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Abstract

The research in this paper aims to explore two sleep-wake models, namely the two-process model and an
improved version of this model called the Phillips and Robinson (PR) model. The two-process model is
comprised of two processes whereas the PR model involves three processes. For both models, we examine
and graphically illustrate each of the individual processes. We mathematically analyse the differences
between these two models and compare them to highlight their similarities whilst showcasing how they
are related. This is demonstrated using the theory of ”Slow-Fast Systems” where we study the dynamics
of the respective subsystems, specifically the slow manifold and the layer problem.

1



Contents

1 Introduction 3

2 Two-Process Model 3

3 PR Model 6

4 Slow-Fast Systems 8
4.1 Comparison of the Two-Process Model and the PR Model . . . . . . . . . . . . . . . . . . 11
4.2 Dynamics of the Fast Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Dynamics of the Slow Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Conclusion 17

References 18

A Python Code 19
A.1 Homeostatic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2 Circadian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.3 Two-Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.4 Firing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.5 PR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.6 Slow Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.7 Dynamics of the Slow Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B Parameters 25
B.1 Two-Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.2 PR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.3 PR Model with a Hard Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2



1 Introduction

Sleep plays a vital role regarding our overall health and well-being [1] and in this paper we will explore
this theme by studying the processes that occur in the brain during sleep and during wake. We can study
this concept by analysing various sleep-wake models and we will discuss two of these models, specifically
the two-process model and the Phillips and Robinson (PR) model.

The two-process model was introduced by Alexander A. Borbély and had a substantial influence on the
research done for other sleep-wake models such as the PR model [2, p. 2]. The two-process model
involves the homeostatic process and the circadian process which interact with one another to modulate
sleep. The homeostatic process controls the sleep pressure whereas the circadian process guides the sleep
pressure on when to transition from sleep to wake and from wake to sleep. However, the two-process
model struggles to relate to the processes that occur in the body [3, p. 1], whilst the PR model does
not have this problem. Thus, the PR model is an improved model which is made up of three processes.
This includes, the neurons in the brain that stimulate wake, the neurons in the hypothalamus part of
the brain that stimulate sleep and lastly, the process that allows us to shift from wake to sleep and vice
versa [3, p. 2].

In this paper, we will analyse these two models intensively and graph their respective processes against
time. Furthermore, we will show how the two-process model and the PR model are related so that we
are able to accurately make a comparison between them.

2 Two-Process Model

The two-process model is a one-dimensional map comprised of the interactions between two procedures,
namely the homeostatic process and the circadian process, hence the fitting name. Based on [3], it
is stated that the homeostatic process is also known as a relaxation oscillator where ”sleep pressure”
increases when a person is awake and releases during sleep. On the other hand, when we reach the upper
threshold of sleep pressure, we transition from wake to sleep and when we reach the lower threshold of
sleep pressure, we shift from sleep to wake. This means that when sleep pressure rises to a certain high
level, a person will fall asleep and when it drops to a specific low level, a person will awaken. These
threshold levels are regulated by a circadian oscillator and this is recognised as the circadian process.

When analysing the homeostatic process, we consider a homeostatic pressure H(t) which is a function
of time t. Sleep pressure cannot increase perpetually, thus we choose an exponential function of t which
converges to an upper threshold as t goes to infinity. Therefore, when homeostatic pressure increases
during wake, we have that,

H(t) = µ+ (H0 − µ)e(t0−t)/χW (2.1)

Similarly, sleep pressure cannot decrease endlessly thus we assume that the homeostatic pressure decreases
exponentially. Therefore, we select an exponential function that converges to a lower threshold as time
goes to infinity. Hence, when homeostatic pressure decreases during sleep, we have that,

H(t) = H0e
(t0−t)/χS (2.2)

To fully understand the proposed formulae, we establish what the parameters indicate. The variable H0

represents the starting sleep pressure and µ represents the ’upper asymptote’ which is the bound that the
homeostatic pressure reaches when there is no shift to sleep. In addition, there is also a ’lower asymptote’
which is simply given as zero. Furthermore, we have that t0 is the starting time, χW determines the
increase in speed whilst χS determines the decrease in speed [3].

If we look at the graphs of the homeostatic process, we notice how sleep pressure differs during wake
versus sleep. It must be noted that µ is indicated with a red dotted line in Figure 1.
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Figure 1: Sleep pressure during wake (left) and sleep pressure during sleep (right)

When studying the circadian process, we explore what happens to the homeostatic pressure H(t) when
we shift from wake to sleep and from sleep to wake. When we go from wake to sleep, H(t) will reach the
upper threshold H+(t) and when we go from sleep to wake, H(t) will reach the lower threshold H−(t).
These thresholds are given by the following formula [3, p. 2].

H+(t) = H+
0 + aC(t) (2.3)

H−(t) = H−
0 + aC(t) (2.4)

For their respective formulae, H+
0 and H−

0 represent the mean value and a is a simply a constant
representing the amplitude whilst the circadian process itself is denoted by C(t) which is classified as a
periodic function of period 24 hours. The circadian process can be given by a simple formula, namely
C(t) = sin(ω(t−α)) where ω = (2π/24) hrs−1 and α represents the distance from the circadian maximum.
The upper and lower thresholds are given by C(t) when it has been shifted and scaled, thus we observe
the red lines placed every 24 hours in Figure 2 show that C(t) is indeed periodic.

Figure 2: Upper Threshold (H+
0 = 0.6) and Lower Threshold (H−

0 = 0.17)
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Combining the homeostatic process with the circadian process results in the two-process model. To fully
grasp the concept of the two-process model, we can graphically analyse this model for different values of
H+

0 whilst keeping H−
0 constant. By evaluating Figures 3, 4 and 5, the total homeostatic pressure, H,

changes direction when it reaches either the upper limit or the lower limit such that there is no activity
beyond both thresholds. In these diagrams, we identify where sleep begins and that is when we reach the
various peaks of H. When the total pressure drops till the lower limit, this is where sleep is experienced
and eventually, H increases again during wake. For a decreased upper threshold, there are more frequent
sleep-wake cycles as we reach the sleep threshold more often. For an increased upper threshold, there are
less sleep-wake cycles as we reach the sleep threshold fewer times due to a slower increase in the build
up of sleep pressure. This can be noticeably seen in Figures 3, 4 and 5 (see Appendix B.1 for parameter
values).

Figure 3: Two-process model with upper threshold H+
0 = 0.35

Figure 4: Two-process model with upper threshold H+
0 = 0.6
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Figure 5: Two-process model with upper threshold H+
0 = 0.85

3 PR Model

The Phillips and Robinson (PR) model is an extension of the two-process model [3] whereby it is composed
of three processes. More precisely, the two-process model is exclusively phenomenological, however, the
PR model presents us with a physiological foundation. There are two areas of the brain we consider
when analysing the PR model which are the monoaminergic (MA) and ventro-lateral pre-optic (VLPO)
regions. According to [3] and [4], the neurons in the MA area stimulate wake whilst the neurons in the
VLPO area encourage sleep. The last process of the PR model is the shifting between sleep and wake
which is comprised of the homeostatic drive H(t) and the circadian drive C(t).

As the MA and the VLPO actively hinder one another from occurring at the same time, this ensures
that the model would either be in a wake state or sleep state. We are only able to go between sleep and
wake as a result of the model including a drive to the VLPO [3, p. 3]. This drive depends on time and
includes the homeostatic and circadian drive as mentioned earlier.

We will begin exploring these concepts by first observing the neurons in the MA and VLPO regions.
According to [3, p. 2], the mean cell body potentials relative to rest are depicted by Vm and Vv where
the MA group is denoted by m and the VLPO group is denoted by v. The rates at which the neurons
are fired are related to these potentials by the firing function, Q(Vj),

Q(Vj) =
Qmax

1 + exp[−(Vj − θ)/σ]
(3.1)

We recognise that Q(Vj) is a sigmoid function as seen in Figure 6. Regarding both the formula and the
plot of the firing function, Qmax is the maximum firing rate. We note that the variable θ is the mean
firing threshold that is related to rest which implies that θ decides the moment of switching whereas
σ signifies the steepness of the switch. Furthermore, we remark that the ”hardness” of the switch is
dependent on σ. If we let p(x) = (1 + exp[−x/σ])−1, we are able to rewrite the firing function such that
Q(Vj) = Qmaxp(Vj − θ). When σ → 0, we obtain an appropriate step function for the firing rate which
is called the hard switch [3, p. 3] where

p(x) =

{
1 x ≥ 0

0 x < 0

When interpreting Figure 6, we establish that when V is negative, then the firing function is close to
zero, however, when V is positive, the firing function increases exponentially to Qmax.
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Figure 6: Firing function, Q(Vj), plotted against the potential, Vj

Having defined the firing function allows us to introduce the three processes of the PR model. This is
given by the following non-autonomous system of differential equations [4, p. 170],

τvV̇v = vvmQ(Vm) + vvcC + vvhH − Vv (3.2)

τmV̇m = vmvQ(Vv) + vmaQa − Vm (3.3)

χḢ = µQ(Vm)−H (3.4)

In the equations presented above, we take the variables to be H, Vv and Vm. Therefore, we observe that
χ, τv and τm portray the speed in which the variables change. The parameters vvm, vmv, vvc and vma

determine the impact that the variables have on each other. In equation (7), Qa is constant. Additionally,
C and H are the circadian drive and homeostatic drive, respectively.

Figure 7: The PR model for the variables Vm, Vv and H
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By analysing Figure 7, we will discuss what happens during wake and sleep for the three variables
plotted against time. During wake, we can discern that Vm is high whilst Vv and H are comparatively
low. This is a result of there being increased activity in the MA region whereas the VLPO area is
experiencing decreased activity. As sleep approaches, Vm gradually drops and Vv steadily rises. This is
due to an increase in activity in the VLPO area and a decrease in activity in the MA area. When sleep
accumulates in the body, we observe that H moderately increases. During sleep, Vm descends reaching
its lowest level whilst Vv ascends reaching its highest level. To summarise these concepts [4, p. 175], we
alternate between periods of sleep and wake where during wake, we have high Vm, low Vv and rising H.
However, during sleep, we have low Vm, high Vv and decreasing H.

4 Slow-Fast Systems

As stated in [3, p. 3], the changes in the homeostatic pressure are significantly slower than the changes
that occur in the brain. Thus, the PR model has a clear difference in its timescales. We refer to systems
with various time scales or systems that are ”singularly perturbed” [5, p. 1] as ”Slow-Fast Systems”. We
begin with the equations that were previously listed in Section 3, namely (6), (7) and (8).

τvV̇v = vvmQ(Vm) + vvcC + vvhH − Vv =: f(Vv, Vm, H) (4.1)

τmV̇m = vmvQ(Vv) + vmaQa − Vm =: g(Vv, Vm, H) (4.2)

χḢ = µQ(Vm)−H =: h(Vv, Vm, H) (4.3)

We observe from Appendix B.2 that τj << χ where j = m, v. We introduce a dimensionless time t̃ = t
τ ,

and we differentiate this to obtain

d

dt
=

dt̃

dt

d

dt̃
=

1

τ

d

dt̃

Applying the above to equations (9), (10) and (11) and letting ϵ = τ
χ results in

τv
d

dt
Vv = f(Vv, Vm, H) ⇒ d

dt̃
Vv = f(Vv, Vm, H)

τm
d

dt
Vm = g(Vv, Vm, H) ⇒ d

dt̃
Vm = g(Vv, Vm, H)

χ
d

dt
H = h(Vv, Vm, H) ⇒ 1

τ
χ
d

dt̃
H = h(Vv, Vm, H) ⇒ 1

ϵ

d

dt̃
H = h(Vv, Vm, H) ⇒ d

dt̃
H = ϵh(Vv, Vm, H)

Therefore, at fast time, we have that the system is given by:

d

dt̃
Vv = f(Vv, Vm, H) (4.4)

d

dt̃
Vm = g(Vv, Vm, H) (4.5)

d

dt̃
H = ϵh(Vv, Vm, H) (4.6)

According to [5, p. 1], ϵ > 0 is a small parameter and if we set ϵ = 0, we obtain a ”differential algebraic
equation” known as the fast subsystem or otherwise called the layer problem. This is given by

V ′
v = f(Vv, Vm, H)

V ′
m = g(Vv, Vm, H)

H ′ = 0
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where V ′
v = d

dt̃
Vv. In this case, H is fixed. The fast subsystem allows us to understand what changes

occur to both Vv and Vm and how these ”fast” variables influence the slow-fast system entirely. We
proceed by rescaling the fast subsystem using t̄ = ϵt̃. By differentiating this, we acquire

d

dt̃
=

dt̄

dt̃

d

dt̄
= ϵ

d

dt̄

Applying the above to equations (12), (13) and (14) results in

d

dt̃
Vv = f(Vv, Vm, H) ⇒ ϵ

d

dt̄
Vv = f(Vv, Vm, H)

d

dt̃
Vm = g(Vv, Vm, H) ⇒ ϵ

d

dt̄
Vm = g(Vv, Vm, H)

d

dt̃
H = ϵh(Vv, Vm, H) ⇒ ϵ

d

dt̄
H = ϵh(Vv, Vm, H) ⇒ d

dt̄
H = h(Vv, Vm, H)

Therefore, at slow time, we have that the system is given by

ϵV̇v = f(Vv, Vm, H)

ϵV̇m = g(Vv, Vm, H)

Ḣ = h(Vv, Vm, H)

where V̇v = d
dt̄Vv. For this case, if we set ϵ = 0, we obtain a different system known as the slow subsystem:

0 = f(Vv, Vm, H)

0 = g(Vv, Vm, H)

Ḣ = h(Vv, Vm, H)

It can be noted that the equations 0 = f(Vv, Vm, H) and 0 = g(Vv, Vm, H) represent the fast dynamics of
the system which define a manifold on R3. This is called the slow manifold. However, Ḣ = h(Vv, Vm, H)
represents the slow progression of H on the slow manifold. This can be visualised in Figure 8 where we
look at the slow manifold for varying sigma.
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Figure 8: Slow Manifold in R3
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4.1 Comparison of the Two-Process Model and the PR Model

In this section, we will make a comparison between the two-process model and the PR model. In the
two-process model, when looking at Figures 3, 4 and 5, the homeostatic pressure shifts from wake to
sleep as soon as the upper threshold is reached. When the lower threshold has been reached, there is an
instant shift in the homeostatic pressure as well. This immediate shift can be regarded as a hard switch.
We know that the changes that occur in the VLPO and MA regions of the brain happen faster than
the changes in the homeostatic pressure. Since we are considering the two-process model which heavily
involves the homeostatic process, we analyse what transpires at the slow time limit (ϵ = 0). We can
explore this by reviewing the PR model when ϵ = 0 which is specified below.

0 = vvmQ(Vm) + vvcC + vvhH − Vv

0 = vmvQ(Vv) + vmaQa − Vm

χḢ = µQ(Vm)−H

By rewriting the firing function, Q(Vj), with the hard switch, p(x)1, we are left with Q(Vj) = Qmaxp(Vj−
θ). We can substitute this into the system.

0 = vvmQmaxp(Vm − θ) + vvcC + vvhH − Vv (4.7)

0 = vmvQmaxp(Vv − θ) + vmaQa − Vm (4.8)

χḢ = µQmaxp(Vm − θ)−H (4.9)

If we compare the system of equations in the hard switch limit, we obtain the following cases:

1. Vm < θ & Vv < θ :
We recognise that when we make this substitution in equation (16), p(Vv − θ) = 0 since Vv − θ < 0.
Thus, we can rewrite the equation to be 0 = 0 · vmvQmax+ vmaQa−Vm ⇒ Vm = vmaQa. However,
if we look at the values given in [3, p. 14] (also given in Appendix B.3) of vmaQa and θ for the
PR model when we have a hard switch, we see that vmaQa = 1.5mV and θ = 1.45mV . Thus,
vmaQa > θ ⇒ Vm > θ and we reach a contradiction. Consequently, we disregard this case.

2. Vm < θ & Vv ≥ θ :
When substituting the above criterion into the system of equations, we get that p(Vm − θ) = 0 and
p(Vv − θ) = 1. Thus,

0 = 0 · vvmQmax + vvcC + vvhH − Vv ⇒ Vv = vvcC + vvhH

0 = 1 · vmvQmax + vmaQa − Vm ⇒ Vm = vmvQmax + vmaQa

χḢ = 0 · µQmax −H ⇒ χḢ = −H

If we solve the last equation for H, this results in

χḢ = −H

⇒ χ
dH

dt
= −H

⇒
∫ H

H0

1

H
dH = −

∫ t

t0

1

χ
dt

⇒ [ln(H)]
H
H0

= −
[
t

χ

]t
t0

⇒ ln

(
H

H0

)
= − t− t0

χ

⇒ H(t) = H0e
(t0−t)/χ

1As stated in Section 3, p(x) = 1 when x ≥ 0 and p(x) = 0 when x < 0.
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As stated in [3, p. 13], we can find the switch from sleep to wake when Vv = θ so that we are able
to derive the lower threshold, H−.

Vv = vvcC + vvhH

⇒ vvhH = Vv − vvcC

⇒ H =
Vv − vvcC

vvh

⇒ H−(t) =
θ − vvcC(t)

vvh

3. Vm > θ & Vv ≤ θ :
It is noted that p(Vm − θ) = 1 and p(Vv − θ) = 0. Hence,

0 = 1 · vvmQmax + vvcC + vvhH − Vv ⇒ Vv = vvmQmax + vvcC + vvhH

0 = 0 · vmvQmax + vmaQa − Vm ⇒ Vm = vmaQa

χḢ = 1 · µQmax −H ⇒ χḢ = µQmax −H

We are able to find H by solving the last equation.

χḢ = µQmax −H

⇒ χ
dH

dt
= µQmax −H

⇒ 1

µQmax −H
dH =

1

χ
dt

⇒
∫ H

H0

1

µQmax −H
dH =

∫ t

t0

1

χ
dt

⇒ [− ln(µQmax −H)]
H
H0

=

[
t

χ

]t
t0

⇒ − ln

(
µQmax −H

µQmax −H0

)
=

t− t0
χ

⇒ ln

(
µQmax −H

µQmax −H0

)
=

t0 − t

χ

⇒ µQmax −H = (µQmax −H0)e
(t0−t)/χ

⇒ H = µQmax − (µQmax −H0)e
(t0−t)/χ

⇒ H(t) = µQmax + (H0 − µQmax)e
(t0−t)/χ

According to [3, p. 13], we are able to find the shift from wake to sleep when Vv = θ. This allows
us to determine the upper threshold, H+.

Vv = vvmQmax + vvcC + vvhH

⇒ vvhH = Vv − vvmQmax − vvcC

⇒ H =
Vv − vvmQmax − vvcC

vvh

⇒ H+(t) =
θ − vvmQmax − vvcC(t)

vvh

4. Vm > θ & Vv > θ :
With these specifications, we obtain p(Vj − θ) = 1 for j = m, v. Hence, when regarding equation
(16), we derive that 0 = 1 · vmvQmax + vmaQa − Vm ⇒ Vm = vmvQmax + vmaQa. Furthermore, as
vmv < 0 and Qmax > 0, then vmvQmax < 0 and consequently, we get that vmvQmax + vmaQa < θ.
However, this would mean that Vm < θ which is a contradiction. As a result, we disregard this
case.
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In Figure 8, we observe that for the hard switch limit case, namely when σ = 0, there are only two shifts
where we switch from sleep to wake and vice versa. This is explained due to the fact that we are only
concerned with the two cases above which have not been disregarded. We notice that for the cases that
we do indeed consider, we get that the equations we have obtained for H from the PR model when ϵ = 0
and with the hard switch are the same as the equations for H in the two-process model.

Furthermore, if we calculate the difference in the threshold levels, Ĥ(t) = H+(t)−H−(t), we find that

Ĥ(t) = −vvmQmax

vvh

According to [3, p. 3], Ĥ(t) can be explained as the degree, during wake, which the MA region hinders
the stimulation of the VLPO area.

4.2 Dynamics of the Fast Subsystem

We recall that the layer problem is given by

V ′
v = f(Vv, Vm, H) (4.10)

V ′
m = g(Vv, Vm, H) (4.11)

H ′ = 0 (4.12)

where V ′
v = d

dt̃
Vv and H is constant. As stated in [5, p. 2], we are able to give definition 4.1.

Definition 4.1 The points on the critical manifold where the matrix(
∂f
∂Vv

∂f
∂Vm

∂g
∂Vv

∂g
∂Vm

)
has no eigenvalues on the imaginary axis are called normally hyperbolic, as equilibria of the fast
subsystem which are hyperbolic in the fast direction.

We have that for the layer problem,

J =

(
∂f
∂Vv

∂f
∂Vm

∂g
∂Vv

∂g
∂Vm

)
=

(
−1 0
0 −1

)
Thus,

det(J − λI) = det

∣∣∣∣−1− λ 0
0 −1− λ

∣∣∣∣ = (−1− λ)2 ⇒ λ1,2 = −1

The eigenvalues are both real and negative and therefore, the subsystem is stable [6] and also, by definition
4.1, the equilibrium points on the critical manifold are normally hyperbolic. As a result, the slow manifold
is normally hyperbolic. Therefore, the equations (4.10) and (4.11) allow us to approach the slow manifold
along the plane where H is fixed.

4.3 Dynamics of the Slow Subsystem

Following on from Section 4.1 and 4.2, we have that

H+(t) =
θ − vvmQmax − vvcC(t)

vvh
& H−(t) =

θ − vvcC(t)

vvh

where H+ is where we shift from wake to sleep and H− is where we shift from sleep to wake. These two
switch points can be identified in Figure 8 where σ = 0. Alongside the switch points, we consider the
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equilibrium points which occur when Ḣ = 0. When Vm < θ & Vv ≥ θ, we have that H = 0 when Ḣ = 0
and when Vm > θ & Vv ≤ θ, we have that H = µQmax when Ḣ = 0. Let H0 represent the equilibrium
point H0 = 0 and H1 represent the other equilibrium point, namely H1 = µQmax. Therefore, we have
4! cases where we can observe the dynamics. However, we know that H+ > H− (as vvm < 0) and
additionally, H1 > H0 (as µQmax > 0). With these restrictions, we can look at the following possible
cases:

1. H+ > H− > H1 > H0

• For small H in the wake state, namely when Vm > θ & Vv ≤ θ, we have that Vv is simultaneously
small since Vv depends on H (as Vv = vvmQmax + vvcC + vvhH). Furthermore, H increases
as a result of χḢ = µQmax −H and therefore, will converge to the point H1 = µQmax.

• We can decipher the stability of the equilibrium point H1 by looking at the equations below:

f1(Vv, Vm, H) = vvmQmax + vvcC + vvhH − Vv

g1(Vv, Vm, H) = vmaQa − Vm

h1(Vv, Vm, H) = µQmax − χḢ −H

It is only necessary to examine h1 as the system is non-autonomous and thus, the dynamics
only occur on a one-dimensional manifold. Therefore, we find that the derivative of h1 with
respect to H is given by,

∂h1

∂H
= −1

As ∂h1

∂H < 0, the equilibrium point H1 is stable [6].

• We begin by finding the stability of the equilibrium point H0 in the same manner. Therefore,
we consider the following system of equations:

f2(Vv, Vm, H) = vvcC + vvhH − Vv

g2(Vv, Vm, H) = vmvQmax + vmaQa − Vm

h2(Vv, Vm, H) = −χḢ −H

Similarly, we find the derivative of h2 with respect to H. We get that,

∂h2

∂H
= −1

Consequently, since ∂h2

∂H < 0, the equilibrium point H0 is stable [6]. (The analysis of both
equilibrium points applies to all the cases.)

• For large H in the sleep state, namely when Vm < θ & Vv ≥ θ, we have that Vv will be large.
This is due to the equation Vv = vvcC + vvhH where Vv is dependent on H. We know that H
is large and that χḢ +H = 0, and thus, H decreases towards to 0. However, since H− > 0,
the system will shift from sleep to wake before H is able to converge to 0. When we shift, we
end up back at the point H1 due to the stability of the equilibrium point and we are therefore
unable to shift back to sleep from wake. Hence, we do not have a complete limit cycle.
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2. H+ > H1 > H0 > H−

• Similarly to the first case, we have that for small H, we will converge to H1.

• For large H, as H0 > H−, H0 appears on the bottom line of the graph. We have shown that
H0 is a stable equilibrium point and thus, we will converge to that point. Therefore, as we
converge to both equilibrium points, there will not be a shift from wake to sleep or a shift
from sleep to wake. Thus, we do not have a limit cycle.

3. H+ > H1 > H− > H0

• We notice that this case behaves the same as the first case we discussed for both small and
large H. Thus, we observe that the limit cycle is incomplete.
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4. H1 > H0 > H+ > H−

• For this case, we have that H1 > H+ and thus H1 does not appear in this specific diagram.
We establish that since H is small and χḢ = µQmax − H, we will reach H+ where we will
shift from the wake state to the sleep state.

• When we have H large and χḢ +H = 0, H will decrease towards 0. However, H will converge
to the equilibrium point H1. Therefore, the only switch is from wake to sleep and thus, we
have an incomplete limit cycle.

5. H1 > H+ > H0 > H−

• It is observed that this case behaves similarly to the fourth case, whereby, we have an incom-
plete limit cycle.

6. H1 > H+ > H− > H0

• In the wake state, we have that for a small H with the corresponding equation χḢ = µQmax−
H, Vv will increase till it reaches the point H+. We will then switch from wake to sleep.

• In the sleep state, we have that for a large H, we get that Vv will be large. With this information
and χḢ +H = 0, Vv will decrease till it reaches the point H− where it will then switch from
sleep to wake. We end up back in the wake state and the process repeats itself, hence, we have
a complete limit cycle.
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By studying these six cases, we discern that only the case H1 > H+ > H− > H0 results in a limit
cycle. We claim that this process is the same as the two-process model. This has been shown and proved
throughout section 4.

5 Conclusion

In this paper, we have shown that the two-process model is the same as the PR model with a hard switch
and when ϵ = 0. We arrived at this conclusion by firstly, describing each of the models in great detail.
We recognised that because the PR model includes functions of the body, it is an improved version of the
two-process model. Due to the PR model involving the neurons in the brain, we know that the changes
that occur in the MA and the VLPO areas of the brain occur at a faster rate compared to the changes
that occur in the homeostatic pressure. Therefore, we have different timescales for the PR model, hence,
we analysed these two sleep-wake models using the concept of slow-fast systems which results in the slow
subsystem and the fast subsystem. We looked at the PR model where ϵ = 0 and when we have a hard
switch, we found two equilibrium points for that system which were used when analysing the dynamics
of both the subsystems. Furthermore, we found that we do indeed have a limit cycle when studying
the dynamics of the slow subsystem. Therefore, we have precisely shown how the two-process model is
related to the PR model.
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A Python Code

A.1 Homeostatic Process

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 t = np.arange(0, 72, 0.01) #time array

5 mu = 1 #upper asymptote

6 t_0 = 0 #starting time

7 chi_s = 4.2 #decrease in speed

8 chi_w = 18.2 #increase in speed

9 H_0 = 0.18 #starting pressure

10

11 def H_sleep(H_0 , t_0 , t, chi_s):

12 return H_0 * np.exp((t_0 - t) / chi_s)

13

14 def H_wake(mu , H_0 , t_0 , t, chi_w):

15 return mu + (H_0 - mu) * np.exp((t_0 - t) / chi_w)

16

17 H_sleep1 = H_sleep(H_0 , t_0 , t, chi_s)

18 H_wake1 = H_wake(mu, H_0 , t_0 , t, chi_w)

19

20 plt.figure(figsize =(3, 5))

21 plt.plot(t, H_sleep1 , color=’black’)

22 plt.xlabel(’Time (Hours)’)

23 plt.ylabel(’Homeostatic Pressure H(t)’)

24 plt.grid(True)

25 plt.show()

26

27 plt.figure(figsize =(3, 5))

28 plt.plot(t, H_wake1 , color=’black’)

29 plt.axhline(y=1, color=’r’, linestyle=’--’)

30 plt.xlabel(’Time (Hours)’)

31 plt.ylabel(’Homeostatic Pressure H(t)’)

32 plt.grid(True)

33 plt.show()

A.2 Circadian Process

1 t = np.arange(0, 72, 0.01)

2 omega = np.pi / 12

3

4 def C(omega , t):

5 return np.sin(omega * t)

6

7 n = len(t)

8 H0_plus = np.ones(n) * 0.6

9 H0_minus = np.ones(n) * 0.17

10 a = 0.1

11

12 H_plus = H0_plus + a * C(omega , t)

13 H_minus = H0_minus + a * C(omega , t)

14

15 plt.plot(t, H_plus , label=’Upper Threshold ($H^+$)’)
16 plt.plot(t, H_minus , label=’Lower Threshold ($H^-$)’)
17 for i in range(1, 3): #this will add lines for each 24hr period

18 plt.axvline(x=i*24, color=’red’, linestyle=’--’, linewidth =1)

19 plt.xlabel(’Time (Hours)’)

20 plt.ylabel(’Pressure ’)

21 plt.legend ()

22 plt.grid(True)

23 plt.show()
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A.3 Two-Process Model

1 t = np.arange(0, 72, 0.01)

2 omega = np.pi / 12

3

4 def C(omega , t):

5 return np.sin(omega * t)

6

7 n = len(t)

8 H0_plus = np.ones(n) * 0.6

9 H0_minus = np.ones(n) * 0.17

10 mu = 1

11 a = 0.1

12 t_0 = 0

13 chi_s = 4.2

14 chi_w = 18.2

15 H_0 = 0.18

16

17 def twoprocessmodel(n, H0_plus , H0_minus , mu, a, t_0 , chi_s , chi_w , H_0):

18 H_plus = H0_plus + a * C(omega , t)

19 H_minus = H0_minus + a * C(omega , t)

20

21 Hs = np.zeros(n)

22 Hw = np.zeros(n)

23 i = 0

24

25 for i in range(n):

26 Hw[i] = mu + (H_0 - mu) * np.exp((t_0 - t[i]) / chi_w) #sleep pressure during

wake

27 if Hw[i] <= H_plus[i]: #checking if sleep pressure during wake is lower than the

upper threshold

28 j = i

29 break #we break since we do not have to change direction yet

30

31 k = 0

32

33 for i in range(j, n):

34 t_0 = t[j]

35 H_0 = Hw[j]

36 for i in range(j, n):

37 Hs[i] = H_0 * np.exp((t_0 - t[i]) / chi_s) #sleep pressure during sleep

38 Hw[i] = 0

39 if Hs[i] >= H_minus[i]: #checking if sleep pressure during sleep is more than

the lower threshold

40 k = i

41

42 t_0 = t[k]

43 H_0 = Hs[k]

44 for i in range(k, n):

45 Hw[i] = mu + (H_0 - mu) * np.exp((t_0 - t[i]) / chi_w)

46 Hs[i] = 0

47 if Hw[i] <= H_plus[i]:

48 j = i

49 i = j + 1

50

51 H = Hw + Hs #total homeostatic pressure = wake + sleep

52 return H_plus , H_minus , H

53

54 H_plus , H_minus , H = twoprocessmodel(n, H0_plus , H0_minus , mu , a, t_0 , chi_s , chi_w , H_0)

55

56

57 plt.plot(t, H_plus , label=’Upper Threshold ($H^+$)’)
58 plt.plot(t, H_minus , label=’Lower Threshold ($H^-$)’)
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59 plt.plot(t, H, label=’Total Homeostatic Pressure (H)’)

60 plt.xlabel(’Time (Hours)’)

61 plt.ylabel(’Pressure ’)

62 plt.legend ()

63 plt.grid(True)

64 plt.show()

A.4 Firing Function

1 Qmax = 100

2 theta = 10

3 sigma = 3

4

5 def Q_j(V, Qmax , theta , sigma):

6 return Qmax / (1 + np.exp(-(V - theta) / sigma))

7

8 V_vals = np.linspace (-10, 35, 400) #interval on the x-axis from -10 to 35

9 Q_vals = Q_j(V_vals , Qmax , theta , sigma)

10

11 plt.plot(V_vals , Q_vals)

12 plt.xlabel(’$V$’)
13 plt.ylabel(’$Q$’)
14 plt.grid(True)

15 plt.show()

A.5 PR Model

1 t = np.arange(0, 72, 0.01)

2 n = len(t)

3 omega = np.pi / 12

4

5 def C_PR(omega , t): #circadian drive for the PR model

6 return 0.5 * (1 + np.cos(omega * t)) #not the same one as the two -process model

7

8 C = C_PR(omega , t)

9

10 x = np.array ([-10, 1, 10])

11 Qmax = 100

12 theta = 10

13 sigma = 3

14 v_maQ_a = 0.7

15 v_vm = -1.9

16 v_mv = -1.9

17 v_vc = -6.3

18 v_vh = 0.19

19 chi = 10.8 * 3600

20 mu = 3600 * 10 ** -3

21 tau_v = 10

22 tau_m = 10

23

24 def PRmodel(n, x, Qmax , theta , sigma , v_maQ_a , v_vm , v_mv , v_vc , v_vh , chi , mu , tau_v ,

tau_m):

25 xArray = np.zeros((n, 3)) #matrix with n rows and 3 columns for the three variables

Vm , Vv and H

26

27 for i in range(n): #Euler method

28 xArray[i, :] = x

29 dx = np.array([

30 1/tau_v * (v_vm * Qmax / (1 + np.exp(-(x[1] - theta) / sigma)) + v_vc * C[i]

+ v_vh * x[2] - x[0]),
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31 1/tau_m * (v_mv * Qmax / (1 + np.exp(-(x[0] - theta) / sigma)) + v_maQ_a - x

[1]),

32 1/chi * (mu * Qmax / (1 + np.exp(-(x[1] - theta) / sigma)) - x[2])

33 ])

34 x = x + dx #add till we get one value in each column which is the integrated Vv ,

Vm and H

35

36 return xArray

37

38 xArray = PRmodel(n, x, Qmax , theta , sigma , v_maQ_a , v_vm , v_mv , v_vc , v_vh , chi , mu ,

tau_v , tau_m)

39 plt.subplot(3, 1, 1)

40 plt.plot(t, xArray[:, 1])

41 plt.xlabel(’Time (Hours)’)

42 plt.ylabel(’$V_m$ ’)
43

44 plt.subplot(3, 1, 2)

45 plt.plot(t, xArray[:, 0])

46 plt.xlabel(’Time (Hours)’)

47 plt.ylabel(’$V_v$ ’)
48

49 plt.subplot(3, 1, 3)

50 plt.plot(t, xArray[:, 2])

51 plt.xlabel(’Time (Hours)’)

52 plt.ylabel(’H’)

53

54 plt.tight_layout ()

55 plt.show()

A.6 Slow Manifold

1 from mpl_toolkits.mplot3d import Axes3D

2

3 Qmax = 100

4 theta = 10

5 v_maQ_a = 0.7

6 v_vm = -1.9

7 v_mv = -1.9

8 v_vc = -6.3

9 v_vh = 0.19

10 tau_v = 10

11 tau_m = 10

12

13 Vv = np.arange(-45, 45, 0.1) #interval

14 t = np.arange(0, 72, 0.01)

15 omega = np.pi / 12

16

17 def C_PR(omega , t):

18 return 0.5 * (1 + np.cos(omega * t))

19

20 C = C_PR(omega , t)

21

22 Sigma = np.arange(0, 7)

23 n = len(Vv)

24

25 Vm = np.zeros((n, n))

26 H = np.zeros ((n, n))

27 Qv = np.zeros((n, n))

28 Qm = np.zeros((n, n))

29

30 def Q(V, theta , sigma): #firing function

31 return Qmax / ( 1 + np.exp(-(V - theta) / sigma ))

32

33 for j in range (7):
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34 sigma = Sigma[j]

35

36 for i in range(n):

37 Qv[i, j] = Q(Vv[i], theta , sigma)

38 Vm[i, j] = v_mv * Qv[i, j] + v_maQ_a

39 Qm[i, j] = Q(Vm[i, j], theta , sigma)

40 H[i, j] = (Vv[i] - v_vc * C[i] - v_vm * Qm[i, j])/v_vh

41

42 fig = plt.figure(figsize =(10, 10))

43 ax = fig.add_subplot (111, projection=’3d’)

44

45 for j in range (7):

46 ax.plot(Vm[:, j], H[:, j], Vv , label=f’Sigma={Sigma[j]}’)

47

48 ax.set_xlabel(’$V_m$ ’)
49 ax.set_ylabel(’$H$’)
50 ax.set_zlabel(’$V_v$ ’)
51 ax.legend ()

52

53 plt.show()

A.7 Dynamics of the Slow Subsystem

1 Vv = np.arange(-40, 40, 0.1)

2

3 def C_PR(omega , t):

4 return 0.5 * (1 + np.cos(omega * t))

5

6 C = C_PR(omega , t)

7

8 Qmax = 4.85

9 theta = 1.45

10 tau_v = 10

11 tau_m = 10

12 chi = 10.8 * 3600

13 mu = 3600 * 10 ** -3

14 v_vm = -1.9

15 v_vc = -6.3

16 v_vh = 0.30

17 v_mv = -1.9

18 v_maQ_a = 1.5

19 Sigma = np.arange(1, 7) #sigma ranges from 0 to 6

20

21

22 n = len(Vv)

23 Vm = np.zeros((n, n))

24 H = np.zeros ((n, n))

25 Qv = np.zeros((n, n))

26 Qm = np.zeros((n, n))

27 Hdot = np.zeros ((n, n))

28

29 a = np.zeros(n)

30 b = np.zeros(n)

31

32 def Q(V, theta , sigma):

33 return Qmax / ( 1 + np.exp(-(V - theta) / sigma ))

34

35 for j in range (6):

36 sigma = Sigma[j]

37

38 for i in range(n):

39 Qv[i, j] = Q(Vv[i], theta , sigma)

40 Vm[i, j] = v_mv * Qv[i, j] + v_maQ_a

41 Qm[i, j] = Q(Vm[i, j], theta , sigma)
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42 H[i, j] = 1 / v_vh * (Vv[i] - v_vc * C - v_vm * Qm[i, j])

43 Hdot[i, j] = (mu * Qm[i, j] - H[i, j]) / chi

44

45 for i in range(n):

46 if Vv[i] >= theta:

47 a[i] = 1

48 Qv[i, 6] = Qmax * a[i]

49 Vm[i, 6] = v_mv * Qv[i, 6] + v_maQ_a

50 if Vm[i, 6] >= theta:

51 b[i] = 1

52 Qm[i, 6] = Qmax * b[i]

53 H[i, 6] = 1 / v_vh * (Vv[i] - v_vc * C - v_vm * Qm[i, 6])

54 Hdot[i, 6] = 1 / chi * (mu * Qm[i, 6] - H[i, 6])

55

56 fig = plt.figure(figsize =(12, 6))

57 ax = fig.add_subplot (111)

58

59 ax.plot(Vv, Vm[:, 6])

60 ax.plot([ theta], [v_maQ_a], ’bo’) #H+

61 ax.plot([ theta], [v_maQ_a + v_mv * Qmax], ’bo’) #H-

62 ax.plot([ theta - 5], [v_maQ_a], ’bo’) #H1

63 ax.plot([ theta + 5], [v_maQ_a + v_mv * Qmax], ’bo’) #H0

64 ax.set_xlabel(’V_v’)

65 ax.set_ylabel(’V_m’)

66

67 ax.axis([-20, 20, -10, 3])

68

69 plt.show()
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B Parameters

B.1 Two-Process Model

Parameter Two-Process Model

µ 1
ω 2π/24 hrs−1

χS 4.2 hrs
χW 18.2 hrs
H0 0.18
a 0.10

B.2 PR Model

Parameter PR Model

Qmax 100 sec−1

χ 10.8 hrs
θ 10 mV
σ 3 mV

vvm -1.9 mV sec
vmv -1.9 mV sec
vvc -6.3 mV
vvh 0.19 mV nM−1

vmaQa 1.0 mV
τm 10 sec
τv 10 sec

B.3 PR Model with a Hard Switch

Parameter PR Model with a Hard Switch

Qmax 4.85 sec−1

χ 10.8 hrs
θ 1.45 mV
σ 3 mV

vvm -1.9 mV sec
vmv -1.9 mV sec
vvc -6.3 mV
vvh 0.19 mV nM−1

vmaQa 1.5 mV
τm 10 sec
τv 10 sec
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