
λlock encoding to π-calculus

S. Wortelboer
Supervisors: J.A. Pérez, D. Frumin

June 2024

Abstract

λlock, by Jacobs et al [3], is a deadlock-free functional language that introduces concurrent processing
with resource sharing through locks. CLASS, by Rocha [4], achieves the same through an extension of a
linear π-calculus called µCLL. This project develops an encoding from λlock to CLASS. The necessity comes
from the fact that λlock is not confluent and has a degree of non-determinism that makes it hard to verify
the outcomes of any program. CLASS also captures the non-deterministic behaviour of locks (called cells)
but does not make a choice and hence preserves the property of confluence. Any reduction in CLASS thus
captures all possible outcomes. To allow the development of the encoding CLASS is extended into CLASS+,
which captures the ownership property of λlock and the behaviour of discarding locks while preserving the
stored values.

1 Introduction

λlock [3] is a function language that adds concurrent processing with resource sharing through locks. It adds non-
deterministic behaviour to an otherwise deterministic calculus. The non-determinism comes as the semantics are
defined in a non-confluent way. In the case that multiple threads are competing to acquire a lock, for example,
the choice of which reduction to apply first can affect the outcome with the alternative being lost. Even in
the case that all possible reductions are taken into account, the way reductions are applied it is not entirely
obvious what the next step will be. For example, a lock interaction for a thread might be hidden behind a pure
reduction, but it will still be competing, moreover, it leads to different paths of reductions that also lead to the
same result. This is counter intuitive, hence there is a need to have the property of confluence.

CLASS [4] is a linear π-calculus that extends µCLL, which is relates via propositions-as-type [1, 2, 5] to
second-order classical linear logic, with affine resources and cells. Cells are very similar to λlock locks. Both can
store and retrieve values, can be shared among multiple threads/processes with the same constraints, and both
use session types to ensure deadlock freedom in the same manner between empty and full states. CLASS also
has the property of confluence and is the perfect candidate for a translation target. CLASS does have additional
affine channels, channels which can be used or discarded. These form the foundation for channels stored in cells.
As a consequence, CLASS does not have any concept of ownership and simply dismisses the channel once all
processes have released their reference. This issue needs to be overcome in order to facilitate the encoding.

In this project, first CLASS+ will be introduced. CLASS+ will add the concept of ownership to cells
while keeping affine channels. The modified types, type rules and operational semantics are then given which
preserve the properties of type preservation, progress and confluence as each of these properties is an important
prerequisite for the encoding. Type preservation is a fundamental property to have for any language, while both
languages have deadlock freedom which is synonymous with progress, and finally, confluence is the property
that is the main purpose of this translation. Once CLASS is extended, the construction of the encoding is
given by the definition of the encoding of types, type rules and processes. The encoding is given as a proof of
translation of the type rules which proofs type preservation. Furthermore, the encoding for processes is given
to enable the validation of preservation of semantics (i.e. soundness and completeness). The validation of the
latter is assumed, examples to illustrate that such properties hold are given.

1.1 λlock

λlock uses for its foundation a typed λ-calculus that differentiates between linear and unrestricted variables and
functions. It then extends this calculus by adding currency and shared resources through locks, which retain
deadlock freedom through the principle definition that locks connect/reference to locks and create an acyclic
graph. Furthermore, each lock has one owning reference and zero or more child references.

1



To facilitate concurrency and shared resources, it is necessary to deviate from the traditional way of writing
the operational semantics. A set of threads executing expressions combined with locks are introduced. On such
a set a reduction can take place which affects one or more items in the set. For the pure expressions inherited
from the base calculus, one thread reduces its expression, while the expressions related to locks always act or
generate multiple items in the set. Such a set will be called a process and its structure always adheres to the
defined principle of λlock as stated in the previous paragraph. The operational semantics follow the form given
below.



t1 7→ Thread(e1)
...

tn 7→ Thread(en)
k1 7→ Lock(c1, v1)

...
km 7→ Lock(cm, vm)


i
⇝



t1 7→ Thread(e1)
...

tn′ 7→ Thread(en′)
k1 7→ Lock(c1, v1)

...
km′ 7→ Lock(cm′ , vm′)


While λ-calculus is confluent, meaning the order of reduction does not affect the outcome, λlock adds non-

deterministic behaviour that voids this property. Due to competition between threads depending on the order
of reduction, different results may be achieved. This can be demonstrated using a small example below. In this
example, there are only two possibilities for reduction, acquire can applied to t1 and k or t2 and k. Depending
on which reduction gets priority the order of the multiplication or addition creates a different outcome for the
eventual value stored in the lock.

 t1 7→ Thread(K1[let x, y = acquire(⟨k⟩) in release(x, 2 ∗ y)])
t2 7→ Thread(K2[let x, y = acquire(⟨k⟩) in release(x, 2 + y)])

k 7→ Lock(1,Some(1)))

⇝∗

 t1 7→ Thread(K1[release(x, 2 ∗ 1)])
t2 7→ Thread(K2[let x, y = acquire(⟨k⟩) in release(x, 2 + y)])

k 7→ Lock(1,None))

 or

t1 7→ Thread(K1[let x, y = acquire(⟨k⟩) in release(x, 2 ∗ y)])
t2 7→ Thread(K2[release(x, 2 + 1)])

k 7→ Lock(1,None))

⇝∗

{
...

k 7→ Lock(1,Some(4)))

}
or{

...
k 7→ Lock(1,Some(6)))

}
The principle that at most two threads can have at most one lock in common also is evident in the reductions.

Any thread can create new locks at any time, but when it wants to share a lock with some other thread it can
only be done by spawning a new thread by forking on the lock. To ensure correctness session types will ensure
that the expressions always follow the proper protocol and it can not achieve a state where a lock remains empty
with no thread to release it. Furthermore, while forking will expand the graph, it remains possible to change
the topology by sharing locks through locks. The property of linearity is used to ensure that unsafe behaviour
that violates the principle is impossible. This can be demonstrated in the example below. Here the reference
of lock k2 from thread t1 that also is referenced by t3 is stored into lock k1 also referenced by thread t2, which
later acquires the lock k2. This alters the topology by removing the edge from t1 to k2 and adds t2 to k2.

2




t1 7→ Thread(K1[release(⟨k1⟩, ⟨k2⟩)])
t2 7→ Thread(K2[acquire(⟨k1⟩)])

t3 7→ Thread(K3[⟨k2⟩])
k1 7→ Lock(c1,None))

k2 7→ Lock(c2, v)


k1⇝


t1 7→ Thread(K1[⟨k1⟩])

t2 7→ Thread(K2[acquire(⟨k1⟩)])
t3 7→ Thread(K3[⟨k2⟩])

k1 7→ Lock(c1,Some(⟨k2⟩)))
k2 7→ Lock(c2, v)


k1⇝


t1 7→ Thread(K1[⟨k1⟩])

t2 7→ Thread(K2[(⟨k1⟩, ⟨k2⟩)])
t3 7→ Thread(K3[⟨k2⟩])
k1 7→ Lock(c1,None))

k2 7→ Lock(c2, v)


2 CLASS+

Cells in CLASS are very similar in their semantics to that of locks in λlock. As a consequence, most parts can
be translated quite literally. However, where they differ is in how they treat their resources at the end of their
lifecycle. λlock uses the property of ownership to return a value stored in a lock before it is destroyed. CLASS
on the other hand uses affine sessions and discards any value held inside a cell once all references are released.
To facilitate the encoding this needs to be overcome.

The first thing one might think of is to use multiple cells to encode locks. CLASS only allows one cell
usage to be shared among some processes so in order to encode something like fork it becomes necessary
to wrap the usages inside a new cell. As a consequence, a competition between procedures related to the
reference counter and resource held will manifest itself in the encoded processes. These two values of a lock
are updated independently, so having a process that deals with these values sequentially would not make much
sense. Moreover, capturing such behaviour would cause the reduction in CLASS to branch out into a larger
sum of processes, some of which relate to each other and produce a duplicate outcome.

One alternative is to develop a new lock process, however as cells already capture most of the desired
behaviour it is easier to modify CLASS by adding the same behaviour through the property of ownership,
making it possible to directly translate locks into cells. This section will introduce CLASS+ by extending the
type system of CLASS with the addition of an owner parameter and a new action return. The operational
semantics are extended, and the type rules are expanded. Finally, the most important properties related to the
encoding are ensured by extending the proofs of type preservation, progress and confluence. It is also shown
that CLASS+ is backwards compatible with CLASS by showing an encoding from CLASS to CLASS+ and
proving preservation reduction through soundness and completeness.

2.1 Process Calculus and Operational Semantics

To be able to return the contents of a cell to a process insurance is needed that there is exactly one process that
is designated to do so. To achieve this the type system is altered by the addition of a relation parameter for
the usage and state types. The relation parameter lets a process fall in the category of owner or child, where
the former is the designated process that receives the final contents of the cell. The grammar for cell types is
replaced as follows (page 52, def. 10):

A,B ::= ...
| So

fA (owned full state) | Uo
fA (owned full state)

| Sc
fA (child full state) | U c

fA (child full state)

| So
eA (owned empty state) | Uo

eA (owned empty state)
| Sc

eA (child empty state) | U c
eA (child empty state)

Furthermore, the definition of duality then becomes (page 53, def. 11):

3



So
fA ≜ Uo

fA

Sc
fA ≜ U c

fA

So
eA ≜ Uo

eA

Sc
eA ≜ U c

eA

The syntax of processing terms is extended with the definition of a new return operation, that captures the
new feature (page 53, def. 12/fig. 3.1):

A,B ::= ...
| return c(a);P (return)

The return operation allows the process to take the contents of a cell and drop the reference similar to release
such that the cell can be destroyed, but only if every other process with a reference to the cell has released it
first.

2.1.1 Operational Semantics

The operational semantics is made up of structural congruence and reduction rules, as per definitions 13 and
14 respectively. Definition 13 is extended by the addition of the following rule:

share x{return x(a);P ||take x(a);Q} ≡ take x(a); share x{return x(a);P ||Q} [RTSh]

The rule allows for the process using the cell as a child to continue using the cell, while the process using
the cell as an owner to wait for these processes to finish up. The choice for congruence as opposed to reduction,
specifically for the case right-to-left, can be justified in multiple ways. First, a reduction does not make sense
as nothing has happened, the process has not progressed, this only happens when the interaction between a full
cell and the take takes place through the reduction [SfUf t]. In addition, the rule is similar to the rules [TSh]
and [PSh], in particular the latter. It prioritizes put by taking it outside the share, which is essentially the
same as with [RTSh].

Definition 14(structural reductions) is modified by replacing [SfUff ] with:

cut {cell c(a.P )|c|return c(a′);Q} → cut{P |a|{a/a′}Q} [SfUff ]

It proposes when all child processes have released their references using the structural congruence rule [RSh],
an owner process can then both fetch the value and discard the cell which was not possible before. For the
owner, the option to discard the value still remains, and it is useful to add an alias for this behaviour with
respect to the reduction [∧ ∨ d]:

release x ≜ return x(a);discard a

2.1.2 Type System

The type system is extended by adding the relation type to the existing rules and the introduction of a new
type rule for the new operation. For the relation type on states and usages of cells, there will be 3 possible
combinations, which would expand the existing 3 share rules into 9 new rules. Instead, a combination operation
that is both associative and commutative is defined for the sub-types, which would allow the definition of one
general share rule.

Sr1
s1 Ur2

s2 r1, r2 ∈ R s1, s2 ∈ S
S = {e, f} R = {o, c}
e+ f = e o+ c = o
f + e = e c+ o = o
f + f = f c+ c = c
e+ e ̸= o+ o ̸=

The new type semantics of definition 15/figure 3.4 then becomes:

4



P ⊢η
#»c : U

o/c
f

#»

B, #»a : ∨ #»

C, a : A; Γ

affine #»c , #»a v;P ⊢η
#»c : U

o/c
f

#»

B, #»a : ∨ #»

C, a : ∧A; Γ
Taffine

discard a ⊢η a : ∨A; Γ
Tdiscard

Q ⊢η ∆a : A; Γ

use a;Q ⊢η ∆, a : ∨A; Γ
Tuse

P ⊢η ∆, a : ∧A; Γ

cell c(a.P ) ⊢η ∆, c : So
fA; Γ

Tcell
empty c ⊢η c : So

eA; Γ
Tempty

release c ⊢η c : U c
fA; Γ

Trelease
Q ⊢η ∆, a : ∨A; Γ

return c(a);Q ⊢η ∆, c : Uo
fA; Γ

Treturn

Q ⊢η ∆, a : ∨A, c : Ur
eA; Γ r ∈ R

take c(a);Q ⊢η ∆, c : Ur
fA; Γ

Ttake
Q1 ⊢η ∆q, a : ∧A; Γ Q2 ⊢η ∆2, c : U

r
fA; Γ r ∈ R

put c(a.Q1);Q2 ⊢η ∆1,∆2, c : U
r
eA; Γ

Tput

P ⊢η ∆;Γ Q ⊢η ∆;Γ

P +Q ⊢η ∆;Γ
Tsum

P ⊢η ∆′, c : Ur1
s1 A; Γ Q ⊢η ∆′, c : Ur2

s2 A; Γ

share c{P ||Q} ⊢η ∆′,∆, c : Ur1+r2
s1+s2 A; Γ

Tsh

The new share rule summarizes in one rule what would otherwise be 9 rules, with the basic takeaway being
that at most one usage can be empty in the context of the content of the cell and at most one usage can be the
owner in the context of relation to a cell irrespective what the context of the cell is and vice verse. The new
definition also works well with the n-ary share construct and the commutative/linear distributive conversion
of share as the combination operation defined for the content and relation parameters are commutative and
associative.

The new rule [Treturn] also forces the rule [Trelease] to assume the usage relation of a child. This is necessary
as otherwise it will break type preservation for the rule [RSh], as if we assume that the owner releases its reference
it will have to promote the child to the position of owner. For example, a share where the owner releases and
the child simply forwards, both the usage and state channel in the forward are of the type child. However, [RSh]
tells us that the usage part becomes now the owner which would violate the definition of [Tfwd].

Finally, it has to be noted that it is still necessary for the contents of cells to be affine, otherwise, cells
cannot be used by affine channels which would hamper the expressibility of CLASS+ and break backwards
compatibility. It also would not make sense as any non-affine channel can be expressed as an affine channel,
while it is not possible to do the same the other way around.

2.1.3 Type Preservation

The first thing that needs to be checked is the property of type preservation. Here only the new rules [RTSh]
and [SfUff ] need to be proven such that the modifications satisfy theorem 1, where the following properties
must hold:

1. If P ⊢ ∆;Γ and P ≡ Q, then Q ⊢ ∆;Γ.

2. If P ⊢ ∆;Γ and P → Q, then Q ⊢ ∆;Γ.

Below is the proof extension for theorem 1(1). Only the newly added rules need to be evaluated, and the
rules affected by the newly added relation parameter.

Case: [Sh]
The proof remains largely the same. The original proof for the usages shows the commutative property

of the state parameter which is better captured in the new [TSh], the new relation parameter has the same
property and is independent from the state parameter. Which concludes the proof.

Note: the same evaluation can be applied to [CSh], [ShC!], [ShM ], [ShSh], [TSh] and [PSh].
Case: [RSh]

The proof needs to be modified by adding the relation parameter. As the release (the action, not the alias)
only can be used only by child processes the usage channel type has to reflect this. With this restriction, it
leaves open all possibilities for the role of process P as it can still be an owner or child (i.e. c+o or c+c) similar

5



to the state parameter. Hence the relation parameter in P simply assumes the value of that of the relation type
of the share. Which concludes the proof.
Case: [RTsh] left-to-right

share x{return x(a);P ||take x(a);Q} ≡ take x(a); share x{return x(a);P ||Q}

(1) ∆ = ∆1,∆2, x : Uo
fA

(2) return x(a);P ⊢η ∆1, x : Uo
fA; Γ

(3) take x(a);Q ⊢η ∆2, x : U c
fA; Γ, for some A,∆1,∆2

([Tsh−1] and left side)

(4) Q ⊢η ∆2, a : ∨A, x : U c
eA; Γ ([Ttake−1] and (3))

(5) share x{return x(a);P ||Q} ⊢η ∆1,∆2, a : ∨A, x : Uo
eA; Γ ([Tsh], (2) and (4))

(6) take x(a); share x{return x(a);P ||Q} ⊢η ∆1,∆2, x : Uo
fA; Γ ([Ttake], (5))

(7) take x(a); share x{return x(a);P ||Q} ⊢η ∆;Γ ((1) and (6))

Case: [RTsh] right-to-left

(1) ∆ = ∆1, x = Uo
fA

(2) share x{return x(a);P ||Q) ⊢η ∆1, a : ∨A, x : Uo
eA; Γ, for some A,∆1

([Ttake−1 and right side)

(3) ∆1 = ∆11,∆12

(4) return x(a);P ⊢η ∆11, x : Uo
fA; Γ

(5) Q ⊢η ∆12, a : ∨A, x : U c
eA; Γ ([Tsh−1] and (2))

(6) take x(a);Q ⊢η ∆12, x : U c
fA; Γ ([Ttake], (5))

(7) share x{return x(a);P ||take x(a);Q} ⊢η ∆11,∆12, x : Uo
fA; Γ ([Tsh], (4) and (6))

(8) ∆11,∆12, x : Uo
fA = ∆ ((1) and (3))

(9) share x{return x(a);P ||take x(a);Q} ⊢η ∆;Γ ((7) and (8))

Below is the proof extension for theorem 1(2). Similar to part 1, only new or affected rules need to be
checked, while rule [SfUff ] is removed entirely.

Case: [SfUf t]
The proof only needs to add the relation parameter. As the reduction is a cut directed at a cell, the state

and usage types both are owners. Which concluded the proof.
Note: the same evaluation is applied to [SeUe].

Case: [SfUff ]
cut {cell c(a.P )|c|return c(a′);Q} → cut{P |a|{a/a′}Q}

(1) ∆ = ∆1,∆2

(2) cell c(a.P ) ⊢η ∆1, c : S
o
fA; Γ

(3) return c(a′);Q ⊢η ∆2, c : U
o
fA; Γ

([Tcut−1] and left side)

(4) P ⊢η ∆1, a : ∧A; Γ

(5) Q ⊢η ∆2, a
′ : ∨A; Γ

(6) {a/a′}Q ⊢η ∆2, a : ∨A; Γ

(7) cut {P |a : ∧A|{a/a′}Q} ⊢η ∆1,∆2; Γ

(8) cut {P |a : ∧A|{a/a′}Q} ⊢η ∆;Γ

2.1.4 Progress

To ensure that the property of progress is preserved theorem 2 needs to be proven, which states that a process
reduces if it is live. The proof comes from Lemma 4, which proves the property of liveness. The proof for this
Lemma remains largely the same except for the newly added type rule [Treturn] which needs to be accounted
for. As this rule accounts for an action, a similar analysis is applied as for rule [T1] as noted in the proof itself.

Lemma 4 depends on Lemma 3, which consists of 7 parts where the proof only needs to be extended for
the first 3 parts which are about the combinations possible with share. These 3 cases need to be expanded to
account for the added relation parameter, which means that each of these cases is split into 3 new sub-cases.
Mainly:

6



1. With both usages being children;

2. With the left usage being the owner;

3. With the right usage being the owner.

Extension lemma 3(1)(1) Let P ⊢ ∆, x : U c
fA; Γ and Q ⊢ ∆, x : U c

fA; Γ be processes for which P ↓x:act and
Q ↓x:act. Then, share x{P ||Q}.

This proof is the same as that of the original lemma 3(1) as no new cases are introduced (i.e. both are
children so the return action is not available and no further restrictions apply).

Extension lemma 3(1)(2) Let P ⊢ ∆, x : Uo
fA; Γ and Q ⊢ ∆, x : U c

fA; Γ be processes for which P ↓x:act and
Q ↓x:act. Then, share x{P ||Q}.

The proof remains largely the same as that of the original lemma 3(1), but accounts for the additional
reduction where return and take are competing.
Case: The root rule of both P ↓x:act and Q ↓x:act is [act].

A new case is added where A = return x(a);P ′ and B = take x(a);Q′.
By applying [RTSh] we obtain
share x{return x(a);P ′||take x(a);Q′} ≡ take x(a); share x{return x(a);P ′||Q′}
Hence

share x{return x(a);P ′||take x(a);Q′} ≡ take x(a); share x{return x(a);P ′||Q′}
take x(y);R ↓x:act
s(take x(y);R) = x

share x{P ||Q} ↓x:act

Extension lemma 3(1)(3) Let P ⊢ ∆, x : U c
fA; Γ and Q ⊢ ∆, x : Uo

fA; Γ be processes for which P ↓x:act and
Q ↓x:act. Then, share x{P ||Q}.

The proof is the same as that from Lemma 3(1)(2), following the same step as the original proof of Lemma
3(3) (i.e. exploiting the commutative property).

The proofs for the remaining lemmas 3(2)(1-3) remain the same as that of Lemma 3(2), mainly because the
only path for progress is if one process fills the cell using the put action. As a consequence, the same holds for
lemmas 3(3)(1-3) reusing the proof of Lemma 3(3).

2.1.5 Confluence

Confluence is proven for CLASS in theorem 3 also called the diamond property. The proof follows from Lemmas
11 and 5(3), which rely on Lemmas 6, 7, 8 and 9. Only two notes have to be made to ensure that the property
of confluence is also proven for the modification of class. In lemma 6 the same analysis applies for [Treturn] as
for [T0] as noted in the proof itself. For shares in lemma 9(1), the proof remains the same as the modification
of share falls automatically in the case where no two takes are offered. For lemma 9(2) a new case is introduced
for the rule [RTSh], however, the proof is the same as for [RSh] in the same way as noted in the case of [PSh].
Finally, lemma 9(3) adds the case for [SfUff ] which is handled in the same way as the proof for [1⊥], which
proves the property of confluence for CLASS+.

2.2 Backwards-compatibility

The modification to CLASS is meant to expand the abilities of the language. Only one action is added to
CLASS mainly return. Thus if return is ignored, will the modified CLASS essentially collapse to CLASS? To
prove backwards compatibility it only needs to be shown that any process in CLASS can be translated into a
process of CLASS+.

Theorem 1 There exists an encoding [[·]] : CLASS → CLASS+.

Proof: The encoding can first be defined by the translation of the type and type rules, which can be translated
one-to-one with the exception of the rules related to cells as these rules are the only ones modified. For the
usage and state types, they can simply be encoded with the child relation (e.g. [[Ue]] = U c

e ). As a consequence,

7



every rule that applies to cells except for [Tcell] and [Tempty] can be directly translated with the relation set to
child. The encoding of [Tcell] and [Tempty] is a different case as it is not possible to set the relation parameter
to child as it always expects an owner as its dual. So instead the following encoding is proposed:

s
P ⊢ ∆, a : ∧A; Γ

cell z(a.P ) ⊢ ∆, z : SfA; Γ

{
=

[[P ]] ⊢ [[∆]], a : ∧[[A]]; [[Γ]]

cell c(a.[[P ]]) ⊢ [[∆]], c : So
f [[A]]; [[Γ]]

Tcell

discard a ⊢ a : ∧[[A]]; [[Γ]]
Tdiscard

return c(a);discard ac ⊢ c : Uo
f [[A]]; [[Γ]]

Treturn
fwd c z ⊢ c : U c

f [[A]], z : Sc
f [[A]]; [[Γ]]

Tfwd

share c{return c(a);discard a||fwd c z} ⊢ c : Uo
f [[A]], z : Sc

f [[A]]; [[Γ]]
Tshare

cut {cell c(a.[[P ]])|c|share c{return c(a);discard a||fwd c z}} ⊢ [[∆]], z : Sc
f [[A]]; [[Γ]]

Tcut

s

empty z ⊢ z : SeA; Γ

{
=

empty c ⊢, c : So
e [[A]]; [[Γ]]

Tempty

discard a ⊢ a : ∧[[A]]; [[Γ]]
Tdiscard

return c(a);discard ac ⊢ c : Uo
f [[A]]; [[Γ]]

Treturn
fwd c z ⊢ c : U c

f [[A]], z : Sc
f [[A]]; [[Γ]]

Tfwd

share c{return c(a);discard a||fwd c z} ⊢ c : Uo
f [[A]], z : Sc

f [[A]]; [[Γ]]
Tshare

cut {empty c|c|share c{release c||fwd c z}} ⊢ [[∆]], z : Sc
e [[A]]; [[Γ]]

Tcut

Essentially the encoding for these type rules adds a default owner process for the cell and forwards the state
that corresponds with usage by children. It only remains to be verified that the operational semantics remain
the same by checking soundness and completeness.

For the reduction rules that do not involve a cell the semantics remain the same, which means that it
satisfies both the properties of completeness and soundness. For the remain rules [SfUf t], [SeUe] and [SfUff ]
the properties need to be proven.

Starting with [SfUf t] completeness can be shown as follows, with the support of the congruence rules [CC]
and [CSh] and reduction rule [fwd]:

cut {cut {cell c(a.P )|c|share c{return c(a);discard a||fwd c z}}|z|take z(a′);Q} ≡
cut {cell c(a.P )|c|share c{return c(a);discard a||cut {fwd c z|z|take z(a′);Q}}} →

cut {cell c(a.P )|c|share c{return c(a);discard a||take z(a′);Q} ≡
cut {cell c(a.P )|c|take z(a′); share c{return c(a);discard a||Q}

This then allows us to apply the rule [SfUf t]in CLASS+ to be applied. As there are not other reductions
possible it can only be concluded that the translation for this rule is also complete. For [SeUe] a similar analysis
holds. For rule [SfUff ] the initial steps from the proof can be followed to reduce cut on the fwd. This is then
followed by the congruence rule [RSh] and the reduction [SfUff ]

cut {cut {cell c(a.P )|c|share c{return c(a);discard a||fwd c z}}|z|take z(a′);Q} ≡
cut {cell c(a.P )|c|share c{return c(a);discard a||cut {fwd c z|z|release z}}} →

cut {cell c(a.P )|c|share c{return c(a);discard a||release z} ≡
cut {cell c(a.P )|c|return c(a);discard a} →

cut {P |a|discard a}

This shows that the property holds for completeness, and as there are no other reductions for the encoded
process the property of soundness holds as well. This also means that for the encoding the properties hold and
this concludes that there is an encoding from CLASS to CLASS+.

3 Encoding

The encoding from λlock to CLASS+ can now be constructed. First, the encoding is defined for the types as it
is a prerequisite for the encoding of type rules which follow. Finally, as the semantics of a λlock process is given
as a set of threads and locks the encoding is extended such that the preservation of reduction in the translation
is verifiable.

8



3.1 Encoding of Types

The encoding of types is given in fig. 1. Each type has a direct equivalent in CLASS+ however there are some
considerations. The first consideration is the use of channels and duals. A similar approach is followed as done
in the translation of GV into CP by Walder [5], where inputs are considered dual of the type and outputs
are considered simply the encoding. Furthermore, as CLASS+ uses affine channels, in particular for stored
processes in cells, this needs to be properly captured in order to ensure that it is always possible to make any
encoded process affine. In particular, a process with some channel can only be made affine if all other channels
are either using an affine channel (coaffine) or a cell (usage). Hence, for inputs the type needs to be not only
dual but also coaffine. It is not necessary to make a distinction between affine channels or usages of cells as the
latter can simply be transformed into an affine channel without any repercussions.

For the encoding of lock types to cell types it is chosen to use the state type as opposed to the usage type.
The state type allows an encoded process to be used with a cut, and forward it as an output as necessary. For
the remaining part, which are the type of content, the ownership and the state of the cell, there is a one-to-one
correspondence between sub-types of locks and cells. Finally, it also has to be noted that the sub-types of sum
and product types always need to be affine, as it is not possible to make them affine later as their application
requires them to be cut directly against their counterparts which uses inputs which were made coaffine and
dual.

The recursive type was dropped as it falls outside the scope of this project considering that there is no
associated type rule. Similarly, the type 0 was dropped with its application in match, as it was unclear what
the author intended and might only apply in order to deal with correctness of types or type preservation.

[[1]] = 1
[[τ1 + τ2]] = (∧[[τ1]])⊕ (∧[[τ2]])
[[τ1 × τ2]] = (∧[[τ1]])⊗ (∧[[τ2]])
[[τ1⊸ τ2]] = (∨[[τ1]])

&

[[τ2]]

[[τ1 → τ2]] = !(∨[[τ1]]

&

[[τ2]])

[[Lock⟨τa=a1+a2

b=b1+b2
⟩]] = S

[[a]]=[[a1]]+[[a2]]
[[b]]=[[b1]]+[[b2]]

[[τ ]]

where a, a1, a2 ∈ R and b, b1, b2 ∈ S

[[a]] =

{
o if a = 1

c otherwise

[[b]] =

{
e if b = 1

f otherwise

Figure 1: Encoding of types

3.2 Encoding of Type Rules

The encoding of the type rules is given in figs. 2 to 4. In the encoding of the types, considerations were made
with respect to the construction of the encoding of the type rules. Encoding of the expressions all follows a
passing style, where one channel is reserved as output. Each of the encodings can use multiple type rules in
CLASS+ to achieve the same result, but they end in the same preconditions as the original type rule. The
encoded type rules also translate the set of arguments to a set of channels, each of these is always dual and
coaffine as mentioned before to ensure that the output channel can always be made affine. It is not always
necessary to make an output affine hence, outputs are not affine by default which reduces the work of the
encoding and the proofs that will follow. In the encoded processes, the channel sets are translated as a whole,
where the context differentiates whether the original argument was linear (and on the left side of the semi-colon)
or exponential (and on the right side). The result of these encodings is both to translate expressions as well as
to ensure type preservation and correctness of the resulting encoded process in CLASS+.

Theorem 2: If Γ ⊢ e : τ then [[e]]z ⊢η ∨[[Γ]], z : [[τ ]]; [[Γ]].

Proof : The encoded type rules are given in figs. 2 to 4.

The encoded type rules for new simply create a new lock of the encoded type, the choice for translation of
lock type to that of state also becomes apparent as it can be used directly with a cut to an encoded thread. The

9



drop action would semantically be the same as release, though release does not produce an output type and
hence a parallel composition is used to make it type-compatible. The wait action is directly compatible with
return, but needs to account for the affine resource and removes this property before it forwards it to the ouput
channel. Fork is similar to share, however, it constricts in how a new thread is created by using a function that
the lock can be passed onto while also making terminate. Hence, in this translation, the new thread process is
encoded as Q as a function call which also handles the termination. Acquire and release are translated quite
directly with their counterparts take and put respectively, but with the additional consideration of removing
the affine property through use and making the stored resource affine first.

Nothing needs to be said about the encoding of termination as it has its direct counterpart close acting on
the output channel. For encoding of an argument, the requirement to keep inputs coaffine such that any process
can be stored inside a cell while the output must not be. To achieve this using the affine input gives us a forward
that does not need to be affine, while retaining the possibility to make it so. Function and a function call is
encoded through recv and send, where the call performs the cut between the two encoded processes. As the
input of the function is coaffine, it is necessary to make the output channel of the input affine. The exponential
function and call are translated in the same way, but are wrapped using ! and ? + call as to make the channel
exponential and make the necessary reductions possible. The encodings of a tuple is simply done by combining
the outputs through a send action, but not before making the channels affine this as in the encoding for let the
variables are encoded as coaffine. The let encoding performs the cut and does the opposite of a tuple by using
recv. Encodings for in L and R are very similar to that of a tuple, but with one process. Their counterpart
match is encoded as a consequence the same as let, but without the recv as there is only one channel as input.

3.3 Encoding of the Process

As the operational semantics are given as a set of threads and locks that reduce an additional layer of translation
is necessary. Essentially, it will allow a program and its translation to be verified from any state, not only from
the start and the end. This part of the encoding works off of the fundamental definition of references to locks
and shares of cells. The definition of locks tells us that between threads at most they can have one lock in
common. Similarly, this definition holds also true for shares of usages of cells in CLASS+ per the definition of
the type rules and preservation of types. Furthermore, as locks have an owner, there must always be at least
one thread for each lock. For threads, it does not hold true that they need a reference to a lock, as a thread is
always allowed to drop any reference leaving an independent thread behind. These assertions form the basis of
the encoding of the process.

The encoding from the previous sections can be used with the extension of encoding of threads, locks and
references. In this encoding a special case is considered when a process terminates and is of 1, as to account for
the semantic rule exit in λlock where the thread terminates.

[[k 7→ Lock(c,None))]]k = empty k

[[k 7→ Lock(c,Some(v)))]]k = cell k(a.affinec,a a; [[v]]a)

[[n 7→ Thread(e)]]n =

{
[[e]]n if τn ̸= 1

cut {[[e]]x |x : 1| wait x; 0} otherwise

[[⟨k⟩]]z = fwd k z

Definition 1: If ρ ∈ Cfg then ([ρ]) which is the encoding for the process.

ρ adheres to the defined principle of λlock, meaning it is a directed acyclic graph of threads linked to locks.
This means that it can be written as a disjoint union, with any thread not referencing any lock falling into the
set ρ′.

ρ = ρ1 ⊔ ... ⊔ ρn ⊔ ρ′

This can be encoded as a base case where ρ consists of multiple disjoint DAGs. This is possible as there are
no common channels in the encoded threads.

([ρ]) = par {([ρ1]) ∥ ... ∥ ([ρn]) ∥ Q′} where Q′ = par {∥ti∈ρ′ [[t]]i}

10



This leaves the case where ρ is not disjoint. The process is built inductively by selecting a lock and threads
that reference it. For the choice, locks that hold another lock take priority, as they must be inside the cut of the
lock they are holding. This is also done for the inductive step, counting on the property that there will always
be one lock without holding a reference (empty locks never hold a reference).

l ∈ ρlocks

T = {t ∈ ρthreads|t references l}
ρ′ = ρ \ T ∪ {l}

By definition of λlock each thread has at most one lock in common, hence each encoded thread has only
reference to l. This can be used to create a share that cuts on the encoded lock.

Q = cut {[[l]]x |x : So
[[b]] [[τl]]| share x {∥ti∈T [[ti]]ti}}

The inductive step is where the process Q is extended by selecting another lock one that is also used by Q.
As our criteria for ρ was that it is a DAG a natural consequence is that some thread used for the construction
of Q also references lock other than l. Hence a new lock is selected and a set of threads is constructed. Here ρ′

becomes ρ.

l′ ∈ ρ where ∃t ∈ T : t references l′

T ′ = {t ∈ ρthreads|t references l}
ρ′ = ρ \ T ′ ∪ {l′}

Then the process Q can be extended.

Q′ = cut {[[l′]]x |x : So
[[b]] [[τl′ ]]| share x {∥ti∈T ′ [[ti]]ti ∥ Q}}

The inductive step is repeated with Q′ becoming Q and ρ′ becoming ρ, until there are no more locks left.
By definition of λlock any lock always has at least one thread referencing it, so T and T ′ is never empty, while
because of the choice for ρ being a DAG there are no threads left once there are no more locks. Hence, the set
will be empty.

As the process ρ is an unordered set and no assumptions are made on the order of the references it needs
to be verified that the order in which the shares are constructed does not matter. The proof follows from the
distributive conversions as defined in CLASS+. By congruence rule [ShSh] it is possible to swap shares, hence
choosing to use one lock over the other first for construction does not matter.

This section directly relates to the operational semantics of λlock and it remains to verify the preservation
of the semantics of the encoding.

3.3.1 Encoding of the examples

In the introduction some examples of λlock were given in this part these will be translated as a verification of
soundness and completeness of the encoding in these examples.

ρ =

 t1 7→ Thread(K1[let x, y = acquire(⟨k⟩) in release(x, 2 ∗ y)])
t2 7→ Thread(K2[let x, y = acquire(⟨k⟩) in release(x, 2 + y)])

k 7→ Lock(1,Some(1)))

⇝∗

ρ′1 =

{
...

k 7→ Lock(1,Some(4)))

}
or

ρ′2 =

{
...

k 7→ Lock(1,Some(6)))

}
This process can be encoded as (the encoding of pairs are omitted for clarity):

11



([ρ]) = cut {cell x(y.1) |x : So
f int| share x {take x(y);put x(y.2 ∗ y); [[K1]]t1 ∥ take x(y);put x(y.2 + y); [[K2]]t2}}

≡ cut {cell x(y.1) |x : So
f int| take x(y); share x {put x(y.2 ∗ y); [[K1]]t1 ∥ take x(y);put x(y.2 + y); [[K2]]t2}}

+ cut {cell x(y.4) |x : So
f int| take x(y); share x {take x(y);put x(y.2 ∗ y); [[K1]]t1 ∥ put x(y.2 + y); [[K2]]t2}}

⇝ cut {cell x(y.4) |x : So
f int| share x {[[K1]]t1 ∥ [[K2]]t2}}

+ cut {cell x(y.6) |x : So
f int| share x {[[K1]]t1 ∥ [[K2]]t2}}+ ...

≡ ([ρ′1]) + ([ρ′2]) + ...

This example demonstrates the confluent property as the process reduces to both possible outcomes that
can come from the non-deterministic competition between threads in acquiring/taking values from locks/cells.
In the verification of completeness, a possible reduction in the original process encoded is only a single item in
the sum of outcomes, without knowing the other outcomes. Soundness is verified by checking that all outcomes
have some reduction for the original process. In the encoded example, there are the triple dots, this was included
as in the encoding it is unsure what K1 and K2 might do. The options remain open to release, return, or even
to take. In the latter case, this would result in additional competition that leads to different outcomes. As it is
unknown, for the purposes of this example no assumptions are made.

The other example of lock passing can be encoded in two ways which are both equivalent as shown below.

cut {empty k1 |k1 : So
e [[τk1 ]]| share k1 {take k1(x);use x; k2[[K1]]t2

∥ cut {share k2 {put k1(x.affinec,a x; fwd k2 x); [[K1]]t1 ∥ [[t3]]t3} |k2 : So
[[b]] [[τk2 ]]| }}}

≡ cut {[[k2]]k2 |k2 : So
[[b]] [[τk2 ]]| share k2 {[[t3]]t3

∥ cut {empty k1 |k1 : So
e [[τk1 ]]| share k1 {put k1(x.affinec,a x; fwd k2 x); [[K1]]t1 ∥ take k1(x); [[K1]]t2}}}}

⇝ cut {[[k2]]k2 |k2 : So
[[b]] [[τk2 ]]| share k2 {[[t3]]t3

∥ cut {cell k1(k2.[[k2]]k2) |k1 : So
f [[τk1 ]]| share k1 {[[K1]]t1 ∥ take k1(x); [[K1]]t2}}}}

In the encodings, the choice for which lock to encode first does not matter as both are equivalent, both
before and after the reduction. After the first reduction has taken place, it will be possible for thread t2 to
receive the reference to lock. Here it becomes obvious why prioritize locks that hold reference to some other
lock so they fall inside the appropriate cut. Depending on the context K1, the next reduction would be where
thread t2 receives the reference stored in the lock.

4 Future work

While the encoding is given and the operation semantics are considered to be preserved, it still needs to be
formally proven that the encoding is both sound and complete. Without these properties, it is possible that
the encoded process does not yield the same results as the original process, while it is also possible that it does
more than it was supposed to.

The extension of λlock that uses lock groups and partial orders to share multiple locks and ensure deadlock
freedom is not incorporated as it requires a further extension of CLASS. Adding partial orders would allow for
the extension of the encoding to translate expressions and produce a complete set of outcomes as a consequence
of confluence.

5 Conclusion

In this project an encoding from λlock to CLASS+ has been developed. The encoding introduces confluence
to an otherwise non-confluent calculus, creating transparency into the possible outcomes of said program. The
encoding follows multiple steps, starting from the encoding of types which need to account for not only the
duality of channels but also to ensure it is always possible to make a channel affine. The type rules are encoded
to encoded expressions that are ensured to preserve types. Finally, as the semantics are given as unordered
sets of locks and threads an encoding was developed for these. It follows the properties as defined by λlock as
a base assumption on the shape of the sharing topology, which is also necessary as CLASS+ uses these same
definitions.

In order to facilitate the encoding, it was deemed necessary to expand CLASS into CLASS+ due to differences
in how the end of lifecycles of locks and cells worked. Where locks would preserve the values, cells would

12



simply discard them without a way to deviate from this position. In order to overcome this the same notion
of ownership present in λlock was added to CLASS. The addition of a return operator allows for the desired
behaviour. Important properties were then verified like, type preservation, progress and confluence.

The encoding shows that λlock and CLASS+ fulfil the same purpose. However, where λlock discards conflu-
ence and CLASS+ preserves it. Thus the encoding generates a degree of transparency into the outcomes of any
program.

6 Acknowledgements

I would like to thank my supervisor Jorge Pérez for guiding me through this internship project. I found it
an interesting project and with his guidance, I learned new aspects of λ-calculus and π-calculus and their
similarities.

References

[1] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In International Con-
ference on Concurrency Theory, pages 222–236. Springer, 2010.

[2] Lúıs Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types. Mathematical
Structures in Computer Science, 26(3):367–423, 2016.

[3] Jules Jacobs and Stephanie Balzer. Higher-order leak and deadlock free locks. Proc. ACM Program. Lang.,
7(POPL), jan 2023.

[4] PEDRO MANUEL SABINO ROCHA. Class: A logical foundation for typeful programming with shared
state. 2022.

[5] Philip Wadler. Propositions as sessions. SIGPLAN Not., 47(9):273–286, sep 2012.

13



s
Γ unr

Γ ⊢ new() : Lock⟨τ11 ⟩

{

z

= empty z ⊢η z : So
e [[τ ]]; [[Γ]]

Tempty

s
Γ ⊢ e : Lock⟨τ00 ⟩
Γ ⊢ drop(e) : 1

{

z

=

[[e]]x ⊢η ∨[[Γ]], x : Sc
f [[τ ]]; [[Γ]]

release x ⊢η x : Uc
f [[τ ]]; [[Γ]]

Trelease
close z ⊢η z : 1; [[Γ]]

T1

par {release x ∥ close z} ⊢η x : Uc
f [[τ ]], z : 1; [[Γ]]

Tmix

cut {[[e]]x |x : Sc
f [[τ ]]| par {release x ∥ close z}} ⊢η ∨[[Γ]], z : So

e [[τ ]]; [[Γ]]
Tcut

s
Γ ⊢ e : Lock⟨τ10 ⟩
Γ ⊢ wait(e) : τ

{

z

=

[[e]]x ⊢η ∨[[Γ]], x : So
f [[τ ]]; [[Γ]]

fwd a z ⊢η a : [[τ ]], z : [[τ ]]; [[Γ]]
Tfwd

use a; fwd a z ⊢η a : ∨[[τ ]], z : [[τ ]]; [[Γ]]
Tuse

return x(a);use a; fwd a z ⊢η x : Uo
f [[τ ]], z : [[τ ]]; [[Γ]]

Treturn

cut {[[e]]x |x : So
f [[τ ]]| return x(a);use a; fwd a z} ⊢η ∨[[Γ]], z : [[τ ]]; [[Γ]]

Tcut

s
Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : Lock⟨τa1+a2

b1+b2
⟩ Γ2 ⊢ e2 : Lock⟨τa2

b2
⟩⊸ 1

Γ ⊢ fork(e1, e2) : Lock⟨τa1

b1
⟩

{

z

=

[[e1]]x ⊢η ∨[[Γ1]], x : S
[[a1]]+[[a2]]
[[b1]]+[[b2]]

[[τ ]]; [[Γ]]

fwd x z ⊢η x : U
[[a1]]
[[b1]]

[[τ ]], z : S
[[a1]]
[[b1]]

[[τ ]]; [[Γ]]
Tfwd

Q

share x {fwd x z ∥ Q} ⊢η ∨[[Γ2]], x : U
[[a1]]+[[a2]]
[[b1]]+[[b2]]

[[τ ]], z : S
[[a1]]
[[b1]]

[[τ ]]; [[Γ]]
Tshare

cut {[[e1]]x |x : S
[[a1]]+[[a2]]
[[b1]]+[[b2]]

[[τ ]]| share x {fwd x z ∥ Q}} ⊢η ∨[[Γ]], z : S
[[a1]]
[[b1]]

[[τ ]]; [[Γ]]
Tcut

with

[[e2]]y ⊢η [[Γ]], y : U
[[a2]]
[[b2]]

[[τ ]]

&

1; [[Γ]]

fwd x′ x ⊢η x′ : S
[[a2]]
[[b2]]

[[τ ]], x : U
[[a2]]
[[b2]]

[[τ ]]; [[Γ]]
Tfwd

0 ⊢η ∅; [[Γ]]
T0

wait y; 0 ⊢η y :⊥; [[Γ]]
T ⊥

send y(x′.fwd x′ x);wait y; 0 ⊢η x : U
[[a2]]
[[b2]]

[[τ ]], y : S
[[a2]]
[[b2]]

[[τ ]]⊕ ⊥; [[Γ]]
Tsend

Q = cut {[[e2]]y |y : U
[[a2]]
[[b2]]

[[τ ]]

&

1| send y(x′.fwd x′ x);wait y; 0} ⊢η x : U
[[a2]]
[[b2]]

[[τ ]]; [[Γ]]
Tcut

s
Γ ⊢ e : Lock⟨τa0 ⟩

Γ ⊢ acquire(e) : Lock⟨τa1 ⟩

{

z

=

[[e]]x ⊢η ∨[[Γ]], x : S
[[a]]
f [[τ ]]; [[Γ]]

fwd x′ x ⊢η x′ : S[[a]]
e [[τ ]], x : U[[a]]

e [[τ ]]; [[Γ]]
Tfwd

fwd a z ⊢η a : [[τ ]], z : [[τ ]]; [[Γ]]
Tfwd

send z(x′.fwd x′ x); fwd a z ⊢η x : U[[a]]
e [[τ ]], a : [[τ ]], z : S[[a]]

e [[τ ]]⊗ [[τ ]]; [[Γ]]
Tsend

use a; send z(x′.fwd x′ x); fwd a z ⊢η x : U[[a]]
e [[τ ]], a : ∨[[τ ]], z : S[[a]]

e [[τ ]]⊗ [[τ ]]; [[Γ]]
Tuse

take x(a);use a; send z(x′.fwd x′ x); fwd a z ⊢η x : U
[[a]]
f [[τ ]], z : S[[a]]

e [[τ ]]⊗ [[τ ]]; [[Γ]]
Ttake

cut {[[e]]x |x : S
[[a]]
f [[τ ]]| take x(a);use a; send z(x′.fwd x′ x); fwd a z} ⊢η ∨[[Γ]], z : S[[a]]

e [[τ ]]⊗ [[τ ]]; [[Γ]]
Tcut

s
Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : Lock⟨τa1 ⟩ Γ2 ⊢ e2 : τ

Γ ⊢ release(e1, e2) : Lock⟨τa0 ⟩

{

z

=

[[e1]]x ⊢η ∨[[Γ1]], x : S[[a]]
e [[τ ]]; [[Γ]]

[[e2]]a ⊢η ∨[[Γ2]], a : [[τ ]]; [[Γ]]

affinec,a a; [[e2]]a ⊢η ∨[[Γ2]], a : ∧[[τ ]]; [[Γ]]
Taffine

fwd x z ⊢η x : U
[[a]]
f [[τ ]], z : S

[[a]]
f [[τ ]]; [[Γ]]

Tfwd

put x(a.[[e2]]a); fwd x z ⊢η ∨[[Γ2]], x : U[[a]]
e [[τ ]], z : S

[[a]]
f [[τ ]]; [[Γ]]

Tput

cut {[[e1]]x |x : S[[a]]
e [[τ ]]| put x(a.[[e2]]a); fwd x z} ⊢η ∨[[Γ]], z : S

[[a]]
f [[τ ]]; [[Γ]]

Tcut

Figure 2: Encoding of type rules of lock interactions

14



s
Γ unr

Γ ⊢ () : 1

{

z

= close z ⊢η z : 1; [[Γ]]
Tclose

s
Γ unr

Γ, x : τ ⊢ x : τ

{

z

=

fwd x z ⊢η x : [[τ ]], z : [[τ ]]; [[Γ]]
Tfwd

use x; fwd x z ⊢η x : ∨[[τ ]], z : [[τ ]]; [[Γ]]
Tuse

s
Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1⊸ τ2 Γ2 ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

{

z

=

[[e1]]x ⊢η ∨[[Γ1]], x : ∨[[τ1]]

&

[[τ2]]; [[Γ]]

[[e2]]y ⊢η ∨[[Γ2]], y : [[τ1]]; [[Γ]]

affinec,a y; [[e2]]y ⊢η ∨[[Γ2]], y : ∧[[τ1]]; [[Γ]]
Taffine

fwd x z ⊢η x : [[τ2]], z : [[τ2]]; [[Γ]]
Tfwd

send x(y.affinec,a y; [[e2]]y); fwd x z ⊢η ∨[[Γ2]], x : ∧[[τ1]]⊗ [[τ2]], z : [[τ2]]; [[Γ]]
Tsend

cut {[[e1]]x |x : ∨[[τ1]]

&

[[τ2]]| send x(y.affinec,a y; [[e2]]y); fwd x z} ⊢η ∨[[Γ]], z : [[τ2]]; [[Γ]]
Tcut

s
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx.e : τ1⊸ τ2

{

z

=

[[e]]z ⊢η ∨[[Γ]], x : ∨[[τ1]], z : [[τ2]]; [[Γ]]

recv z(x); [[e]]z ⊢η ∨[[Γ]], z : ∨[[τ1]]

&

[[τ2]]; [[Γ]]
Trecv

s
Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 → τ2 Γ2 ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

{

z

=

[[e1]]x ⊢η x :!(∨[[τ1]]

&

[[τ2]]); [[Γ]] Q ⊢η ∨[[Γ]], x :? ∧ [[τ1]]⊗ [[τ2]], z : [[τ2]]; [[Γ]]

cut {[[e1]]x |x :!(∨[[τ1]]

&

[[τ2]])| ?x; call x(x′); send x′(y.affinec,a y; [[e2]]y); fwd x z} ⊢η ∨[[Γ]], z : [[τ2]]; [[Γ]]
Tcut

with

[[e2]]y ⊢η ∨[[Γ]], y : [[τ1]]; [[Γ]], x : ∧[[τ1]]⊗ [[τ2]]

affinec,a y; [[e2]]y ⊢η ∨[[Γ]], y : ∧[[τ1]]; [[Γ]], x : ∧[[τ1]]⊗ [[τ2]]
Taffine

fwd x′ z ⊢η x′ : [[τ ]], z : [[τ2]]; [[Γ]], x : ∧[[τ1]]⊗ [[τ2]]
Tfwd

send x′(y.affinec,a y; [[e2]]y); fwd x′ z ⊢η ∨[[Γ]], x : ∧[[τ1]]⊗ [[τ2]], z : [[τ2]]; [[Γ]], x : ∧[[τ1]]⊗ [[τ2]]
Tsend

call x(x′); send x′(y.affinec,a y; [[e2]]y); fwd x z ⊢η ∨[[Γ]], z : [[τ2]]; [[Γ]], x : ∧[[τ1]]⊗ [[τ2]]
Tcall

Q =?x; call x(x′); send x′(y.affinec,a y; [[e2]]y); fwd x z ⊢η ∨[[Γ]], x :? ∧ [[τ1]]⊗ [[τ2]], z : [[τ2]]; [[Γ]]
T?

s
Γ unr Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx.e : τ1 → τ2

{

z

=

[[e]]z ⊢η x : ∨[[τ1]], y : [[τ2]]; [[Γ]]

recv y(x); [[e]]y ⊢η y : ∨[[τ1]]

&

[[τ2]]; [[Γ]]
Trecv

z(y); recv y(x); [[e]]y ⊢η z :!(∨[[τ1]]

&

[[τ2]]); [[Γ]]
T !

s
Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

{

z

=

[[e1]]x ⊢η ∨[[Γ1]], x : [[τ1]]; [[Γ]]

affinec,a x; [[e1]]x ⊢η ∨[[Γ1]], x : ∧[[τ1]]; [[Γ]]
Taffine

[[e2]]z ⊢η ∨[[Γ2]], z : [[τ2]]; [[Γ]]

affinec,a z; [[e2]]z ⊢η ∨[[Γ2]], z : ∧[[τ2]]; [[Γ]]
Taffine

send z(x.[[e1]]x); [[e2]]z ⊢η ∨[[Γ]], z : ∧[[τ1]]⊗ ∧[[τ2]]; [[Γ]]
Tsend

s
Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 × τ2 Γ2, xτ1, y : τ2 ⊢ e2 : τ3

Γ ⊢ let x, y = e1 in e2 : τ1 × τ2

{

z

=

[[e1]]x ⊢η ∨[[Γ1]], x : ∧[[τ1]]⊗ ∧[[τ2]]; [[Γ]]
[[e2]]z ⊢η ∨[[Γ2]], x : ∨[[τ1]], y : ∨[[τ2]], z : [[τ2]]; [[Γ]]

recv x(y); [[e2]]z ⊢η ∨[[Γ2]], x : ∨[[τ1]]

&

∨ [[τ2]], z : [[τ2]]; [[Γ]]
Trecv

cut {[[e1]]x |x : ∧[[τ1]]⊗ ∧[[τ2]]| recv x(y); [[e2]]z} ⊢η ∨[[Γ]], z : [[τ3]]; [[Γ]]
Tcut

Figure 3: Encoding of type rules of base calculus, part 1

15



s
Γ ≡ Γ1 · Γ2 Γ1 ⊢ e : τ1 + τ2 Γ2, x1 : τ1 ⊢ e1 : τ ′ Γ2, x2 : τ2 ⊢ e2 : τ ′

Γ ⊢ match e with inL(x1) ⇒ e1; inR(x2) ⇒ e2; end : τ ′

{

z

=

[[e]]x ⊢η ∨[[Γ1]], x : ∧[[τ1]]⊕ ∧[[τ2]]; [[Γ]]
[[e1]]z ⊢η ∨[[Γ2]], x : ∨[[τ1]], z : [[τ ′]]; [[Γ]] [[e2]]z ⊢η ∨[[Γ2]], x : ∨[[τ2]], z : [[τ ′]]; [[Γ]]

case x {|inl : [[e1]]z|inr : [[e2]]z} ⊢η ∨[[Γ2]], x : ∨[[τ1]] & ∨ [[τ2]], z : [[τ ′]]; [[Γ]]
T&

cut {[[e]]x |x : ∧[[τ1]]⊕ ∧[[τ2]]| case x {|inl : [[e1]]z|inr : [[e2]]z}} ⊢η ∨[[Γ]], z : [[τ ′]]; [[Γ]]
Tcut

s
Γ ⊢ e : τ1

Γ ⊢ inL(e) : τ1 + τ2

{

z

=

[[e]]z ⊢η ∨[[Γ]], z : [[τ1]]; [[Γ]]

affinec,a z; [[e]]z ⊢η ∨[[Γ]], z : ∧[[τ1]]; [[Γ]]
Taffine

z.inl;affinec,a z; [[e]]z ⊢η ∨[[Γ]], z : ∧[[τ1]]⊕ ∧[[τ2]]; ctd[[Γ]]
T⊕L

s
Γ ⊢ e : τ2

Γ ⊢ inR(e) : τ1 + τ2

{

z

=

[[e]]z ⊢η ∨[[Γ]], z : [[τ2]]; [[Γ]]

affinec,a z; [[e]]z ⊢η ∨[[Γ]], z : ∧[[τ2]]; [[Γ]]
Taffine

z.inr;affinec,a z; [[e]]z ⊢η ∨[[Γ]], z : ∧[[τ1]]⊕ ∧[[τ2]]; [[Γ]]
T⊕L

Figure 4: Encoding of type rules of base calculus, part 2

16


