
A Parallel Algorithm for the Contour Tree or Tree of
Shapes for Self-Dual Image Filtering

Research internship

July 23, 2024

Author:
Tomas de Vries

Primary supervisor:
Michael Wilkinson

Secondary supervisor:
Kerstin Bunte

Abstract

Component trees can help filter images as they are easier to traverse than an image. The most
useful tree is the tree of shapes since it works with self-dual filters. However, creating such trees
can be a bottleneck. This bottleneck can be reduced if the tree of shapes could be made in
parallel. So to allow for better image filtering we will look into the parallel creation of the tree
of shapes in this research.

1

Contents

1 Introduction . 3
2 Background . 4

2.1 The first algorithm . 4
2.2 Creating the tree of shapes sequentially 4
2.3 Creating the tree of shapes in parallel . 6
2.4 Parallel max-tree algorithm . 9

3 Implementation . 12
3.1 Interpolation . 12
3.2 Converting the image . 12
3.3 Max-tree . 13

4 Results . 14
5 Conclusion . 16
6 Future work . 16

2

1 Introduction

Component trees represent the connected components of an image in a hierarchical way as a
graph structure. These trees are powerful because there are several different strategies to filter
them which can be done more efficiently than filtering the image directly. The most famous
component trees are max-trees and min-trees [1], representing light structures on a dark
background and dark structures on a light background, respectively. These are useful trees,
however the tree of shapes is even more useful. This can be used for digital image processing [2].
An example can be seen in Figure 2. A more complex application would be identifying galaxies
using their structure in the Tree of Shapes representation. In astronomy, images are generally
very large which means that an efficient algorithm is essential. What makes the tree of shapes
more powerful is that it is self-dual, this means that the tree’s structure fundamentally changes if
it were to be inverted, from min to max for example. A simple example of different trees can be
seen in Figure 1. Self-dual filters are applied to self-dual trees. So these filters are not designed
using max-trees and min-trees but have been designed using the tree of shapes. The tree of
shapes can simultaneously represent light structures on a dark background and dark structures
on a light background. The problem with this is the creation of the trees. Filtering can be
done quickly, but the biggest bottleneck is creating the trees. Recent research [1, 3–7] looks
into improving the time spent creating trees. Other research [1] has proposed a fast, sequential
algorithm to create the tree of shapes. This algorithm is quasi-linear, which is quite efficient,
but there is a limitation to what can be achieved with sequential algorithms. However, if we
were to create an efficient parallel algorithm that decreases computation time when we increase
the number of threads, we could still speed up the algorithm a lot.

Figure 1: Three morphological trees of the same image, tree of shapes is self-dual. Figure from [1]
.

This leads to the following research question: What are the possibilities of adapting current
state-of-the-art parallel max-tree algorithms to the tree of shapes?

We will answer this question by implementing and properly altering the research that is covered
in Section 2. By doing so, it should result in an efficient parallel algorithm to create the tree of
shapes.

In Section 2 we will go over the important research that has already been done and that will
be built upon in this research. In Section 3 we will go over how we used the research from
Section 2 to create our implementation. In this section we will also go over the changes that
were made and the limitations that are present. In Section 4 we will show the results of running
our algorithm with different numbers of threads. In Section 5 we will discuss what we have

3

achieved. In Section 6 we will discuss some possible research that can be done in the future.

(a) Noisy input image (b) Denoised output image

Figure 2: Input image (a) denoised using the tree of shapes resulting in image (b) [8]
.

2 Background

The creation of component trees has been researched for a few decades [9]. The most famous
trees, min-trees and max-trees, have gained a lot of different creation methods [10,11]. These
methods have become quite efficient however, the min-trees and max-trees are not self-dual, so
they are not invariant to inversion of contrast. The tree of shapes is invariant to inversion of
contrast but the creation is a bit more complex.

2.1 The first algorithm

The first known algorithm that created the tree of shapes is the “Fast Level Line Transform
(FLLT)” [12]. Creating the tree of shapes was done by first creating both the max-tree and
min-tree of an image and merging both trees. A major drawback is the need to know that a
component has a hole so it can be matched with a component of the other tree. They have
shown in [13,14] that this approach gives correct results for nD-images.

2.2 Creating the tree of shapes sequentially

To counter this problem a sequential quasi-linear algorithm was proposed to create the tree of
shapes [1]. The algorithm to create max-trees is described in Algorithms 1 and 2, to create the
tree of shapes this algorithm can be altered, which we will look into later. The whole algorithm
is described by COMPUTE TREE which makes use of the other functions seen in Algorithms 1
and 2. First, the image u is used in a SORT function to compute the ancestor relationship
R. This is represented as an array so that aRp⇔ indexR(a) < indexR(p). With the ancestor
relationship R the union-find algorithm proposed in [7] is used. The algorithm is altered so that
it computes the morphological tree as expected [6] while browsing pixels from leaves to root.
The last step is to canonicalize the tree. Which is some trivial post-processing described in [6].

Computing the tree of shapes has some modifications. These can be seen in Algorithms 3, 4 and 5.
As seen in Algorithm 5, the algorithm is now surrounded by INTERPOLATE and UN-INTERPOLATE.
INTERPOLATE adds information in-between pixels of the input image u. u is subdivided, this
multiplies the size by 4n where n is the dimensionality. This subdivided image is interpolated
into the Khalimsky grid [16]. For 2D images, every pixel has four points, four edges, and one
square. An example of this can be seen in Figure 3. This interpolation is necessary to ensure
the correct sorting of pixels.

4

Algorithm 1 Union-Find-based Computa-
tion of a Morphological Tree [15]

1: function union find(R)
2: for all p do
3: zpar(p)← undef
4: end for
5: for i← N − 1 to 0 do
6: p← R[i]
7: parent(p)← p
8: zpar(p)← p
9: for all n ∈ N(p) such as

zpar(n) ̸= undef do
10: r ← find root(zpar, n)
11: if r ̸= p then
12: parent(r)← p
13: zpar(r)← p
14: end if
15: end for
16: end for
17: return parent
18: end function

Algorithm 2 Find root function and com-
pute tree which results in final tree [15]

1: function find root(zpar, x)
2: if zpar(x) = x then
3: return x
4: else
5: zpar(x) ←

find root(zpar, zpar(x))
6: return zpar(x)
7: end if
8: end function
9: function compute tree(u)

10: R← sort(u)
11: parent← union find(R)
12: canonicalize tree(u, R, parent)
13: return (R, parent)
14: end function

Figure 3: Interpolation of a 2D image. Figure from [1].

Algorithm 5 Compute Tree of Shapes [15]

1: function compute tree of shapes(u)
2: U ← interpolate(u)
3: (R, u[. . .])← sort(U)
4: parent← union find(R) canonicalize tree(u[. . .], R, parent)
5: return un interpolate(R, parent)
6: end function

5

Algorithm 3 Priority Queue Opera-
tions [15]

1: function priority push(q, h, U, l)
2: [lower, upper]← U(h)
3: if lower > l then
4: l′ ← lower
5: else if upper < l then
6: l′ ← upper
7: else
8: l′ ← l
9: end if

10: push(q[l′], h)
11: end function
12: function priority pop(q, l)
13: if q[l] is empty then
14: l′ ←

level next to l such as q[l′] is not empty
15: l← l′

16: end if
17: return pop(q[l])
18: end function

Algorithm 4 Sort for Tree of Shapes Com-
putation [15]

1: function sort(U)
2: for all h do
3: deja vu(h)← false
4: end for
5: i← 0
6: push(q[l∞], p∞)
7: deja vu(p∞)← true
8: l← l∞
9: while q is not empty do

10: h← priority pop(q, l)
11: ub[h]← l
12: R[i]← h
13: for all n ∈

N(h) such as deja vu(n) = false
do priority push(q, n, U, l)

14: deja vu(n)← true
15: end for
16: i← i+ 1
17: end while
18: return (R, u)
19: end function

The major difference between computing a max-tree or the tree of shapes is the sorting step.
The max-tree is sorted such that i < i′ ⇒ u(R[i]) ≤ u(R[i′]), while the tree of shapes is sorted
such that it goes from the “external” shapes to the “internal” shapes. The sorting, as seen
in Algorithm 4, is done using a hierarchical queue [17], denoted by q, and the current level is
denoted by l. There are some important things to note, one of which is how the hierarchical
queue handles the values in between pixels. These values are intervals but are handled as a single
value that is closest to l. Secondly, it is important to note that when the queue at the current
level, q[l] is empty and q is not, it needs to be decided what the next level to be processed is.
The possibilities are either taking the level less or greater than l, such that the queue at that
level is not empty. So basically it is choosing between going up or down the levels, which does
not change the resulting tree but changes which subtree is created first. Lastly, it should be
noted that using a hierarchical queue with high dynamic images could cause issues since it would
mean having a large amount of levels in the queue.

For the tree of shapes a temporary image ub is introduced. This is used in the sorting step to
memorize the enqueueing level of faces. Furthermore, it is used in the CANONICALIZE TREE step
to check if an element h is canonical, meaning that it checks if ub(parent(h)) ̸= ub(h). So it
checks if the parent’s value is the same as the current value.

This describes the complete algorithm. The complexity of it is quasi-linear, which is pretty good.
But this is still a sequential algorithm. We would like to look into the parallelization of this
algorithm.

2.3 Creating the tree of shapes in parallel

Creating a tree of shapes in parallel has been researched before [15]. In this section, we will look
into this research methodology and results.

The parallel implementation builds upon the sequential quasi-linear algorithm described above
and also in [1]. The function is modified such that it looks like the algorithm seen in Algorithm 6.
All steps are parallelized, except for the canonicalization, and the union-find function is replaced

6

by a parallel max-tree computation algorithm. The following algorithm does not specify a max-
tree algorithm, this is because most max-tree algorithms are compatible. The paper [15] uses an
old max-tree algorithm [18] for testing. This algorithm is not compatible with high-dynamic
range images. This is therefore not likely to work well with large images that output high values.

Algorithm 6 Computing the tree of shapes in parallel [15]

function ComputeTree(f, p∞)
F ← ParallelImmerse(f)
Q← list of queues
λ←Mean(F (p∞))
Q[λ]← p∞
F ord ← ParallelSort(F,Q, λ, 0)
par ← ParallelMaxTree(F ord)
return Canonicalize(par, F ord)

end function

The ParallelImmerse function describes the interpolation of the image f as described in the
quasi-linear algorithm [1] but computed in parallel. This is done by computing the valuation of
each face in parallel, which is possible because the valuation of each face only requires information
about its local configuration.

The ParallelSort function describes the sorting as described in the quasi-linear algorithm [1]
but with some modifications to allow for parallel computation. The algorithm can be seen in
Algorithm 7. The sorting of a level λ is initially done normally. After the propagation of a level
λ the parallelization is achieved by creating another thread that sorts the set of all values in the
interpolated image, also known as faces, below the current one S−

λ , mathematically described
by S−

λ = {x ∈ S|Fb(x) < λ}. Of course, there is also the set of all faces above the current one
S+
λ = {x ∈ S|Fb(x) > λ}, the current thread will use this set. So the algorithm describes a

parallel recursion where ParallelSort is run on separate threads. This works correctly because
of the following property:

Property 1 After each propagation step each unvisited distinct sub-tree of the Tree of Shapes
corresponds to a distinct connected component of the remaining pixels [15].

The output of the ParallelSort function is not R like it was in the sequential algorithm [1].
Instead, it returns Ford, which describes the face with its level on the tree of shapes. So the
face now has a value based on how deep in the image it is in terms of its inclusion level. An
example of this can be seen in Figure 4. As we can see, the max-tree of (b) is the same as the
tree of shapes of (a). So thanks to the sorting procedure, we can now use any parallel max-tree
computation for theParallelMaxTree function to compute the tree of shapes.

Lastly, the canonicalization step is modified so it can be performed without using the ancestor
relationshipR. To do this, the function is split into two passes that find the correct representatives
of points. We assume that the max-tree computation returns a par function that describes
each face of the tree of shapes F along with its corresponding parent on the tree. After the
canonicalization step, the artificial faces have been removed and the final tree of shapes is
obtained.

So this algorithm describes the creation of the tree of shapes in parallel. In this research we will
build upon this research by using a proper parallel max-tree algorithm that will be described in
the next section.

7

Algorithm 7 Parallel Sort Procedure [15]

1: procedure ParallelSort(F , Q,Ford, λ, ord)
2: Q[λ]← p∞
3: while any queue in Q is not empty do
4: while Q[λ] is not empty do
5: p← POP(Q[λ])
6: Ford(p)← ord
7: for all n ∈ N4(p) not visited yet do
8: if λ ∈ F(n) then
9: PUSH(Q[λ], n)

10: else if λ < min(F(n)) then
11: PUSH(Q[min(F(n))], n)
12: else
13: PUSH(Q[max(F(n))], n)
14: end if
15: end for
16: ord← ord+ 1
17: end while
18: S+

λ ← Q[λ . . .max value]

19: S−
λ ← Q[0 . . . λ]

20: λ′ ← highest level having faces on S−
λ

21: parallel { ParallelSort(F , S−
λ ,F

ord, λ0, ord) on another thread }
22: Q← S+

λ

23: λ← smallest level having faces on S+
λ

24: end while
25: wait all child threads
26: end procedure

(a) Original image (b) Re-valued image

Figure 4: Original image (a) and the associated Ford (b) computed by the ParallelSort

function [15]
.

8

2.4 Parallel max-tree algorithm

To properly use the parallel tree of shapes algorithm described in the section above, we need
a parallel max-tree algorithm. There have been several parallel max-tree algorithms proposed
in research [3–5, 19]. Most research achieves increased performance, however this is only up
to 16 bits per pixel. In this section we will look into a parallel max-tree algorithm proposed
in [20] that can be used to efficiently build max-trees of high-dynamic range images or very large
images.

The first step of the parallel max-tree algorithm is computing a quantized version f of the input
image f . This quantized image will be used to build a pilot max-tree. This pilot max-tree can
eventually be used for correct attribute computation and merging of the sub-trees. The tree can
be built in parallel using any existing algorithm. Which algorithm is not very relevant due to
the low number of values in the quantized image f . The paper uses the parallel version [18] of
the sequential algorithm in [21] because they found it to be faster than other methods on such
low-quantized values. A relation is enforced between the level roots (introduced as canonical
elements in section 2.2) of the pilot tree and those of the final tree. The level roots of the pilot
tree are a subset of those of the final tree. To do this, the only change made concerning the
max-tree implementation in [18] is a stricter definition of the level root of a connected component.
The canonical element node where the attributes are accumulated now corresponds to the pixel
with the lowest coordinate. The algorithm that builds the max tree can be seen in Algorithms 8
and 9.

The second step of the parallel max-tree algorithm is the refinement stage. This stage shapes
the pilot tree into the max-tree of the original image. This stage is a parallel version of the
algorithm proposed by Berger et al. [6]. The complete algorithm of this stage is shown in
Algorithms 10 and 11. All nodes that will be stored refer to a pixel, similar to the pilot max-tree,
with the structure of parent pointer, area attribute value, and pixel intensity value after filtering.
The final tree is created in parallel using K threads that work on S partitions on the original
pixel values of f . The number of partitions S is the same as the number of threads K. Every
thread Ti retrieves the sorted pixels belonging to its corresponding partition Si. Each one has
the same quantized intensity, in descending order. The computation starts from the pixels
that correspond to the maxima from the partition Si. For every pixel p retrieved from the
sorted array and belonging to Si, the set of neighbour pixels is calculated. Only the pixels with
intensity greater than or equal to the current pixel’s intensity could have been processed so only
the already processed neighbours are considered. This leaves two possible situations, where Hi

describes the set of intensity values in Si.
Possibility 1: Intensity f(q) ∈ Hi

In this case, the intensity f(q) of the neighbour pixel q belongs to the set Hi. So the
computation continues as in the Berger algorithm [6]. These steps are performed in
lines 22-29 of Algorithm 10.

Possibility 2: Intensity f(q) /∈ Hi

Since pixels must be processed in decreasing order of intensity, if f(q) < hi, then
neighbour q is considered not visited, and the computation continues by retrieving
the next neighbour. However, if f(q) ≥ hi+1, then q is considered visited. Since
f(q) /∈ Hi, this means that the neighbour q belongs to a partition Sj with i < j.
Thus, the sections being built by threads Ti and Tj must now be merged. Here,
the pilot max-tree is used to retrieve the attribute of the closest descendant of the
component that p belongs to in the pilot max-tree and drive the merging of both
sub-trees and attributes. These steps are performed in lines 9-21 of Algorithm 10.

So this algorithm describes the creation of a max-tree in parallel. In this research, we will combine

9

the elements described above. The main part of the algorithm is described by algorithm 6.
Starting with the parallel immerse function. This can be done by After that, we will use the
parallel sort algorithm seen in algorithm 7 to convert the interpolated image so it can be used
by the max tree algorithm. The max tree algorithm is described by algorithms 8, 9, 10, and
11. After that the artificial faces are removed using the canonicalize function. use the parallel
version (Section 2.3) from the sequential tree of shapes algorithm (Section 2.2) along with the
parallel max-tree algorithm (Section 2.4) that we will apply on the new image representation.
This should result in an efficient computation of the tree of shapes in parallel.

Algorithm 8 Flood Pilot Builds the pilot Max-Tree [20]

1: procedure Flood Pilot(Level lev, Partition P , Attribute thisarea)
2: area← thisarea
3: while Queue at level lev is not empty do
4: Extract pixel p from the Queue at level lev
5: area← area+ 1
6: for all neighbours q of p with q ∈ P do
7: if isV isited[q] = false then
8: isV isited[q]← true
9: if levelroot[g(q)] = not set then

10: levelroot[g(q)]← q
11: else
12: KeepLowestLevelRoot(q)
13: end if
14: Add q to the Queue at level f(q)
15: if f(q) > lev then
16: childarea← 0
17: fq ← f(q)
18: while fq > lev do
19: fq ← Flood Pilot(f(q), P, childarea)
20: end while
21: area← area+ childarea
22: end if
23: end if
24: end for
25: end while
26: m← lev − 1
27: while m ≥ 0 ∧ levelroot[m] = not set do
28: m ← m - 1
29: end while
30: if m ≥ 0 then
31: node qu[levelroot[lev]].parent← levelroot[m]
32: end if
33: qu[levelroot[lev]].Area← area
34: levelroot[lev]← not set
35: thisarea← area
36: return m
37: end procedure

10

Algorithm 9 Keep Lowest Level Root [20]

1: procedure Keep Lowest Level Root(Pixel q)
2: cond1← f(q) < f(levelroot[f(q)])
3: cond2← f(q) = f(levelroot[f(q)]) ∧ q < levelroot[f(q)]
4: if cond1 ∨ cond2 then
5: node qu[levelroot[f(q)]] : parent← q
6: levelroot[f(q)]← q
7: end if
8: node qu[q].parent← levelroot[f(q)]
9: end procedure

Algorithm 10 Pseudo-Code of the Refinement Stage [20]

1: procedure Refinement(Thread i, Partition Si)
2: lwb← min(Si)
3: upb← max(Si)
4: qi← quantized intensity managed by Ti
5: for j = upb to lwb do
6: p← SortedArray[j]
7: zpar[p]← p
8: for all neighbours q of p do
9: if f(q) > qi then

10: desc← DescendRoots(q, i)
11: if node ref [desc].parent =not set then
12: node ref [desc].parent← p
13: node ref [p] : Area← node ref [p].Area+ node qu[desc].Area
14: else
15: z ← FindRoot(node ref [desc].parent)
16: if z ̸= p then
17: node ref [z].parent← p
18: zpar[z]← p
19: node ref [p].Area← node ref [p].Area+ node ref [z]
20: end if
21: end if
22: else if f(q) = qi then
23: if zpar[q] ̸= −1 then
24: r ← FindRoot(q)
25: if r ̸= p then
26: node ref [r].parent← p
27: zpar[r]← p
28: node ref [p].Area← node ref [p].Area+ node ref [r].Area
29: end if
30: end if
31: end if
32: end for
33: end for
34: end procedure

Algorithm 11 Descend Roots [20]

1: procedure Descend Roots(Pixel q, int i)
2: c← q
3: while f(node qu[c].parent) > i do
4: c← node qu[c].parent
5: end while
6: return c
7: end procedure

11

3 Implementation

For the implementation, we focused on combining the algorithms described in Sections 2.3
and 2.4. The implementation is split up in different phases: Interpolation, image converting,
sorting, creating quantized image, making the quantized tree, refining the tree, and filtering.
The first 2 phases have been implemented in C based on the pseudocode from [15], the other
phases were present in Moschini’s source code [20] and made compatible during this research.

3.1 Interpolation

As described in section 2.2, interpolation is the process of assigning values between pixels. To
create a parallel implementation we evenly split up the image over the specified number of
threads. So each thread is responsible for its distinct region. We add the desired number of
faces for every pixel. In 2D, this means that an additional 15 values are added. There are
multiple options for which in-between values are managed per pixel, as long as every pixel can
operate independently. The in-between values are managed as seen in Figure 5. An important
thing to note here is the high memory cost. For a 2D image, a grid will be created that is 16
times the size of the input, for 3D it is even 64 times the size of the input. In this grid, intervals
are used which means that 2 values can be held per in-between value. This means that the total
memory for the interpolated image is the input image size times 32 for 2D and times 128 for 3D.
Since we want to use big data for the parallel tree of shapes, the memory cost can be quite
expensive. This can be seen as a bottleneck for this algorithm.

Figure 5: The values are divided in this way when running interpolation in parallel. For every
primary pixel the corresponding values are calculated.

3.2 Converting the image

The algorithm of the image conversion that we are focusing on in this section can be seen in
Algorithm 7. As described in section 2.3, the goal of this phase is to convert the input image
such that the tree of shapes of the input image is the same as the max tree of the output image.
This means that flat zones deeper in the image should have higher values. We have
implemented this algorithm and looked at the results. Our implementation of the algorithm
correctly converts the input image to be compatible with the parallel max tree algorithm that
we will discuss further in section 3.3. Examples of the conversions can be seen in Figure 6.
However, some difficulties arose when using this algorithm. This has caused us to make some
changes to the algorithm. In this section, we will go over some bottlenecks of this algorithm and
the changes that were made to work around them.

The first bottleneck is the recursive nature of the algorithm. In theory, recursion works perfectly
fine and can result in an algorithm that visits all pixels with optimal time efficiency. In reality,
recursion has some disadvantages. In the worst-case scenario, this algorithm creates threads in
the order of n where n is the size of the input image. This can be inefficient in both memory

12

and time complexity. Different threads are responsible for different subtrees, but if these
subtrees are not big enough, the overhead of creating the thread is not worth handling the small
subtree. And if more threads are running than there are cores on the machine, there will be less
speedup. Not only that, but every thread needs its own set of queues. Which can cost a lot of
memory. We will talk about the memory cost of queues in the next paragraph. So in short, such
a high number of threads is undesirable. To work around this problem we changed the
algorithm. The changed algorithm uses a main thread that fires child threads. These child
threads handle subtrees and once they are done, new threads can be fired. The downside of this
approach is that we do not know what part of the data the child threads are handling. This can
result in a load-balancing problem where one child thread handles almost all of the image. This
can also be seen in the results in section 4. Since this approach was not optimal we tried
another approach. In this approach, we would keep track of how many threads are running and
not use a main thread. This way when one thread is done, another thread can fire from any
thread. Theoretically, this helps with the load-balancing problem that we had. However, using
more threads resulted in a longer computation time with this approach. This was likely caused
by the overhead of small subtrees and constant checking of the number of threads. Because the
computation time increases with this approach, the previous approach is used where one thread
handles most of the image. Theoretically, this problem can be solved by figuring out where the
’holes’ in the image are and assigning threads to those areas. This will cost some computation
time but allows for better parallelization. This task is currently out of scope for this research
and therefore has not been looked into further.

Another bottleneck that ties in with the high number of threads is the high memory cost of
queues. In the queues seen in Algorithm 7, we store the pixels to be pushed. It is impossible to
know beforehand which pixels are going to be pushed and at what value, so the queues for all
values should be created beforehand. This holds for every thread. This means that every thread
needs a queue of the size of the interpolated image. Since the interpolation already has a high
memory cost, this causes the memory cost to increase even further. This could only be
prevented by knowing which flat zones you have beforehand. Since we have not researched this
further, this research adjusts the input image size to still allow us to see the increase in
performance by parallelization but uses a reasonable amount of memory on a high-performance
cluster. The amount of memory that will be used will be in the range of 100GB to 1TB.

We can conclude that this conversion algorithm has some difficulties with both memory and
time complexity when applied in practice. This can cause this phase to be a bottleneck in the
complete algorithm.

3.3 Max-tree

This section goes over the remaining phases that were mentioned in the introduction of
Section 3: sorting, creating a quantized image, making the quantized tree, refining the tree, and
filtering. This is all part of the parallel max tree algorithm from [20]. The main thing about
implementing the max tree algorithm in this tree of shapes algorithm is adjusting the input,
which is done in the previous phases. This input can simply be used in the max-tree algorithm
like normal. The final step in Algorithm 6 is canonicalizing, which compresses the paths of the
tree and de-interpolates the output. In this research, we do not need to worry about this since
Moschini et al’s algorithm [20] already applies path compression in FIND ROOT as seen in
Algorithm 2. This is beneficial since the canonicalize function from Crozets algorithm [15] did
not run in parallel. The output of this max-tree algorithm is the final tree of shapes.

13

(a) Original image (b) Re-valued image

(c) Original image (d) Re-valued image

Figure 6: Original images (a, c) and the associated Ford (b, d) computed by the ParallelSort
function [15]

.

4 Results

In this section, we will focus on the speedup of the algorithm. Checking the time it takes to
complete each phase with different numbers of threads. The results of the algorithm are shown
in Figure 7. The computation times of all phases are shown in Figure 7a, the total is shown in
Figure 7b. For these results, we looked into the computation times of using different numbers of
threads, namely: 1, 2, 4, 8, 16, 32, 64, and 80. Doubling the number of threads can effectively
show a difference in computation time. Lastly, we used 80 threads because that was the number
of cores available on the node. To minimize outliers we ran the algorithm twice and took the
minimum computation time. Lastly, we calculated the speedup of the total computation time as
seen in Figure 7c.

As seen in Figure 7b using a higher number of threads decreases the total computation time.
This also holds for most phases as seen in Figure 7a. Due to the bottleneck issues discussed in
Section 3.2 and the overhead of creating threads, the computation time for the conversion phase
increases with the total number of threads. This is seen in the black plot in Figure 7a.
Therefore we also show the sequential approach for this phase. That is why one plot of the
conversion phase is almost flat and the other increases. The small changes in the sequential plot
would decrease if we take an average of runs, but it is clear that the performance of this phase
does not change much, since it always uses the same sequential approach. Another thing to note
is that generating the quantized image takes longer after 16 threads. When creating the
quantized image, it will first be decided how many levels the quantized image will be. If the
number of quantized levels is lower than the number of threads, the algorithm then uses another
method that sacrifices load balancing. This causes the increase in computation time seen in
Figure 7a. After 32 threads the total computation time starts to increase. Most phases already
run with a very low computation time, this means that there is not enough speedup to
compensate for the increase in computation time for the conversion and quantized image phase.

14

(a) The computation time of all phases

(b) The total computation time with the sequential and parallel
converting phase

(c) The speedup of the algorithm with the sequential and parallel
converting phase

Figure 7: Computation time of all phases (a) and in total (b), as well as the speedup of the total
computation time (c)

.

15

The optimal speedup of an algorithm is linear with the number of threads. In Figure 7c we see
that the speedup is not really linear. For two threads it is almost linear but for more threads
the speedup does not increase as much. We see that we almost get the same speedup as the
original algorithm in [15] which was a speedup of 3 on 4 threads compared to our 2.6. The
difference most likely lies in the quantization steps. These were not used in the max tree
algorithm that was used for the tree of shapes algorithm [15].

5 Conclusion

In this research, we have focused on the parallel creation of the tree of shapes. This consists of
different phases that should all be parallelizable. This includes the interpolation of the image to
assign values in-between pixels and converting the image such that the tree of shapes of the
input is the same as the max tree of the output. The interpolation and conversion were both
proposed in [15]. In Section 4 we see the speedup of every phase. Here we see that all phases
benefit greatly from parallelization, except for the converting phase. The speedup is not optimal
(linear with respect to threads), but still shows a great improvement compared to the sequential
algorithm. This converting phase was proposed in [15] and has some difficulties causing it to be
the bottleneck of this algorithm. Section 3.2 explains the difficulties in more detail. This
algorithm also has an undesirable memory cost. This is caused by the high cost of interpolation
and queues. This algorithm can easily get a memory use over 1000n where n is the image size.
And this will only get more complex when using 3D images. Since the complexity of 2D images
is already high, it is not an algorithm that would work well for 3D images.

6 Future work

As mentioned in the conclusion this algorithm currently has a bottleneck in the phase where the
image gets converted such that the tree of shapes of the input is the same as the max tree of the
output. So the key part that needs more research is this phase. Currently, it is hard to achieve
good load balancing. In future research, it might be useful to look into a parallel algorithm that
identifies the flat zones in the image. Using this it is possible to find the gaps in the image.
With the gaps in the image, it is possible to fire child threads that handle the gaps. It could
also be used to identify the amount of memory you will need in advance, which could heavily
reduce memory costs.

Due to the high memory cost, this algorithm only works on 2D images and has not been
implemented to work with 3D images. In the future, especially if the load balancing can be
fixed, looking into implementing 3D functionality would be worthwhile.

16

References

[1] Thierry Géraud, Edwin Carlinet, Sébastien Crozet, and Laurent Najman. A quasi-linear
algorithm to compute the tree of shapes of n d images. In International symposium on
mathematical morphology and its applications to signal and image processing, pages 98–110.
Springer, 2013.

[2] Coloma Ballester, Vicent Caselles, and Pascal Monasse. The tree of shapes of an image.
ESAIM: Control, Optimisation and Calculus of Variations, 9:1–18, 2003.

[3] Plamenka Borovska and Milena Lazarova. Efficiency of parallel minimax algorithm for game
tree search. In Proceedings of the 2007 international conference on Computer systems and
technologies, pages 1–6, 2007.

[4] Markus Götz, Gabriele Cavallaro, Thierry Géraud, Matthias Book, and Morris Riedel. Par-
allel computation of component trees on distributed memory machines. IEEE transactions
on parallel and distributed systems, 29(11):2582–2598, 2018.

[5] Edwin Carlinet and Thierry Géraud. A comparative review of component tree computation
algorithms. IEEE Transactions on Image Processing, 23(9):3885–3895, 2014.

[6] Ch Berger, Th Géraud, Roland Levillain, Nicolas Widynski, Anthony Baillard, and Em-
manuel Bertin. Effective component tree computation with application to pattern recognition
in astronomical imaging. In 2007 IEEE international conference on image processing, vol-
ume 4, pages IV–41. IEEE, 2007.

[7] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM (JACM), 22(2):215–225, 1975.

[8] Françoise Dibos and Georges Koepfler. Total variation minimization by the fast level
sets transform. In Proceedings IEEE Workshop on Variational and Level Set Methods in
Computer Vision, pages 179–185. IEEE, 2001.

[9] Ronald I Becker, Stephen R Schach, and Yehoshua Perl. A shifting algorithm for min-max
tree partitioning. Journal of the ACM (JACM), 29(1):58–67, 1982.

[10] Jǐŕı Havel, François Merciol, and Sébastien Lefèvre. Efficient schemes for computing α-tree
representations. In Mathematical Morphology and Its Applications to Signal and Image
Processing: 11th International Symposium, ISMM 2013, Uppsala, Sweden, May 27-29, 2013.
Proceedings 11, pages 111–122. Springer, 2013.

[11] Roberto Souza, Lúıs Tavares, Let́ıcia Rittner, and Roberto Lotufo. An overview of max-tree
principles, algorithms and applications. In 2016 29th SIBGRAPI conference on graphics,
patterns and images tutorials (SIBGRAPI-T), pages 15–23. IEEE, 2016.

[12] Pascal Monasse and Frederic Guichard. Fast computation of a contrast-invariant image
representation. IEEE transactions on image processing, 9(5):860–872, 2000.

17

[13] Vicent Caselles, Enric Meinhardt, and Pascal Monasse. Constructing the tree of shapes
of an image by fusion of the trees of connected components of upper and lower level sets.
Positivity, 12(1):55–73, 2008.

[14] Enric Meinhardt Llopis et al. Morphological and statistical techniques for the analysis of
3d images. 2011.

[15] Sébastien Crozet and Thierry Géraud. A first parallel algorithm to compute the morpho-
logical tree of shapes of nd images. In 2014 IEEE International Conference on Image
Processing (ICIP), pages 2933–2937. IEEE, 2014.

[16] Efim Khalimsky, Ralph Kopperman, and Paul R Meyer. Computer graphics and connected
topologies on finite ordered sets. Topology and its Applications, 36(1):1–17, 1990.

[17] Fernand Meyer. Un algorithme optimal de ligne de partage des eaux. Actes du, 2:847–859,
1991.

[18] Michael HF Wilkinson, Hui Gao, Wim H Hesselink, Jan-Eppo Jonker, and Arnold Meijster.
Concurrent computation of attribute filters on shared memory parallel machines. Ieee
transactions on pattern analysis and machine intelligence, 30(10):1800–1813, 2008.

[19] Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM (JACM), 30(4):852–865, 1983.

[20] Ugo Moschini, Arnold Meijster, and Michael HF Wilkinson. A hybrid shared-memory
parallel max-tree algorithm for extreme dynamic-range images. IEEE transactions on
pattern analysis and machine intelligence, 40(3):513–526, 2017.

[21] Philippe Salembier, Albert Oliveras, and Luis Garrido. Antiextensive connected operators
for image and sequence processing. IEEE Transactions on Image Processing, 7(4):555–570,
1998.

18

	Introduction
	Background
	The first algorithm
	Creating the tree of shapes sequentially
	Creating the tree of shapes in parallel
	Parallel max-tree algorithm

	Implementation
	Interpolation
	=Converting the image
	=Max-tree

	Results
	Conclusion
	=Future work

