
 

faculty of science 
and engineering

mathematics and applied 
mathematics

Computation of polynomials 
generating abelian and 

 extensions of  

Bachelor’s Project Mathematics 
June 2024 

Student: K. Letiņa    
Supervisor: Dr. T. Keller 

First examiner: Prof. Dr. J. Top 

Second examiner: Prof. J.S. Müller 

GL2(𝔽p) ℚ



Abstract

The Inverse Galois problem asks whether any finite group G appears as the Galois group
of some Galois extension L/Q. In this paper, we begin by proving that any finite abelian
group appears as the Galois group of some intermediate field of a cyclotomic extension of
Q. Additionally, using elliptic curves and their p-torsion points, we prove this result for the
groups GL2(Fp) as well. Lastly, we provide the necessary methods to compute polynomials
in Q[X] generating these extensions.
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1 Introduction

The field of Galois Theory arose in the 19th century to answer a question that was still open at
the time - given a field K of characteristic 0 and ai ∈ K, how to determine whether the equation

p(x) = xn + an−1x
n−1 + . . .+ a0 = 0 (1)

can be solved by radicals?

Around 1700 B.C., Babylonians showed that all quadratic equations can be solved by radicals.
The same was shown for cubic and quartic equations around the year 1500 in Italy. However, it
was not until the 1820s that Abel and later Galois showed that it is impossible to solve a general
quintic equation in a similar manner, by only using radicals. [Edw84, § 1-7]

With this motivation, Évariste Galois (1811 – 1832) established the field of Galois Theory to
determine whether (1) can be solved by radicals by considering the splitting field L of p(x) over
K. As it turns out, the answer to the question lies in the properties of the field automorphisms
of L that stabilize K. These automorphisms form a group, called the Galois group of L/K. More
details of this will be covered in Section 2. Therefore, Galois theory provides a translation of
problems in field theory to group-theoretical problems.

The Inverse Galois problem is concerned with the question of which finite groups occur as the
Galois group of a Galois extension K/Q. Therefore, while Galois theory investigates the Galois
group of certain field extensions, the Inverse Galois problem works the other way. More insights
about Inverse Galois Theory are covered in [MM18].

In this paper, we solve the Inverse Galois problem for two types of finite groups. The first of these
is finite abelian groups, and to prove this result we work with cyclotomic extensions. We prove
the result that any abelian group A appears as the Galois group of some intermediate field of a
cyclotomic extension of Q. Moreover, we also show that the extension can always chosen to be
totally real.

The second type of group we consider are GL2(Fp) groups, which consist of invertible matrices
of size 2 × 2 over the finite field Fp. To show that these groups appear as Galois groups of some
extension of Q, we introduce elliptic curves and the concept of points of finite order on an elliptic
curve. With this approach, we can establish what we will call the mod p Galois representation of
an elliptic curve.

We conclude the sections regarding abelian and GL2(Fp) groups by computing the polynomials
generating these extensions. This means that we will show how to find a polynomial f ∈ Q[X]
such that the splitting field of f will have a Galois group isomorphic to our desired group.

2 Galois theory

In this section, we provide a brief introduction to Galois theory and the field theory prerequisites
needed in this paper. Further details can be found in [Lan02].

2.1 Preliminaries

In this section we present the most fundamental background on Galois theory. We begin by stating
the definition of Galois extensions.

Definition 1. A finite field extension L/K is called a Galois extension if it is normal and sepa-
rable.

Note that in some sources, an alternative definition is that L/K is Galois if L occurs as a splitting
field of a separable polynomial over K.
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Definition 2. The group of all K-linear automorphisms of the Galois extension L/K is called
the Galois group Gal(L/K) of the field extension L/K.

Now that we have established the definition of Galois extension and its corresponding Galois
group, we lay out some crucial properties of Galois extensions. First, we describe the cardinality
of a Galois group using [Lan02, §VI.1, Thm. 1.8].

Theorem 3. Let L/K be a finite Galois extension. Then we have that

#Gal(L/K) = [L : K].

Second, we can characterize the intermediate fields of a Galois extension with the following theorem
from [Lan02, §VI.1, Thm. 1.10].

Theorem 4. Let L/K be a Galois extension and let F be a subfield K ⊂ F ⊂ L. Then F is
normal over K if and only if Gal(L/F ) is a normal subgroup of Gal(L/K). If F is normal over
K, then F/K is Galois and we have

Gal (F/K) ∼= Gal (L/K) /Gal (L/F ) .

Next we have to establish some integral properties of field extensions. First of these is the so-called
Primitive element theorem from [Lan02, §V.4, Thm. 4.6].

Theorem 5 (Primitive element theorem). Let L be a finite extension of a field K. If L/K is
separable, then there exists an element α ∈ L such that L = K(α).

Second, we restate the well-known tower law from [Lan02, §V.1, Prop. 1.2].

Theorem 6 (Tower law). Let K ⊂ F ⊂ L be a tower of field extensions. Then

[L : K] = [L : F ] · [F : K].

Third, we need to define the concept of splitting fields from [Lan02, p. 235-236].

Definition 7 (Splitting field). Let K be a field and let f be a polynomial in K[X] of degree ≥ 1.
The splitting field of f over K is defined as the field extension L/K such that

i. f splits into linear factors in L. In other words,

f(X) = c

n∏
i=1

(X − αi)

for αi ∈ L.

ii. L = K(α1, . . . , αn) is generated by all the roots of f .

Therefore, when we talk of a polynomial generating a field extension, we mean that this extension
is the splitting field of this polynomial.

Next up we define the concept of an algebraic element and extension using [Lan02, p. 223-224].

Definition 8 (Algebraic element). Let L/K be a field extension. An element α ∈ L is said to be
algebraic over K if α is a root of some non-zero polynomial f ∈ K[X].

Definition 9 (Algebraic extension). A field extension L/K is said to be algebraic if every element
of L is algebraic over K.

With a similar motivation, we can define an algebraically closed field from [Lan02, p. 178].

Definition 10. A field K is said to be algebraically closed if every non-constant polynomial of
K[X] has a root in K.
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Now that we have established the concept of an algebraically closed field, we can define the
algebraic closure of a field from [LMF24, Algebraic closure of a field].

Definition 11 (Algebraic closure). Let K be a field. An algebraic closure of K is a minimal (in a
well-defined sense) algebraically closed field extension of K, denoted by K̄. The algebraic closure
of a field is unique up to isomorphism.

Using [LMF24, Galois closure of an extension], we can introduce a similar concept to an algebraic
closure - the Galois closure of a field.

Definition 12 (Galois closure). If L is a separable algebraic extension of a field K, then its Galois
closure over K is the smallest field containing L that is Galois over K.

2.2 Cyclotomic extensions

Following the description of cylotomic extensions over general fields in [Lan02, §VI.3], we introduce
the concept of cylotomic extensions over Q.

Let n ≥ 1 be an integer. Any root ζ ∈ C of the polynomial xn − 1 is called a n-th root of
unity. Over Q the polynomial xn − 1 is separable since its derivative nxn−1 is coprime to xn − 1.
Therefore, the polynomial xn− 1 has n distinct roots in Q. All of these n-th roots of unity form a
cyclic group, whose (non-unique) generator is called a primitive n-th root of unity. We denote the
primitive n-th root of unity by ζn, and usually set ζn = e2πi/n, since all the n-th roots of unity
can be written as ζkn = e2πik/n, where 1 ≤ k ≤ n.

The field extension Q(ζn) is called the n-th cyclotomic extension. This extension is Galois since it
is the splitting field of the separable polynomial xn − 1 over Q. To further characterize the Galois
group of these extensions, we introduce a theorem from [Lan02, §VI.3, Thm. 3.1].

Theorem 13. Let ζn be a primitive n-th root of unity. Then

[Q(ζn) : Q] = φ(n),

where φ is the Euler’s totient function. Moreover, we have that

Gal(Q(ζn)/Q) ∼= (Z/nZ)∗.

The proof of the second part of this theorem is derived using the fact that any σ ∈ Gal(Q(ζn)/Q)
acts on the n-th roots of unity by σ(ζ) = ζa, where a is an integer coprime to n. This concludes
the brief introduction of cyclotomic extensions over Q.

2.3 Inverse Galois Problem

Galois theory consists of investigating field extensions and computing the corresponding group of
automorphisms. The Inverse Galois problem works backwards - it asks whether, for every finite
group G, there exists a Galois field extension L/Q such that the Galois group of this extension is
isomorphic to G. In general, the Inverse Galois problem is unsolved, however, it has been solved
for some finite groups.

The simplest result to derive is the case of finite abelian groups, for which we present the proof in
Section 3. We can classify some other known results about the Inverse Galois problem using the
preface of [MM18].

In 1892 using his irreducibility theorem Hilbert proved that there exist infinitely many Galois
extensions of Q with the Galois group isomorphic to Sn and An, the symmetric and alternating
groups. The next result regarding the Inverse Galois Problem was proven by Scholz and Reichardt
in 1937. They proved that all finite p-groups for an odd prime p can be realised as Galois groups
over Q by solving number theoretic embedding problems. Continuing with this approach, Šafarevič
proved the case for all solvable groups over arbitrary number fields.
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The Inverse Galois problem has also been solved for 25 out of the 26 sporadic groups, which are
finite simple groups that do not fit into any of the infinite families of finite simple groups. [Asc94]
The only sporadic group for which the problem is still unsolved is the Mathieu groupM23. Further
elaboration on this result can be found in [MM18, § II.9].

Another type of group for which the Inverse Galois problem is still unsolved is general Lie-type
groups. However, it has been solved for some Lie-type groups, one of which is GL2(Fp). We
present the proof of this result in Section 5.

3 Abelian groups

It is a well-known result that for any abelian group A, we can find a Galois field extension L of
Q such that Gal(L/Q) is isomorphic to A. In this chapter, we begin by proving this result using
cyclotomic extensions. Additionally, we provide the methods needed to construct a polynomial
such that L is the splitting field of it. Lastly, we show that we can always construct L in a way
that this field extension is totally real.

3.1 Preliminaries

Before presenting the proof of the Inverse Galois Problem for abelian groups, we restate some
prerequisites from group theory that will prove to be essential in this chapter.

Theorem 14. For any integer a ∈ Z≥1, there exist infinitely many prime numbers q such that
q ≡ 1 mod a.

Proof. To prove this result, we employ Dirichlet’s theorem on arithmetic progressions from [Ros11,
Thm. 3.3], which states that for two relatively prime positive integers a and b, the arithmetic
progression am + b, m = 1, 2, 3, . . ., contains infinitely many primes. Let b = 1 in this case.
Therefore, for any positive integer a the progression am+1 contains infinitely many primes. This
equivalently means that there exist infinitely many primes q and positive integers m such that
q = am+ 1, or q ≡ 1 mod a.

Afterwards, we restate the theorem commonly known as the first isomorphism theorem from
[Lan02, p. 16].

Theorem 15 (The First Isomorphism theorem). If ψ : G → G′ is a group homomorphism, then
H := ker(ψ) is a normal subgroup of G and we have that

G/H ∼= ψ(G) ≤ G′.

Additionally, if ψ is surjective, then G/H ∼= G′.

Following [Lan02, § I.8], we introduce the following theorem which will be essential for solving
the Inverse Galois problem for finite abelian groups.

Theorem 16 (Structure theorem of finitely generated abelian groups). If A is a finitely generated
abelian group, there exists a unique integer r ≥ 0 and a unique finite sequence (d1, . . . , dm) of
integers di > 1 satisfying dm | dm−1 | . . . | d1, such that

A ∼= Zr × Z/d1Z× . . .× Z/dmZ.

An integral result from group theory is the Chinese Remainder Theorem, which we restate
from [Lan02, § II.2, Thm. 2.1 and Cor. 2.2].

Theorem 17 (Chinese Remainder Theorem). Let a1, . . . , an be pairwise coprime integers. Then
there is a well-defined group isomorphism

Z/a1 · . . . · anZ → Z/a1Z× . . .× Z/anZ
x mod a1 · . . . · an 7→ (x mod a1, . . . , x mod an).
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Moreover, this map induces a group isomorphism

(Z/a1 · . . . · anZ)∗ ∼= (Z/a1Z)∗ × . . .× (Z/anZ)∗.

Lemma 18. Let G1, . . . , Gn be a family of cyclic groups and B1 ⊆ G1, . . . , Bn ⊆ Gn a family of
subgroups. Then

G1/B1 × . . .×Gn/Bn
∼= (G1 × . . .×Gn) / (B1 × . . .×Bn) .

Proof. To prove the claim, first prove that G1/B1 ×G2/B2
∼= (G1 ×G2) / (B1 ×B2). Define the

group homomorphism

φ : G1 ×G2 → G1/B1 ×G2/B2

(x, y) 7→ (xB1, yB2).

This map is surjective, since for any (xB1, yB2) ∈ G1/B1 ×G2/B2, we can find (x, y) ∈ G1 ×G2

such that φ(x, y) = (xB1, yB2). Now we would like to find the kernel of φ. By definition,

ker(φ) = {(c, d) ∈ G1 ×G2 | φ(c, d) = (B1, B2)} = B1 ×B2 ⊂ G1 ×G2.

Therefore, by the First Isomorphism Theorem 15,

(G1 ×G2) / ker(φ) ∼= G1/B1 ×G2/B2

=⇒ (G1 ×G2) / (B1 ×B2) ∼= G1/B1 ×G2/B2.

The general case follows inductively.

Lastly, we prove an elementary result regarding field homomorphisms that will prove useful later
on.

Proposition 19. If L,K are field extensions of Q and σ : L→ K is a field homomorphism, then
σ |Q≡ id |Q.

Proof. Let a
b ∈ Q. Then, we can see that

σ
(a
b

)
= a · σ

(
1

b

)
= a · 1

b
· b · σ

(
1

b

)
=
a

b
· σ(b) · σ

(
1

b

)
=
a

b
· σ
(
b

b

)
=
a

b
· σ(1) = a

b
,

where we used the properties of a field homomorphism that σ(1) = 1 and σ(b) = σ(1 + . . .+ 1) =
σ(1) + . . . σ(1) = 1 + . . .+ 1 = b for b ∈ Z. Therefore, we have found that σ |Q≡ id |Q.

3.2 Inverse Galois Problem for finite abelian groups

Now that we have laid out all the necessary tools, we are ready to solve the Inverse Galois problem
for finite abelian groups. In the proof of the following theorem, we not only show the existence of
the desired field extension but also the procedure to construct it.

Theorem 20. For any finite abelian group A, there exists a Galois extension L/Q with Gal (L/Q) ∼=
A.

Proof. First, since A is a finite group, we know it is finitely generated (since we can choose all
elements of A to be the generators). Using the structure theorem of abelian groups 5, we know
that for any finitely generated abelian group A, there exists a unique integer r ≥ 0 and integers
a1, . . . , an > 0 such that

A ∼= Zr × Z/a1Z× . . .× Z/anZ. (2)

Since we know that A is finite, this implies that r = 0. Therefore,

A ∼= Z/a1Z× . . .× Z/anZ.
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Using Theorem 14, we know that for each of these integers ai we can find primes pi such that
pi ≡ 1 mod ai. Additionally, we know that even though all ai’s are not necessarily distinct, we
can find the corresponding pi’s such that all of the primes are.

Now we consider the group (Z/piZ)∗, which is cyclic because pi is prime. We know that this group
has order φ(pi) = pi− 1. Since we chose the primes pi in a way that p1 ≡ 1 mod ai, we have that
ai | pi − 1. Thus, pi−1

a | (pi − 1), which means that (Z/piZ)∗ contains a unique cyclic subgroup
Bi of order (pi − 1)/ai. Therefore, (Z/piZ)∗ /Bi is also cyclic and of order ai.

Thus, since Z/aiZ and (Z/piZ)∗ /Bi are both cyclic and have the same order, we have found that

Z/aiZ ∼= (Z/piZ)∗ /Bi

for all ai. Therefore,

A ∼= Z/a1Z× . . .× Z/anZ ∼= (Z/p1Z)∗ /B1 × . . .× (Z/pnZ)∗ /Bn.

Using Lemma 18 we know that

A ∼= (Z/p1Z)∗ × . . .× (Z/pnZ)∗ /B1 × . . .×Bn.

Since we chose all the primes pi to be pairwise distinct, we can employ the Chinese Remainder
Theorem to see that

(Z/p1Z)∗ × . . .× (Z/pnZ)∗ ∼= (Z/p1 · . . . · pnZ)∗ .

Next, we can denote N := p1 · . . . · pn. Since B1 × . . . × Bn is a subgroup of (Z/p1Z)∗ × . . . ×
(Z/pnZ)∗ ∼= (Z/NZ)∗, we can see that

B1 × . . .×Bn
∼= B

for B a subgroup of (Z/NZ)∗. Therefore, we have found that

A ∼= (Z/NZ)∗ /B.

For the next step, we have to employ cyclotomic extensions. By Proposition 13 we know that

Gal (Q(ζN )/Q) ∼= (Z/NZ)∗ ,

where ζN is the N -th root of unity. As we know that B is a subgroup of (Z/NZ)∗, it corresponds to
a subgroup of Gal(Q(ζN )/Q). We can also easily see that B is abelian due to it being a subgroup
of (Z/NZ)∗. Therefore, B is a normal subgroup of Gal (Q(ζN )/Q), so by Theorem 4, Q(ζN )B/Q
is a Galois extension with Galois group

Gal
(
Q(ζN )B/Q

) ∼= Gal (Q(ζN )/Q)
/
Gal

(
Q(ζN )/Q(ζN )B

) ∼= (Z/NZ)∗ /B ∼= A.

Now that we have shown that indeed any abelian group appears as the Galois group of some
(non-unique) extension of Q, we need to show how the polynomial generating this extension
is computed. Since this extension is finite and separable, we can apply the Primitive element
theorem 5 to deduce that there exists an element α ∈ Q(ζN )B such that

Q(ζN )B = Q(α).

Therefore, the polynomial generating this extension will simply be the minimal polynomial of α
over Q.
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Proposition 21. A primitive element α of the fixed field Q(ζN )B for B ⊆ (Z/NZ)∗ ∼= Gal(Q(ζN )/Q)
can be computed as

α =
∑
k∈B

ζkN .

Proof. To prove this result we first have to show that α ∈ Q(ζN )B . We can already see that
α ∈ Q(ζN ), so we only have to show that α is invariant under the action of any element of B.
Let b ∈ B. Then we know that b corresponds to the element σb ∈ Gal(Q(ζN )/Q) such that
σb(ζN ) = ζbN . Therefore,

σb(α) = σb

(∑
k∈B

ζkN

)
=

(∑
k∈B

ζkN

)b

=
∑
k∈B

ζbkN .

To show that
∑

k∈B ζ
k
N =

∑
k∈B ζ

bk
N , we have to consider the left cosets of B. Since b ∈ B, we

know that bB = B, which means that bB spans the elements of B. Therefore, σb(α) = α.

Second, we have to prove that the element α is not fixed by any non-trivial element σa of
Gal(Q(ζN )B/Q). σa corresponds to the element a ∈ (Z/NZ)∗/B. In other words, we have to
show that the cosets aB and B are distinct. This can be easily shown by noting that a ∈ aB,
since a = a · 1 and 1 ∈ B due to B being a subgroup of (Z/NZ)∗. But, on the other hand, a /∈ B,
since we chose a to be a non-trivial element of a ∈ (Z/NZ)∗/B. Therefore, aB ̸= B, and we know
that α is not stabilized by any non-trivial element of (Z/NZ)∗/B.

Lastly, we would like to show that the Galois conjugates of α by two distinct non-trivial elements
σa, σa′ ∈ Gal(Q(ζN )B/Q) are distinct. The elements σa, σa′ correspond to the non-trivial elements
a, a′ of (Z/NZ)∗/B such that a ̸= a′. So we only have to show that aB ̸= a′B. Assume that there
exists an element c ∈ aB ∩ a′B. This means that c = ab = a′b′ for some b, b′ ∈ B. Then we have
that a = a′b′b−1. Since b′b−1 ∈ B, this implies that a and a′ are not distinct in (Z/NZ)∗/B, which
is a contradiction. Therefore, aB ∩ a′B = ∅, and aB ̸= a′B. This shows that σa(α) ̸= σa′(α).

As a result, we have shown that all the Galois conjugates of the element α under Gal(Q(ζN )B/Q)
are distinct, which, according to the last part of the proof of the Primitive element theorem
from [Lan02, §V.4, Thm. 4.6], implies that α is indeed a primitive element of the extension
Q(ζN )B .

Now that we have found the primitive element α of the extension Q(ζN )B , we can find the polyno-
mial generating this extension by simply computing the minimal polynomial f of α over Q. The
splitting field of f will be the field Q(α) = Q(ζN )B with the Galois group isomorphic to A.

3.3 Totally real extensions

After proving the Inverse Galois problem for finite abelian groups, we can further show that we
can choose the corresponding extension to be totally real. Before proving this result, we first
define what a totally real field is.

Definition 22. A finite field extension L/Q is called totally real if the image of all embeddings of
L into the complex number field C is contained in R.

Now we will see that by making some slight alterations to the algorithm of computing the field
extension we can construct the field extension in a way that it is totally real.

Theorem 23. Every finite abelian group can be realised as a totally real extension of Q.

Proof. To prove this theorem, we first need to prove an intermediate result concerning the group
B constructed in the proof of Theorem 20.

Claim: For any abelian group A, the group B can always be constructed in a way that −1 ∈ B.
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To prove the claim, we first need to prove that we can always construct the subgroups Bi in a
way that −1 ∈ Bi. Recall from the proof of the abelian case that each Bi is a subgroup of the
cyclic group (Z/piZ)∗ for pi prime, which is a cyclic group. Therefore, each Bi is also cyclic, and
as shown before, it has order #Bi = (pi − 1)/ai.

We want to construct the subgroups Bi such that they all have even order. This can be done
by choosing the distinct primes pi in a way that pi ≡ 1 mod 2ai (instead of just pi ≡ 1 mod ai
like before). The existence of distinct primes like these is guaranteed by Dirichlet’s theorem on
arithmetic progressions again. Therefore, we have the property that 2ai | pi − 1, which implies
that 2 | pi−1

ai
, and #Bi is even.

We have just shown that we can always choose the subgroups Bi to be of even order. Since Bi

is a cyclic group, this means that it will contain an element of order 2. Let a ∈ Bi such that
ord(a) = 2. This implies that

a2 ≡ 1 mod pi =⇒ a2 − 1 ≡ 0 mod pi ≡ pi | a2 − 1 = (a− 1)(a+ 1).

Since pi is an odd prime, we must have that either pi | a − 1 or pi | a + 1. This means that
a ≡ ±1 mod pi, but since ord(a) = 2, we know that a ̸≡ 1 mod pi. Therefore, ai ≡ −1 mod pi
and −1 ∈ Bi.

As proven before, B = B1 × . . . × Bn and each Bi is a subgroup of (Z/piZ)∗ where all pi are
distinct primes. Therefore, by the Chinese Remainder Theorem 17, if −1 ∈ Bi for all subgroups
Bi, then −1 ∈ B, which proves the claim.

As we have just proved that −1 ∈ B, this corresponds to an element σ ∈ Gal(Q(ζN )/Q) such that
σ(ζ) = ζ−1 for ζ every N -th root of unity. Since ζ · ζ−1 = 1 = ζ · ζ̄, and a = ā for all a ∈ Q, σ
acts on Q(ζN ) by complex conjugation. Therefore, complex conjugation acts trivially on the fixed
field Q(ζN )B .

Next, since the field extension Q(ζN )B/Q is finite and separable due to being Galois, we can
apply Primitive Element Theorem to deduce that there exists an element α ∈ Q(ζN )B such that
Q(ζN )B = Q(α). We also know that Q(ζN )B = Q(α) is invariant under complex conjugation,
which means that all elements of this field are real. More specifically, α ∈ R.

Lastly, to prove that Q(α) is indeed a totally real extension, we have to show that the image of
every embedding of this field into the complex numbers C is contained in R. Let ι : Q(α) → C be an
embedding of Q(α) into C. By the definition of embedding, ι is injective and structure-preserving,
in this case, a field homomorphism.

Using Proposition 19, we know that ι |Q≡ id |Q. Therefore, we only need to consider the image
of α under ι. Recall that we already established that Q(α)/Q is separable. This means that the
minimal polynomial f of α over Q splits completely in Q(α). Therefore, all roots of the minimal
polynomial f are real, since we already showed that all the elements of Q(α) are real. Since α is
a root of f , so is ι(α), since ι (f (α)) = f (ι (α)) = 0 due to ι being a field homomorphism and f
a polynomial. This shows that ι(α) is real. Thus, we can conclude that the image of Q(α) under
the embedding ι is real, which proves that Q(α) is totally real. This concludes the proof that any
abelian group A can be realised as a totally real extension Q(α)/Q.

As we saw in the proof of Theorem 23, by adding the additional condition that pi ≡ 1 mod 2ai
instead of just pi ≡ 1 mod ai, we can ensure that the constructed field extension will be totally
real.

3.4 Construction of polynomials generating abelian extensions of Q
Following the structure of the proof of the inverse Galois problem for finite abelian groups, we
can construct a systematic algorithm to compute a polynomial f whose splitting field will have
a Galois group isomorphic to the desired abelian group A. Additionally, we can indicate if we
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wish the extension to be totally real or not. Below we present the algorithm corresponding to the
Magma code in the appendix.

Important to note is the fact that the input of integers corresponding to the abelian group A
does not necessarily have to be in the form as in Theorem 16. Due to the Chinese Remainder
Theorem, the representation need not be unique, and this goes both for the algorithm and the
proof of Theorem 20.

Algorithm 1.
Input: A list a list = [a1, a2, . . . , an] of integers > 1 corresponding to the elementary divisors of
the abelian group A.
A boolean flag totally real = true/false indicating if the desired extension of Q should be totally
real or not.

Output: Polynomial f ∈ Q[x] whose splitting field corresponds to the Galois extension of Q with
a Galois group isomorphic to A.

1. [Initialize] Set primes list := [ ] and subgroups := [ ] to store the primes and corresponding
subgroups.

2. [Loop over elementary divisors] For each ai ∈ primes list:

a. If totally real = false, find a prime pi such that pi ≡ 1 mod ai, and all pi’s are distinct.

b. If totally real = true, find a prime pi such that pi ≡ 1 mod 2ai, and all pi’s are distinct.

c. Append the prime pi to primes list.

3. [Loop over the primes] For each pi ∈ primes list:

a. Compute a generator g of the cyclic group (Z/piZ)∗.
b. Compute the cardinality of the subgroup Bi ⊂ (Z/piZ)∗ as #Bi = (pi − 1)/ai.

c. Compute a generator h = gai of the subgroup Bi.

d. Construct the subgroup Bi =
[
hj mod pi for j ∈ [1, . . . ,#Bi]

]
.

e. Append the subgroup Bi to subgroups.

4. Compute the product of the primes in primes list as N := p1 · p2 · . . . · pn.

5. [Initialize] Set B := [ ] to store the elements of the subgroup B ⊂ (Z/NZ)∗.

6. [Construct the subgroup B] Loop over all the combinations of elements in B1 ×B2 × . . .×Bn.

a. Apply Chinese Remainder Theorem to find the corresponding element in (Z/NZ)∗.
b. Append the found element to the list B.

7. [Compute the polynomial f ] Using the subgroup B ⊂ (Z/NZ)∗:

a. Define Q(ζN ) to be the cyclotomic field extension, where ζp is a primitive N -th root of unity.

b. Compute the primitive element α generating the intermediate field Q(ζN )B as α =
∑

k∈B ζ
k
N .

c. Compute the minimal polynomial f of the primitive element α; then Q(ζN )B is the splitting
field of f .

8. Return f .

4 Elliptic curves

In this section, we introduce the concept of elliptic curves and some associated properties that will
prove to be useful when constructing the extensions with Galois group isomorphic to GL2(Fp).
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4.1 Introduction

Before defining elliptic curves, we need to define the notion of an affine space from [Sil09, p. 1]
and a projective space from [Sil09, p. 6].

Definition 24 (Affine space). The affine n-space over a field K is defined as the set of n-tuples

An = An(K) = {P = (x1, . . . , xn) : xi ∈ K}.

Equivalently, we can define the set of K-rational points of An as the set

An(K) = {P = (x1, . . . , xn) ∈ An : xi ∈ K}.

When n = 2, we call A2 the affine plane over K.

Definition 25 (Projective space). The projective n-space Pn over a field K is the set of all (n+1)-
tuples (x0, . . . , xn) ∈ An+1 such that at least one xi is nonzero, together with the equivalence
relation

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ there exists λ ∈ K
∗
such that xi = λyi for all i.

An equivalence class of a point in the projective plane is denoted by [x0 : . . . : xn], and x0, . . . , xn
are called homogeneous coordinates for the corresponding point in Pn.

When n = 2, we call P2 the projective plane over K.

With the concept of projective spaces, we can define a projective elliptic curve, meaning that the
points on the curve are in either P2(R) or P2(C). We follow [Sil09, § III.1] for the definitions
below.

Definition 26 (Elliptic curve). An elliptic curve E over a field K is a smooth projective curve
given by the homogeneous equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (3)

with a1, . . . , a6 ∈ K. If K = Q, then we call E a rational elliptic curve.

We can view E as an affine curve by using non-homogeneous coordinates x = X/Z and y = Y/Z
to transform the curve into the form called Weierstrass equation given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (4)

Each point in affine coordinates (x, y) on the elliptic curve then corresponds to the point [x : y : 1]
in the projective plane. Equivalently, each point [X : Y : Z] in the projective plane corresponds
to a point (X/Z, Y/Z) in affine coordinates, unless Z = 0. When Z = 0, this is called the line at
infinity of the projective plane. Setting Z = 0 in Equation (3) gives X3 = 0, therefore, the elliptic
curve E intersects the line at infinity three times at exactly one projective point O = [0 : 1 : 0],
which we call the point at infinity. This is considered to be the point in the affine plane where
all vertical lines meet. By convention, when we talk of an elliptic curve in affine coordinates as
defined in Equation (4), we consider all the points in the affine xy-plane satisfying E together
with the point at infinity O.

Lastly, we need to define a specific form of an elliptic curve that will prove to be essential later
on.

Definition 27 (Weierstrass form). An equation for an elliptic curve is said to be in Weierstrass
form if it is given by

y2 = 4x3 − g2x− g3.

Equivalently, the more general equation

y2 = x3 + ax2 + bx+ c

is also called the Weierstrass form.

Every rational elliptic curve can be transformed into Weierstrass form, with the necessary proce-
dure laid out explicitly in [ST15, § 1.3].
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Group law

Let E be an elliptic curve in Weierstrass form. It turns out that the points on E in the xy-plane
together with the point at infinity O can be equipped with a group structure. To illustrate this,
we lay out a procedure to equip E with a group operation below, following [Sil09, § III.2].

Let P1 and P2 be two points on the elliptic curve E. Let L be the line through P1 and P2. Denote
the third point of intersection of L and E by P1 ∗P2. The existence of a third point of intersection
is guaranteed by Bezout’s theorem, and more details can be found in [ST15, §A.3]. Let L′ be
the line through P1 ∗ P2 and O. This line will intersect E at a third point, which we denote by
P1 + P2. This procedure defines a group law on the points of the elliptic curve, together with the
identity element - the point at infinity O. In other words, we define the addition of points on E
as

P1 + P2 := O ∗ (P1 ∗ P2).

In the case that we want to add a point to itself, we can consider the elements P1 and P2 to
overlap. This means that the line through P1 and P2 will simply be the tangent line of E at that
point. Both cases of addition of points when P1 and P2 are distinct or overlap are illustrated in
Figure 4.1 below.

With the procedure laid out above, we can equip the points on E with a group structure. Moreover,
this group will be abelian, since there is only one way to draw a line through two points, no matter
which one we consider first.

An important property of the group law on an elliptic curve in Weierstrass form is that the inverse
of each point is the same point mirrored around the x-axis.

To prove that −P is the inverse of P with respect to the group law defined before, we must show
that P + (−P ) = O. Therefore, we must first connect the points P and −P by a straight line L.
Since these two points are symmetrical around the x-axis, the line L connecting them will simply
be vertical. Therefore, the third point of intersection of L and E will be the point at infinity O.
In other words, P ∗ (−P ) = O. Thus, we have that P +(−P ) = O∗ (P ∗ (−P )) = O∗O. The line
tangent to the point at infinity intersects E at exactly three points, which are all O. From this,
we can see that indeed P + (−P ) = O, hence P and −P are inverses of each other.

4.2 Points of finite order

Now that we have equipped the points on an elliptic curve with a group structure, we can consider
the concept of points of finite order. Below we present the definition from [ST15, § 2.1].
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Definition 28. A point P of an elliptic curve E is defined to have order n if

[n]P = P + P + . . .+ P︸ ︷︷ ︸
n times

= O,

but n′P ̸= O for all integers 1 ≤ n′ < n. If such an n exists, then P is said to have finite order,
otherwise, it has infinite order.

Therefore, points of order n are the points that equal the identity element if summed together
exactly n times, and no less. Similarly, we can introduce the concept of torsion points with the
less strict condition that adding the element to itself n times will yield the identity element, even
if the order is possibly smaller. We present the definition from [Sil09, § III.4].

Definition 29. For an elliptic curve E and an integer n ∈ Z≥1, the n-torsion subgroup of E is
the set of points of E that have order dividing n. In other words, we define the n-torsion group
E[n] as

E[n] := {P ∈ E : [n]P = O}.

As we saw before that the addition of points on an elliptic curve is quite involved, we spend the
rest of this section laying out an approach to construct the n-torsion subgroup of E. We follow
the procedure laid out in [ST15, § 2.2].

First, transform the rational elliptic curve into Weierstrass form such that E is given by

E : y2 = 4x3 − g2x− g3.

When E is nonsingular, meaning that g32 − 27g23 ̸= 0, we can find R-linearly independent complex
numbers ω1 and ω2, called periods. They will be used to define a function from Λ to complex
points on E. Using these periods, we can form a group Λ called a lattice by taking all the Z-linear
combinations of the periods as follows

Λ = Zω1 + Zω2 = {n1ω1 + n2ω2 | n1, n2 ∈ Z}.

There are many different choices for the periods, but the coefficients g2, g3 of the elliptic curve
uniquely determine the period lattice Λ. Similarly, the lattice Λ uniquely determines g2 and g3
via the correspondence

g2 = 60
∑
ω∈Λ
ω ̸=0

1

ω4
& g3 = 140

∑
ω∈Λ
ω ̸=0

1

ω6
.

Using the periods ω1 and ω2, we can define a meromorphic function ℘, called the Weierstrass
℘-function as follows

℘(u) =
1

u2
+
∑
ω∈Λ
ω ̸=0

(
1

(u− ω)2
− 1

ω2

)
.

This function has the property that it has a double pole at each point of the lattice Λ and no
other poles. Additionally, ℘ is doubly periodic with respect to the periods of the lattice, meaning
that

℘(u+ ω1) = ℘(u) & ℘(u+ ω2) = ℘(u) for all u ∈ C.

This property implies that

℘(u+ ω) = ℘(u) for all u ∈ C and all ω ∈ Λ.

Moreover, the Weierstrass ℘-function satisfies the differential equation

℘′(u)2 = 4℘(u)− g2℘(u)− g3.
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Therefore, for every complex number u, we get a complex-valued point (℘(u), ℘′(u)) on the elliptic
curve E. Thus, using the function ℘, we can construct a map from the complex plane to E(C).
This map is surjective, but cannot be injective, since ℘ is doubly periodic in the complex number
plane. However, if we take the quotient of the complex plane by the lattice Λ, we can define
an isomorphism of C/Λ and the complex points on the elliptic curve E using the Weierstrass
℘-function and its derivative.

Thus, we can construct a map

ϕ : C/Λ → E(C) ⊂ P2(C), z 7→ [℘(z) : ℘′(z) : 1],

where E(C) denotes the points on E with complex coordinates. According to [Sil09, §VI.3,
Prop. 3.6b], ϕ is a complex analytic isomorphism of complex Lie groups. Therefore, ϕ is an
isomorphism from the additive group of complex numbers onto the complex points of E with
respect to the addition of points defined on elliptic curves. Using this map, we can describe the
points of order dividing n on the elliptic curve. Since the points on the lattice Λ are poles of ℘
and ℘′, under ϕ they are mapped to the point at infinity O of E. Therefore, we would first like
to find the set of all points v of C/Λ such that nv ∈ Λ.

In the figure below, we can see an illustration of the construction of n-torsion points of C/Λ for
n = 5.

Figure 1: The set of all 5-torsion points of C/Λ.

Therefore, we can denote the set of these points in C/Λ by

(C/Λ)[n] :=
{
aω1 + bω2

n
∈ C/Λ | a, b ∈ Z/nZ

}
⊂ C/Λ.

We can see that any element v ∈ (C/Λ)[n] will land in the lattice Λ when multiplied by n. Thus,
since ϕ is a group isomorphism, the image of any v ∈ (C/Λ)[p] under ϕ will correspond to a point
ϕ(v) ∈ E(C) such that n · ϕ(v) = O. In other words,

ϕ ((C/Λ)[n]) = E[n] =⇒ (C/Λ)[n] ∼= E[n].

Employing this approach, we can find the points of finite order on an elliptic curve simply and
systematically by avoiding rigorous computations of the addition of points on an elliptic curve.
In other words, we translate the hard problem of finding E[n] to the easy problem of finding
(C/Λ)[n].

Using the isomorphism ϕ, we can even describe the structure of E[n].
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Proposition 30. E[n] ∼= Z/nZ× Z/nZ.

Proof. Since we already know that E[n] ∼= (C/Λ)[n], we only have to show that (C/Λ)[n] ∼=
Z/nZ× Z/nZ. This can be done by constructing a map

ψ : Z/nZ× Z/nZ → (C/Λ)[n]

(a1, a2) 7→
a1ω1 + a2ω2

n

and showing that ψ is a group isomorphism. First, prove that ψ is a group homomorphism. Let
(a1, a2), (b1, b2) ∈ Z/nZ× Z/nZ. Then we can see that

ψ ((a1, a2) + (b1, b2)) = ψ ((a1 + b1, a2 + b2)) =
(a1 + b1)ω1 + (a2 + b2)ω2

n

=
a1ω1 + a2ω2

n
+
b1ω1 + b2ω2

n
= ψ ((a1, a2)) + ψ ((b1, b2)) ,

which shows that ψ is indeed a group homomorphism.

To prove that ψ is an isomorphism, we first need to show that it is injective. Let (c1, c2) ∈ ker(ψ).
This means that

ψ ((c1, c2)) =
c1ω1 + c2ω2

n
= 0.

Since the image of ψ is in C/Λ, this implies that

c1ω1 + c2ω2 = n(n1ω1 + n2ω2)

for n1, n2 ∈ Z. Previously we established that ω1 and ω2 are R-linearly independent, therefore,
we have that{

c1ω1 = nn1ω1

c2ω2 = nn2ω2

=⇒

{
c1 = nn1

c2 = nn2

=⇒

{
c1 ≡ 0 mod n

c2 ≡ 0 mod n

This shows that ker(ψ) = {(0, 0)}, which proves that ψ is injective.

To prove surjectivity, we only need to recall that any point in (C/Λ)[n] can be written in the
form (a1ω1 + a2ω2)/n by the definition of (C/Λ)[n]. Then we can clearly see that for any point
(a1ω1 + a2ω2)/n ∈ (C/Λ)[n], we can choose (a1, a2) ∈ Z/nZ × Z/nZ to construct the point of
(C/Λ)[n] as ψ(a1, a2) = (a1ω1 + a2ω2)/n. This proves that ψ is surjective.

Since we have just shown that ψ is a bijective group homomorphism, therefore, a group isomor-
phism, this proves that

E[n] ∼= (C/Λ)[n] ∼= Z/nZ× Z/nZ.

We have just provided the proof that E[n] is isomorphic to a direct product of two cyclic groups
of order n. Because of this result, we know that it is finitely generated. For convenience, we can
choose the generators of (C/Λ)[n] to be ω1

n and ω2

n . Therefore, we can set the points corresponding
to the image of these generators under ϕ to be the generators of E[n]. In other words, set

P1 := ϕ
(ω1

n

)
& P2 := ϕ

(ω2

n

)
(5)

to be the points in E[n] that generate E[n].

Therefore, we can write the n-torsion group as follows:

E[n] = {a1P1 + a2P2 | a1, a2 ∈ Z/nZ}. (6)

The choice that a1, a2 ∈ Z/nZ comes from the fact that nP = O for any P ∈ E[n]. From this we
can see that any P ∈ E[n] can be written as P = a1P1 + a2P2 for unique a1, a2 ∈ Z/nZ.
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4.3 Adjoining E[n] to Q
Now that we have laid out an approach to compute the n-torsion points of an elliptic curve, we
can work further with the coordinates of these points in the affine plane.

Let E be an elliptic curve with rational coefficients given by the Weierstrass equation

E : y2 = x3 + ax2 + bx+ c.

We know that E(C) forms a group under the addition of points on an elliptic curve. If K is a
subfield of C, we can consider the K-rational points on E, which is the set

E(K) = {(x, y) | (x, y) ∈ E and x, y ∈ K} ∪ {O}.

Using [ST15, §VI.3, Prop. 6.3a] we can even show that the K-rational points form a subgroup of
E(C).

Proposition 31. If E is an elliptic curve with coefficients in Q and K is a field extension of Q,
then E(K) is a subgroup of E(C).

Proof. Since the identity element - the point at infinity O - is contained in E(K) by convention,
we must only show that E(K) is closed under addition. Let P,Q ∈ E(K). This means that their
x and y coordinates are in the field K, therefore, the x and y coordinates of P + Q will also be
in K due to the group law on E being defined via rational functions with coefficients in Q. This
shows that P + Q ∈ E(K), so E(K) is closed under addition, which proves that indeed E(K) is
a subgroup of E(C).

To investigate how the Galois elements act on points on an elliptic curve, we use [ST15, §VI.3,
Prop. 6.3b].

Proposition 32. Let E be an elliptic curve with rational coefficients and let K be a Galois
extension of Q. For P ∈ E(K) and σ ∈ Gal(K/Q), we can define

σ(P ) =

{
(σ(x), σ(y)) if P = (x, y),

O if P = O.

Then σ(P ) ∈ E(K).

Proof. Let P = (x, y) be a point in E(K). Since σ is an automorphism of the field K, we know
that σ(x), σ(y) ∈ K. Therefore, we only have to show that σ(P ) = (σ(x), σ(y)) is on the elliptic
curve E. Since P ∈ E(K), we can see that

y2 = x3 + ax2 + bx+ c =⇒ σ
(
y2
)
= σ

(
x3 + ax2 + bx+ c

)
.

Due to the properties of a field homomorphism, we can see that

σ
(
y2
)
= σ

(
x3
)
+ σ

(
ax2
)
+ σ(bx) + σ(c) =⇒ σ(y)2 = σ(x)3 + σ(a)σ(x)2 + σ(b)σ(x) + σ(c).

Since σ reduces to the identity map on Q, we then have that

σ(y)2 = σ(x)3 + aσ(x)2 + bσ(x) + c,

which shows that (σ(x), σ(y)) satisfies the equation of the elliptic curve E, so indeed σ(P ) ∈
E(K).

We further introduce the following propositions from [ST15, §VI.3, Prop. 6.3d,e].

Proposition 33. Let E be an elliptic curve with rational coefficients, P,Q ∈ E(K) and σ ∈
Gal(K/Q). Then we have that

σ(P +Q) = σ(P ) + σ(Q) & σ(−P ) = −σ(P ).

Moreover, σ (nP ) = n (σ (P )) for all integers n.
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Proof. The proof of this proposition using the properties of the addition law is given in [ST15,
p. 215].

Proposition 34. Let P ∈ E(K) be a point of order n and let σ ∈ Gal(K/Q). Then σ(P ) has
order n as well.

Proof. Since σ ∈ Gal(K/Q), we know that σ is a group automorphism, therefore, it preserves the
order of elements.

As we already showed before, the set of n-torsion points forms a group of the form

E[n] = {O, (x1, y1), . . . , (xm, ym)} .

Since the coordinates of the points of E[n] are in the field C, we can extend the subfield Q ⊂ C
using the n-torsion points as follows

Q (E[n]) := Q(x1, y1, . . . , xm, ym).

Now that we have constructed this field extension, we can show that it is both algebraic and
Galois.

Proposition 35. Let E be an elliptic curve with rational coefficients. Then Q(E[n]) is algebraic
over Q.

Proof. A computational proof of this result can be found in [ST15, Prop. 6.5a], so we only outline
it here. The result is proven using the fact that for any point on E, we can always derive a
multiplication-by-n formula of the x-coordinate that will be a rational function. Using this, we
can prove that the x-coordinate of an n-torsion point is algebraic. Therefore, the y-coordinate will
also be algebraic, since it satisfies y2 = x3 + ax2 + bx+ c.

Proposition 36. Q(E[n])/Q is a Galois extension.

Proof. To prove that Q(E[n]) is Galois over Q, we will show that every field homomorphism
σ : Q(E[n]) → C is a field automorphism. Since we already know that Q(E[n]) is a finite algebraic
field extension of Q from the previous proposition, we can consider its Galois closure over Q,
which we denote by L. All field homomorphisms from Q(E[n]) to C are obtained by restricting
each σ ∈ Gal(L/Q) to Q(E[n]). The image of σ |Q(E[n]) is fully determined by the image of each
P ∈ E[n], since σ reduces to the identity on Q. For every P ∈ E[n], we know that σ(P ) ∈ E[n]
as well, according to Proposition 34. Thus, σ induces a permutation of the n-torsion points. This
shows that σ(Q(E[n])) ⊆ Q(E[n]). Since σ is a field homomorphism, this indeed shows that σ is
an automorphism. As a result, Q(E[n]) is Galois over Q.

Going back to Equation (6), recall that we established that the elements of the n-torsion group
can be written as

E[n] = {a1P1 + a2P2 | a1, a2 ∈ Z/nZ}.

Using this representation of the n-torsion points, we can investigate further how the elements of
Gal(Q(E[n])/Q) act on the group E[n].

Let P ∈ E[n] and σ ∈ Gal(Q(E[n])/Q). Then, using Proposition 33 we can see that

σ(P ) = σ(a1P1 + a2P2) = a1σ(P1) + a2σ(P2).

Since σ(P1), σ(P2) ∈ E[n] according to Proposition 34, we can also write them in the form of
Equation 6. Therefore,

σ(P1) = a(σ)P1 + c(σ)P2

σ(P2) = b(σ)P1 + d(σ)P2
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for a(σ), b(σ), c(σ), d(σ) ∈ Z/nZ. This shows that any element of Gal(Q(E[n])/Q) is fully deter-
mined by how it acts on P1 and P2. We can see that σ acts as a change of basis on the points of
E[n].

Following this, we can construct a map

ρn : Gal(Q(E[n])/Q) → GL2(Z/nZ)

σ 7→
[
a(σ) b(σ)
c(σ) d(σ)

]
.

(7)

Proposition 37. ρn is an injective group homomorphism.

Proof. First, we would like to prove that ρn is a group homomorphism. Let σ, δ ∈ Gal(Q(E[n]/Q)
such that

ρn(σ) =

[
a(σ) b(σ)
c(σ) d(σ)

]
, ρn(δ) =

[
a(δ) b(δ)
c(δ) d(δ)

]
.

To prove that ρn is a homomorphism, we have to show that

ρn(σδ) = ρn(σ)ρn(δ).

To compute the left-hand side, we first note that

δ(P1) = a(δ)P1 + c(δ)P2

=⇒ σ(δ(P1)) =σ(a(δ)P1 + c(δ)P2) = a(δ)(a(σ)P1 + c(σ)P2) + c(δ)(b(σ)P1 + d(σ)P2)

=(a(δ)a(σ) + c(δ)b(σ))P1 + (a(δ)c(σ) + c(δ)d(σ))P2.

Similarly,
δ(P2) = b(δ)P1 + d(δ)P2

=⇒ σ(δ(P2)) =σ(b(δ)P1 + d(δ)P2) = b(δ)(a(σ)P1 + c(σ)P2) + d(σ)(b(σ)P1 + d(σ)P2)

=(b(δ)a(σ) + d(δ)b(σ))P1 + (b(δ)c(σ) + d(δ)d(σ))P2.

Therefore, by the construction of the map ρn, we have that

ρn(σδ) =

[
a(δ)a(σ) + c(δ)b(σ) b(δ)a(σ) + d(δ)b(σ)
a(δ)c(σ) + c(δ)d(σ) b(δ)c(σ) + d(δ)d(σ)

]
.

To compute the right-hand side, we simply have to perform matrix multiplication to get that

ρn(σ)ρn(δ) =

[
a(σ) b(σ)
c(σ) d(σ)

]
·
[
a(δ) b(δ)
c(δ) d(δ)

]
=

[
a(δ)a(σ) + c(δ)b(σ) b(δ)a(σ) + d(δ)b(σ)
a(δ)c(σ) + c(δ)d(σ) b(δ)c(σ) + d(δ)d(σ)

]
.

Therefore, we have shown that for any σ, δ ∈ Gal(Q(E[n])/Q), ρn(σδ) = ρn(σ)ρn(δ), which proves
that ρn is a group homomorphism.

Second, to prove that ρn is injective, we would like to show that the kernel of this homomorphism
is trivial. Let τ ∈ ker(ρn). This means that

ρn(τ) =

[
1 0
0 1

]
,

which in turn implies that
τ(P1) = P1, τ(P2) = P2.

Therefore, since we can write any P ∈ E[n] in the form P = a1P1 + a2P2 according to 6, we can
see that

τ(P ) = τ(a1P1 + a2P2) = a1τ(P1) + a2τ(P2) = a1P1 + a2P2 = P.

This shows that τ is the identity map on Q(E[n]). In other words,

ker(ρn) =
{
id |Q(E[n])

}
,

so the kernel is trivial, which proves that ρn is an injective group homomorphism.
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5 Galois representations of elliptic curves

Now that we have defined the map ρn, we have established a link between the Galois group of
some finite extension of Q and the group GL2(Z/nZ). We dedicate this section to investigating
when this connection is an isomorphism.

5.1 Maximal subgroups of GL2(Fp)

In the case that we choose the value of n to be a prime number p, the ring Z/pZ can be denoted
by Fp, since it inherits a finite field structure of characteristic p. In this case, the map ρp defined
in (7) is called the mod p Galois representation of the elliptic curve. We would like to examine
the map more closely in this case and find out when ρp is an isomorphism, not only an injective
homomorphism. According to [Ser72, § 4.2, Thm. 2], the mod p Galois representation of a non-CM
elliptic curve is surjective for all but finitely many prime numbers p.

In other words, we want to find when im(ρp) = GL2(Fp) for a prime p. This can be done by
considering all the possible maximal subgroups Γ of GL2(Fp) and showing that im(ρp) ⊈ Γ, which
would prove the necessary equality.

Before going into the details, we need to define a few prerequisites. First of these is introducing
first of the subgroups of GL2(Fp) from [Lan02, p. 536].

Definition 38. The special linear group of size 2 over Fp, denoted by SL2(Fp), is the subgroup of
GL2(Fp) consisting of matrices that have determinant 1.

Using [Lan02, p. 14] again, we can also define the center of a group.

Definition 39. The center of a group G is defined as the abelian subgroup

Z(G) := {x ∈ G | xy = yx for all y ∈ G} ⊆ G.

Proposition 40. The center of GL2(Fp) is the subgroup of scalar matrices, or, equivalently,

Z (GL2(Fp)) = {a · I2 | a ∈ F×
p },

where I2 denotes the identity matrix of size 2× 2. From now on, we denote this subgroup simply
by Z, since we are only concerned with the group GL2(Fp).

Using the concept of the center of a group, we can introduce the projective group using the
definition from [Lan02, p. 536].

Definition 41. The projective linear group is defined to be the quotient group

PGL2(Fp) := GL2(Fp)/Z.

Definition 42. The projective special linear group is defined to be the quotient group

PSL2(Fp) := SL2(Fp)/Z.

In accordance with [KS23, Def. 2.3.1] we denote the image of the homomorphism ρp defined in (7)
with n = p prime by

Gp := ρp (Gal(Q(E[p])/Q) ⊆ GL2 (Fp) .

Analogously with the projective linear group defined in Definition 41, we can also define the
projective image as

PGp := Gp/Z,
where Z is the center of GL2(Fp) as defined in Proposition 40.

The projective images are introduced to simplify the process of excluding each maximal subgroup
from containing the image of ρp. Below we present the proposition from [KS23, Prop. 2.3.4].
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Proposition 43. Let G ≤ GL2(Fp) be a subgroup such that det(G) = F×
p and PG = PGL2(Fp).

Then G = GL2(Fp).

One can show that det ◦ρp is surjective, so det(Gp) = F×
p . Therefore, we only have to show that

the projective image PGp is not contained in any of the maximal subgroups of PGL2(Fp). Since
det(Gp) = F×

p , we already know that PGp is not contained in PSL2(Fp) for p > 2. For p = 2,
PGL2(Fp) = PSL2(Fp). To classify the rest of the maximal subgroups of PGL2(Fp), we use [KS23,
Thm. 2.4.2].

Theorem 44. Let p ̸= 2 be a prime and let q = p2e+1 be an odd power of p. The maximal
subgroups of PGL2(Fq) different from PSL2(Fq) are as follows.

(i) (Borel) The stabilizer of a point of P1(Fq). It has order q(q − 1).

(ii) (Sub-line) The stabilizer PGL2(Fq′) of a subline P1(Fq′) by matrix multiplication, where
q = q′ℓ with a prime ℓ (in particular, ℓ | 2e+ 1).

(iii) (Dihedral) Stabilizers of a pair of points in P1(Fq) (normalizer of a split Cartan subgroup,
order 2(q − 1), when q > 5) or of a pair of Fq-conjugate points in P1(Fq2) (normalizer of a
nonsplit Cartan subgroup, order 2(q + 1)).

(iv) (Exceptional) Subgroups isomorphic to S4 (when e = 0 and 3 < p ≡ ±3 mod 8), and if
q = 3, A4.

Although we are only concerned with q = p in this thesis, we state the more general result for
potential future extensions. Therefore, in this case, in Theorem 44, q = p, or, equivalently, e = 0.
From now on we use the p instead of q for computations following the definition above.

Now we would like to derive criteria to show that PGp ⊈ Γ for Γ being each of the maximal
subgroups of PGL2(Fp) classified above. This can be done by using characteristic polynomials of
ρp(Frobℓ) for prime numbers ℓ ∤ Np. From [KS23, Thm. 2.1.6] we know that these characteristic
polynomials are of the form

T 2 − āℓT + ℓ̄,

where x̄ denotes the image of x in the field Fp.

Definition 45. If F is a finite field of odd characteristic, the Legendre symbol of a ∈ F is defined
as ( a

F

)
=


0 if a = 0,

1 if a = b2 for some b ∈ F×,

−1 otherwise.

Next, using [Ser72, § 2] we define some invariants associated to the elements of PGL2(Fp). Below
we present the lemma describing these invariants from [KS23, Lem. 2.5.1].

Lemma 46. Let F be a finite field.

i. The function

GL2(F) → F, M 7→ Tr(M)2

det(M)

descends to a function u : PGL2(F) → F.

ii. Assume that F has characteristic p ̸= 2. The function

GL2(F) → {0, 1,−1}, M 7→
(
Tr(M)2 − 4 det(M)

F

)
descends to a function ∆ : PGL2(F) → {0, 1,−1}.
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Using the invariants presented above and the Fourier coefficients aℓ, we can compute

u(ℓ) := u(Pρp(Frobℓ)) =
ā2ℓ
ℓ̄
, ∆(ℓ) := ∆(Pρp(Frobℓ)) =

(
a2ℓ − 4ℓ

Fp

)
for primes ℓ ∤ Np.

To make conclusion about the order of elements in PGp, we need to employ the proposition below
from [KS23, Prop. 2.5.3]

Proposition 47. Let F be a finite field of characteristic p and let g ∈ PGL2(F).

1. g is unipotent ⇐⇒ u(g) = 4 ⇐⇒ ∆(g) = 0.

2. If p ̸= 2: ord(g) = 2 ⇐⇒ u(g) = 0.

3. If p ̸= 3: ord(g) = 3 ⇐⇒ u(g) = 1.

4. If p ̸= 2: ord(g) = 4 ⇐⇒ u(g) = 2.

5. If p ̸= 5: ord(g) = 5 ⇐⇒ u(g)2 − 3u(g) + 1 = 0.

Borel subgroup

Before deriving conditions of the image being contained in a Borel subgroup of GL2(Fp) or not, we
need to define what a Borel subgroup is explicitly. We present the definition below from [Lan02,
p. 537].

Definition 48. The standard Borel subgroup B of GL2(Fp) is the subgroup of all upper-triangular
matrices, or, equivalently

B :=

{[
a b
0 d

]
| a, b, d ∈ Fp, ab ̸= 0

}
⊂ GL2(Fp).

The Borel subgroup is the subgroup of GL2(Fp) which is conjugate to the standard Borel subgroup.
We can equally define the Borel subgroup of PGL2(Fp) by replacing GL2(Fp) with this group in
the definition.

Any matrix in the Borel subgroup will have a reducible characteristic polynomial due to the struc-
ture of elements in the subgroup. Therefore, if we find a prime ℓ ∤ Np such that the characteristic
polynomial of ρp(Frobℓ) is irreducible, we can conclude that PGp ⊈ B. We know that T 2 − āℓ + ℓ̄
is irreducible if a2ℓ − 4ℓ is not a square in Fp, which is equivalent to ∆(ℓ) = −1. This provides the
criteria to conclude that PGp ⊈ B.

Sub-line stabilizer subgroups

Since we already know that in our case e = 0 in Theorem 44, we immediately find that ℓ = 1.
Therefore, p = p′ and the sub-line subgroup of PGL2(Fp) is simply the entire group PGL2(Fp).
This means that in this case, the sub-line subgroup does not need to be considered.

Dihedral subgroups

From Theorem 44, we know that the dihedral subgroups of PGL2(Fq) correspond to the normalizer
of a split Cartan subgroup and the normalizer of a nonsplit Cartan subgroup. Before deriving the
conditions to show that PGp is not contained in any of these maximal subgroups, we must first
define what these subgroups are. Below we present the definitions from [LMF24, Split Cartan
subgroup] and [LMF24, Non-split Cartan subgroup].
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Definition 49. A split Cartan subgroup Cs ⊂ GL2(Fp) is defined to be the subgroup conjugate to
the subgroup of diagonal matrices. Therefore, up to conjugation, Cs is of the form{[

a 0
0 d

]
: a, d ∈ Fp, ad ̸= 0

}
.

Definition 50. A non-split Cartan subgroup Cns ⊂ GL2(Fp) is defined to be the subgroup conju-
gate to {[

a ϵb
b a

]
: a, b ∈ Fp, a

2 − ϵb2 ̸= 0

}
,

where ϵ is the smallest positive integer generating F×
p .

Now that we know what the Cartan subgroups are, we define the normalizer using [Lan02, p. 14].

Definition 51. The normalizer NG(S) of a subset S of a group G is defined to be the subgroup
of G of elements that normalize S. Equivalently, we can define

NG(S) := {g ∈ G | gS = Sg} = {g ∈ G | gSg−1 = S}.

From [KS23, p. 19] we know that the elements of N(C) \ C have order 2, so u = 0 according
to Proposition 47. The nontrivial elements of a split Cartan subgroup have ∆ = 1, while the
nontrivial elements of a non-split Cartan subgroup have ∆ = −1. Therefore, if p ̸= 2 and we find
an element with u ̸= 0 and ∆ = −1, we can exclude the normalizer of a split Cartan subgroup
from containing the projective image PGp. Similarly, if p ̸= 2 and we find an element with u ̸= 0
and ∆ = 1, we can exclude the normalizer of a non-split Cartan subgroup from containing the
image.

Exceptional subgroups

When p ̸= 3, the only possible exceptional subgroup that can contain the projective image PGp

is S4. To exclude this case, we need to consider the order of elements in S4. We know that
elements of this subgroup have order at most 4. Therefore, to show that PGp ⊈ S4, we only have
to find an element g ∈ PGp such that ord(g) ≥ 5. According to Proposition 47, this happens when
u /∈ {0, 1, 2, 4}. Hence, if we find a prime ℓ ∤ Np such that u(ℓ) /∈ {0, 1, 2, 4}, we can exclude S4

from containing the projective image PGp.

In this subsection we have derived all the necessary conditions to individually exclude all the
maximal subgroups of PGL2(Fp) from containing PGp. Following this, we can implement an
algorithm that can determine for which primes a fixed elliptic curve does not have a maximal mod
p Galois representation.

5.2 Determining if the mod p image is maximal

Below we present an algorithm that loops over the primes ℓ for each prime p and computes the
invariants to exclude the possible maximal subgroups from containing the projective image PG.
The symbol R is used to denote the Borel subgroup, Ns and Nns for the normalizer of split and
non-split Cartan subgroup and S4 for the corresponding subgroup isomorphic to the symmetric
group. This algorithm will return a list of all primes below the bound that do not have a surjective
mod p Galois representation.

Algorithm 2.
Input: An elliptic curve E.
A bound B.

Output: A list of primes for which the image of the mod p Galois representation of E is not
maximal.
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1. [Initialize] Set non max primes := [ ] to store the primes for which the image is not maximal.

2. Compute the modular form f of E to find the Fourier coefficients aℓ of f .

3. Compute the conductor N of E.

4. [Loop over primes] For all primes p ≤ B:

a. If p = 3, compute the three-torsion subgroup using ThreeTorsionType(E), and if it is not
Generic (= maximal image), then add 3 to non max primes.

b. Set S = {R,Ns, Nns, S4}.
c. If p = 2, remove Ns, Nns and S4 from S.

d. If p ̸≡ ±3 mod 8, then remove S4 from S.

e. For each prime ℓ ≤ B such that ℓ ∤ Np:
i. Compute the image u(ℓ) of a2ℓ/ℓ in Fp.

ii. If p ̸= 2, compute ∆(ℓ) :=
(

a2
ℓ−4ℓ
Fp

)
iii. If u /∈ {0, 1, 2, 4}, remove S4 from S.

iv. If p = 2 and u = 1, remove R from S.

v. If p ̸= 2 and ∆ = −1, remove R from S.
If in addition u ̸= 0, remove Ns from S.

vi. If p ̸= 2, ∆ = 1 and u ̸= 0, then remove Nns from S.

f. If S ̸= ∅, add p to non max primes.

5. Return non max primes.

Using the algorithm presented above, we can check for which primes the mod p image of an elliptic
curve is not maximal. This is essential in our process of construction of GL2(Fp) extensions.

5.3 Computation of elements generating Q(E[p])

Now that we have derived a method to verify whether an elliptic curve has a maximal mod p
Galois representation, we can start laying out an approach to compute the polynomials generating
the extensions with Galois group isomorphic to GL2(Fp). We begin by computing the degree of
the extension, and thus, the generating polynomial.

Proposition 52. The order of the group GL2(Fp) is (p2 − 1)(p2 − p).

Proof. To compute the number of elements in GL2(Fp), we must recall the properties of the group.
The first row of each element in GL2(Fp) can be any vector in F2

p except the zero vector since
the determinant must be non-zero. Then we can deduce that the second row of any element can
be any vector in F2

p except the scalar multiples of the first row, again due to the fact that the
determinant must be non-zero. There are exactly p possibilities of a scalar multiple of the first
row of the matrix. This means that there are p2 − p choices for the second row of the matrix.
Combining this, we can see that there are (p2−1)(p2−p) ways to construct an element of GL2(Fp),
which proves the proposition.

Using this proposition, we can already compute the degree of the desired polynomial. According
to Theorem 3,

[Q(E[p]) : Q] = #Gal(Q(E[p])/Q) = #GL2(Fp) = (p2 − 1)(p2 − p).

Therefore, the degree of the polynomial that has a splitting field Q(E[p]) will be (p2− 1)(p2− p).

Using Algorithm 2, we can determine for which primes the Galois representation is maximal for
a specific elliptic curve. Thus, if we find an elliptic curve E that has a maximal image for a
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desired prime p (or more), we can use the p-torsion group E[p] to construct the field extension
Q(E[n]) which will have a maximal Galois group, which is isomorphic to GL2(Fp). To find a
specific polynomial generating the extension for a fixed value of p, we must first investigate the
intermediate fields and the degrees of extensions.

Since we already established that the field extension Q(E[p]) is constructed by adjoining the x
and y coordinates of all the p-torsion points of E, a natural question one might ask is what is
the degree of extension when adjoining only one non-trivial p-torsion point to Q. To answer this
question, we must look at the tower of extensions.

Q(E[p])

Q(P )

Q

The degree of the field extension Q(E[p])/Q(P ) is exactly the number of elements of its Galois
group. As we already know that the Galois group of the extension Q(E[p])/Q is the group of
invertible 2 × 2 matrices over the field Fp, we can deduce that the Galois group of the extension
Q(E[p])/Q(P ) will be the subgroup of GL2(Fp) consisting of matrices that preserve the point P .

Definition 53 (Stabilizer). Let G be a group acting on a set B and let x be an element of B.
Then the stabilizer of x is defined as

StabG(x) = {g ∈ G | g(x) = x},

and it consists of all elements of G that fix the point x.

Combining what we saw before, we now know that Gal(Q(E[p])/Q(P ) ∼= StabGL2(Fp)(P ). Now we
would like to compute the order of the stabilizer of the point P .

Proposition 54. #StabGL2(Fp)(P ) = p2 − p.

Proof. Let P = a1P1 + a2P2, where a1, a2 ∈ Fp and P1, P2 are the generators of the group E[p] as
defined in Equation (6). We would like to find how many matrices A ∈ GL2(Fp) exist such that

A ·
[
a1
a2

]
=

[
a1
a2

]
.

Any nonzero vector in F2
p can be linearly transformed to a basis vector (1, 0). Therefore, we only

have to compute how many matrices in GL2(Fp) stabilize the vector (1, 0). Let

D =

[
d1 d2
d3 d4

]
∈ StabGL2(Fp)((1, 0)).

Therefore, we have that

D ·
[
1
0

]
=

[
1
0

]
=⇒

[
d1 d2
d3 d4

]
·
[
1
0

]
=

[
1
0

]
=⇒

[
d1
d3

]
=

[
1
0

]
.

This shows that d1 = 1 and d3 = 0. Hence, we can see that the stabilizer of (1, 0) consists of
matrices of the form [

1 d2
0 d4

]
, where d2 ∈ Fp, d4 ∈ F×

p .
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The choice that d4 ∈ F×
p instead of the whole field Fp comes from the fact that we require the

determinant of the matrix to be nonzero to be in the group GL2(Fp). Consequently,

#StabGL2(Fp)(P ) = #StabGL2(Fp)((1, 0)) = #Fp ·#F×
p = p(p− 1) = p2 − p,

which proves the proposition.

Now that we know the Galois groups of Q(E[p])/Q and Q(E[p])/Q(P ) and their respective cardi-
nalities, we can add this information to our illustration of the tower of extensions.

Q(E[p])

Q(P )

Q

StabGL2(Fp)(P )

#p2−p

GL2(Fp)
#(p2−1)(p2−p)

From this, we can compute the degree of the extension Q(P )/Q using the tower law. According
to Theorem 6,

[Q(P ) : Q] =
[Q(E[p]) : Q]

[Q(E[p]) : Q(P )]
=

(p2 − 1)(p2 − p)

p2 − p
= p2 − 1.

So far we know that the degree of the field extension when adjoining all p-torsion points of E to
Q is (p2 − 1)(p2 − p) and the degree when adjoining just one of these points to Q is p2 − 1. We
can easily see that we do not even have to consider all the p-torsion points of E to construct the
polynomial generating the full extension. To elaborate on this, recall the representation of the
p-torsion group using two generators, repeated from Equation (6):

E[p] = {a1P1 + a2P2 | a1, a2 ∈ Fp}.

Looking closer at this representation, we can already see there is some redundancy - some of the
points are multiples of others. If this were multiplication in the usual sense over Q, we could
already claim that adjoining one point to Q will yield the same extension as adjoining all the
multiples of this point to Q. Since in this case, multiplication by a scalar corresponds to the
addition of points on an elliptic curve, we cannot make this claim without further elaboration.
This is because the coordinates of a multiple of a point on the elliptic curve will not be multiples
of the original point. Turns out this issue can be resolved by considering a tower of extensions
again, this time by considering the extensions Q(P ) and Q(P, αP ), where α ∈ F×

p .

Proposition 55. If P ∈ E[p], then Q(P ) = Q(P, αP ) for α ∈ F×
p .

Proof. To begin the proof, we once again lay out a tower of extensions.
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Q(E[p])

Q(P, αP )

Q(P )

Q

(p2−1)(p2−p)

Using this tower of extensions, we would now like to compute the degree of the extensionQ(E[p])/Q(P, αP ).
This can be done by once again considering its Galois group - this will be the subgroup of GL2(Fp)
consisting of matrices that preserve both P and αP . If P = a1P1+a2P2, then αP = αa1P1+αa2P2.
Therefore, we need to find which matrices preserve the vectors (a1, a2) and (αa1, αa2). Coming
back to the definition of stabilizer, we know that if A stabilizes a vector (a1, a2), this means that

A ·
[
a1
a2

]
=

[
a1
a2

]
=⇒ A · α ·

[
a1
a2

]
= α ·

[
a1
a2

]
,

therefore, A also stabilizes the scalar multiple of the vector. This means that StabGL2(Fp)(P ) =
StabGL2(Fp)(P, αP ). From this, we know that

[Q(E[p]) : Q(P )] = [Q(E[p]) : Q(P, αP )].

Since Q(P ) ⊂ Q(P, αP ), this indeed proves that Q(P ) = Q(P, αP ).

Now we have to consider points in E[p] that are not scalar multiples of each other. As it turns
out, this is where projective spaces come in handy again, more specifically, the projective line,
which identifies two vectors if they are scalar multiples of each other. Following the more general
Definition 25, we can define the projective line as follows.

Definition 56 (Projective line). The projective line P1(Fp) over the finite field Fp is defined as
the the set of all 2-tuples (x0, x1) ∈ F2

p such that at least one of x0 and x1 is nonzero, together
with the equivalence relation

(x0, x1) ∼ (y0, y1) ⇐⇒ there exists λ ∈ F×
p such that x0 = λy0 and x1 = λy1.

Proposition 57. The set of all points on the projective line P1(Fp) can be written explicitly as

P1(Fp) = {(1, 0), (0, 1), (1, 1), (2, 1), . . . , (p− 1, 1)}. (8)

Moreover, the cardinality of this set is #P1(Fp) = p+ 1.

Proof. We begin by working out the number of elements on the projective line. We know that
F2
p contains exactly p2 − 1 nonzero vectors. In the projective line, two vectors are identified if

they are scalar multiples of one another. Therefore, each nonzero vector in F2
p is identified with

#F×
p = p− 1 others. As a result, there are exactly p2−1

p−1 = p+ 1 distinct points in P1(Fp).

Secondly, to show that any point in P1(Fp) can be written in the form 8, we consider two cases.
Let (a, b) ∈ P1(Fp).

• If b = 0, we can see that (a, b) ≡ (a, 0) ≡ a−1(a, 0) ≡ (1, 0).
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• If b ̸= 0, we have that (a, b) ≡ b−1(a, b) ≡ (ab−1, 1).

This shows that any point on the projective line is in the form as in 8.

Now that we have established that the p-torsion points of E that correspond to the same point in
P1(Fp) generate the same extension of Q, a natural question that might arise is what happens if
we adjoin two points with different representatives of P1(Fp) to Q.

Let P = a1P1 + a2P2 and Q = b1P1 + b2P2 be two p-torsion points of E such that they have
different representatives in P1(Fp), meaning that (a1, a2) ̸= (b1, b2) in P1(Fp), or that the two
vectors are linearly independent. Now consider the field extension Q(P )(Q) generated by the x
and y coordinates of these points. We would like to compute [Q(E[p]) : Q(P )(Q)]. This can be
done by considering what the elements of Gal(Q(E[p])/Q(P )(Q)) are. These are the matrices of
GL2(Fp) that stabilize both of the vectors (a1, a2) and (b1, b2).

Proposition 58. If v, w ∈ F2
p are two linearly independent vectors, then

StabGL2(Fp)(v) ∩ StabGL2(Fp)(w) = {I}.

Proof. Let A ∈ StabGL2(Fp)(v) ∩ StabGL2(Fp)(w). This means that

Av = v & Aw = w.

Let a, b ∈ Fp. Then we have that

A(av + bw) = aAv + bAw = av + bw =⇒ (A− I) (av + bw) = 0.

Since v, w ∈ F2
p are linearly independent, they form a basis of F2

p. Therefore, we have found that
(A− I)u = 0 for all u ∈ F2

p. This implies that A− I = 0, hence, A = I. We have just shown that
if A ∈ StabGL2(Fp)(v) ∩ StabGL2(Fp)(w), then A = I, which concludes the proof.

As a consequence of Proposition 58, the Galois group of Q(E[p])/Q(P )(Q) consists only of one
element - the identity matrix. This implies that [Q(E[p]) : Q(P )(Q)] = 1, which means that
Q(E[p]) = Q(P )(Q) for P and Q being two points in the p-torsion group with different represen-
tatives in P1(Fp).

5.4 Construction of polynomials generating GL2(Fp) extensions of Q
Below we present the algorithm to construct the polynomial generating the extension with Galois
group isomorphic to GL2(Fp), given that we have already found an elliptic curve that has a
maximal image modulo p using Algorithm 2. In the implementation, we choose P1 and P2 to be
the generators of E[p] as defined in (5). Therefore, the field extension will be constructed using
the fact that Q(E[p]) = Q(P1)(P2).

The elliptic curve in the input of the Magma function has to be in Weierstrass form y2 = x3 +
ax2 + bx+ c.

Algorithm 3.
Input: A prime p.
An elliptic curve E in Weierstrass form with maximal image modulo p.

Output: Polynomial g ∈ Q[x] that generates the extension Q(E[p]) with Galois group isomorphic
to GL2(Fp).

1. Using Algorithm 2, verify that E has a maximal mod p Galois representation. If not, output
an error label.

2. Compute the analytic Jacobian J of the function f defining the elliptic curve E : y2 = f(x).
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3. Compute the full period matrix of J . This will be a 1× 2 matrix [ω1 ω2], where ω1 and ω2 are
the periods of the lattice Λ.

4. Compute the generators of the lattice Λ as ω1

p and ω2

p .

5. Using the analytic Jacobian J , map the generators of the lattice to the generators P1 and P2

of E[p].

6. For the point P1 = (x, y) ∈ E[p]:

a. Compute the minimal polynomials f1 and f2 of the x and y coordinates of the point over Q.

b. Create the number field K = Q(α) obtained by adjoining a root α of f1 to Q.

c. Extend the field K by adjoining a root β of f2 to K to find the field L = K(β). This will
be the field extension Q(P1) of degree p

2 − 1.

d. Verify that P1 is not the point at infinity, and that [p]P1 = O. If this is satisfied, P1 is
indeed a p-torsion point of E.

e. Repeat the same procedure for P2 to construct the field extension Q(P2).

7. Compute the composite field Q(P1)(P2) of degree (p
2−1)(p2−p) of the fields Q(P1) and Q(P2).

This will be the field extension Q(E[p]).

8. Compute the minimal polynomial g ∈ Q[x] of a primitive element of Q(E[p]). This will be an
irreducible polynomial of degree (p2 − 1)(p2 − p).

9. Return g.

The algorithm above provides a method to compute a polynomial generating a GL2(Fp) extension
of Q. It is important to note that this polynomial is accurate up to the chosen precision. Therefore,
even though we work with algebraic numbers of complex approximations, step 6.d in Algorithm 3
verifies that the found point is indeed a p-torsion point of E up to the chosen precision. This is
done by verifying that the point does not overlap with the point at infinity and that adding this
point to itself p times will yield the point at infinity. If these conditions are satisfied, then the
point found will be an algebraic approximation to the (possibly non-algebraic) generator of the
p-torsion group.

6 Conclusion

In this paper, we proved some sub-results concerning the open Inverse Galois problem for two
classes of groups.

First, using cyclotomic extensions of Q, we proved the well-known result that any finite abelian
group A appears as the Galois group of some intermediate field of a cyclotomic extension. Fur-
thermore, we showed that this extension is not unique. Because of this, we also saw that we can
always construct the field extension in a way that it is totally real. Additionally, by computing
the primitive element of the extension, we can find a polynomial f ∈ Q[X] such that the splitting
field of this polynomial will be the field extension with Galois group isomorphic to A.

Second, we provided a brief introduction to projective geometry and elliptic curves. Using the
concept of p-torsion points, we established a connection between elliptic curves and Galois repre-
sentations. To investigate whether an elliptic curve has a maximal mod p Galois representation, we
classified the maximal subgroups of GL2(Fp). We provided the necessary criteria to show that the
image of the Galois representation is not contained in any of the maximal subgroups of GL2(Fp).
This was used to find when the Galois representation of an elliptic curve is indeed isomorphic to
the general linear group.

After finding a suitable elliptic curve whose p-torsion points generate the desired field extension
of Q, we outlined the procedure to compute the polynomial generating this extension.
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In conclusion, this paper provides a systematic approach to find the field extensions with Galois
group isomorphic to any finite abelian group or GL2(Fp), as well as a procedure to compute the
polynomials generating these extensions.
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Appendix

Magma code corresponding to Algorithm 1

Qx<x> := PolynomialRing ( Rat iona l s ( ) ) ;

f unc t i on abe l i an po lynomia l ( a l i s t : t o t a l l y r e a l := true )

p r im e s l i s t := [ ] ; // l i s t to s t o r e primes p i
subgroups := [ ] ; // l i s t to s t o r e subgroups B i

// f i nd i n g the nece s sa ry primes and subgroups o f (Z/ p iZ ) ˆ∗
f o r a in a l i s t do

prime := 0 ; // i n i t i a l i z e prime f o r each a

f o r p in PrimesUpTo (1000) do // i t e r a t e through primes < 1000
i f (p mod ( t o t a l l y r e a l s e l e c t 2∗a e l s e a ) ) eq 1 then // check

i f p i s congruent 1 mod a or 2a ( f o r a t o t a l l y r e a l
ex t ens i on )
i f p not in p r im e s l i s t then // check i f p i i s d i s t i n c t

from the other primes
Append(˜ p r ime s l i s t , p ) ; // append p i to p r im e s l i s t

generato r := Primit iveRoot (p) ; // genera tor o f (Z/ p iZ
) ˆ∗

gen := genera tor ˆa ; // generator o f the subgroup B i
b s i z e := (p − 1) div a ; // c a r d i n a l i t y o f B i
subgroup := [ genˆ i mod p : i in [ 1 . . b s i z e ] ] ; //

con s t ru c t i ng the subgroup B i
Append(˜ subgroups , subgroup ) ; // append B i to l i s t o f

subgroups
break ;

end i f ;
end i f ;

end f o r ;
end f o r ;

N := &∗[ prime : prime in p r im e s l i s t ] ; // computing N = p 1 ∗ p 2 ∗
. . . p n

B := [ ] ; // i n i t i a l i z i n g the subgroup B

i t e r a t o r s := [ 1 : in a l i s t ] ; // i n i t i a l i z i n g a l i s t o f the same
s i z e as a l i s t conta in ing only 1 ’ s

a l l d on e := f a l s e ;
whi l e not a l l d on e do // loop over a l l combinat ions o f e lements in B 1

x B 2 x . . . B n

cur r en t e l ement s := [ ] ; // i n i t i a l i z i n g a l i s t to s t o r e the
cur rent e lements from subgroups

f o r i in [ 1 . .# a l i s t ] do
cu r r en t e l ement s [ i ] := subgroups [ i ] [ i t e r a t o r s [ i ] ] ; //
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combination o f e lements cor respond ing to i t e r a t o r s
end f o r ;

combined element := CRT( current e l ements , p r im e s l i s t ) ; //
computing the element o f B correspond ing to cur r en t e l ement s o f
B 1 x B 2 x . . . x B n

Append(˜B, combined element ) ; // appending the element to subgroup
B

f o r i in Reverse ( [ 1 . .# a l i s t ] ) do // updating i t e r a t o r s
i t e r a t o r s [ i ] +:= 1 ;
i f i t e r a t o r s [ i ] l e #subgroups [ i ] then

break ;
e l i f i eq 1 then

a l l d on e := true ;
e l s e

i t e r a t o r s [ i ] := 1 ;
end i f ;

end f o r ;
end whi l e ;

K<w> := CyclotomicFie ld (N) ;
alpha := &+[K| wˆx : x in B ] ; // p r im i t i v e element gene ra t ing the

extens i on
f := MinimalPolynomial ( alpha ) ; // polynomial gene ra t ing the extens i on ;

minimal polynomial o f c

re turn f ;
end func t i on ;

a l i s t := [ 5 , 2 , 2 ] ; // an example input o f numbers cor re spond ing to
abe l i an group A

f := abe l i an po lynomia l ( a l i s t ) ; // the corre spond ing minimal
polynomial gene ra t ing the extens i on

Qalpha := NumberField ( f ) ; // the cor re spond ing extens i on Q( c )
generated by f

f ;
I sTota l l yRea l (Qalpha ) ; // t h i s w i l l r e turn true or f a l s e depending on

whether Q( alpha ) i s t o t a l l y r e a l or not .

Magma code corresponding to Algorithm 2 and 3

C<I> := ComplexField (200) ;
Cx<x> := PolynomialRing (C) ;

f unc t i on non maximal primes (E, B)
// E: an e l l i p t i c curve
// B: the bound

non max primes := [ ] ;
primes := PrimesUpTo (B) ;
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f := ModularForm(E) ;
qexp := qExpansion ( f , B) ;
l l i s t := PrimesUpTo (B) ;
OK := In t e g e r s ( C o e f f i c i e n tF i e l d ( f ) ) ;
a l l i s t := [OK | Co e f f i c i e n t ( qexp , l ) : l in l l i s t ] ;

N := Conductor (E) ;

f o r p in primes do
i f p eq 3 then

i f ThreeTorsionType (E) ne ”Generic ” then
Append(˜ non max primes , p ) ;

end i f ;
e l s e

S := {”R” , ”Ns” , ”Nns” , ”S4 ”} ;
i f p eq 2 then S d i f f := {”Ns” , ”S4 ” , ”Nns ”} ; end i f ;
i f p mod 8 not in {3 , 5} then Exclude (˜S , ”S4 ”) ; end i f ;

F , toFp := Res idueClas sF ie ld (p) ;

f o r i −> l in l l i s t do
i f l ne p and not I sD iv i s i b l eBy (N, l ) then

u := toFp ( a l l i s t [ i ] ) ˆ2 / toFp ( l ) ;
i f p ne 2 then

D := toFp ( a l l i s t [ i ] ) ˆ2 − toFp (4 ∗ l ) ;
D := (D eq 0) s e l e c t 0 e l s e ( I sSquare (D)

s e l e c t 1 e l s e −1) ;
// e l s e

// D := 0 ; // I n i t i a l i z e D f o r p == 2
end i f ;

i f u not in {F | 0 , 1 , 2 , 4} then Exclude (˜S , ”S4 ”)
; end i f ;

i f p eq 2 and u eq 1 then Exclude (˜S , ”R”) ; end i f
;

i f p ne 2 and D eq −1 then
Exclude (˜S , ”R”) ;
i f u ne 0 then Exclude (˜S , ”Ns”) ; end i f ; end

i f ;
i f p ne 2 and D eq 1 and u ne 0 then

Exclude (˜S , ”Nns”) ;
end i f ;

i f IsEmpty (S) then break ; end i f ;
end i f ;

end f o r ;

i f not IsEmpty (S) then
Append(˜ non max primes , p ) ;

end i f ;
end i f ;

end f o r ;
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re turn non max primes ;
end func t i on ;

func t i on gen po l (E, p)
// E: an e l l i p t i c curve in Weie r s t ra s s form
// p : a prime

nonMaxPrimes := non maximal primes (E, p+1) ;
i f p in nonMaxPrimes then

p r i n t f ”The %o does not have a maximal mod %o Galo i s
r ep r e s en t a t i on \n” , E, p ;

e l s e

a2 := Co e f f i c i e n t s (E) [ 2 ] ;
a4 := Co e f f i c i e n t s (E) [ 4 ] ;
a6 := Co e f f i c i e n t s (E) [ 5 ] ;
f := xˆ3 + a2 ∗ xˆ2 + a4 ∗ x + a6 ;

J := Analyt icJacob ian ( f ) ;
W := BigPeriodMatrix ( J ) ;

w 1 := Matrix ( [ [W[ 1 ] [ 1 ] ] ] ) ; // qu an t i t i e s a s s o c i a t ed to the
l a t t i c e Lambda

w 2 := Matrix ( [ [W[ 1 ] [ 2 ] ] ] ) ;

P1 := FromAnalyticJacobian (w 1/p , J ) ;
f 1 := MinimalPolynomial (P1 [ 1 ] [ 1 ] , pˆ2) ;
f 2 := MinimalPolynomial (P1 [ 1 ] [ 2 ] , pˆ2) ;

P2 := FromAnalyticJacobian (w 2/p , J ) ;
g1 := MinimalPolynomial (P2 [ 1 ] [ 1 ] , pˆ2) ;
g2 := MinimalPolynomial (P2 [ 1 ] [ 2 ] , pˆ2) ;

K<a> := NumberField ( f 1 ) ;
L<b> := ext<K | Fac to r i z a t i on (ChangeRing ( f2 , K) ) [ 1 , 1 ] >;
EL := BaseExtend (E,L) ;
pt := EL ! [ a , b ] ;
a s s e r t ( pt ne EL! 0 ) and (p∗pt eq EL! 0 ) ;

K1<a1> := NumberField ( g1 ) ;
L1<b1> := ext<K1 | Fac to r i z a t i on (ChangeRing ( g2 , K1) ) [ 1 , 1 ] >;
EL1 := BaseExtend (E, L1) ;
pt1 := EL1 ! [ a1 , b1 ] ;
a s s e r t ( pt1 ne EL1 ! 0 ) and (p∗pt1 eq EL1 ! 0 ) ;

B := CompositeFie lds (L , L1) ;

i := 0 ;
whi l e i l t # B do

i +:= 1 ;
i f Degree (B[ i ] ) eq (pˆ2−1) ∗(pˆ2−p) then

QE := B[ i ] ;
end i f ;

end whi l e ;
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F := MinimalPolynomial ( Primit iveElement (QE) ) ;

r e turn F ;
end i f ;
end func t i on ;

E := E l l i p t i cCurve ( [ 0 , 0 , 0 , −1, 1 ] ) ;
p := 3 ;

F := gen po l (E, p) ;
F ;
I s I r r e d u c i b l e (F) ;
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