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Abstract

The research in this paper aims to explore two sleep-wake models, namely the two-process model and an
improved version of this model called the Phillips and Robinson (PR) model. The two-process model is
comprised of two processes whereas the PR model involves three processes. For both models, we examine
and graphically illustrate each of the individual processes. We mathematically analyse the differences
between these two models and compare them to highlight their similarities whilst showcasing how they
are related. This is demonstrated using the theory of ”Slow-Fast Systems” where we study the dynamics
of the respective subsystems, specifically the slow manifold and the layer problem.
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1 Introduction

Sleep plays a vital role regarding our overall health and well-being [1] and in this paper we will explore
this theme by studying the processes that occur in the brain during sleep and during wake. We can study
this concept by analysing various sleep-wake models and we will discuss two of these models, specifically
the two-process model and the Phillips and Robinson (PR) model.

The two-process model was introduced by Alexander A. Borbély and had a substantial influence on the
research done for other sleep-wake models such as the PR model [2, p. 2]. The two-process model
involves the homeostatic process and the circadian process which interact with one another to modulate
sleep. The homeostatic process controls the sleep pressure whereas the circadian process guides the sleep
pressure on when to transition from sleep to wake and from wake to sleep. However, the two-process
model struggles to relate to the processes that occur in the body [3, p. 1], whilst the PR model does
not have this problem. Thus, the PR model is an improved model which is made up of three processes.
This includes, the neurons in the brain that stimulate wake, the neurons in the hypothalamus part of
the brain that stimulate sleep and lastly, the process that allows us to shift from wake to sleep and vice
versa [3, p. 2].

In this paper, we will analyse these two models intensively and graph their respective processes against
time. Furthermore, we will show how the two-process model and the PR model are related so that we
are able to accurately make a comparison between them.

2 Two-Process Model

The two-process model is a one-dimensional map comprised of the interactions between two procedures,
namely the homeostatic process and the circadian process, hence the fitting name. Based on [3], it
is stated that the homeostatic process is also known as a relaxation oscillator where ”sleep pressure”
increases when a person is awake and releases during sleep. On the other hand, when we reach the upper
threshold of sleep pressure, we transition from wake to sleep and when we reach the lower threshold of
sleep pressure, we shift from sleep to wake. This means that when sleep pressure rises to a certain high
level, a person will fall asleep and when it drops to a specific low level, a person will awaken. These
threshold levels are regulated by a circadian oscillator and this is recognised as the circadian process.

When analysing the homeostatic process, we consider a homeostatic pressure H(t) which is a function
of time t. Sleep pressure cannot increase perpetually, thus we choose an exponential function of t which
converges to an upper threshold as t goes to infinity. Therefore, when homeostatic pressure increases
during wake, we have that,

H(t)= +(Hy )eto D= w (2.1)

Similarly, sleep pressure cannot decrease endlessly thus we assume that the homeostatic pressure decreases
exponentially. Therefore, we select an exponential function that converges to a lower threshold as time
goes to infinity. Hence, when homeostatic pressure decreases during sleep, we have that,

H(t) = Hoe® D= s (2.2)

To fully understand the proposed formulae, we establish what the parameters indicate. The variable Hg
represents the starting sleep pressure and represents the 'upper asymptote’ which is the bound that the
homeostatic pressure reaches when there is no shift to sleep. In addition, there is also a ’lower asymptote’
which is simply given as zero. Furthermore, we have that tg is the starting time, v determines the
increase in speed whilst s determines the decrease in speed [3].

If we look at the graphs of the homeostatic process, we notice how sleep pressure differs during wake
versus sleep. It must be noted that is indicated with a red dotted line in Figure 1.



1 e e
0.175 1
0.9
0.150 4

_— 0'8 §i _—
= E
T T 0.125 4
2 0.7 o
-} -
2 iy 0.100
[ V] e h
a 0.6+ &
sl Ke)
8 & 0.075 -
% 0.54 w
o [=]
[T} V]
- -
2 0.4 1 o 0.050

0.3 1 0.025 -

i 0.000 |

T T T T T T j I3 T
0 20 40 60 0 20 40 60
Time (Hours) Time (Hours)

Figure 1: Sleep pressure during wake (left) and sleep pressure during sleep (right)

When studying the circadian process, we explore what happens to the homeostatic pressure H(t) when
we shift from wake to sleep and from sleep to wake. When we go from wake to sleep, H(t) will reach the
upper threshold H*(t) and when we go from sleep to wake, H(t) will reach the lower threshold H (t).
These thresholds are given by the following formula [3, p. 2].

H*(t) = Hy +aC(t) (2.3)
H (t)=H, +aC(t) (2.4)

For their respective formulae, Hy and H, represent the mean value and a is a simply a constant
representing the amplitude whilst the circadian process itself is denoted by C(t) which is classified as a
periodic function of period 24 hours. The circadian process can be given by a simple formula, namely
C(t) =sin(¥(t ))where? = (2 =24) hrs Yand represents the distance from the circadian maximum.
The upper and lower thresholds are given by C(t) when it has been shifted and scaled, thus we observe
the red lines placed every 24 hours in Figure 2 show that C(t) is indeed periodic.
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Figure 2: Upper Threshold (Hy = 0:6) and Lower Threshold (H, = 0:17)



Combining the homeostatic process with the circadian process results in the two-process model. To fully
grasp the concept of the two-process model, we can graphically analyse this model for di erent values of
Ho whilst keeping H, constant. By evaluating Figures 3, 4 and 5, the total homeostatic pressureH ,
changes direction when it reaches either the upper limit or the lower limit such that there is no activity
beyond both thresholds. In these diagrams, we identify where sleep begins and that is when we reach the
various peaks ofH. When the total pressure drops till the lower limit, this is where sleep is experienced
and eventually, H increases again during wake. For a decreased upper threshold, there are more frequent
sleep-wake cycles as we reach the sleep threshold more often. For an increased upper threshold, there are
less sleep-wake cycles as we reach the sleep threshold fewer times due to a slower increase in the build
up of sleep pressure. This can be noticeably seen in Figures 3, 4 and 5 (see Appendix B.1 for parameter
values).

Figure 3: Two-process model with upper thresholdH, = 0:35

Figure 4: Two-process model with upper thresholdH, =0:6



Figure 5: Two-process model with upper thresholdH, = 0:85

3 PR Model

The Phillips and Robinson (PR) model is an extension of the two-process model [3] whereby it is composed
of three processes. More precisely, the two-process model is exclusively phenomenological, however, the
PR model presents us with a physiological foundation. There are two areas of the brain we consider
when analysing the PR model which are the monoaminergic (MA) and ventro-lateral pre-optic (VLPO)
regions. According to [3] and [4], the neurons in the MA area stimulate wake whilst the neurons in the
VLPO area encourage sleep. The last process of the PR model is the shifting between sleep and wake
which is comprised of the homeostatic driveH (t) and the circadian drive C(t).

As the MA and the VLPO actively hinder one another from occurring at the same time, this ensures
that the model would either be in a wake state or sleep state. We are only able to go between sleep and
wake as a result of the model including a drive to the VLPO [3, p. 3]. This drive depends on time and
includes the homeostatic and circadian drive as mentioned earlier.

We will begin exploring these concepts by rst observing the neurons in the MA and VLPO regions.
According to [3, p. 2], the mean cell body potentials relative to rest are depicted by,, and V, where
the MA group is denoted by m and the VLPO group is denoted by v. The rates at which the neurons
are red are related to these potentials by the ring function, Q(V;),

Qmax
T+expl (V; )=

We recognise thatQ(V;) is a sigmoid function as seen in Figure 6. Regarding both the formula and the
plot of the ring function, Qmax iS the maximum ring rate. We note that the variable is the mean
ring threshold that is related to rest which implies that  decides the moment of switching whereas

signi es the steepness of the switch. Furthermore, we remark that the "hardness” of the switch is
dependent on . If we let p(x) = (L+exp[ x=]) !, we are able to rewrite the ring function such that
Q(V;) = Qmax P(V; ). When ! 0, we obtain an appropriate step function for the ring rate which
is called the hard switch [3, p. 3] where

(3.1)

Qv) =

1 x O

PC= 5 x< 0

When interpreting Figure 6, we establish that when V is negative, then the ring function is close to
zero, however, when V is positive, the ring function increases exponentially toQmax -



Figure 6: Firing function, Q(V;), plotted against the potential, V,

Having de ned the ring function allows us to introduce the three processes of the PR model. This is
given by the following non-autonomous system of di erential equations [4, p. 170],

vV = Vym Q(Vin) + Ve C + vypH (3.2)
mVm = Vv Q(My) + VmaQa Vi (3.3)
H=Q(Vm) H (3.4)

In the equations presented above, we take the variables to bk, V,, and V,. Therefore, we observe that

, v and , portray the speed in which the variables change. The parametersym, Vmv, Vve and Vma
determine the impact that the variables have on each other. In equation (7),Q, is constant. Additionally,
C and H are the circadian drive and homeostatic drive, respectively.

Figure 7: The PR model for the variablesV;,, V,, and H



By analysing Figure 7, we will discuss what happens during wake and sleep for the three variables
plotted against time. During wake, we can discern thatVy, is high whilst V|, and H are comparatively
low. This is a result of there being increased activity in the MA region whereas the VLPO area is
experiencing decreased activity. As sleep approache¥;, gradually drops and V, steadily rises. This is
due to an increase in activity in the VLPO area and a decrease in activity in the MA area. When sleep
accumulates in the body, we observe thatH moderately increases. During sleepV,, descends reaching
its lowest level whilst V,, ascends reaching its highest level. To summarise these concepts [4, p. 175], we
alternate between periods of sleep and wake where during wake, we have hiyh,, low V, and rising H.
However, during sleep, we have low/,, high V,, and decreasingH .

4 Slow-Fast Systems

As stated in [3, p. 3], the changes in the homeostatic pressure are signi cantly slower than the changes
that occur in the brain. Thus, the PR model has a clear di erence in its timescales. We refer to systems
with various time scales or systems that are "singularly perturbed" [5, p. 1] as "Slow-Fast Systems". We
begin with the equations that were previously listed in Section 3, namely (6), (7) and (8).

vV = Wym QW) + Ve C+ vynH VW, =2 f (M Vi H) (4.2)
mVm = Viy QM) + VmaQa  Vim =1 9(Wy; Vi H) (4.2)
H=Q(Vm) H=h(W;Vn;H) (4.3)

We observe from Appendix B.2 that ; <«  wherej = m;v. We introduce a dimensionless timet'= *,
and we di erentiate this to obtain

d_gdrd_1d

dt  dtdr  dr

Applying the above to equations (9), (10) and (11) and letting = - results in
d - d -
VaVV:f(VV1Vm1H)) &_Vv:f(vv:vm,H)
d d
mavm:g(vv;vm;H)) a,vm:g(vvivm;H)
d 1d 1d d
gttt = NOWiVmiH) ) = H = (Wi ViniH) ) = H = (Wi ViniH) ) H = (Wi Vi H)
Therefore, at fast time, we have that the system is given by:
d -
&_V\, =f(W;Vm;H) (4.4)
d
&Vm = o(W:Vm;H) (4.5)
d
a~H = h(W;Vm;H) (4.6)

According to [5, p. 1], > 0 is a small parameter and if we set = 0, we obtain a "di erential algebraic
equation" known as the fast subsystem or otherwise called the layer problem. This is given by

VO= f(Vy; Vi H)
Vrr?: g(Vy; Vin: H)
H%=0



where V\,0 = dirv\,. In this case, H is xed. The fast subsystem allows us to understand what changes
occur to both V, and V,, and how these "fast" variables in uence the slow-fast system entirely. We
proceed by rescaling the fast subsystem using= t. By di erentiating this, we acquire

d_dd_ d
dr drdt  dt
Applying the above to equations (12), (13) and (14) results in

d d
&_Vv:f(vv;vm;H)) dt v = T (W;Vm;H)
d d
&Vm:g(vv;vm;H)) an:g(Vv;Vm;H)
d d d
&H: h(Vy;Vm;H)) aH: h(V;Vm:H)) &th(vv;vm;H)

Therefore, at slow time, we have that the system is given by

Vy = (M VimiH)

Vn = 9(Wv; Vi H)

H = h(W;Vm; H)
where\4, = %V\,. For this case, if we set = 0, we obtain a di erent system known as the slow subsystem:

0=1f(M;Vm:;H)

0=9g(W;Vn;H)

H = h(W;Vm;H)
It can be noted that the equations 0 =f (VW ; Vim;H) and 0 = g(W; Vim ; H) represent the fast dynamics of
the system which de ne a manifold onR2. This is called the slow manifold. However,H- = h(Vy;Vm;H)

represents the slow progression of H on the slow manifold. This can be visualised in Figure 8 where we
look at the slow manifold for varying sigma.
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