university of faculty of science artificial intelligence
gﬁ,&“g / groningen / and engineering /

APPLYING HEBBIAN LEARNING IN SYSTEM CONTROL
FOR NEUROMORPHIC COMPUTING

Bachelor’s Project Thesis

Jochem Klaas Kerssies, s3677281, j.k.kerssies@student.rug.nl,
Supervisor: MSc J.J.M.A. Timmermans

Abstract: Last decades, substantial resources have been allocated to developing more capable Al
systems, often resulting in larger models with an increased number of parameters. This trend has
led to significant energy consumption, raising environmental concerns. Current machine learning
models, based on artificial neural networks, rely heavily on energy-intensive training methods
such as backpropagation. In contrast, the human brain can operate more efficiently, as it does
not use backpropagation. Hebbian learning is a learning method that is biologically plausible and
is inspired by the brain. The theory behind Hebbian learning is that the connections between
simultaneously active neurons are strengthened. This report explores Hebbian learning as an
alternative to backpropagation. In previous research, Hebbian learning has been used often in
combination with Hopfield networks. However, there is not a lot of research focused on the use
of Hebbian learning for neuromorphic computing. In this report, an adaptation of the standard
Hebbian learning rule called Oja’s rule is used, which normalizes weight changes. Utilizing this
approach, a single-layer perceptron is trained to play multiple adapted versions of the Chrome
Dino game, testing the feasibility of Hebbian learning for simple control tasks. The network
proved to be capable to some simplified versions of the game, but it did not succeed in learning
the more complicated versions. Investigation of this resulted in a mathematical problem that is

inherent to the design of the network and the way the state of the game is observed.

1 Introduction

In the past decades, many resources have been ded-
icated to creating more capable Al systems. These
systems have increased in performance, in part,
by creating bigger networks with more parameters
each year. According to Villalobos et al. (2022),
model sizes have increased by around 0.1 order of
magnitudes per year between 1952 and 2018. While
these systems boast impressive capabilities, they
come with a hefty energy cost, contributing signifi-
cantly to environmental concerns due to their high
energy consumption.

The multi billion parameter machine learning
models mentioned above are similar to the brain in
that they consist of many interconnected neurons.
However, training these systems is often done with
methods like backpropagation and other gradient
based learning methods. These methods are very
capable, but are not energy efficient. Compared to

these types of learning, the brain functions a lot
more on the principle of "neurons wire together if
they fire together” (Lowel & Singer, 1992). This
was first introduced by Donald Hebb in the book
The Organization of Behavior (Hebb, 1949). His
theory claims that the synaptic connection between
two neurons increases if the pre-synaptic neuron re-
peatedly assists in firing the post-synaptic neuron.

The theory from Hebb is based on the order and
grouping between neuron activations. The connec-
tions between neurons that often fire together is
strengthened over time. A form of learning has been
built upon this theory called Hebbian learning. In
contrast to backpropagation, Hebbian learning is a
biologically plausible and ecologically valid learn-
ing mechanism (Munakata & Pfaffly, 2004). Heb-
bian learning is based on neurons and the brain,
and can be used to find correlations in the train-
ing data by strengthening the connections between
neurons. Hebbian learning is used often in combina-

tion with Hopfield networks (Watson et al., 2009;
Centorrino et al., 2022), but it can also be used
to train single-layer perceptrons. In this report, a
single-layer perceptron is used in combination with
Hebbian learning to train the network. The basic
Hebbian learning rule can be seen in equation 1.1.

Awij =1-a;a; (11)

In this equation, Aw;; defines the change of the
weight between nodes ¢ and j. n is the learning
rate and a; and a; are the activations of the two
connected nodes.

Although this equation describes the basics of
Hebbian learning, there is a problem with this for-
mula. Weights can increase indefinitely and there-
fore become infinitely large. To rectify this, I will be
using Oja’s learning rule in this report (Oja, 1982).
Oja’s rule is a variation on the basic Hebbian learn-
ing rule and is shown in equation 1.2.

Aw; =n-a;(a; — ajwg;) (1.2)

This equation will limit the weights to be in the
same range as the activations of a; and therefore
solve the problem of the infinitely large weights.

One of the advantages of Hebbian based learning
algorithms, is that all the learning is local in na-
ture. Each weight updates its strength based solely
on the activity of the two nodes it connects, without
requiring information from other parts of the net-
work. This locality is particularly advantageous for
implementation in neuromorphic computing sys-
tems. To achieve these neuromorphic computing
systems, memristors are needed. Memristors are an
electrical component that could simulate a connec-
tion between two neurons, as it has a resistance that
is changed by the past electrical flow through itself.
The creation of nanoscale memristors opens up the
possibility of creating these large-scale analog neu-
ral networks (Serrano-Gotarredona et al. (2013)).
These systems would be biologically plausible and
compared to the current multi billion parameter
neural networks, have the potential to be a lot more
energy efficient.

In this report, I use the Hebbian learning princi-
ple to train a single-layer perceptron on an adap-
tation of the ”Chrome dinosaur game” (Google,
2018). This game was chosen as a toy problem for
this research as it is a simple game with a small
problem space. The goal of this research is to see

whether Hebbian learning can be used for system
control. If the network with Hebbian learning is ca-
pable of learning the game, it would be advanta-
geous to see if it can be scaled up to larger net-
works with more complicated problems. If Hebbian
learning could be implemented successfully on large
scale memristor based networks, this could result
in systems that are extremely efficient to train and
run, as there is no separation between memory and
computation. Also, there would be no heavy and
costly gradient calculations needed, which will also
result in faster training. The code and data used
in this report is available and can be found in my
Github repository™.

2 Method

2.1 Dino Game

The Chrome Dino game is a well-known endless
runner game embedded in Google Chrome. The
game consists of a player and different types of
obstacles coming towards the player. The goal of
the player is to avoid collisions with these obstacles
as long as possible, either by jumping over them
or by ducking under them. In the Chrome Dino
game, the player is represented by a T-Rex. Fur-
thermore, there are 9 types of obstacles, of which 6
are cacti and 3 are pterosaurs. The cacti obstacles
are all on the ground and vary slightly in width
and height. The pterosaurs, which are flying di-
nosaurs, are all the same, but can be at three dif-
ferent heights. The pterosaur can be flying close to
the ground, in the middle of the game environment
or high up in the game environment. The player has
three possible actions: a short jump, a long jump
and ducking. The jump actions are used to avoid
all the cacti obstacles and the pterosaurs at the
lowest position. The middle position pterosaur can
be avoided either by ducking or jumping. The high
flying pterosaur does not have to be avoided, be-
cause the "nothing” action results in the player go-
ing underneath it. All low obstacles can be avoided
by utilizing a short jump, however, the timing be-
comes extremely critical. Therefore, most human
players will use the long jump whenever it it pos-

*The Github repository containing all the code:
https://github.com/JochemK1999/Hebbian-Learning-for-
System-Control

Figure 2.1: Schematic of 5 detectors showing the
4 different signals they can emit. The first de-
tector is detecting nothing, the second and third
detector are detecting a low obstacle, the fourth
detector is detecting a middle obstacle and the
fifth detector is detecting a high obstacle. The
emitted signals are shown above the detectors

sible. The only time it is not possible to use the
long jump, is when there are two obstacles follow-
ing each other up in quick succession. This would
result in the player landing on the second obstacle,
ending the game.

To be able to control the Dino from a neural
network, the network needs to be able to know the
state of the game to determine the next action. To
capture the state of the game, multiple detectors
are used. These detectors are placed at certain dis-
tances away from the Dino. Each detector can emit
4 different signals, corresponding to if it is detecting
an obstacle and at which height. This can be seen
in figure 2.1, along with the signals that are emitted
by the detectors when they detect an obstacle.

To simplify training and testing I extracted all
possible problem states from the game. This way, 1
could start by training the network on the simplest
versions of the game and increase the complexity if
the algorithm could successfully learn the previous
scenarios.

I started with 6 detectors divided over two clus-
ters (see figure 2.2). The first cluster is close to the
player, which would give information about the di-
rect action that needs to be taken. The second clus-
ter is further down the line, these detectors provide
information on whether the player could do a long
jump or that it would have to do a short jump to

12 3 4 5 6
Figure 2.2: Schematic of the Chrome Dino game
with 6 detectors. There are two cacti obstacles,
one on detector 2 and one on detector 6

ensure landing in time to jump again. There can
only be at most one active detector in each cluster
as the spacing between detectors is greater than
the width of the obstacles. Therefore a single ob-
stacle cannot trigger two detectors simultaneously.
On the other side, the distance between two obsta-
cles is always greater than the width of a cluster,
so therefore there will never be two obstacles in a
cluster at the same time. This way of not watching
the entire game but only looking at a couple impor-
tant places is also something that human players do
when judging fast moving objects. A study looking
at cricket players has shown that they do not watch
the ball the entire time, but instead focus on a cou-
ple of key points to predict where the ball will go
(Land & McLeod, 2000).

When setting up for the experiment, I created
two versions of the game, with different levels of
complexity. The first version (see section 2.2) con-
tains only low obstacles, the second version (see
section 2.3) contains low and middle height of ob-
stacles.

2.2 Low obstacles game

In the low obstacle game, I removed the pterosaurs,
resulting in the game only containing cacti as ob-
stacles. Therefore, the only action the player would
need to avoid the obstacles would be the jump ac-
tions. Theoretically, the player would not even need
the long jump action, as a system with perfect tim-
ing could use the short jump to jump over all ob-
stacles just in time. Because there can only be one
obstacle in each cluster at a time (see section 2.1),
there are 16 possible inputs. There is 1 possible in-
put for when there is nothing detected, 3 possible
inputs for when there is a cactus in the first cluster,
3 possible inputs for when there is a cactus in the

second cluster and 9 for when there is a cactus in
cluster 1 and a cactus in cluster 2.

For most inputs, the desired action follows logi-
cally from the game. However, in the training data I
simulated having non-perfect human players by in-
troducing some variability. This was simulated by
having data points in the training data that might
not cause a collision with a cactus, but would not be
the optimal action as it would result in a near-miss.
These data points are all the data points when there
is a cactus detected at detector 3. A short jump
would result in the player jumping over the cactus,
but it would be very close. Because this jump does
not result in a collision with the cactus, it could be
in the training data when gathering data from ac-
tual humans. To represent the players variability in
the training data, the action for when there is a cac-
tus at detector 3 has a 25% chance of being ”short
jump” and a 75% chance of being ”nothing”. Sim-
ilarly to how the human player might sometimes
jump early, the player might also jump late. A late
jump would happen when the player jumps when
the cactus is at detector 1. If this were to happen
however, the action would always be ”short jump”
as the action continues to be short jump even when
the jump event has started. Therefore, if a short
jump was initiated at detector 2 or 3, the action
would still be ”short jump” at detector 1.

For the low obstacle game, I created two differ-
ent datasets. The first dataset contains only the
”short jump” action. The second dataset contains
both the ”short jump” and ”long jump” action. For
the second dataset, the ”long jump” action was se-
lected when there was a cactus in the first clus-
ter but not in the second cluster. When there is
a cactus in both the first and the second cluster,
the ”short jump” action was selected, regardless of
where in the second cluster the cactus was. For all
cases though, if the obstacle in the first cluster was
at position three, there would still be a 75% chance
of the action being "nothing”.

2.3 Low and Middle Obstacles game

For the low and middle obstacles game, the
pterosaurs at the medium height were kept in the
game. The network could avoid these by either
jumping or by ducking, but for the purpose of val-
idating if the network could learn to duck as well,
7duck” was chosen as the desired action. Similar

to the low obstacles game (see section 2.2), there
can be at most one obstacle in each cluster at a
given time. However, due to the possibility of this
obstacle being at a "middle” height, the number of
possible inputs increases to 49. The actions for each
input again followed logically from the game, with
the added premise that the network should predict
the ”duck” action if there is a pterosaur in the first
cluster. The 25% - 75% distribution was kept when
there was a ”low” obstacle on detector 3.

In the training data for the low and middle ob-
stacle game, all possible inputs occur only once.
However, when training data would be gathered by
observing a player playing the game, some inputs
would have a lot bigger probability of occurring
than others. This happens because of the way new
obstacles are spawned in the game. To represent
this, a new training set was created based upon the
training set for the low and middle obstacle game.
In this case, each input pattern was given a prob-
ability of occurrence in the real game. The game
does not create obstacles equally, as there are more
cacti spawned then there are pterosaurs spawned.
A distribution of 80-20 was chosen to represent this
in the training data. This means that for each clus-
ter in which an obstacle is detected, there is an 80%
chance of the obstacle being a ”low” obstacle and
a 20% chance of the obstacle being a ”middle” ob-
stacle. The probability of there being an obstacle in
a cluster was 50%. The final probabilities for each
input can be seen in table 2.1. Finally, the location
of the obstacle in the cluster was randomized, with
an equal probability for each location. With these
values, the probability of an input occurring during
the game for each of the 49 possible inputs was cal-
culated. The training set was created by generating
2000 data points based on these probabilities, gen-
erating a more realistic training set that could be
created by recording the moves of a human player
playing the game.

2.4 Learning rule

As mentioned in section 1, The learning rule used
in this report will be Oja’s rule. Oja’s rule ensures
that all weights will be limited to be in the same
range as the activations of a;. For the experiments
in this report that means that the values of the
weights are limited between -1 and 1.

Aw;j =n-a;(a; — a;w;j) (2.1)
In this equation, Aw;; describes the change of the
weight between node ¢ and node j as mentioned in
section 1. 7 is the learning rate and a describes the
activation of the neurons ¢ and j respectively. The
term w;; is the current weight between node i and
J. In this report, a; will always be -1 or 1, and a;
will always be 0 or 1. When a; is zero, no learning
for this output will take place. In equation 2.1, this
can be seen by the first occurrence of a;. When a;
is 0, (a; — ajw;;) will be multiplied by 0, resulting
in a Aw;; of 0. This also results in the part between
brackets to only be important when a; is equal to 1.
As a; is multiplied with w;; before the subtraction
happens, the equation can be simplified to equation
2.2, as a multiplication with 1 does not change the
value of wj;.
Awij =1 - a;(a; — wi) (2.2)
From this equation and the knowledge that a;
will either be 0 or 1, we can deduce that if a; is
equal to 1, Aw;; will become closer to zero the
closer the weight, w;;, comes to the activation value
of i, a;.

2.5 Network structure

Hebbian learning trains a neural network by adapt-
ing its weights. It updates these weights by using

Table 2.1: The probability of each input occur-
ring in the training data. The first and second
column show the signal generated by one of the
detectors in the cluster, the P;,,,; column shows
the probability of this input occurring in the
game.

Cluster 1 | Cluster 2 | Pipput
Nothing | Nothing | 0.25
Nothing | Low 0.2
Nothing | Middle 0.05
Low Nothing | 0.2
Low Low 0.16
Low Middle 0.04
Middle Nothing 0.05
Middle Low 0.04
Middle Middle 0.01

the activation values of the two connected neurons.
The network used in this report consists of nodes,
which represent the neurons in the human brain.
Because of the chosen learning rule for this report
(see section 2.4), the network can only learn weights
between nodes of which the activations are present
in the training data. Therefore the decision was
made to use a single layer perceptron.

To calculate the activation of output node aj,
the sum of all input activations a; are multiplied
by their corresponding weights w;;. This can also
be seen in equation 2.3

%
aj: E aiwij
n=0

The state of the game is represented by 6 de-
tectors, each of which can be in 1 of 4 states. The
4 states, except for the "nothing” detection state
could be argued as being ordinal inputs because
they describe the height of the coming obstacle,
but it can also be seen as categorical input as they
describe 3 different types of obstacles coming to-
wards the player. For this report, the inputs have
been used as categorical inputs. Because a single
binary input cannot represent these 4 categorical
inputs, 3 input nodes were used for each detector.
When a low obstacle would be detected, the first
of the three input nodes would activate, whilst the
other two stayed inactive. With a middle or high
obstacle, input nodes 2 or 3 would activate, whilst
the rest stayed inactive. When no obstacle is de-
tected, all nodes stayed inactive. With 6 detectors,
this results in the network having 6*3 = 18 in-
put nodes. The output of the network consists of
4 nodes which represent the 4 actions a player can
take: doing nothing, making a short jump, making
a long jump and ducking. A schematic of the net-
work can be seen in figure 2.3.

When an input node activates, its activation
value becomes 1. When it is inactive, this activa-
tion value could take on an activation value of 0 or
-1. There is a big difference between these two op-
tions, which can be seen when we look at the learn-
ing rules. When an input node takes on an activa-
tion value of 0, it will multiply 0 with all weights.
This would mean that the summand corresponding
to this detector is zero in the forward calculation
sum (see equation 2.3). Therefore is not really part
of the decision of the network. This means that the

(2.3)

High
Detector 1 Middle
Low
High . ‘&%
P
RN
Detector 2 Middle A“‘\"’A
Low
High
Detector 6 Middle
Low

Figure 2.3: The network architecture of the sin-
gle layer perceptron. On the left are the input
nodes. There are 6 groups of 3 nodes, 1 group
for each detector and 1 node in each group for
each signal. On the right are the 4 output nodes,
one for each of the possible actions

network would only be able to make decisions based
on inputs that are active. For our game, it would
mean that it would only be able to make decisions
based on detected obstacles. This however would
not work for the Dino game, as the decision be-
tween a short and long jump depends on whether
or not there is an obstacle in the second cluster of
detectors. I wanted the network to be able to act
on both there being an obstacle, as well as there
not being an obstacle. With the activation value
of -1, the network multiplies the weights with -1,
meaning the summand would not be constrained to
zero and the network can make decisions based on
the these inputs. This is also something that can be
seen in the human brain. Besides the normal excita-
tory neurons in the human brain, there are also in-
hibitory neurons (Swanson & Maffei, 2019). These
neurons do the opposite of excitatory neurons and
inhibit other neurons from firing, therefore being
similar to a negative activation value.

2.5.1 Linear separability

Single layer perceptrons are simple, but have a cou-
ple of drawbacks. The most prevalent is that sin-
gle layer perceptrons are only capable of learning
problems that are linearly separable (given linear
inputs). This can be circumvented by having com-
binations of inputs as their own inputs, but having
combinations increases the number of input nodes
with (3) where n is the number of the original
inputs. With these added inputs, the number of
weights increases quadratically with respect to the
original number of inputs. Therefore it would be
preferable that the data is linearly separable. To
check if the data is linearly separable, I trained a
support vector machine on the validation data for
the low obstacle game (see section 2.2). This re-
sulted in an accuracy of 1.0. An accuracy of 1.0
indicates that the data is fully linearly separable.
The same was done for the validation set of the low
and middle obstacle game (see section 2.3), which
also resulted in an accuracy of 1.0.

2.6 Preliminary Testing

Before testing the network on the two game vari-
ants described in sections 2.2 and 2.3, multiple
preliminary tests where performed. These tests in-
cluded the same type of detectors as described in
section 2.1. In contrast to what is described there,
the versions used for preliminary testing used be-
tween 10 and 25 detectors, divided evenly across
the playing field. The theory behind this was that it
was the easiest space representation that also didn’t
depend on the specific placement of the detectors.
Training data for these networks was gathered by
recording the actual moves of a player whilst play-
ing the game. The last datapoints were always re-
moved from the training data to exclude the player
actions that resulted in the collision of the player
with an obstacle. The first test was using the stan-
dard Hebbian learning rule (see equation 1.1). For
the activations, an activation of 1 was chosen when
the detector detected an obstacle, and an activation
of 0 when there was no obstacle detected. The game
was setup in such a way that there were never two
obstacles coming in quick succession. This meant
that there was always at most one obstacle within
the detectors. The network was able to learn this
version of the game completely and jumped and

ducked at the right moments in all possible scenar-
ios. For all further testing, the obstacles would be
created in quicker succession, resulting in at most
two obstacles being present within the detectors.
With the standard Hebbian learning rule and the
same activations, the network was not able to learn
the game. When analyzing the weights of the net-
work, the weights for the "nothing” action when
there is a cactus far away, are a lot bigger than the
weights for ducking when a pterosaur is close. This
happens because the probability of the obstacle be-
ing a cactus is a lot higher than being a pterosaur.
Therefore when there is a cactus far away, there will
be an obstacle close by the player and the probabil-
ity of the obstacle close to the dino being a cactus is
higher. This results in the weights connecting the
far away ”"low” detectors training more than the
closeby "middle” detectors. Therefore, when there
is only a pterosaur in the detection field, it will
duck. However, when there is a pterosaur close by
but a cactus far away, it will choose the "nothing”
action, as the weight for the "nothing” action far
outweighs that for ducking. To prevent these large
weights, the switch was made to Oja’s learning rule
as Oja’s learning rule constrains the weights in the
same range as the activation values. This changed
the results, but the network was still not able to
play the game. In the scenario where it had to
duck under a pterosaur, but there was a cactus far
away, the network decided that the best action was
jump. This resulted in the network jumping into the
pterosaur and causing a collision. As this network
was trained on a training set generated by recording
the moves of a human player, I suspect this has to
do with the probabilities in the training data. Be-
cause in the training data, when there is a cactus
at the end of the game, the probability of there be-
ing a cactus close to the player is higher than the
probability of there being a pterosaur. This cor-
relation is stronger than the correlation with the
pterosaur that is actually at the front, resulting in
the dino jumping. Finally, the switch to a negative
activation of -1 when there was nothing detected
was made. This was because of the realization that
when the activation is 0, these detectors are of no
influence to the descision making process. I wanted
the network to be able to make predictions on ob-
stacles that were presenent, but also on the infor-
mation that there were no detectors present. How-
ever, this ultimatly also didn’t result in the network

being able to play the game.

3 Results

3.1 Low obstacles game

The network was trained on the two datasets asso-
ciated with the low obstacles game, as described in
section 2.2. To test the performance of the network
on these datasets, a validation set was created for
each dataset. The validation set contains all pos-
sible inputs to the network, alongside their desired
action. This is largely the same as the training data,
with the exception of all inputs where the desired
output was based on probability. For these data
points, the output with the highest probability in
the training data was chosen.

For the data set without the ”long jump” ac-
tion, the network was trained with a learning rate
of 0.01 over 10 epochs. The network was used to
predict the desired action depending on the inputs
in the validation set and this was compared with
the desired actions in the validation set. The accu-
racy of the predictions of the network on the vali-
dation set were recorded after each epoch and can
be seen in figure 3.1. In this figure, you can see that
the network starts with an accuracy of 0.5, which
is expected as the "nothing” action is expected for
half of the inputs in the validation set. The net-
work’s accuracy increases until after epoch 3, after
which it stays the same again until epoch 6. After
epoch 7, the accuracy increases to 1. This means
the network has learned the entire dataset.

When the network is trained on the data set with
the ”long jump” action, the accuracy increased and
decreased over time (see figure 3.2). The network
was trained with a learning rate of 0.01, but over 40
epochs this time to reach a point where all weights
had converged. After the first epoch the network’s
accuracy increases to 0.875. After epoch 23 this in-
creases to 1. However, when the network continues
training, the accuracy drops again to 0.625 after 33
epochs.

3.2 Low and medium obstacles game

For the low and medium obstacles game, the net-
work was trained first on the dataset in which each
input occurred equally often. A new validation set

Accuracy
04 06
L

0.2
L

0.0
L

Epoch

Figure 3.1: The accuracy of the network predic-
tions on the validation set for the low obstacles
game without the ”long jump” action. The ac-
curacy of the network was measured after each
epoch. (learning rate = 0.01)

was created for this dataset, in the same way as for
the low obstacles game (see section 3.1).The net-
work was trained with a learning rate of 0.01 over
10 epochs. The results can be seen in figure 3.3.
The figure shows the accuracy of the model rising
after epoch 1 until epoch 5, after which it reaches
an accuracy of 1.

The network was also trained on the probabil-
ity based dataset, as described in section 2.3. As
this only changes the occurrence of all inputs in the
dataset, the same validation set as the one for the
low and medium obstacles game with the balanced

Accuracy
06
L

0.4
L

0.2

0.0
L

Figure 3.2: The accuracy of the network predic-
tions on the validation set for the low obstacles
game with the ”long jump” action. The accuracy
of the network was measured after each epoch.
(learning rate = 0.01)

Accuracy
04 06
L L

0.2

0.0
L

Epoch

Figure 3.3: The accuracy of the network predic-
tions on the validation set for the low and mid-
dle obstacles game with the balanced dataset.
The accuracy of the network was measured af-
ter each epoch. (learning rate = 0.01)

dataset can be used. With this dataset, the net-
work was trained with a learning rate of 0.001 over
10 epochs. The lower learning rate was necessary
due to the change in the size of the dataset. Train-
ing with a learning rate of 0.01 results in unstable
learning. With this data set, the network performs
poorly and only manages to reach an accuracy of
0.57 (see figure 3.4).

Accuracy
06
L

0.4

0.2

0.0
L

Epoch

Figure 3.4: The accuracy of the network predic-
tions on the validation set for the low and mid-
dle obstacles game with the probability based
dataset. The accuracy of the network was mea-
sured after each epoch. (learning rate = 0.001)

4 Discussion

4.1 Negative weight values

Something noticeable about the weights of the net-
work after training is that almost all weights have
converged to negative values, and the ones that
have not converged to negative values are close to
zero. When inspecting the weights of the network
after training the network on the low obstacle game
using the dataset without the ”long jump” action,
all weight values are negative (see figure 4.1). These
negative values can also be seen when looking at the
other versions of the game. The graphs for these fig-
ures can be found in the appendix. (see figures B.1,
B.2 and B.3). The negative values can be explained
when looking at the datasets. Due to the structure
of the game and the detector clusters, in each clus-
ter there will always be at most one detector detect-
ing an obstacle, whilst the other two are detecting
nothing. When there is an pterosaur in cluster 1
and the optimal action would always be ”duck”,
there will always be one detector training the rela-
tion of detecting an obstacle with the duck action,
whilst the other two detectors will train the relation
between the "nothing” signal and the duck action.
This results in the weight between the detector and
the duck action being negative. This problem can
perhaps be solved by changing the way the game is
observed, or by changing the network architecture
and activation values of the input nodes.

4.2 Architecture limitation

The current network architecture and input design
have a mathematical problem. In table 4.1, a selec-
tion of the weights of the network for the low and
medium obstacles game can be seen. All weights of
this game can be found in the appendix, see fig-
ure B.2. The weights in table 4.1 are the weights
connecting the detectors of the first clusters to the
actions "nothing” and ”duck”. If all other weights
would be equal, these weights would make the deci-
sion on weather the right action would be ”duck” or
"nothing”. When looking solely at the row of detec-
tor 1 in table 4.1, we can see that when the inputs
are multiplied by the weights, the output for the
duck action would be -0.3, whilst the output for the
“nothing” action would be -1. This indicates that
the network would predict that the optimal action

d2_1
d3_1
d4_1
d5_1
d6_1
dl_2
d2_2
d3_2
d4_2
d5_2
d6_2
dl_3
d2_3
d3_3
d4_3
d5_3
d6_3

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9

nothing jump

Figure 4.1: Weights of the network after train-
ing on the low obstacles game without the ”long
jump” action for 10 epochs with a learning rate
of 0.01. The labels on the y-axis are the names of
the detectors in the network. dx_y describes the
input for detector x with the signal y. y=1 repre-
sents a ”low” signal, y=2 represents a ”"middle”
signal and y=3 represents a ”high” signal. The
labels on the x-axis are the actions the network
can take.

would be duck. However, the other two detectors
have the same weight values and their inputs are
inverted compared to those of detector 1. This re-
sults in the output also being inverted. The outputs
from detector 2 cancels out the result of the output
of the first detector. This leaves the final output of
the cluster to be determined by the third detector.
As the third detector is also detecting nothing, the
output would be the "nothing” action. This is not
the desired output, as there is a pterosaur at the
first detector.

The problem described above is a limitation of
the network. Because of the lack of hidden layers,
the network cannot learn to combine the outputs
of the detectors within the clusters. The problem
could probably be solved by combining the outputs
of the detectors within each cluster together be-
fore passing it to the network. However, this would
mean the clusters would have to be predetermined,
making the network more specific towards this cer-
tain game.

Table 4.1: An example of an input calculated
through part of the network. d1_2,d2_2 and d3_2
are the inputs of the network corresponding to
”Middle” signal of the three detectors in the
first cluster. The weights are based upon, but
not the exact values of the trained weights from
the low and medium obstacle game with the bal-
anced dataset. The output is the result of the
input multiplied by the weights of the network.
The sum is the sum of the output values and the
output with the highest value it the predicted
action. In this table, the input corresponds to
detecting a pterosaur at the first detector.

Weights Output
Input | Nothing | Duck | Nothing | Duck

di2 |1 -1 -0.3 -1 -0.3
d2.2 | -1 -1 -0.3 1 0.3
d32 | -1 -1 -0.3 1 0.3
Sum |1 0.3

4.3 Successful learning of the ”short
jump” action

In the low obstacle game without long jump, we
can analyze the weights connected to the inputs of
the "low” signal from detectors 1, 2 and 3. When
the cactus is at detector 1 or 2, the action in the
dataset will always be jump. However, due to only
one of the two detectors having the positive value
of 1, the negative value (-1) of the other detector
will decrease the weight between itself and the jump
output. Because both scenarios occur equally often
in the dataset, these two cancel each other out, re-
sulting in the weights between the detector and the
jump output being around 0. When looking back
at figure 4.1, we can see that the value of these
two weights is indeed close to 0. The slight nega-
tive offset can be explained by the fact that when
the cactus is at detector 3, the action is jump 25%
of the time. At that moment, both detector 1 and 2
are negative, resulting in the weight between these
detectors and the jump action lowering.

In the low obstacle game without the long jump
action, the mathematical problem described in sec-
tion 4.2 does not seem to be happening, as the net-
work is able to fully learn the training data. This
is because, in contrast to the ducking action, the
jump action is not the desired action when a low
obstacle is detected at detector 3. As described in
section 2.2, this wouldn’t result in a collision but

would be a near miss and therefore ”"nothing” is
the desired action in this case. As described in 4.2,
the detectors 1 and 2 are still canceling each other.
But because the weight between detector 3 and the
“nothing” action is greater, the "nothing” action
has a lower value. The lower value is enough to tip
the scales in favor for the jump action, resulting in
the network predicting the right action.

4.4 Class imbalance in the training
data

When looking at the results of the low objects game
with the long jump dataset, we can see that the
network starts to classify everything correctly, but
after more training the score decreases. The rea-
son for this can explained by figure 4.2. The weight
values connecting all detectors, with the exception
of the weights connecting the ”low” signals from
detector 1, 2 and 3 with the long jump action, are
all around -0.8. These weights haven’t fully reached
their steady state yet and will continue to decrease
with more training, until they reach close to -1,
just like all the other states that only train neg-
ative relations. The reason the weights connected
to long jump take longer to converge to a stable
value is because they are less represented in the
dataset. There are only two or three (depending
on the 25% chance) actions with long jump in the
dataset, in comparison to the 6 to 9 short jump
and 4 to 8 "nothing” actions. When the network
is fully trained, it will always perform the action
”long jump” when there is a cactus at detector 1
or detector 2. This is because the main difference
in weights between between the ”jump” and ”long
jump” action are in the weights connecting detector
4,5 and 6 to these two actions. Here, the problem
described in section 4.2 arises.

4.5 Balanced dataset and the math-
ematical problem

On the low and middle obstacle game with the bal-
anced dataset, the network was able to learn when
to duck at the right time was because the desired
action when there was a cactus at the third de-
tector was "nothing”. With the balanced dataset,
this resulted in the weight between the ”low” sig-
nal of detector 3 and the ”"nothing” action being
around 0. Because the weight between the ”low”

10

di 1
d2.1
d3_1 =0.2
da1
d5.1
6.1
a2 ~04
422
432
da_2
a5 ~06
6.2
d13
423
d3 3 -0.8
da3
d5.3
6.3

nothing jump long_jump

Figure 4.2: Weights of the network after training
on the low obstacles game with the ”long jump”
action for 30 epochs with a learning rate of 0.01.
The labels on the y-axis are the names of the de-
tectors in the network. dx_y describes the input
for detector x with the signal y. y=1 represents
a ”low” signal, y=2 represents a ”middle” signal
and y=3 represents a ”high” signal. The labels
on the x-axis are the actions the network can
take.

signal of detector 3 and the ”"duck” action is equal
to -1, this can be seen as giving the ”duck” action
a bias. This bias is enough to offset the problem
shown in table 4.1, as the difference between the
two is 0.7. For the network that was trained on
the dataset with the probability based dataset, the
weight value connecting the "low” signal of detector
3 and the "nothing” action is only -0.6. Therefore,
this was not enough to offset the 0.7 from table
4.1, resulting in the network failing to classify the
”duck” actions correctly.

4.6 Data distribution

In section 4.4, it is described that the weights of the
”long jump” action take longer to reach their stable
value compared to the weights of the other actions.
When looking at figure 4.3, we can see the value
of both weights are approaching -1, but because of
the imbalance in the training data, the connection
between the "middle” detector 1 and the "nothing”
action trains a lot quicker than the connection be-
tween the "middle” detector 1 and the ”long jump”
action. With the current setup this is not a big

0.0
1

— Detector 1; Mid - Nothing
—— Detector 1; Mid — Long Jumg

-0.2
L

04
L

Weight
-0.6

-1.0 -0.8
I

Figure 4.3: The values of two weights of the net-
work after training on the low obstacles game
with the ”long jump” action for 40 epochs with
a learning rate of 0.01. On the x-axis is the
progress of training in epochs, the value of the
weights was recorded after each training sample
in the dataset.

problem as it can just be solved by training for a
bit longer. This is however not very efficient and
would cause problems for bigger networks. It could
be solved however by oversampling the underrepre-
sented classes. This would ensure that all classes are
trained equally quickly, resulting in training with
fewer epochs total.

4.7 Game environment

As discussed in section 4.2, the current layout with
the detectors does not work because the network
is not capable of grouping the inputs of the detec-
tors together. This could be solved by a different
design of the game environment. The most simple
way would be to have 1 detector in each cluster.
In this case however, the timing of the jump is
not decided by the network anymore, but by the
placement of the detector. Another way to solve
the problem would be to link the detectors in some
way. For example, if one detector in the network
detects something, it’s value becomes one, but the
value of the other detectors becomes 0 instead of -1.
Only when nothing is detected within a cluster, the
values could become -1. This would solve the prob-
lem, but again, requires coupling of the detectors
to a certain cluster by hand.

11

4.8 Application in Electronics

The promise of the learning rule used (see equation
2.2) for electronics is the local learning aspect of
it. The training of a weight connecting node i and
J requires only it’s own weight value and the acti-
vations of ¢ and j. When an analog network would
be created with memristors as it weights, a small
circuit around each memristor could potentially be
used to train the network. Communication with all
other parts of the network would not be needed,
which could really simplify the circuit. The realisa-
tion of neural networks in analog electronics would
mean incredibly efficient calculations at almost in-
stantaneous speeds. All calculations wouldn’t have
to be performed sequentially by a central process-
ing unit but would instead occur in parallel due to
the physical properties of the electrical components
involved.

4.9 Future research

The results discussed in section 3 leave some perfor-
mance to be desired. To try and combat this, more
research is needed on the network architecture and
the input design. A future research could look into
improving the Hebbian learning algorithm used in
this report. This research could focus on finding
ways to overcome the network architecture limita-
tions described in section 4.2. This could be in the
form of an adaptation to the network architecture
or by looking at a different state representation of
the game. Another approach could be to use time
information. The current neural network only uses
the current state of the game to make a prediction.
A future research could try using different methods
that can train a network in the time domain. This
could be done by using a network capable of us-
ing spiking signals. A promising example of this is
the use of spike time dependent training methods
such as STDP (Bi & Poo, 1998). This method has
shown great potential and is also considered bio-
logically plausible. Finally, there has already been
research done on implementing Oja’s rule in mem-
ristors, such as the report by Li et al. (2022). How-
ever, more research is still needed in this space to
create large scale neuromorphic computing hard-
ware.

5 Conclusions

In summary, a single layer perceptron was trained
using a Hebbian learning rule called Oja’s rule. The
network was capable of solving the problems for the
low obstacle game without the long jump action.
However, the network was not able to successfully
train the low obstacle game with the long jump ac-
tion due to a limitation of the current network ar-
chitecture and the game state observation. The net-
work did temporarily learn this version of the game,
because the training of the different actions hap-
pened at different speeds due to a class imbalance
in the training data. This resulted in the weights
connected to the underrepresented classes converg-
ing slower to their final value. The network was also
capable of learning the low and middle obstacle ver-
sion of the game with the balanced dataset, but on
the probability based dataset it did not succeed to
correctly classify the states in which the correct ac-
tion would be to jump, again due to the limitations
of the network architecture. In general the network
and learning algorithm showed promise, but more
research is needed before it can be applied to more
complex problems.

References

Bi, G.-q., & Poo, M.-m. (1998). Synaptic mod-
ifications in cultured hippocampal neurons: De-
pendence on spike timing, synaptic strength, and
postsynaptic cell type. Journal of Neuroscience,
18(24), 10464-10472. doi: 10.1523/JINEUROSCI
.18-24-10464.1998

Centorrino, V., Bullo, F., & Russo, G. (2022). Con-
traction analysis of hopfield neural networks with
hebbian learning. In 2022 ieee 61st conference
on decision and control (cdc) (p. 622-627). doi:
10.1109/CDC51059.2022.9993009

Google. (2018). As the chrome dino runs,
we caught up with the googlers who built
it. https://blog.google/products/chrome/
chrome-dino/. ([Accessed 07-07-2024])

Hebb, D. O. (1949). The organization of behavior:

A neuropsychological theory. New York: Wiley.
Hardcover.

12

https://blog.google/products/chrome/chrome-dino/
https://blog.google/products/chrome/chrome-dino/

Land, M. F., & McLeod, P. (2000). From eye move-
ments to actions: how batsmen hit the ball. Na-
ture Neuroscience, 3, 1340-1345.

Li, M., Hong, Q., & Wang, X. (2022, 01).
Memristor-based circuit implementation of com-
petitive neural network based on online unsuper-
vised hebbian learning rule for pattern recogni-
tion. Neural Computing and Applications, 3.
doi: 10.1007/s00521-021-06361-4

Lowel, S., & Singer, W. (1992). Selection of intrin-
sic horizontal connections in the visual cortex by
correlated neuronal activity. Science, 255(5041),
209-212. doi: 10.1126/science.1372754

Munakata, Y., & Pfaffly, J. (2004). Hebbian learn-
ing and development. Developmental Science,
7(2), 141-148. doi: https://doi.org/10.1111/]
.1467-7687.2004.00331.x

Oja, E. (1982). Simplified neuron model as a prin-
cipal component analyzer. Journal of Mathemat-
ical Biology, 15, 267-273.

Serrano-Gotarredona, T., Masquelier, T., Prodro-
makis, T., Indiveri, G., & Linares-Barranco, B.
(2013). Stdp and stdp variations with mem-
ristors for spiking neuromorphic learning sys-
tems. Frontiers in Neuroscience, 7. doi: 10.3389/
fnins.2013.00002

Swanson, O. K., & Maffei, A. (2019). From hir-
ing to firing: Activation of inhibitory neurons
and their recruitment in behavior. Frontiers
in Molecular Neuroscience, 12. doi: 10.3389/
fnmol.2019.00168

Villalobos, P., Sevilla, J., Besiroglu, T., Heim, L.,
Ho, A., & Hobbhahn, M. (2022). Machine learn-
ing model sizes and the parameter gap.

Watson, R. A., Buckley, C. L., & Mills, R. (20009,
June). The effect of hebbian learning on optimi-
sation in hopfield networks (Project Report).

13

A Dataset table

Table A.1: Number of student passes and fails

per year.
1121134 |5]| 6 | Action

No cacti -1|-1]-1]-1]-11]-1] Nothing

Cactus on 4 -1|-1|-1]1]-1]-1] Nothing

Cactus on 5 -1 -1|-1|-1| 1 |-1]| Nothing

Cactus on 6 -1 |-1|-1]-1]|-1] 1 | Nothing

Cactus on 1 1 |-1]-1]-1]-1]-1{Jump

Cactus on 2 -1 1]-1]-1]-1]-1] Jump

Cactus on 3 111 -1 -1 -1 25% Jump, 75%Nothing

Cactuson 1 and cactuson4 | 1 | -1 |-1| 1 |-1|-1]| Jump

Cactuson 1 and cactuson 5 | 1 | -1 |-1|-1| 1 |-1| Jump

Cactuson 1 and cactuson 6 | 1 | -1 | -1 |-1|-1| 1 | Jump

Cactus on 2 and cactuson4 | -1 | 1 | -1 | 1 |-1|-1| Jump

Cactus on 2 and cactuson b | -1 | 1 | -1|-1| 1 | -1 Jump

Cactus on 2 and cactuson 6 | -1 | 1 | -1 |[-1|-1| 1 | Jump

Cactus on 3 and cactuson 4 | -1 | -1 | 1 | 1 |-1] -1 | 25% Jump, 75%Nothing

Cactus on 3 and cactuson 5 | -1 | -1 | 1 | -1 | 1 | -1 | 25% Jump, 75%Nothing

Cactus on 3 and cactuson 6 | -1 | -1 | 1 | -1 | -1 | 1 | 25% Jump, 75%Nothing

B Weights after training

di 1
d2.1
d3_1 -0.2
da1
d5.1
6.1
a2 ~04
d2_2
432
da_2
a5 ~06
6.2
d13
2.3
d3 3 —08
da3
d5.3
6.3

nothing jump long_jump

Figure B.1: Weights of the network after train-
ing on the low obstacles game with the ”long
jump” action for 40 epochs with a learning rate
of 0.01. The labels on the y-axis are the names of
the detectors in the network. dx_y describes the
input for detector x with the signal y. y=1 repre-
sents a ”low” signal, y=2 represents a ”"middle”
signal and y=3 represents a ”high” signal. The
labels on the x-axis are the actions the network
can take.

dl 1
d2_1
d3_1
d4_1
d5_1
d6_1
dl_2
d2_2
d3_2
d4_2
d5_2
d6_2
dl_3
d2_3
d3_3
d4_3
d5_3
d6_3

-0.2
—0.4
-0.6
-0.8

nothing jump duck

Figure B.2: Weights of the network after train-
ing on the low and middle obstacles game with
the balanced dataset for 10 epochs with a learn-
ing rate of 0.01. The labels on the y-axis are the
names of the detectors in the network. dx_y de-
scribes the input for detector x with the signal
y. y=1 represents a ”low” signal, y=2 represents
a ”middle” signal and y=3 represents a ”high”
signal. The labels on the x-axis are the actions
the network can take.

0.0

-0.2
-0.4
-0.6
-0.8

nothing jump duck

dl 1
d2_1
d3_1
da_1
d5_1
d6_1
dl_2
d2_2
d3_2
da_2
d5_2
d6_2
dl_3
d2_3
d3_3
da_3
d5_3
d6_3

Figure B.3: Weights of the network after train-
ing on the low and middle obstacles game with
the probability based dataset for 10 epochs with
a learning rate of 0.001. The labels on the y-axis
are the names of the detectors in the network.
dx_y describes the input for detector x with the
signal y. y=1 represents a ”low” signal, y=2 rep-
resents a ”middle” signal and y=38 represents a
”high” signal. The labels on the x-axis are the
actions the network can take.

15

	Introduction
	Method
	Dino Game
	Low obstacles game
	Low and Middle Obstacles game
	Learning rule
	Network structure
	Linear separability

	Preliminary Testing

	Results
	Low obstacles game
	Low and medium obstacles game

	Discussion
	Negative weight values
	Architecture limitation
	Successful learning of the "short jump" action
	Class imbalance in the training data
	Balanced dataset and the mathematical problem
	Data distribution
	Game environment
	Application in Electronics
	Future research

	Conclusions
	Dataset table
	Weights after training

