circuit. The physical
quantities relevant to this kind of electrical circuit are electric current, voltage, electric charge and
magnetic flux.
Electric current quantifies the amount of charged particles passing through a surface over time. It is
denoted by i. Voltage corresponds to the work required for an electric charge to move from one place
to another. It is denoted by v. Electric charge denotes the state of a particle where it is affected
by an electromagnetic field. Charge is denoted by q. Finally, magnetic flux quantifies the magnetic
field passing through a surface and is denoted by φ.

´
`vS

iS

R

` ´
vR

iR

L

`

´

vL

iL

C

`´

vC

iC

Figure 1: RLC circuit.

The simplest version of an RLC circuit consists of a source, a resistor (R), an inductor (L), and a
capacitor (C) in a series configuration, see Figure 1.

Definition 2.1 (Source). A voltage source is an element that maintains a prescribed voltage in the
circuit. A current source maintains a prescribed current in the circuit.

An example of a source is a battery or a generator. The source used in our example is a voltage
source and its voltage is denoted by vS . Note that the direction of the voltage of the source is
opposite to the rest of the circuit; this is the conventional way to express that the source delivers
power to the rest of the circuit, so the power (voltage times current) of the source is negative.

Definition 2.2 (Resistor). A resistor is an element described by a relation between its voltage and
current:

RpvR, iRq “ 0. (2.1.1)

This relation is called the characteristic of the resistor. In case the characteristic is a linear function,
(2.1.1) can be written as

vRptq “ ´RiRptq. (2.1.2)

This equation is known as Ohm’s law. In this case, the resistor is said to be linear.

As the name suggests, a resistor “resists” the flow of electricity by limiting the current passing
through it. In (2.1.2), R denotes the resistance, a constant inherent to the resistor which represents
the scale at which this occurs. The bigger the resistance, the more the current is reduced passing
through the resistor.
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Definition 2.3 (Capacitor). A capacitor is an element described by a relation between its charge
and voltage:

CpqC , vCq “ 0.

In case the charge can be expressed as a function of the voltage (qC “ q̂CpvCq), the capacitor is called
voltage-controlled. If the voltage is a function of the charge (vC “ v̂CpqCq), it is charge-controlled.

A capacitor is able to store electric charge and release it at a later point in time.
The current passing through the capacitor is given by the following relation:

iptq “
dq

dt
. (2.1.3)

Definition 2.4 (Inductor). An inductor is an element described by a relation between its magnetic
flux and current:

LpφL, iLq “ 0.

If the flux can be expressed as a function of the current (φL “ φ̂LpiLq), the inductor is called
current-controlled. If the current is a function of the flux (iL “ îLpφLq), it is flux-controlled.

An inductor is also able to store energy in the magnetic field it creates.
The voltage across the inductor is given by

vptq “
dφ

dt
. (2.1.4)

This relation is known as Faraday’s induction law.

There are two more important laws related to electrical circuits. Both were formulated by the
German physicist Gustav Kirchhoff in the mid-19th century. Kirchhoff’s current law states that the
sum of currents entering a node1 is the same as the sum of currents exiting the node. In our RLC
circuit, this is equivalent to saying the current passing through each element is the same, that is:

iS “ iR “ iC “ iL. (2.1.5)

Kirchhoff’s second law is the voltage law, which states the sum of all voltages around a loop2 is equal
to zero. Since our RLC circuit is indeed a loop, we have:

´vS ` vR ` vC ` vL “ 0. (2.1.6)

The minus sign in front of the source voltage represents the opposite reference direction of the source.

In the following sections, we use these relations to arrive at different mathematical models for
the RLC circuit.

2.2 The Port-Hamiltonian approach

One way of modelling physical systems is by viewing them through a port-Hamiltonian lens. This
model was introduced by Maschke and van der Schaft in 1992 [12] and it combines port-based
modelling with the Hamiltonian equations used in mechanics. Port-based modelling was introduced
by Henry Paynter in the 1960s [14]. The idea is to view a physical system as an interconnection of
elements through so-called ports.

1A circuit can be regarded as consisting of branches and nodes. The branches contain the circuit elements while
the nodes are the connections between them. If looking at Figure 1, the nodes are the vertices of the rectangle
representing the circuit.

2A loop is a closed path of branches, that is, its start node is the same as its end node
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For a mechanical system, the Hamiltonian equations are given as follows:

9q “
BH

Bp
pq, pq

9p “ ´
BH

Bq
pq, pq ` F.

Here, q is the vector of displacements, p is the vector of momenta, H is the Hamiltonian equation
representing the total energy stored in the system, and F is the input of external forces. Combining
the port-based model and the idea of the Hamiltonian, we can create a more general model which
can be used to describe different kinds of physical systems [17]. We separate the elements of the
system into three categories: energy-storing, energy-dissipating and energy-routing. Energy-storing
elements are those which are able to store energy. In mechanical systems, it can be a mass at a height
storing gravitational potential energy, while in an electrical circuit it might be a capacitor. Energy-
dissipating elements reduce the energy of the system by releasing it into the environment. Examples
are dampers and resistors. Energy-routing elements are for example gyrators and transformers. We
model the system by grouping elements in this way and observing the relations between the groups,
which are expressed through effort (e) and flow (f) variables. These variables come in pairs pe, fq

which represent the ports between the groups of elements and their product is equal to power. We
can visualise this representation as in Figure 2: We denote the group of energy routing elements by
D. This stands for Dirac structure; this is a notion from geometry which we use to describe the
interconnection structure together with the set of interconnection and constraint equations. These
equations describe relations between the efforts, and relations between the flows. For an electrical
circuit these equations are precisely Kirchhoff’s laws. The group of energy-storing elements, which
we denote by S, is connected to D by peS , fSq. The energy-dissipating elements, denoted R for
“resistive”, are similarly connected to D by peR, fRq. The external port is connected to D by
peP , fP q.

Storage D Dissipation

eS

fS

eR

fR

eP fP

Figure 2: Representation of a port-Hamiltonian system.

The Dirac structure is crucial to this way of representing a physical system. In an electrical circuit,
it can physically be imagined as the wiring connecting the elements. Mathematically, it can be
viewed as a generalisation of Kirchhoff’s laws. Formally, it is defined as follows [17]:

Definition 2.5. Consider a finite-dimensional3 linear space F (the space of flows, usually Rn) with
dual space E “ F˚. A subspace D Ă F ˆE is a Dirac structure if it satisfies the following conditions:

1. The duality product ă e | f ą (for F “ Rn, ă e | f ą“ eT f) is equal to zero for all pf, eq P D.

2. dimD “ dimF .

3The Dirac structure, and thus the port-Hamiltonian formulation can be generalised to infinite-dimensional systems
using Stokes’ theorem, see [17].
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The first condition tells us total power flowing into the Dirac structure is equal to zero. This implies
power conservation in the system which is an important feature of the interconnection structure.
We define the energy-storing port. The energy stored in the system is given by the Hamiltonian, a
function H : X Ñ R, where X is the state space of the energy-storing elements. The vector of flow
variables fS is given by the derivative of the vector of state variables:

fS “ ´ 9x.

The vector of effort variables is some function of the state:

eS “ F pxq.

We can use this to find the Hamiltonian. The Hamiltonian is an energy function, and the time
derivative of energy is power, which is the product of effort and flow4:

dH

dt
“

B

BH

Bx
, 9x

F

“ ´xeS , fSy “ xeS , 9xy.

We conclude:
BH

Bx
“ eS “ F pxq.

We find the Hamiltonian:

Hpxq “

ż

F pxqdx.

The effort and flow of the resistive port are given by a relation DpeR, fRq such that xeR, fRy ď 0,
indicating energy dissipation. When the relation is linear, we can express it by

fR “ ´DeR, (2.2.1)

where D is a positive semidefinite symmetric matrix.
Given that the resistive structure is linear and the relation xeS , fSy ` xeR, fRy ` xeP , fP y “ 0, we
can represent the combination of the Dirac structure and the resistive elements as:

„

fS
fP

ȷ

“

ˆ„

´J ´B
BT 0

ȷ

`

„

D 0
0 0

ȷ˙ „

eS
eP

ȷ

. (2.2.2)

Using the fact that fS “ ´ 9x, eS “ BH
Bx , and setting u “ eS (input) and y “ fS (output) we can

write the port-Hamiltonian equations:

9x “ pJ ´Dq
BH

Bx
pxq `Bu (2.2.3)

y “ BT BH

Bx
pxq. (2.2.4)

The matrix J is skew-symmetric pJT “ ´Jq and represents the interconnection structure, and its
graph tpf, eq P F ˆ E | f “ Jeu is a Dirac structure. Namely, we have

xe, fy “ xe, Jey

“ eTJe

“ peTJeqT

“ eTJT e

“ ´eTJe

“ 0.

The matrix D is as in (2.2.1). The matrix B represents the interconnection of the external port to
the rest of the system.

4The minus sign in the second equality represents that BTH
Bx

9x is the power flowing into the storage port, while

eTS fS is the power flowing into the Dirac structure so they must have opposite sign.
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2.2.1 Example

Let us apply this approach to the RLC circuit of Figure 1. First we establish the storage port. The
energy-storing elements of the circuit are the capacitor and inductor, as they are indeed able to store
energy. From (2.1.3) and (2.1.4) we can conclude the state variable of the capacitor is charge, while
the state variable of the inductor is magnetic flux:

x “

„

q
φ

ȷ

.

From the same equations we also find that the flow variable of the capacitor is current and the flow

variable of the inductor is voltage: fS “

„

fC
fL

ȷ

“

„

iC
vL

ȷ

. Finally, we find the effort variables using

the fact that the effort is a function of the state. The effort variables for the capacitor and inductor

are then voltage and current respectively: eS “

„

eC
eL

ȷ

“

„

vC
iL

ȷ

.

We find the Hamiltonian of the system as the sum of the Hamiltonians of the capacitor and inductor:

Hpq, φq “ HCpqq `HLpφq “

ż qC

v̂Cpqq dq `

ż φL

îLpφq dφ. (2.2.5)

We express the effort variables through the Hamiltonian:

eS “

„

vC
iL

ȷ

“

«

BH
Bq
BH
Bφ

ff

.

The resistive port consists only of the resistor. The effort variable is the current, eR “ iR, and the
flow variable is fR “ vR. Our resistor is linear which means the relation between effort and flow is
given by (2.1.2): fR “ ´RiR.
The external port consists of the source. The effort, i.e., the input, is the source voltage eP “ u “ vS
and the flow (output) is the source current fP “ y “ iS .
We want to find an expression for 9x, that is, 9q and 9φ, in terms of BH

Bx pxq and u.
We take (2.1.3) and use the equality from Kirchhoff’s current law (2.1.5):

9q “ iC “ iL “
BH

Bφ
pφq “

“

0 1
‰

«

BH
Bq pqq

BH
Bφ pφq

ff

. (2.2.6)

Similarly, we take (2.1.4) and use Kirchhoff’s voltage law (2.1.6) and Ohm’s law (2.1.2):

9φ “ vL “ vS ´ vR ´ vC

“ ´vC ´RiR ` vS

“ ´VC ´RiL ` vS

“
“

´1 ´R
‰

«

BH
Bq pqq

BH
Bφ pφq

ff

` vS . (2.2.7)

In the second to last step we also use Kirchhoff’s current law again.
We combine (2.2.6) and (2.2.7) to obtain

9x “

„

9q
9φ

ȷ

“

„

0 1
´1 ´R

ȷ

«

BH
Bq pqq

BH
Bφ pφq

ff

`

„

0
1

ȷ

vS . (2.2.8)

To complete the port-Hamiltonian formulation, we also include the output equation. In this case
the output is the current through the source, which we can find using Kirchhoff’s current law:

iS “ iL “
“

0 1
‰

«

BH
Bq pqq

BH
Bφ pφq

ff

. (2.2.9)
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Indeed, the equations (2.2.8) and (2.2.9) match the requirements from (2.2.3) and (2.2.4), with

J “

„

0 1
´1 0

ȷ

skew-symmetric and D “

„

0 0
0 R

ȷ

positive semidefinite as R, the resistance of the

resistor, is a non-negative quantity.

2.3 The Brayton-Moser equations

In the 1960s, Robert Brayton and Jürgen Moser developed another way to characterise nonlinear
networks [1]. Their so-called mixed-potential function is similar to the Hamiltonian in the sense that
it is a single function describing the behaviour of the system. However, there are some differences:
while the Hamiltonian is given in terms of energy, the mixed-potential function is given in terms of
power. Furthermore, while the Hamiltonian does not include resistive elements, which are included
by expanding to the port-Hamiltonian formulation, the mixed-potential inherently includes resistive
elements. The mixed potential function is a function PpiL, vCq satisfying the following relations:

vL “ ´
BP

BiL
(2.3.1)

iC “
BP

BvC
. (2.3.2)

Using this, we can represent the system as follows:

„

´L 0
0 C

ȷ „

diL
dt
dvC

dt

ȷ

“

„

BP
BiL
BP
BvC

ȷ

, (2.3.3)

where L “ ´
dφ̂
diL

(known as the incremental inductance matrix), C “ ´
dq̂
dvC

(known as the incre-

mental capacitance matrix)5. We can verify this corresponds to (2.3.1) and (2.3.2):

´

B

dφ̂

diL
,
diL
dt

F

“ ´
dφ̂

dt
“ ´vL “

BP

BiL

´

B

dq̂

dvC
,
dvC
dt

F

“
dq̂

dt
“ iC “

BP

BvC
.

The existence of the mixed-potential function was proven by Brayton and Moser for the class of
complete RLC networks, that is, networks that satisfy the following conditions [6], [4]:

1. There are no cutsets6 formed exclusively by inductors and/or current sources. There are no
loops formed exclusively by capacitors and/or voltage sources.

2. Each current-controlled (but not voltage-controlled) resistor is in series with an inductor and
each voltage-controlled (but not current-controlled) resistor is in parallel with a capacitor.

3. Each remaining resistor has a bijective characteristic relation, i.e., current-voltage relation.

An algorithm for the construction of the mixed-potential was given for the class of topologically
complete networks. These networks, in addition to being complete, it needs to satisfy the following
condition [6]: all current-controlled resistors are in series with the inductors and all voltage-controlled
resistors are in parallel with the capacitors. Sources are also considered resistive elements. A
topologically complete circuit is visualised in Figure 3.

5It makes sense to define the matrices L and C without the minus signs. However, Brayton and Moser use an
opposite sign convention for Faraday’s law and the corresponding law for current (v “ ´ 9φ, i “ ´ 9q) to what is used
in van der Schaft’s texts on port-Hamiltonian systems (v “ 9φ, i “ 9q). In order to maintain consistency for equations
(2.1.3) and (2.1.4), the minus signs are inserted here instead.

6The notion of a cutset is borrowed from graph theory: it is a set of edges which, if removed from the graph, would
create a disconnected graph.
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L R G C

Figure 3: Rough representation of a topologically complete circuit. Note that L and C represent all
the inductors and all the capacitors in the circuit respectively. R represents the current-controlled
resistive elements while G represents the voltage-controlled resistive elements, also known as con-
ductors.

Then, the network is described by the following equations. which can be obtained using Kirch-
hoff’s laws:

vL “ ´DvC ´Dv̂RpDT
RiLq (2.3.4)

iC “ DT iL ´DT
GîGpDGvCq, (2.3.5)

where D P RnLˆnC represents the interconnection of the inductors and capacitors, DR P RnRˆnL

represents the interconnection of the current-controlled resistive elements with the inductors and
DT

RiL “ iR. The matrix DG P RnCˆnG represents the interconnection of the voltage-controlled
resistive elements with the capacitors and DGvC “ vG. When the network has this form, it can be
represented by the mixed-potential function as follows:

PpiL, vCq “ GRpiLq ´ JGpvCq ` xiL, Dvcy. (2.3.6)

The quantity GR is called the content or current potential of the current-controlled resistive elements
and is given by the following equation:

GRpiLq “

ż iL

pDRv̂RpDT
RiqqT di.

Similarly, JG is called the co-content or voltage potential of the voltage-controlled resistive elements
and is given by:

JGpvCq “

ż vC

pDT
GîGpDGvqqT dv.

An illustration of the notions of content and co-content is given in Figure 4.
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Figure 4: A resistive element is described by a curve in the iv plane. The content G is then simply
the area under the curve, while the co-content J is the area above the curve.

Finally, xiL, Dvcy represents the power delivered from the capacitors to the inductors.

2.3.1 Example

Before applying (2.3.6) to find the mixed-potential function for our simple RLC circuit, we verify
that it is a topologically complete circuit. For this purpose, we consider the linear resistor as
a current-controlled resistor, and the voltage source as a current-controlled resistive element too.
Indeed, conditions 1-3 for completeness are then easily verified. Furthermore, both current-controlled
resistive elements are in series with the inductor so the circuit is topologically complete. Let us
represent the circuit as in (2.3.4) and (2.3.5). We note since there are no voltage-controlled resistive
elements in the circuit, the co-content element of (2.3.5) is equal to zero. So, to compute the mixed-
potential, we only need to find DRv̂RpDT

RiLq and D. We find D,DR as follows: since we have one
inductor and one capacitor, D is a scalar. It relates vL and vC . Since both of these voltages have
the same direction, we have D “ 1. Furthermore, DR is a 2ˆ 1 matrix. As the voltage of the source

and the voltage of the resistor have opposite directions, we have DR “

„

1
´1

ȷ

. There is one more

thing to clarify: the function v̂RpDT
RiLq gives us the voltages of the resistor and source. The resistor

voltage is a linear function of iR, which is equal to iL, so v̂RpiLq “ ´RiL. The source voltage is not
a function of the current, but it can be written simply as v̂SpiLq “ vS . With all this, we have:

DRv̂RpDT
RiLq “

“

1 ´1
‰

v̂R

„

1
´1

ȷ

iL

“
“

1 ´1
‰

v̂R

„

iL
´iL

ȷ

“
“

1 ´1
‰

„

´RiL
vS

ȷ

“ ´RiL ´ vS .

We plug this into (2.3.5) to find the content G piLq:

GRpiLq “

ż iL

pDRv̂RpDT
RiqqT di

“

ż iL

´Ri´ vSdi

“

„

´R
i2

2
´ vSi

ȷiL

“ ´R
i2L
2

´ iLvS .
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The power xiL, Dvcy is simply equal to iLvC since D “ 1, so we have the mixed-potential function:

PpiL, vCq “ ´R
i2L
2

´ iLvS ` iLvC . (2.3.7)

We differentiate (2.3.7) with respect to iL and vC respectively to see if it matches (2.3.1) and (2.3.2):

BP

BiL
“ ´RiL ´ vS ` vC “ ´vL.

The second equality follows from Kirchhoff’s voltage law.

BP

BvC
“ iL “ iC .

The second equality follows from Kirchhoff’s current law.

So, PpiL, vCq “ R
i2L
2 ´ iLvS ` iLvC is indeed the mixed-potential function representing our circuit.

Then, we can also represent the circuit as in (2.3.3):

„

´L 0
0 C

ȷ „

diL
dt
dvC

dt

ȷ

“

„

´RiL ´ vS ` vC
iL

ȷ

.

3 Stability

When studying a certain physical system, the goal is often to determine stability conditions, that is,
under which conditions the system’s trajectories stay near one another or tend towards an equilibrium
state. This is usually accomplished using the theory developed by Lyapunov in the late 19th century
[10]. A Lyapunov function is defined as follows [9]:

Definition 3.1. Consider a system defined by 9x “ fpxq with an equilibrium at the origin. A
function V pxq is called a Lyapunov function if it satisfies the following properties:

1. The function and its first derivatives are continuous on an open set Ω around the origin.

2. The function is equal to zero at the origin and positive elsewhere on Ω.

3. The derivative 9V “ dV
dt “ ∇V ¨ 9x is non-positive on Ω.

When a Lyapunov function exists, the origin is stable. If the derivative 9V is strictly negative on Ω,
the origin is asymptotically stable. Furthermore, if the Lyapunov function is radially unbounded, that
is, when V pxq Ñ 8 as |x| Ñ 8, the origin is globally asymptotically stable, that is, all trajectories
in the state space tend to the equilibrium.
It turns out that the Hamiltonian and the mixed-potential function can be used to find Lyapunov
functions for the RLC system. In fact, Moser first formulated a version of the mixed-potential
function while trying to define stability for circuits with tunnel diodes [13], and the papers where
the mixed-potential was officially introduced [1], [2], which he published with Brayton a few years
later, also contain stability theorems.

3.1 The Hamiltonian as a Lyapunov function

We consider the port-Hamiltonian system

9x “ pJ ´Dq
BH

Bx
. (3.1.1)

We omit the input as, when determining stability, we generally look at zero-input systems.
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Lemma 3.1. For the system in (3.1.1), assuming7 the Hamiltonian Hpxq is continuously differen-
tiable on a set Ω Ă X , equal to 0 at the origin and positive elsewhere on Ω, the Hamiltonian Hpxq

can be used as a Lyapunov function to show stability.

Proof. We can assume that the Hamiltonian is indeed continuously differentiable. Furthermore, as
it represents the energy of the system, it is clear that it is zero when the state variables are zero and
positive otherwise. It is straightforward to verify that 9H ď 0. This follows from the power-conserving
nature of the Dirac structure and the dissipative nature of the resistive structure:

dH

dt
“

B

BH

Bx
,
dx

dt

F

“

B

BH

Bx
, pJ ´Dq

BH

dx

F

“

B

BH

Bx
, J

BH

Bx

F

´

B

BH

Bx
,D

BH

Bx

F

“ 0 ´

B

BH

Bx
,D

BH

Bx

F

(3.1.2)

ď 0. (3.1.3)

The equality (3.1.2) follows from the skew-symmetry of J , while the inequality (3.1.3) follows from
the fact that D is positive semidefinite.

3.2 Finding a Lyapunov function from the mixed-potential function [1]

In the paper introducing the mixed-potential function, Brayton and Moser also prove several stabil-
ity theorems. The theorem and proof presented here concerns a class of systems with linear resistors
and nonlinear inductors and capacitors, which matches our RLC circuit. With some additional re-
quirements, global asymptotic stability is proven for these systems.
Before stating and proving the theorem, we do a preliminary analysis. For the purposes of deter-
mining stability, Brayton and Moser write the equation (2.3.3) as follows:

´J 9x “
BP

Bx
pxq, (3.2.1)

where J “

„

´L 0
0 C

ȷ

, x “

„

iL
vC

ȷ

and P is the mixed-potential function as before. We take P

as a candidate Lyapunov function. We differentiate P to see whether it requires the Lyapunov
conditions. This gives

dP

dt
“

B

BP

Bx
pxq, 9x

F

“

B

9x,
BP

Bx
pxq

F

“ ´x 9x, J 9xy.

This is non-positive when J is positive semidefinite, but the matrices L and C are taken to be
positive definite, which means J is indefinite. So, we search for a transformation pJ,Pq Ñ pJ˚,P˚q

such that (3.2.1) still holds:

´J˚ 9x “
BP˚

Bx
pxq. (3.2.2)

We plug in 9x “ ´J´1 BP
Bx pxq (J´1 exists because L and C are assumed to be invertible):

J˚J´1 BP

Bx
pxq “

BP˚

Bx
pxq.

We want pJ˚,P˚q to satisfy the Lyapunov conditions for global asymptotic stability.

7In general, when dealing with energy functions, we can assume the first two conditions of Definition 3.1 hold. The
same applies for the mixed-potential function.
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Lemma 3.2. If we set

J˚ “

ˆ

λI `
B2P

Bx2
pxqM

˙

J, P˚ “ λP `
1

2

B

BP

Bx
pxq,M

BP

Bx
pxq

F

, (3.2.3)

where M is any constant symmetric matrix, (3.2.2) holds.

Proof. Note that if pJ1, P1q and pJ2, P2q satisfy (3.2.2), so does pJ1 ` J2,P1 ` P2q. This follows
from the sum rule. Clearly pλJ, λPq satisfies (3.2.2), it is simply (3.2.1) multiplied by λ on both

sides. So, it remains to show
´

B
2P

Bx2 pxqMJ, 1
2

@

BP
Bx pxq,M BP

Bx pxq
D

¯

satisfies (3.2.2). For simplicity,

denote
´

B
2P

Bx2 pxqMJ, 1
2

@

BP
Bx pxq,M BP

Bx pxq
D

¯

“ pJ2,P2q. Consider BP2

Bx pxq:

BP2

Bx
pxq “

1

2

ˆB

B2P

Bx2
pxq,M

BP

Bx
pxq

F

`

B

BP

Bx
pxq,M

B2P

Bx2
pxq

F˙

“
1

2
¨ 2

B

B2P

Bx2
pxq,M

BP

Bx
pxq

F

“

B

B2P

Bx2
pxq,M

BP

Bx
pxq

F

.

Then,

J2J
´1 BP

Bx
pxq “

B2P

Bx2
MJJ´1 BP

Bx
pxq

“
B2P

Bx2
M

BP

Bx
pxq

“
BP2

Bx
pxq

as required.

With this, we can introduce the theorem [1], [6]8.

Theorem 3.1. If G piLq has the form G piLq “ ´ 1
2xiL, RiLy (where R “ B

2G
Bi2L

piLq is a symmetric

positive definite constant matrix), ´JGpvCq ` |DvC | Ñ 8 as |vC | Ñ 8 and there exists δ ą 0 such
that

›

›

›
L

1
2 piLqR´1DC´ 1

2 pvCq

›

›

›
ď 1 ´ δ (3.2.4)

where } ¨ } is the operator norm, for all piL, vCq P IL ˆ VC (the space of inductor currents and
capacitor voltages), then all trajectories of (3.2.1) tend to the set of equilibrium points as t Ñ 8.

Proof. As in (3.2.3), we take

M “

„

2R´1 0
0 0

ȷ

, λ “ 1.

Then,

J˚ “ J `
B2P

Bx2
pxqMJ

“ J `

«

´R D

DT ´
d2J
dv2

C

ff

„

2R´1 0
0 0

ȷ „

´L 0
0 C

ȷ

“

„

´L 0
0 C

ȷ

`

„

2L 0
´2DTR´1L 0

ȷ

“

„

L 0
´2DTR´1L C

ȷ

.

8Both the theorem and the proof are adapted from the combination of [1] and [6] with some added clarifications.
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We check x 9x, J˚ 9xy:

x 9x, J˚ 9xy “

”

diT

dt
dvT

dt

ı

„

L 0
´2DTR´1L C

ȷ „

di
dt
dv
dt

ȷ

“

B

di

dt
, L
di

dt

F

´ 2

B

dv

dt
,DTR´1L

di

dt

F

`

B

dv

dt
, C

dv

dt

F

. (3.2.5)

If we set y “ L
1
2
di
dt , z “ C

1
2
dv
dt and K “ L

1
2R´1DC´ 1

2 as in (3.2.4), we can rewrite (3.2.5) as:

x 9x, J˚ 9xy “ xy, yy ´ 2xz,Kyy ` xz, zy “ xy ´Kz, y ´Kzy ` xz, zy ´ xKz,Kzy.

Using the fact that }K} ď 1 ´ δ from (3.2.4):

x 9x, J˚ 9xy “ |y ´Kz|2 ` |z|2 ´ |Kz|2

ě |y ´Kz|2 ` |z|2 ´ }K}2|z|2 (3.2.6)

“ |y ´Kz|2 ` |z|2p1 ´ }K}2q

ě |y ´Kz|2 ` |z|2p1 ´ }K}q (3.2.7)

ě |y ´Kz|2 ` δ|z|2 (3.2.8)

ě 0. (3.2.9)

The inequality (3.2.6) follows from the property |Kx| ď }K}|x| of the operator norm. The inequality
(3.2.7) follows from the fact that 0 ď }K} ď 1 ´ δ ă 1 so }K}2 ď }K}. Finally, (3.2.8) follows from
(3.2.4) and (3.2.9) from the fact that δ ą 0 and a vector norm is always greater than or equal to
zero. This shows J˚ is positive semidefinite, which means the system is stable. In fact, we only have
dP˚

dt “ x 9x, J˚ 9xy “ 0 when |y ´ Kz| “ |Kz| “ 0 which happens precisely when di
dt “ dv

dt “ 0, that
is, at the equilibria of the system. With Lasalle’s invariance principle we can conclude asymptotic

stability. Namely, if we have a set E “ tpi, vq P Ω : dP˚

dt “ 0u, and its largest invariant9 subset, M ,
then all trajectories on Ω tend to M . But since in this case E is the set of equilibria, which stay at
the same point forever, we have M “ E, so solutions in Ω tend to the equilibria. If we show radial
unboundedness, this means Ω “ IL ˆ VC , that is, the entire state space, so the system is globally
asymptotically stable. To show this, we show P˚ Ñ 8 as |x| Ñ 8.
We set α “ BP

BiL
“ ´RiL `Dv. Then, we can write P as Ppα, vCq:

Ppα, vCq “ ´
1

2
xα,R´1αy ` UpvCq. (3.2.10)

where UpvCq “ ´J pvCq ` 1
2xDvC , R

´1DvCy. Indeed:

Ppα, vCq “ ´
1

2
xα,R´1αy ´ J pvCq `

1

2
xDvC , R

´1DvCy

“ ´
1

2
x´RiL `DvC , R

´1p´RiL `DvCqy ´ J pvCq `
1

2
xDvC , R

´1DvCy

“ ´
1

2
x´RiL `DvC ,´iL `R´1DvCqy ´ J pvCq `

1

2
xDvC , R

´1DvCy

“ ´
1

2

`

x´RiL,´iLy ` xDvC ,´iLy ` x´RiL, R
´1DvCy ` xDvC , R

´1DvCy
˘

´ J pvCq `
1

2
xDvC , R

´1DvCy

“ ´
1

2
pxiL, RiLy ´ 2xiL, DvCyq ´ J pvCq

“ ´
1

2
xiL, RiLy ´ J pvCq ` xiL, DvCy

“ PpiL, vCq.

9An invariant set corresponding to a system 9x “ fpxq is a set such that trajectories of solutions that are in the set
at t “ 0 remain in the set for all t ě 0.
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Next, we note that P˚ can be written in terms of P and α:

P˚piL, vCq “ P `
1

2

B

BP

Bx
pxq,M

BP

Bx
pxq

F

“ P `
1

2

”

B
T P
BiL

B
T P

BvC

ı

„

2R´1 0
0 0

ȷ „

BP
BiL
BP
BvC

ȷ

“ P `

B

BP

BiL
, R´1 BP

BiL

F

“ P ` xα,R´1αy.

Plugging in (3.2.10), we get:

P˚pα, vCq “
1

2
xα,R´1αy ` Upvcq.

Since by assumption ´J pvCq ` |DvC | Ñ 8 as |vC | Ñ 8, we also have that UpvCq Ñ 8 as
|vC | Ñ 8. It remains to show that |α| Ñ 8 as |iL| Ñ 8, or equivalently that |α| ` |vC | Ñ 8 as
|iL| ` |vC | Ñ 8. Denote the map which sends piL, vCq to pα, vCq by S:

S “

„

´R D
0 1

ȷ

,

„

α
vC

ȷ

“ Sx.

The matrix STS is positive semidefinite pxSx, Sxy ě 0q and S is non-singular so STS is positive
definite; it only has positive eigenvalues. We have that xSx, Sxy ě λminxx, xy where λmin ą 0 is the
minimum eigenvalue of STS. With this we have

|α|2 ` |vC |2 ě λmin

`

|iL|2 ` |vC |2
˘

,

which means as |iL| ` |vC | Ñ 8, also |α| ` |vC | Ñ 8 and therefore P˚ Ñ 8. As P˚ is radially
unbounded, the system is globally asymptotically stable, that is, all trajectories tend to the set of
equilibria as t Ñ 8.

4 Discussion

4.1 Duality

It is apparent that there are some similarities between the port-Hamiltonian equations (2.2.3), (2.2.4)
and the Brayton-Moser equations (2.3.3). In a way, these models are dual. The port-Hamiltonian
approach requires the capacitors to be charge-controlled and the inductors to be flux-controlled, while
in the Brayton-Moser model the capacitors are voltage-controlled and the inductors are current-
controlled. In an LC-circuit (only inductors and capacitors), in case we have bijective mappings
from charge to voltage for the capacitors and from flux to current for the inductors, a relation
between the two models can be expressed [7]. We can consider qC , φL to be energy variables. Then
their duals vC , iL are co-energy variables. Similarly as in (2.2.5), we can express the total co-energy
of the system with the co-Hamiltonian:

H˚pvC , iLq “

ż vC

q̂Cpvq dv `

ż iL

φ̂Lpiq di.

Then, we can write the Brayton-Moser equations as follows:

d

dt

BH˚

Bx
pxq “ Φ

BP

Bx
pxq,

where Φ is a diagonal matrix with a number of copies of the identity matrix corresponding to the
amount of capacitors followed by a number of copies of the identity matrix times ´1 corresponding
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to the amount of inductors.
An important element in the relation of the two models is the Dirac structure. Since it represents
the interconnection structure and Kirchhoff’s laws, it makes sense that it is inherent to the system

regardless of the model. In fact, if we set J “

„

0 ψ
´ψT 0

ȷ

, then ψ is precisely the interconnection

matrix D from (2.3.6) and the port-Hamiltonian equations can be obtained from the Brayton-
Moser equations by multiplying with the Dirac structure and integrating with respect to time. As
mentioned, the Hamiltonian and mixed-potential (co-Hamiltonian) are given in terms of energy and
co-energy respectively. The duality between these two quantities can be defined with a Legendre
transformation.

4.2 Practical use

In terms of real-life applications, both models have their advantages and disadvantages. When
designing feedback controllers, we rely on measuring the state or output from the system. In general,
it is easier to measure current and voltage than flux and charge. So if we are measuring the output,
the port-Hamiltonian approach may be preferable, while if we measure the state, the Brayton-
Moser model is more applicable. Furthermore, as flux and charge are the “natural” quantities of
the inductor and capacitor respectively, the port-Hamiltonian model may seem like a more obvious
choice. However, when it comes to circuits with resistive elements that are defined by a relation
between current and voltage, this reasoning falls short as the resistive elements do not fit so nicely
into the model. As shown, when there are bijective flux-current and charge-voltage relations, the
models can be interchanged. So, it is possible, for example, to create a controller using one model
and translate it to the other model.

5 Conclusion

This thesis gives an overview of two ways to model non-linear electrical circuits. The port-Hamiltonian
model regards the system as an interconnection of elements, with the “language” of the model being
energy, expressed through the Hamiltonian. The Brayton-Moser model takes a similar approach,
with the mixed-potential function given in terms of power. These functions are also useful because
they can be used to show stability. For the port-Hamiltonian example, stability is easy to show.
However, the entire formulation given by (2.2.2) relies on the resistive structure being linear. There-
fore, in case of non-linear resistors this does not apply. On the other hand, Brayton and Moser
proved three stability theorems in their paper on the mixed-potential function [1]: each theorem
required a certain class of elements to be linear. The first theorem required linear resistors, the
second, linear conductors, and the third theorem allowed nonlinear resistive elements but required
the inductors and capacitors to be linear. A fourth theorem, where all elements are allowed to be
non-linear, was proven by Jeltsema over 40 years later [6]. So, the stability results in the Brayton-
Moser model are somewhat stronger.
When there are bijective relations between the pairs of dual variables, namely charge and voltage,
and flux and current, the two models can be related. The Dirac structure, representing Kirchhoff’s
laws and the interconnection structure, plays an important role in this relation. This interchange-
ability also proves useful for practical applications, as there are instances where one model might be
more appropriate than the other, but perhaps in the other model it is easier to create a controller
which can then be translated into the first model.
With the port-Hamiltonian model only being developed in the last two decades, there is still a lot
to be explored. And of course, while the Brayton-Moser model is well-established as it has been
around for 60 years, there are always many interesting new approaches or applications. In partic-
ular, in terms of these two models there is not much research about the so-called memristor. This
theoretical element was proposed by Chua [3] in the 1970s as the element to fulfill the remaining re-
lation between the four main quantities of electrical circuits: the resistor relates current and voltage,
the inductor relates current and flux and the capacitor relates charge and voltage. Chua proposed
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the memristor, an element relating voltage and flux. An ideal memristor has not yet been devel-
oped, but memristive systems (circuits with memristive properties) exist. The implications of the
existence of memristors are very exciting for the field of computing science. Therefore it could be
interesting to look into how memristors or memristive systems would fit into the port-Hamiltonian
and Brayton-Moser models.
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