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Abstract
Concurrent programming has become a significant component when it comes to utilizing the capa-
bilities of modern multicore processors. In this project, we aim to delve into the scope of concurrent
programming in OCaml. In order to study Coarse-Grained, Fine-Grained and Non-Blocking syn-
chronization, we will implement a linked list. The concurrent operations applied on the linked list
will be node addition, node deletion and functionality to check if a node is contained in the linked
list. We assess the synchronization approaches in terms of efficiency under different ratios of these
operations. Moreover, we benchmark execution time and how well each algorithm scales in terms
of contention. Through the insights gained from this study, we aim to contribute to future related
work on synchronization in OCaml. We expect the project’s outcome to provide valuable insights into
optimizing concurrent programming strategies.
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1 Introduction

1.1 Motivation

The growing complexity and interconnectedness of systems have made concurrency in computing sci-
ence increasingly fundamental. Traditionally, speedup had been achieved by increasing clock speeds
and, more recently, by adding multiple processing cores to the same chip [1]. With the particular us-
age of a functional programming language named OCaml, we delve into concurrency with the utiliza-
tion of its multicore extension. Recent advancements in OCaml have provided us with an intriguing
foundation to explore and understand. While harnessing these advancements, we aim to implement
a concurrent linked list in several different ways, which will be referred to as synchronization ap-
proaches. These approaches include coarse-grained, fine-grained and non-blocking synchronization
techniques.
Several factors motivated this research topic. Firstly, the lack of existing literature regarding the
comparison of performance in concurrent linked list implementations in OCaml is notable. This
is not the case in other functional programming languages such as Haskell [2]. Consequently, this
research paper aims to fill this gap to some extent. Moreover, given the widespread adoption of
OCaml across multiple industry companies [3], there is a strong motivation to further investigate this
programming language through our project. Furthermore my academic background in courses such
as Parallel Programming and Algorithms and Data Structures have spurred a deep interest in this
particular topic. This interest is magnified when the acquired knowledge is applied in the context of
functional programming.
Concluding, we believe that the diverse design methodologies and the advent of the multicore update
in OCaml present a compelling area for development.

1.2 Backround

Presenting and implementing a concurrent data structure in multicore OCaml relies on the intersec-
tion of functioning programming paradigms and multithread computing concepts. In this subsection,
we aim to analyze the characteristics OCaml has to offer in relation to concurrent programming ap-
proaches and to elaborate on synchronization methods in data structures.
The ”recent” multicore extension (16th December 2022) marked a breakthrough in the world of
OCaml. With OCaml 5.0, a completely new runtime system with support for shared parallelism
and effect handlers was introduced [4]. Effect handlers allow for non-local control flow mechanisms
such as generators, async/await, lightweight threads and coroutines to be composably expressed [5].
Shared parallelism in OCaml 5.0 enables multiple domains to execute in parallel, sharing the same
memory space. This is a significant enhancement over the previous versions of OCaml, which were
limited to concurrency through cooperative threading without true parallelism. Hence the new run-
time’s support for effect handlers and shared parallelism further extends the capabilities of concur-
rency patterns.
Performing synchronized access to shared resources using multiple threads, leads to an overall speedup
in execution time [6] and offers much more creative solutions to modern computer science problems.
Specifically, the management of shared resources such as lists, is an important area of focus. Di-
verse list algorithms offer different approaches [7], which are also mentioned in the methodology
subsection. Beyond lists, the OCaml community has developed concurrent data structures, including
stacks and queues, which offer invaluable resources for our research. Noteworthy examples include
the lock-free data structures [8] and the use of the Saturn library, which provides implementations of
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concurrent queues in OCaml [9].
It is important to mention that there are challenges in our implementation. Even though the introduc-
tion of shared memory and effect handlers in OCaml made synchronization of threads possible, there
exist some limitations to this day. We should consider effect handlers in OCaml 5.0 experimental as
they are not supported as a language feature with new syntax (even though this is likely to change
in the future) [10]. Moreover, Ocaml’s lack of built-in concurrency support, unlike Erlang [11], ne-
cessitates greater manual effort and poses more restraints to the user. Furthermore, the way OCamls
garbage collector is constructed with stop the world pauses [12], can lead to performance bottlenecks
in highly concurrent scenarios. This is not the case for instance in Java, which contains a garbage
collector able to avoid this issue [13].

1.3 Proposal
We propose several synchronization implementations of a particular data structure in multicore OCaml.
This study aims to unravel the implications and complications of various multi thread programming
techniques within a functional programming paradigm. Apart from the analysis of coarse-grained,
fine-grained and non-blocking synchronization methods, we also aim to evaluate and compare their
performance across a number of dimensions such as execution time and how well each algorithm
scales under contention. Moreover we study performance based on different input of operations.
The proposed method will make use of a particular data structure, namely a linked list, integrat-
ing concurrency into three main linked list methods: node insertion, node deletion and the contains
method, which is responsible for checking if a node exists in a linked list. We chose the linked list
because many implementations exist in other languages [14][7], setting a solid foundation for us to
be inspired by and build upon.
This proposal leads to the following research questions :

1.3.1 Research Questions

• How do different synchronization approaches affect overall linked list performance in multicore
OCaml?

• What are the challenges when implementing different synchronization approaches in multicore
OCaml for linked lists?

• How do we deal with the common issues that arise in parallel and concurrent computing in our
implementations?

With the methods we describe in the following section, we expect these research questions to lead to
the following outcomes:

• Analysis and graphical representations/tables of execution time and contention of the synchro-
nization approaches

• Cross comparison of performance between lock-based and lock-free synchronization methods
with different inputs of operation ratios.

• Strategies to minimize and manage race conditions, ensuring data integrity across multiple
threads.
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2 Implementation
In the following section we give a brief introduction of the methodology we used in our research.
Moreover we discuss each approach in more detail, highlighting their concept and implementation
details.

2.1 Methodology
This section describes the methodology and resources we used in our research. We focused on ex-
isting literature to fill our theoretical gaps. In order to understand how different synchronization ap-
proaches work and the foundations of multicore OCaml, we used several resources. The main sources
used in our research are ”Retrofitting parallelism onto OCaml” [12] and ”The art of multiprocessor
programming” [7]. The following image illustrates the components of the project.

Figure 1: Visual illustration of components.

We sourced the image in Figure 1 from the GeeksforGeeks website [15].

2.1.1 Tools and Technologies

Apart from theory, we also set up a multicore OCaml development environment equipped with stan-
dard tools for concurrent programming. This includes the configuration of the OCaml environment to
support the external libraries such as kcas [16]. We also used modules such as Atomic and Mutex to
assist in our different implementations [17] [18]. Additionally, we integrated benchmarking tools in
order to facilitate comparative analysis.
Our research was written in LaTex, using the online editor - Overleaf. We used a Github repository
to store the foundation code of the linked list. Additionally, we employed a script using dune for
evaluating the diverse implementations. Lastly, in order to run the code in the multicore environment
we used a personal laptop.
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2.2 Plain Linked List
In this subsection we talk about the linked list implementation, which will act as a foundation for all
of our synchronization approaches. Each node in the linked list will contain data and a reference to
the next node, adhering to the description of the data structure as shown below.

1 type ’a node = {
2 value : ’a;
3 key : int;
4 mutable next: ’a node option;
5 }

While the key field is the node values hash code, the value field corresponts to the nodes value and
the mutable next field is a pointer to an optional node. All nodes are sorted in ascending order of
keys, providing an efficient way to detect when an item is absent. We enhanced this structure with
capabilities for node removal and addition, as demonstrated in Figures 2 and 3 [19][20], respectively.

Figure 2: Node Addition

Figure 3: Node Deletion

In Figure 2, a thread adding a node E uses two variables: curr is the current node, and pred is its
predecessor. The thread moves down the list comparing the keys for curr and E. If a match is found,
the item is already present, so it returns false. If curr reaches a node with a higher key, the item is not
in the set so we set E’s next field to curr, and pred’s next field to E. On the other hand, in Figure 3, to
delete curr, the thread sets pred’s next field to curr’s next field.
Additionally our linked list has functionality to check if an element is contained within the list, which
is also depicted below
In Figure 4 the hash value of value 3 is compared with each key field of the linked list throughout
the traversal. If a match is found, the function call returns true, else if while traversing we reach an
element with a bigger hash key value, that means the value 3 is not in the list and we return false.
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Figure 4: Node Contains

Furthermore, the data structure encompasses two different types of nodes, sentinel nodes and non
sentinel nodes. The sentinel nodes act as the head and the tail of the list, containing the min int and
max int value in key field respectfully. These two nodes are constant and will never be removed. On
the other hand non sentinel nodes are the nodes in between the head and the tail of the list which are
mutable. The sentinel nodes can also be seen in the creation of the linked list in our code.

1 let create_linkedlist () : ’a linkedlist =
2 let sentinel1= { value = min_int; key = min_int;next= None } in
3 let sentinel2= { value = max_int; key = max_int;next= None } in
4 sentinel1.next <- Some sentinel2;
5 {
6 firstnode= sentinel1;
7 lastnode= sentinel2;
8 }

While the plain linked list provides a straightforward and efficient implementation, it serves as a
fundamental structure for building more advanced synchronization implementations. The subsections
below aim to explore and elaborate on these synchronization methods

2.3 Coarse-Grained
2.3.1 Concept

Coarse-grained synchronization uses a single mutex lock [18] to control access to the entire data
structure, ensuring that only one thread can modify the linked list at any given time. The way it works
is by locking the entire linked list during any operation that modifies it. This ensures that no other
thread can access or modify the list while the lock is held, preventing this way any race conditions.
The linearization point for any method call that acquires a lock is the instant the lock is acquired.

2.3.2 Implementation

The usage of the mutex lock can also be seen when creating the linked list .

1 let create_linkedlist () : ’a linkedlist =
2 let sentinel1= { value = min_int; key = min_int;next= None } in
3 let sentinel2= { value = max_int; key = max_int;next= None } in
4 sentinel1.next <- Some sentinel2;
5 {
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6 firstnode= sentinel1;
7 lastnode= sentinel2;
8 lock= Mutex.create();
9 }

Additionally the following code depicts the usage of the mutex lock in our implementation.

1 let additem linkedlist value =
2 Mutex.lock linkedlist.lock;
3 (* ... *)
4 Mutex.unlock linkedlist.lock;
5

6 let removeitem linkedlist value =
7 Mutex.lock linkedlist.lock;
8 (* ... *)
9 Mutex.unlock linkedlist.lock;

10

11 let contains linkedlist value =
12 Mutex.lock linkedlist.lock;
13 (* ... *)
14 Mutex.unlock linkedlist.lock;

2.4 Fine-Grained

2.4.1 Concept

Fine grained synchronization improves upon the coarse-grained synchronization by allowing greater
concurrency. Instead of locking the entire linked list, we use a mutex lock [18] for each node in
order to control access to individual nodes or sections of the list. This approach increases overall
throughput and reduces contention by allowing multiple threads to operate on different parts of the
list simultaneously.

2.4.2 Implementation

The code snippet bellow shows modified node structure to include a lock at each node.

1 type ’a node = {
2 value : ’a;
3 key : int;
4 lock: Mutex.t;
5 mutable next: ’a node option;
6 }

Moreover, since we are using a lock per node, the ”create linkedlist” method is changed to adhere to
these standards

1 let create_linkedlist () : ’a linkedlist =
2 let sentinel1= { value = min_int; key = min_int;lock= Mutex.create();next =

None } in
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3 let sentinel2= { value = max_int; key = max_int;lock= Mutex.create();next =
None } in

4 sentinel1.next <- Some sentinel2;
5 {
6 firstnode= sentinel1;
7 lastnode= sentinel2;
8 }

The controlled access to individual sections of the list can also bee seen in the ”additem”, ”re-
moveitem” and ”contains” method, in which we lock nodes in pairs and release them after performing
the necessary operations.

1 let additem linkedlist value =
2 let key = Hashtbl.hash value in
3 let pred= linkedlist.firstnode in
4 Mutex.lock pred.lock;
5 let rec find_and_insert pred curr_opt =
6 match curr_opt with
7 | Some curr ->
8 Mutex.lock curr.lock;
9 if curr.key < key then (

10 Mutex.unlock pred.lock;
11 find_and_insert curr curr.next
12 ) else if curr.key = key then (
13 Mutex.unlock curr.lock;
14 Mutex.unlock pred.lock;
15 false
16 ) else (
17 let new_node = { value = value ; key = key ;next= curr_opt;lock=

Mutex.create () } in
18 pred.next <- Some new_node;
19 Mutex.unlock curr.lock;
20 Mutex.unlock pred.lock;
21 true
22 )
23 | None ->
24 Mutex.unlock pred.lock;
25 false
26 in
27 find_and_insert pred pred.next

1 let removeitem linkedlist value =
2 let key = Hashtbl.hash value in
3 let pred= linkedlist.firstnode in
4 Mutex.lock pred.lock;
5 let rec find_and_remove pred curr_opt =
6 match curr_opt with
7 | Some curr ->
8 Mutex.lock curr.lock;
9 if curr. key < key then (

10 Mutex.unlock pred.lock;
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11 find_and_remove curr curr.next
12 ) else if curr. key = key then (
13 pred.next <- curr.next;
14 Mutex.unlock curr.lock;
15 Mutex.unlock pred.lock;
16 true
17 ) else (
18 Mutex.unlock curr.lock;
19 Mutex.unlock pred.lock;
20 false
21 )
22 | None ->
23 Mutex.unlock pred.lock;
24 false
25 in
26 find_and_remove pred pred.next

1 let contains linkedlist value =
2 let key = Hashtbl.hash value in
3 let pred= linkedlist.firstnode in
4 Mutex.lock pred.lock;
5 let rec find pred curr_opt =
6 match curr_opt with
7 | Some curr ->
8 Mutex.lock curr.lock;
9 if curr. key < key then (

10 Mutex.unlock pred.lock;
11 find curr curr.next
12 ) else if curr. key = key then (
13 Mutex.unlock curr.lock;
14 Mutex.unlock pred.lock;
15 true
16 ) else (
17 Mutex.unlock curr.lock;
18 Mutex.unlock pred.lock;
19 false
20 )
21 | None ->
22 Mutex.unlock pred.lock;
23 false
24 in
25 find pred pred.next

2.5 Lock-Free
2.5.1 Concept

Lock-free synchronization aims to enhance concurrency by eliminating the need for locks entirely.
Instead of using mutexes, this approach relies on atomic operations to manage concurrent access to
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the data structure. In a Lock-free linked list implementation, nodes contain an atomic marked variable
which in addition with the nodes next field is treated as a single atomic unit. The reason for this is
because we want to ensure that the nodes fields cannot be updated, after that node has been logically
or physically removed from the list. A thread logically removes a node by setting the mark bit in
the node’s next field, and shares the physical removal with other threads when performing add() or
remove(). As each thread traverses the list, it cleans up the list by physically removing any marked
nodes it encounters.

2.5.2 Implementation

In our implementation, we utilize atomic markable references by using kcas [16] to handle synchro-
nization. This involves using the AtomicMarkable module, containing markable CAS operation to
safely update node references without locks, ensuring that the linked list remains consistent even un-
der concurrent modifications. Moreover operations such as get marked and get reference are used,
which return the marked value of the node and the reference value of the node in question respec-
tively. The node structure is modified to include an atomic markable reference to the next node.

The implementation above can bee seen in the code snippet below:

1 module AtomicMarkable = struct
2 type ’a markable = {
3 ref : ’a Kcas.Loc.t;
4 mark : bool Kcas.Loc.t
5 }
6 let markable_CAS r exRef exMark newRef newMark =
7 let tx ˜xt =
8 let _ = Xt.compare_and_set ˜xt r.ref exRef newRef in
9 Xt.compare_and_set ˜xt r.mark exMark newMark

10 in Xt.commit { tx }
11 let get_mark r = Loc.get r.mark
12 let get_reference r = Loc.get r.ref
13 let get_marked r =
14 (Loc.get r.ref, Loc.get r.mark)
15 let make_markable value mark =
16 { ref = Loc.make value ; mark = Loc.make mark}
17 end
18

19 type ’a node = {
20 value : ’a;
21 key : int;
22 next : (’a node) AtomicMarkable.markable option
23 }

When it comes to creating the sentinel nodes and creating new nodes in general, we use the Atomic-
Markable.make markable operation, which creates an atomic markable reference as shown below.

1 let create_linkedlist () : ’a linkedlist =
2 let sentinel1 = { value = min_int; key = min_int; next = None } in
3 let sentinel2 = { value = max_int; key = max_int; next = None } in
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4 sentinel1.next <- Some (AtomicMarkable.make_markable sentinel2 false);
5 {
6 firstnode = sentinel1;
7 lastnode = sentinel2;
8 }

In the additem and removeitem functions we decided to factor out functionality, in order to adhere to
the book and the lock-free algorithm implementation [7]. The factored out functionality can be seen
by adding a find window function as shown below.

1 let find_window (linkedlist : ’a linkedlist) key : ’a window =
2 let retry () =
3 let pred = ref linkedlist.firstnode in
4 let curr = ref (match !pred.next with
5 | Some nxt -> get_reference nxt
6 | None -> raise (Invalid_argument "find_window: next node is None")

) in
7 let marked = ref false in
8 let continue_traversal = ref true in
9 while !continue_traversal do

10 try
11 while true do
12 match !curr.next with
13 | None -> raise Exit
14 | Some nxt ->
15 let current_ value ,current_mark= get_marked nxt in
16 marked := current_mark;
17 let succ = ref current_ value in
18 while !marked do
19 let snip = markable_CAS (match !pred.next with Some p -> p

| None -> raise Exit) !curr false !succ false in
20 if not snip then raise Exit;
21 curr:= !succ;
22 let current_ value ,current_mark= get_marked (match !curr.

next with Some c -> c | None -> raise Exit) in
23 marked := current_mark;
24 succ := current_ value ;
25 done;
26 if !curr. key >= key then (
27 continue_traversal := false;
28 raise Exit
29 );
30 pred := !curr;
31 curr := !succ;
32 done
33 with Exit ->
34 continue_traversal := false
35 done;
36 let p = !pred in
37 let c = !curr in
38 { pred = p ; curr = c }
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39 in
40 retry ()

The reason we used the find window is inorder to help with navigation. The method accepts the head
of the list and a head node and a key a, and traverses the list, seeking to set pred to the node with the
largest key less than a, and curr to the node with the least key greater than or equal to a. As thread
A traverses the list, each time it advances currA, it checks whether that node is marked. If so, it calls
markable CAS to attempt to physically remove the node by setting predA’s next field to currA’s next
field. This call tests both the field’s reference and Boolean mark values, and fails if either value has
changed. A concurrent thread could change the mark value by logically removing predA, or it could
change the reference value by physically removing currA. If the call fails, A restarts the traversal from
the head of the list, otherwise the traversal continues[7].

1 let additem linkedlist value =
2 let key = Hashtbl.hash value in
3 let rec loop () =
4 let find = find_window linkedlist key in
5 let pred = find.pred in
6 let curr = find.curr in
7 if curr. key = key then
8 false
9 else

10 let node = make_node value (Some (AtomicMarkable.make_markable curr false))
in

11 if AtomicMarkable.markable_CAS (match pred.next with Some p -> p | None
-> raise Exit) curr false node false then

12 true
13 else
14 loop ()
15 in
16 loop ()
17

18 let removeitem linkedlist value =
19 let key = Hashtbl.hash value in
20 let rec loop () =
21 let find = find_window linkedlist key in
22 let pred = find.pred in
23 let curr = find.curr in
24 if curr. key <> key then
25 false
26 else
27 let succ = AtomicMarkable.get_reference (match curr.next with Some c -> c

| None -> raise Exit) in
28 let snip = AtomicMarkable.markable_CAS (match curr.next with Some c -> c

| None -> raise Exit) curr false succ true in
29 if not snip then loop ()
30 else
31 let _ = AtomicMarkable.markable_CAS (match pred.next with Some p -> p |

None -> raise Exit) curr false succ false in
32 true
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33 in
34 loop ()

The contains method does not participate in the cleanup of logically removed nodes. However it
checks if the node we are looking for is contained within the list and whether it has been marked or
not.

1 let contains linkedlist value =
2 let marked = ref false in
3 let key = Hashtbl.hash value in
4 let curr = ref (AtomicMarkable.get_reference (match linkedlist.firstnode.

next with Some f -> f | None -> raise Exit)) in
5 while !curr. key < key do
6 let current_ value , current_mark = AtomicMarkable.get_marked (match !curr.

next with Some c -> c | None -> raise Exit) in
7 curr := current_ value ;
8 marked := current_mark;
9 done;

10 !curr. key = key && not !marked

2.6 Testing
Concurrent programming introduces various challenges, such as race conditions, deadlocks, and data
corruption. To ensure the correctness of our implementation and to mitigate these issues, we decided
to thoroughly test each approach. We can compile and test our code using the ”dune runtest” com-
mand, which executes all test files on our current implementations. For more detailed analysis, we can
check the outputs of a specific file by running the command ”dune exec ./test/test ”implementation
name”.exe”. Given the often unpredictable nature of concurrent operations, we opted to avoid asser-
tions when testing operations in parallel and instead use print statements to verify the results. This
approach allows us to closely monitor the behavior of the code under concurrent conditions and ensure
its reliability.
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3 Benchmarking and Results

3.1 Approach
Due to the noticeable lack of pre-existing researches for concurrent linked list benchmarking in
OCaml, we decided to build upon available resources in other languages. Our approach was in-
spired by the research paper ”Comparing the performance of concurrent linked-list implementations
in Haskell” [2].
The benchmarking approach described in the paper involved generating test data consisting of an
initial list of 3000 elements and 8 lists of 3000 operations with a ratio of 2 finds to 1 delete to 4
inserts. Each benchmark run was measured by loading the test data into memory, generating the
initial linked list, and then starting the clock before creating 8 threads, each performing one of the
pre-generated lists of operations. When all threads finished, the clock was stopped, and the elapsed
time was reported. The average of 3 runs of each benchmark was taken [2].
We decided to expand upon this approach by allowing more flexible benchmarking options. In our
benchmarking, we enable the user to set custom ratios for additem, removeitem, and contain opera-
tions. Moreover, instead of assigning an operations list to each thread by default, we divide the initial
operations list into partitions. Additionally, users can set custom amounts for the number of repeti-
tions, elements and operations. Furthermore due to the significant time it takes for a domain to spawn
in OCaml, we decided to use a barrier which waits for all threads to spawn before starting concurrent
execution.
Below is an illustrative example of the degree of flexibility we have in our benchmarking:

Enter the number of elements:
Enter the number of list operations:
Enter the number of iterations:
Enter the ratio of additions (0.0 - 1.0):
Enter the ratio of deletions (0.0 - 1.0):
Enter the ratio of contains (0.0 - 1.0):
Do you want to test a sequence of domains (yes/no):

3.2 Experiments
It is noteworthy mentioning that we are not only comparing absolute execution time of each imple-
mentation, but also how well each algorithm scales in terms of contention and metrics manipulation.
For our first experiment, we decided to change the number of elements in the list, keeping the other
metrics exactly the same. We decided to opt for 3000 operations, 15 iterations and an even ratio across
the 3 operations. The results can be seen below in Table 1 and Figure 5 for a linked list with 3000
elements and in Table 2 and Figure 6 for a linked list with 100 elements.

3.2.1 Experiment 1

Benchmark 1: 3000 elements

• Number of elements: 3000

• Number of list operations: 3000
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• Number of iterations: 15

• Ratios:

– Additions: 0.33333333

– Deletions: 0.33333333

– Contains: 0.33333333

Domains CoarseGrained FineGrained LockFree

2 0.030970 0.044222 0.060142
3 0.035326 0.033804 0.047661
4 0.033655 0.026787 0.036993
5 0.032754 0.023084 0.029730
6 0.032915 0.030821 0.022314
7 0.031441 0.030599 0.019964
8 0.028902 0.032517 0.017936
9 0.029223 0.034549 0.017357

10 0.027191 0.034418 0.016146
11 0.029613 0.039109 0.015589

Table 1: Benchmark 1 results for different implementations across various domains
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Figure 5: Performance graph of Table 3

Benchmark 2: 100 elements

• Number of elements: 100



18 Chapter 3 BENCHMARKING AND RESULTS

• Number of list operations: 3000

• Number of iterations: 15

• Ratios:

– Additions: 0.33333333

– Deletions: 0.33333333

– Contains: 0.33333333

Domains CoarseGrained FineGrained LockFree

2 0.005038 0.009520 0.005728
3 0.006337 0.008099 0.004572
4 0.007224 0.007356 0.003831
5 0.007557 0.007188 0.003154
6 0.011936 0.013491 0.004068
7 0.012542 0.011954 0.003832
8 0.014245 0.013241 0.003833
9 0.013526 0.013200 0.003504

10 0.013088 0.013268 0.003371
11 0.013372 0.013490 0.003361

Table 2: Benchmark 2 results for different implementations across various domains
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Figure 6: Performance graph of Table 2

From the results of the first experiment, it is evident that the lock-free implementation is the most
efficient and scalable solution for handling parallel operations in both datasets. By using 3000 ele-
ments, the differences in performance between the implementations is more noticeable. The lock-free
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implementation shows significant performance gains with increasing domains, demonstrating its su-
perior ability to manage contention and parallelism. On the other hand, the coarse-grained approach
has the least amount of overall speedup, showing limited scalability due to high contention and re-
duced parallelism. Moreover, in the fine-grained approach, speedup is observed for up to 5 domains
in both benchmarks. Concluding, the fine-grained approach outperforms the coarse-grained approach
in terms of speedup in both cases, but the benefits of reduced contention are more evident with the
larger dataset.
With 100 elements, although the contention is less severe, the coarse-grained implementation still
does not scale well, highlighting its inefficiency in handling parallel operations. The speedup in the
fine-grained approach is significant with fewer domains, but the performance gains plateau as the
domain count increases due to the smaller amount of elements. The lock-free implementation consis-
tently outperforms the others in both scenarios, but the performance improvement is more substantial
with 3000 elements. This indicates that the lock-free approach efficiently manages contention and
parallelism, regardless of the workload size, making it the most efficient and scalable solution for
both small and large datasets.

3.2.2 Experiment 2

In our second experiment, we decided to vary both the number of operations and the operation ra-
tios. We aimed to determine if any algorithm’s performance changes with different operation ratios.
Increasing the number of operations to 9000 was intended to help us understand how the differences
in operations affect performance. Therefore, we used 9000 operations and adjusted the ratios in both
benchmarks, as shown below.

Benchmark 3:

• Number of elements: 3000

• Number of list operations: 9000

• Number of iterations: 15

• Ratios:

– Additions: 0.5

– Deletions: 0.4

– Contains: 0.1
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Domains CoarseGrained FineGrained LockFree

2 0.129047 0.161767 0.244729
3 0.141547 0.124854 0.187765
4 0.136595 0.097755 0.144720
5 0.137125 0.085311 0.120772
6 0.130621 0.101442 0.087080
7 0.122571 0.105900 0.075700
8 0.122576 0.107811 0.067502
9 0.119679 0.111649 0.062242

10 0.114058 0.114413 0.058788
11 0.116295 0.122124 0.062897

Table 3: Benchmark 3 results for different implementations across various domains
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Figure 7: Performance graph of Table 3

Benchmark 4:

• Number of elements: 3000

• Number of list operations: 9000

• Number of iterations: 15

• Ratios:

– Additions: 0.33333333

– Deletions: 0.33333333

– Contains: 0.33333333
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Domains CoarseGrained FineGrained LockFree

2 0.115959 0.143806 0.212581
3 0.126814 0.113421 0.164036
4 0.126929 0.089772 0.129655
5 0.123509 0.076160 0.107634
6 0.114848 0.093900 0.076207
7 0.115994 0.098172 0.067843
8 0.115279 0.101927 0.058895
9 0.110433 0.103519 0.054976

10 0.105056 0.107147 0.052091
11 0.107647 0.112359 0.053356

Table 4: Benchmark 4 results for different implementations across various domains
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Figure 8: Benchmark 4 results for different implementations across various domains

As expected, the execution time of all implementations is less when the ratios are more balanced. The
reasoning behind this is due to the fact that pointer manipulation takes on average more time than
reading a value within a list. Moreover the reason the lock-free implementation is not the fastest up
until 6 domains is because of the implementation. When removing or adding an element to a list,
the algorithm traverses the list and physically removes all logically removed marked nodes, which
makes additions and deletions more time-consuming compared to the coarse-grained and fine-grained
implementations.

Additionally, the coarse-grained and fine-grained implementations benefit from pointer manipula-
tions, leading to faster execution times at smaller domain sizes. As the domain size increases, the
fine-grained implementation particularly shows a significant improvement, suggesting better scalabil-
ity and efficiency in handling higher operation loads with more granular locking mechanisms.
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3.2.3 Conclusion

In both experiments, the lock-free algorithm scales the best in terms of contention as the number
of domains increases. This makes sense from an implementation perspective. In coarse-grained
synchronization, there is contention and reduced parallelism because no more than one thread can
bypass a mutex lock at a time, causing other threads to wait their turn to acquire the lock. This
can become a bottleneck in a highly concurrent environment as threads must wait for the lock to be
released before proceeding.
In fine-grained synchronization, contention is reduced compared to coarse-grained synchronization.
The speedup over the coarse-grained approach is due to the fine-grained approach allowing concurrent
manipulation of multiple domains on the linked list simultaneously, which causes the algorithm to
scale better. However, there are still limitations in the fine-grained approach. Mutex locks acquired
to traverse the list can cause contention in highly concurrent scenarios, as threads wait for permission
to acquire an unused mutex lock.
The lock-free approach significantly improves parallelism and throughput by allowing multiple threads
to operate on the linked list without waiting for locks to be released. This results in a more efficient
utilization of resources, especially in highly concurrent environments.
It is important to mention that the limited speedup after a certain number of domains for all imple-
mentations can be explained by Amdahl’s Law. Amdahl’s Law states that the potential speedup of
a program through parallelization is limited by the portion of the program that must remain serial.
It highlights that even with an infinite number of processors, the maximum achievable speedup is
constrained by the serial fraction of the workload [21].
These findings highlight the importance of selecting the appropriate implementation based on the spe-
cific workload characteristics and operation ratios. The lock-free implementation is advantageous in
high-concurrency environments with balanced operations, while the coarse-grained and fine-grained
implementations provide faster responses when using less domains and more operations. This com-
parative analysis underscores the necessity of tailoring the choice of algorithm to the particular de-
mands of the application to optimize performance effectively.
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4 Future Work
Due to time constraints we decided to implement and benchmark three linked list algorithms. How-
ever it is possible to expand this project to benchmark even more algorithms such as lazy synchroniza-
tion and optimistic synchronization. We have taken potential future work into account and ensured
that the code is expandable and reusable, making it easy to add more implementations. The current
structure of the benchmarking framework allows for a high degree of flexibility, enabling a wide range
of experiments and benchmarks depending on the research focus. This setup provides ample room
for imagination and creativity in further experimentation and benchmarking.
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