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Abstract: To leverage the full potential of Large Language Models (LLMs) in various tasks like
machine translation, programming, summarising large documents, automating customer service
or even general-purpose chatbot assistants, it is crucial to have some information on their answers’
uncertainty. This means that the model has to be able to quantify how certain it is in the
correctness of a given response. Bad uncertainty estimates can lead to confident wrong answers
undermining trust in these models thus preventing practical applications. Quite a lot of research
has been done on language models that work with text inputs and provide text outputs. Still,
since the visual capabilities have been added to these models recently, there has not been much
progress on the uncertainty of Visual Language Models (VLMs). This thesis aims to further our
understanding of this topic. We tested three state-of-the-art VLMs on corrupted image data.
We found that the severity of the corruption negatively impacted the models’ ability to estimate
their uncertainty and the models also showed overconfidence in most of the experiments.

1 Introduction

LLM-based AI assistants can help us with a wide
variety of tasks. The responses generated by these
models sound convincing and correct most of the
time but it has been shown that they can confi-
dently generate incorrect or even nonsensical an-
swers. In the field of LLMs, this is known as hal-
lucinations (Ji et al., 2023). Currently, the biggest
problem with ChatGPT-like AI assistants is that
they will generate real and hallucinated answers
with the same degree of confidence. As there have
already been examples of algorithmic biases with
serious consequences in real-world applications of
machine learning models (Angwin et al., 2016),
with the rapid evolution of LLMs, it is likely that
they will have increasingly more responsibilities in
practical applications. There are multiple risks in-
volved with deploying these models in high-stakes
decisions in the real world (Weidinger et al., 2021;
Echterhoff et al., 2024). We have to ensure that
these models are well-calibrated, meaning that the
model’s confidence in a response accurately pre-
dicts the likelihood of the answer being correct.

1.1 Large language models

Today’s best LLMs are based on the transformer ar-
chitecture (Vaswani et al., 2017) and models using
this architecture currently dominate the LLM scene
as all of the state-of-the-art models are transformer-
based. However, alternatives are proposed for dif-
ferent architectures (Peng et al., 2023), but they
are not nearly as widespread as transformers. Even
though the basic architecture is common, the latest
and best models’ specific structure is impossible to
know as companies do not make them open source
to preserve their competitive advantage.

LLMs generate text token by token, from a pre-
defined vocabulary. At each step, the model gener-
ates a probability distribution over its vocabulary
based on the input and the previously generated
tokens and selects the next token from that prob-
ability distribution. In theory, the uncertainty of a
given answer could be estimated by the combined
probability of these tokens (Kuhn et al., 2023).
Still, since these models are proprietary, we don’t
have access to these individual token probabilities
so methods have been proposed to quantify the un-
certainty of a response (Tian et al., 2023). Since
most users interact with LLMs produced by large
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companies that do not open-source their models,
we have to find other methods to obtain confidence
scores from these models.
To estimate the model’s uncertainty in a given

answer, we could ask the model in our prompt to
quantify it. In the field, this is known as verbalized
uncertainty (Xiong et al., 2024). It has been shown
that sometimes the models’ verbalized confidence
estimates are better calibrated than the conditional
probabilities estimated via sampling (Tian et al.,
2023).
Originally, these LLMs could only take in text in-

put and produce text output. However, in the previ-
ous five years, multiple advancements were made to
extend the capabilities of LLMs to the visual realm.
These models can generate text answers from a
prompt and an image, or even just an image and
are called Visual Language Models (VLMs). One
of the first notable examples of these is ViLBERT
(Lu et al., 2019) and two years later CLIP (Radford
et al., 2021). For a more comprehensive overview
of the evolution of VLMs, refer to Oza & Kambli
(2024). Since then, some of the most widely used
LLMs (ChatGPT, Gemini, Claude) have been up-
graded with visual understanding. Since they were
released in the last two years, there is still much to
uncover in understanding their uncertainty.

1.2 Models and corruptions

In this thesis, we tested three state-of-the-art VLMs
on visual question-answering tasks where the im-
ages are corrupted with common corruptions taken
from Michaelis et al. (2019). It is important to test
if a model dealing with image data is robust to these
corruptions, as they might not be present in the
training set but are likely encountered in a practical
application. A demonstration of these corruptions
is shown in figure 1.1.
There are five severity levels for each corruption

each one adding more distortion to the image. This
thesis aims to answer the research question: How
does the severity level of the corruption impact the
model’s calibration, accuracy and confidence? Ide-
ally, as the corruptions become more and more se-
vere and the model starts making mistakes, the
confidence should go down along with the accu-
racy. However, there is evidence that LLMs exhibit
overconfidence in their answers (Xiong et al., 2024;
Groot & Valdenegro-Toro, 2024), suggesting that

increasing severity will increase miscalibration in
the models and that the decrease in accuracy will
not be accompanied by lower confidence scores.

Original image JPEG compression

Defocus blur Gaussian noise

Figure 1.1: Demonstration of the used corrup-
tions on severity 5
Question: What kind of food is showcased in this
photo?
Answer: Japanese food, also acceptable that it
is a food model, called Shokuhin Sampuru in
Japanese

The three VLMs tested were: GPT-4 Vision
(Achiam et al., 2023), Gemini Pro Vision (Team et
al., 2023), and Claude 3 Opus (Anthropic, 2024).
We tested all of them on the same image vi-
sual question answering tasks where the corrup-
tion levels progressively increased. The models were
prompted to incorporate their level of uncertainty
in their responses or express their answers as a 95%
confidence interval.

2 Related Work

In this thesis, we estimate the model uncertainty
by prompting. There is no consensus in the scien-
tific literature on the best method to elicit reliable
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confidence scores from LLMs. This is a problem as
different methods yield different confidence scores
so it is hard to compare the calibration of differ-
ent models. Tian et al. (2023) examined various
methods to extract confidence scores from the ex-
amined models and found that for models trained
with Reinforcement Learning with Human Feed-
back (RLHF) (Ouyang et al., 2022), the verbalized
confidence is better calibrated than other methods
that for instance, estimate internal token proba-
bilities by sampling. This finding makes verbalized
uncertainty a viable option to estimate uncertainty
in VLMs.

Yann LeCun, the chief AI scientist at Meta said
that ”If intelligence is a cake, the bulk of the cake
is unsupervised learning, the icing on the cake is
supervised learning, and the cherry on the cake is
reinforcement learning.”∗ It turns out that this
cherry called RLHF could ruin the whole ”cake”
when it comes to LLMs and VLMs. Kadavath et al.
(2022) showed that RLHF worsens calibration be-
cause it shifts the distribution of responses towards
outputs that sound more confident and convincing,
as that is what humans prefer. However, they also
show that temperature scaling can treat this mis-
calibration. Increasing temperature in a large lan-
guage model means that we inject ”randomness” in
the token generation so the outputs will have more
variance and may contain answers that would be
punished by RLHF. The models investigated in this
thesis have been subject to RLHF so their miscali-
bration might be attributed to it.

Even though estimating the model’s confidence
by prompting has some drawbacks, verbalized un-
certainty is getting more attention and has also
been examined by Xiong et al. (2024). Their work
builds on Tian et al. (2023) as they investigate
different prompting methods like chain-of-thought
reasoning or top-k. Different prompting strategies
yielded similar results in the sense that LLMs ex-
hibit overconfidence and the majority of the mod-
els’ confidence scores fall within the 80-100 range.
This thesis strengthens their findings and tests
their ”vanilla” prompting strategy on increasingly
corrupted images.

Since uncertainty estimation is not often incorpo-
rated in computer vision applications (Valdenegro-

∗https://medium.com/syncedreview/yann-lecun-cake-
analogy-2-0-a361da560dae

Toro, 2021), there has not been much research pub-
lished on the topic. The only paper that exam-
ined uncertainty estimation in VLMs is Groot &
Valdenegro-Toro (2024). They also used verbalized
confidence estimation on visual question-answering
tasks and found that the models were poorly cali-
brated, showing severe overconfidence. This thesis
builds on their research by introducing increasingly
corrupted images in the dataset.

The other main inspiration for this thesis is
Hendrycks & Dietterich (2019). They examined
how different neural network architectures respond
to corrupted or perturbed image input and also pro-
posed methods to increase their robustness. Their
research focused on image classification and in-
vestigated less complex models than VLMs like
AlexNet, VGG and ResNet.

Most research (Ovadia et al., 2019; Hendrycks &
Dietterich, 2019; Kadavath et al., 2022) has been fo-
cused on models applied in classification problems
or when it comes to question answering, multiple
choice or true/false questions. The main issue with
this is that their methods for eliciting confidence
scores are not applicable to state-of-the-art VLMs.
While users would like to enjoy the benefits of well-
calibrated models, they should not have to deal
with the inner workings of the system and instead
receive well-calibrated confidence scores in a verbal-
ized form. In this thesis, we tested the models on
more complex, open-ended questions which mim-
ics the usage of these models in the real world. We
combined the ideas from Hendrycks & Dietterich
(2019) to test the models on increasingly corrupted
images and Groot & Valdenegro-Toro (2024) to ex-
tend the research into VLMs where internal token
probabilities are not available. With this thesis, we
aim to bridge the gap between uncertainty quan-
tification on standard neural networks and VLMs.
This is important due to the rapid advancement of
VLMs, and the lack of research on their uncertainty
calibration.

3 Methods

We tested the VLMs on three different datasets us-
ing three different corruptions. The specific details
of the experiments, datasets, the used corruption
techniques and the evaluation procedure are ex-
plained below.
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3.1 Datasets and data

The three mentioned models were tested in three
experiments:

1. ”Easy” visual question answering evalu-
ated on the popular visual question answering
dataset (Antol et al., 2015; Goyal et al., 2017).
From the testing part of this dataset, 36 ran-
domly sampled images and the corresponding
questions were selected. This dataset includes
easier questions about images. Without any
corruption added to the images, the models
should be able to answer most of them.

2. ”Hard” visual question answering evalu-
ated on the Japanese Uncertain Scenes (JUS)
dataset proposed by Groot & Valdenegro-Toro
(2024). This dataset can be downloaded from
a public GitHub repository†. This repository
contains 29 ”tricky” questions specifically de-
signed to evaluate the model’s ability to esti-
mate their uncertainty.

3. The Counting task was also evaluated on
the JUS dataset as it contains 13 challenging
counting exercises. This is also not designed
to evaluate the model’s accuracy but rather to
check its uncertainty estimates as most of them
are nearly impossible to count precisely.

Figure 3.1 provides example images, questions
and answers. For the selected images and the
prompts taken from Groot & Valdenegro-Toro
(2024), refer to Appendix A.

3.2 Experiments

As mentioned before, this thesis investigates the
effect of increased corruption severity. As the im-
ages become more and more corrupted, the model
will likely start making more mistakes. We want
to see if the lower accuracy in a dataset is re-
flected in lower confidence scores. Even if the mod-
els are not perfectly calibrated when tested on the
datasets without corruption, it will be interesting
to see if their calibration worsens as the images be-
come more distorted. Ideally, the model’s calibra-
tion should not be affected by the increased corrup-
tion severity but as these models often show over-
confidence and produce very high confidence scores

†https://github.com/ML-RUG/jus-dataset

Question: What type
of place is this?
Answer: Savannah
(task 1.)

Question: What is
shown in this photo?
Answer: This is a photo
of the Tokyo Tower.
(task 2.)

Question: How many
birds are shown in this
photo?
Answer: 250-280
(task 3.)

Figure 3.1: Samples from the three tasks.

(Groot & Valdenegro-Toro, 2024), it is possible that
this behaviour will persist when the model fails on
harder questions.

There were three types of corruption tested and
five severity levels for each. Each model was tested
on the original dataset and fifteen ”corrupted”
datasets for each task (3 corruptions, 5 severity lev-
els). Since the models did not always adhere to the
requested answer format and there could be mul-
tiple equally correct ways to answer an open ques-
tion, all of the answers had to be manually checked
which is the main reason for the low number of im-
ages in a particular dataset. Still, this project con-
tains the results of more than 3700 answers across
all models and corruptions, counterbalancing the
low number of images in a single dataset.

Prompting the models with an image, the ques-
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tion plus the prompt from Appendix A to elicit
verbalized confidence was automated using Python
scripts and the APIs provided by OpenAI (GPT-
4V), Google (Gemini Pro Vision) and Anthropic
(Claude 3 Opus).
For each question, we recorded the confidence

score from the model’s answer. We also recorded if
the answer was correct. Especially at higher sever-
ities, there were cases where the image was so dis-
torted that the model refused to respond. For a
well-calibrated model, this is a desired behaviour.
Because of that, we cannot record that answer as
incorrect, but we cannot mark it as correct either
as the model did not answer the question. Since
in the experiment, we need to measure the mod-
els’ accuracy, we can only calculate it where each
response is marked either correct/incorrect, so in
these cases, the answer was not marked as either
and no confidence score was recorded.
When the models provided an answer, it was al-

ways recorded and used for the analysis, and no
data point had to be removed throughout the ex-
periment. However, there were eight cases in the
”easy” and ”hard” visual question-answering ex-
periments together where Gemini refused to re-
spond due to the image being in conflict with its
safety settings. Since there were no explicit images
in any of the three datasets, this was most likely
due to the model confusing a highly distorted image
with explicit content. This confusion was only pro-
duced by Gemini and happened only with a small
fraction of the tested images.

3.3 Corruptions

Michaelis et al. (2019) defines 15 types of cor-
ruption. They created multiple types of noise and
blurring effects and other corruptions mimicking
real-life distortions like fog, frost on the lens or
snow. These were designed to benchmark neural
networks’ robustness to corrupted images.
From the 15 corruptions, this thesis investigates

three: Gaussian noise, defocus blur and JPEG com-
pression. Different noise-based corruptions have
very similar effects so we selected one of them.
Gaussian noise or electronic noise is caused by high
temperatures or poor lighting conditions (Boyat &
Joshi, n.d.). Since digital cameras are prone to this
type of corruption, the robustness of VLMs against
it needs to be tested. Blurring effects like zoom blur

or motion blur were discarded as they introduced
ambiguities to the questions. For instance, if we ap-
ply the motion blur effect to an image of a man
standing and we ask the model ”What is the man
doing?” it might incorporate motion in its response
which is not a correct answer based on the original
image but acceptable based on the corrupted im-
age. Defocus blur does not introduce such ambigui-
ties and blurry digital images are common so incor-
porating this corruption type in the experiment is
plausible. Moreover, the most realistic corruption
type was chosen from the 15 available ones: JPEG
compression. We can safely assume that a VLM en-
counters images that are distorted due to the lossy
nature of the JPEG compression algorithm as these
types of digital images are very common.

For a demonstration of the different levels of the
three tested corruptions, refer to Appendix B.

3.4 Evaluation

Apart from the accuracy and confidence scores, we
measured the Expected Calibration Error (ECE)
(Guo et al., 2017). The formula for calculating the
ECE is:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| . (3.1)

Where M is the number of bins, |Bm| is the num-
ber of samples in the m-th bin, n is the total num-
ber of samples, acc(Bm) is the accuracy of the m-th
bin, and conf(Bm) is the average confidence of the
m-th bin. This takes the weighted average of the
absolute difference between the accuracy and the
average confidence of the bins.

This metric quantifies how much one can ”trust”
the model’s confidence scores. The score can be in
the range [0, 100] with the ideal ECE of a model
being 0, which means that the confidence score ac-
curately predicts the likelihood that the answer is
correct. In the experiment, the ECE was calculated
using ten equal width bins covering the [0, 100] in-
terval. The model usually outputs scores divisible
by ten, so a smaller bin size was unnecessary.

We would like to see how the ECE of a model
changes on a dataset when we increase corruption
severity. Increased ECE scores would mean that the
model becomes more and more miscalibrated. The
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result of a well-calibrated model would be that the
increased corruption severity does not affect the
ECE.

4 Results

Here, we report the results of the three exper-
iments. For visual question answering, we were
mainly interested in how the ECE is affected by
the increased corruption severity. Since the results
seemed to increase linearly, we attempted to fit lin-
ear regression lines to the data points and calcu-
lated the R2 values to test the explanatory power
of the linear models. Furthermore, to get a detailed
understanding of the models’ behaviour, we cal-
culated calibration plots for each corruption type.
This way, we can see if some confidence scores are
better calibrated than others. We were also inter-
ested in whether there is any connection between
a model’s refusal rates and their performance. Es-
pecially at higher severity levels, refusing to answer
can improve the model’s performance. In the count-
ing experiment, we only examined the change in
accuracy as the corruption severity increased.

4.1 ”Easy” visual question answer-
ing

In this task, the models achieved fairly high ac-
curacy scores on the dataset without any corrup-
tion. As the severity of the corruption increased,
the models’ accuracy started to degrade slightly,
but the confidence remained fairly stable. The de-
tailed results are illustrated in Figure 4.1.
We can see that for all models in all corruptions,

the average confidence score was higher than the
accuracy throughout all severity levels. This means
that all models are overconfident. It can also be
seen that the gap between the two lines widens as
the severity increases. This is not apparent in all
plots but is quite visible in the Gaussian noise col-
umn. To measure if this gap is actually increasing,
we can calculate the ECE scores for each combina-
tion of model and corruption type in each severity
level and see if it increases as we increase the sever-
ity. These ECE scores are visualized in Figure 4.2
The Expected Calibration Error increases as we

increase the severity for all models and corruptions.
However, this effect is very small for defocus blur
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Figure 4.1: Accuracy and confidence plots for
the three examined models and the three cor-
ruptions in the easy visual question answering
experiment.

and JPEG compression. The worst performance is
shown by Claude 3 Opus with the gaussian noise
corruption. GPT-4 Vision, on the other hand, out-
performs the other two models in all three corrup-
tions, achieving the lowest ECE scores across dif-
ferent severity levels.

Table 4.1 summarizes the R2 values for the linear
regression lines presented in Figure 4.2. The only
high values are for Claude and Gemini for Gaussian
noise corruption. From Figure 4.2 we can see that
these are the two steepest lines in the plot, meaning
that increasing severity had the most effect on the
model’s ECE in these two cases. The high R2 values
indicate that the increased severity explains a lot
of variance in the ECE.

Table 4.1: R2 values for the linear regression
lines in Figure 4.2

Claude Gemini GPT
Gaussian Noise 0.88 0.93 0.53
Defocus Blur 0.54 0.11 0.28
JPEG Compression 0.21 0.58 0.36

Since one metric like the ECE can hide the nu-
ances in the model’s behaviour, we can make a cal-
ibration plot for each corruption. We calculate the
model’s average confidence in a confidence bin and
plot its accuracy along the y-axis.
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Figure 4.2: ECE scores for each model and corruption type for different severity levels in the easy
visual question answering experiment. The dashed trend line is added for each model.

Figure 4.3 illustrates the calibration of the three
models in each corruption type. Since the calibra-
tion plots for one specific severity level and corrup-
tion type are too noisy due to the low number of
data points and the uneven distribution of the con-
fidence scores, we plotted the calibration using all
severity levels of a given corruption. Even with this
adjustment, most of the bins contained one or two
data points so we decided to use four equal bins
covering the [0, 100] interval.

GPT-4V outperformed the other two models in
all types of corruption. It is especially close to the
dashed line indicating perfect calibration, in the de-
focus blur corruption. In the confidence bins where
there were enough data points, indicated by the
small error bars, the models show overconfidence
as those points lie below the dashed line.

There are points below 50% confidence where the
error bar is very large or zero. These points occur
because the models tend to output high confidence
scores so lower bins have few or no data points.
If there are only one or two correct answers in a
confidence bin and no other data points, then the
accuracy for that bin will be 100% and the stan-
dard error will be undefined or zero since it is cal-
culated as the standard deviation divided by the
square root of the number of samples. For detailed
confidence histograms, we refer to Appendix C and
D.

At higher severity levels, the models sometimes

refused to answer and express their confidence
score. The refusal rates are summarized in Figure
4.4.

We can look at the relationship between this plot
and Figures 4.2 and 4.3. All models show similar
refusal rates for Gaussian noise but achieve differ-
ent results in the ECE and the calibration plot.
For defocus blur, GPT-4V’s refusal rates are much
higher than the other two models’ and it outper-
forms them both in ECE scores and the calibration
plot. The models showed very low refusal rates and
their ECE performance is similar for JPEG com-
pression but there are still small differences between
the models in the calibration plot as GPT-4V still
shows the best performance. Overall, we have some
evidence suggesting that refusing to answer a ques-
tion can prevent a model from making a wrong
prediction, thus improving its accuracy and ECE
score, but we see that this is not true for all cor-
ruption types.

4.2 ”Hard” visual question answer-
ing

To answer this project’s research question, we need
the models to start making more and more mistakes
as the severity increases to see if the confidence
estimates also decrease. The models achieved fairly
high accuracy scores for the easy dataset even at
higher severity levels. The JUS dataset (Groot &
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Figure 4.4: Refusal rates for each model across
different severity levels and corruptions in the
easy dataset

Valdenegro-Toro, 2024) makes it possible to test
the limits of these models by asking them nearly
impossible questions. It should be emphasized that
we are not interested in the actual accuracy of the
models but rather in their calibration. Figure 4.5
summarizes the accuracy and confidence scores in
this task.

Compared to Figure 4.1, we observe lower accu-
racy scores, but more importantly, it is more visi-
ble that the gap between accuracy and confidence
widens as we increase severity as confidence does
not appear to decrease. This effect is apparent when
we look at the ECE scores in Figure 4.6

The most visible difference between Figures 4.2
and 4.6 is for JPEG compression and defocus
blur corruptions. The models become more miscal-
ibrated at higher severity levels. There is not as
much difference between the models for Gaussian
noise as in the easy dataset. We can also see that
GPT-4V still achieves the lowest ECE scores, but
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Figure 4.5: Accuracy and confidence plots for
the three examined models and the three cor-
ruptions for the hard visual question answering
experiment.

the models show a more similar behaviour.

Table 4.2 shows the R2 values for the linear re-
gression lines in Figure 4.6. All of the values are
around or above 0.7 indicating that the regression
model explains the data well. This strengthens the
visual intuition that we got from comparing figure
4.1 and 4.5. We have stronger evidence that the
models become more and more miscalibrated as we
increase the severity of the corruption.

Figure 4.7 illustrates the calibration of the three
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Figure 4.6: ECE scores for each model and corruption type for different severity levels in the hard
visual question answering experiment. The dashed trend line is added for each model.
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Figure 4.7: Calibration plots for the three examined corruption types and three models in the hard
visual question answering experiment with the error bars calculated using the standard error

Table 4.2: R2 values for the linear regression
lines in figure 4.6

Claude Gemini GPT
Gaussian Noise 0.77 0.94 0.87
Defocus Blur 0.95 0.7 0.68
JPEG Compression 0.84 0.71 0.73

models in the three corruptions investigated. There
we can see that GPT-4V performed much better
again than the other two models. It should be noted
that the problem of confidence bins with low or zero
number of data points is still present, so the same
bin size had to be used.
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Figure 4.8: Refusal rates for each model across
different severity levels and corruptions in the
hard dataset

As with the easy dataset, we can also examine the
models’ refusal rates in Figure 4.8. For Gemini and
Claude, they are around the same as in the easier
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dataset but for GPT, they are much higher. GPT
performed best on the hard dataset both in terms
of ECE and the calibration plots, so we see that
refusing to answer a question instead of making a
wrong guess can improve a model’s calibration.

4.3 Counting task

The JUS dataset also contains hard counting tasks
that were evaluated using a different prompt de-
scribed in appendix A. In this task, the model was
asked to output a 95% confidence interval. And the
answer was recorded as correct if that interval con-
tained the actual prediction. There was one picture
illustrated in appendix B where there was no cor-
rect answer. It is impossible to count the bamboo
trees without seeing their trunks as many of the
visible branches could belong to the same bamboo
tree. The results of this experiment are shown in
Figure 4.9.
For a perfectly calibrated model, we would ex-

pect that a 95% confidence interval is correct 95%
of the time. We can see that the models perform
below 25% accuracy most of the time. There is not
as much consistency in the linear regression lines
as in the previous two tasks, most likely due to the
models’ poor performance on all severity levels and
the high variance from the low number of test im-
ages.
We can look at Table 4.3 containing the R2 values

for the lines but we get much lower values than in
the previous two tasks. The models are unable to
answer the questions even on the original dataset,
so increasing the severity of the corruption does not
have an effect.

Table 4.3: R2 values for the linear regression
lines in figure 4.9

Claude Gemini GPT
Gaussian Noise 0.13 0.61 0.22
Defocus Blur 0.35 0.47 0.13
JPEG Compression 0.31 0.02 0.31

It is important to note that the models seldom
refused to provide a response during this task. Out
of the 208 times each model was queried (13 ques-
tions, 3 corruptions, 5 severity levels plus the origi-
nal dataset), GPT refused to answer 9 times, Gem-
ini 2 times, and Claude 0 times. The low accuracies

show that the models responded even when the 95%
confidence interval was purely guessed.

Interestingly, the models often had an exact
guess that was reasonably close to the right answer,
but their confidence interval was so small that it al-
most never contained the true value. This shows the
models’ good visual capabilities even on hard im-
ages, but also signals their bad calibration as they
were not capable of formulating an accurate 95%
confidence interval based on a close estimate.

5 Discussion

Overall we found that increased corruption severity
had a negative impact on the three examined mod-
els’ accuracy and calibration. When the corruption
level gradually became higher and the models’ ac-
curacy started to decrease, it was not accompanied
by decreasing confidence scores. We also found that
models that refuse to answer at a higher rate can
achieve better accuracy and ECE scores. The other
main finding of the thesis is that models are gen-
erally overconfident in their responses and output
high confidence scores in most of their responses.
This overconfidence was present in all three exper-
iments but it was the most severe in the counting
problems.

5.1 Interpreatation of results

Our findings about overconfident models and their
high confidence scores are in line with Groot &
Valdenegro-Toro (2024) and Xiong et al. (2024)
both of them found that the majority of the con-
fidence scores of LLMs and VLMs fall within the
[80, 100] range. While Xiong et al. (2024) looked
at the performance of LLMs in different reasoning
tasks (commonsense, arithmetic, symbolic), Groot
& Valdenegro-Toro (2024) also examined the per-
formance of VLMs in visual question answering
tasks. This thesis shows that this characteristic of
VLMs persists when they are tested on corrupted
images. Higher corruption levels worsening calibra-
tion was also found by Hendrycks & Dietterich
(2019) who tested different neural network archi-
tectures designed for image classification. We show
that their findings can be extended to the realm of
VLMs.

As mentioned before, one possible explanation
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Figure 4.9: Accuracy scores for the counting experiment where the dashed line represents the 95%
accuracy which would be expected for a perfectly calibrated model

for this overconfidence is the RLHF fine-tuning of
these models. It rewards answers that sound more
confident so the model learns to express its re-
sponses using confident language wich influences
the confidence scores of verbalized uncertainty.

Examining the the number of cases where the
models refused to answer, we found that higher re-
fusal rates can help the model’s calibration as it is
nearly impossible to give a correct answer to some
highly distorted images. Especially with Gaussian
noise, there were times when the models were fooled
by the noise and output completely unrelated an-
swers to the images. This happened less with JPEG
compression as it was a less severe corruption than
the other two. In case of defocus blur, the mod-
els were more likely to recognise the heavy blur-
ring effect on the image and refuse to respond to
the question. Images corrupted with Gaussian noise
were less likely to be recognised as corrupted and
in some cases they were even confused with pointil-
listic paintings which is a painting technique from
the late 19th century using small colourful dots that
form an image when viewed from a distance. For
some examples of model responses, we refer to Ap-
pendix E

5.2 Limitations

As the models output high confidence scores, the
lower confidence bins were underrepresented in the
calibration plots. This issue could be solved with

more images in the datasets, but there were some
limitations on the number of images that the mod-
els could be tested on. For the easy visual question
answering experiment, there were tens of thousands
more images available from the dataset by Antol et
al. (2015) and Goyal et al. (2017). However, all of
the images were used from the JUS dataset, which
put a limit on the number of images in the hard
VQA experiment and the counting experiment.

Since a correct answer to a question could be
phrased in multiple ways, the answers had to be
manually checked, which made the data-gathering
process time-consuming. The used APIs also had a
limit on the number of requests per minute, which
prevented large-scale testing.

One way to automate the check for the correct-
ness of the answers could be to use an LLM to check
the semantic equivalence of the correct reference
answer and the response provided by the model.
This was not a suitable approach in this thesis, as
we would have needed to trust these LLMs to super-
vise themselves or each other. Another way could
be to use better prompts that restrict the model to
one or two-word answers that are easier to check
automatically but that would put a limit on the
complexity of the tested questions.

5.3 Future Research

Apart from increasing the number of images in
the dataset, there are other things that could
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be explored in the topic of uncertainty estima-
tion in VLMs. Different prompting strategies, such
as chain-of-thought reasoning or top-k explored
by Xiong et al. (2024) could yield different re-
sults. These can be altered so the models are
more restricted in their answers making automated
data gathering easier. Apart from verbalized uncer-
tainty, there exist other, sampling-based techniques
for uncertainty estimation (Tian et al., 2023) that
could be applied to VLMs.
The overconfidence of RLHF-based LLMs seems

to be present in multiple studies (Groot &
Valdenegro-Toro, 2024; Xiong et al., 2024) but it
would be interesting to explore if this overconfi-
dence in VLMs could be treated with tempera-
ture scaling in the same way as in Kadavath et
al. (2022). The APIs provided for the three inves-
tigated VLMs offer the ability to manipulate the
model’s temperature.
Michaelis et al. (2019) defines 15 corruption

types and in this thesis, we only tested three.
Studying the effect of the others could reveal more
differences between the models and their robustness
to different corruptions.

6 Conclusion

The key conclusions that we obtained from this the-
sis are the following:

• VLMs are overconfident.

They often express their confidence in the
range of [80, 100] even when this is not re-
flected in their accuracy.

• Increased corruption severity increases the
ECE.

When the models started making mistakes
due to the increasingly corrupted images, their
confidence did not decrease at the same pace
which caused the ECE to go up. This is the
main finding of the thesis, as it answers our
research question.

• There are differences in the calibration of
state-of-the-art VLMs and the models are
more robust to some corruptions than others.

GPT-4V outperformed the other two models
in the visual question-answering experiments,

and JPEG compression was better handled by
all of the models than Gaussian noise and de-
focus blur.

• Higher refusal rates can improve calibration.

We see that when the model recognises that we
are asking an impossible question and refuses
to answer, it prevents itself from providing hal-
lucinated answers and improves its calibration.
GPT-4V also performed better in this regard
than the other two models.

• VLMs were especially miscalibrated when they
were asked to express their answer in a 95%
confidence interval.

Their accuracy in the counting experiment did
not even come close to 95%, even when their
initial guess for the exact number of objects
was quite close to the answer.

From these results, we can see that there are
many things that can be improved when it comes
to the calibration of VLMs. In the current state
of things, users are often presented with confident
wrong answers which undermine the trust in these
models. This thesis contributes to the research in
uncertainty estimation of VLMs and points out the
shortcomings of these models with respect to their
calibration. Better-calibrated models would be ben-
eficial to millions of users as these models are al-
ready widely used by the general public.
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A Appendix

• List of the randomly generated image IDs for task 1:

COCO test2015 000000341181, Is the kitchen well lit?
COCO test2015 000000244073, What color is the plane?
COCO test2015 000000415036, Is there a plug near the bed?
COCO test2015 000000551714, Is the person wearing gloves?
COCO test2015 000000084296, How many chairs are around the table?
COCO test2015 000000512556, What is the bench made of?
COCO test2015 000000358972, What type of boat is that?
COCO test2015 000000154340, Are they preparing food?
COCO test2015 000000473114, Is this computer equipment?
COCO test2015 000000444844, Is this apartment completely empty?
COCO test2015 000000459379, What is the boy doing?
COCO test2015 000000003004, What is the animal doing?
COCO test2015 000000515370, What shape is the kite?
COCO test2015 000000066725, What appliance is pictured?
COCO test2015 000000121284, What time is it?
COCO test2015 000000420197, What is beside the dog?
COCO test2015 000000471029, Is the man right-handed?
COCO test2015 000000112870, What is on the shelf above the toilet?
COCO test2015 000000343994, What is in the baby’s mouth?
COCO test2015 000000351008, Is the horse running down the street?
COCO test2015 000000334624, Is the man listening to something on his smartphone?
COCO test2015 000000177197, What color is the batter wearing?
COCO test2015 000000407045, Is the bench brown?
COCO test2015 000000110643, How many birds?
COCO test2015 000000517475, Are they using foil paper?
COCO test2015 000000268054, Is the oven on?
COCO test2015 000000068573, Is this indoors?
COCO test2015 000000262294, What type of sweater is the man wearing?
COCO test2015 000000206488, Is there money on the table?
COCO test2015 000000066282, What type of place is this?
COCO test2015 000000166735, Are there people in the boat?
COCO test2015 000000068702, Are there picture frames in this picture?
COCO test2015 000000475609, Has the ball been thrown?
COCO test2015 000000434294, Is the boy wearing shoes?
COCO test2015 000000373079, Is the person wearing a wedding band?
COCO test2015 000000022109, What is on the sheep?

• Prompt used for eliciting verbalized confidence from the models:

[Image-specific question] Moreover, please rate your confidence in your answer between 0 and 100%.
The answer should be in the format: ”Answer (confidence%)”.’

• Prompt used for the counting tasks:

[Image-specific question] Provide your actual prediction. Moreover, please express your estimate as a
95% confidence interval. This means you should provide a range within which you are 95% confident
the true value lies. Format your answer as: ”[Lower Bound, Upper Bound]”, where the lower bound
is the start of the range and the upper bound is the end of the range. Ensure that this interval
reflects a 95% confidence level based on your estimation.
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B Appendix

Gaussian
noise:

JPEG com-
pression:

Defocus
blur:

Severity 0 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

Figure B.1: Demonstration of different severity levels for the three tested corruptions

Figure B.2: Impossible question: How many bamboo trees are shown in this photo?
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C Appendix

In the two histogram plots ’gn’ stands for Gaussian noise, ’db’ stands for defocus blur and ’jc’ stands
for JPEG compression

0

30

60

90

120

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin

C
ou

nt

Outcome

Incorrect

Correct

gn_gpt_easy

0

20

40

60

80

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin

C
ou

nt

Outcome

Incorrect

Correct

db_gpt_easy

0

50

100

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin

C
ou

nt

Outcome

Incorrect

Correct

jc_gpt_easy

0

20

40

60

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin

C
ou

nt

Outcome

Incorrect

Correct

gn_gemini_easy

0

20

40

60

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin

C
ou

nt
Outcome

Incorrect

Correct

db_gemini_easy

0

25

50

75

100

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin

C
ou

nt

Outcome

Incorrect

Correct

jc_gemini_easy

0

20

40

60

80

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin

C
ou

nt

Outcome

Incorrect

Correct

gn_claude_easy

0

25

50

75

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin

C
ou

nt

Outcome

Incorrect

Correct

db_claude_easy

0

30

60

90

[0
,2

5)

[2
5,

50
)

[5
0,

75
)

[7
5,

10
0]

Confidence Bin
C

ou
nt

Outcome

Incorrect

Correct

jc_claude_easy

Figure C.1: Histograms of confidence scores in the easy visual question answering experiment with
the red and blue bars indicating the proportion of correct and incorrect responses
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Figure C.2: Histograms of confidence scores in the hard visual question answering experiment
with the red and blue bars indicating the proportion of correct and incorrect responses
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D Appendix
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Figure D.1: Confidecne histograms GPT easy VQA
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Figure D.2: Confidecne histograms Gemini easy VQA
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Figure D.3: Confidecne histograms Claude easy VQA
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Figure D.4: Confidecne histograms GPT hard VQA

19



0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 0 − Gemini

0

5

10

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 1 − Gaussian Noise − Gemini

0

3

6

9

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 2 − Gaussian Noise − Gemini

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 3 − Gaussian Noise − Gemini

0

2

4

6

8

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 4 − Gaussian Noise − Gemini

0

2

4

6

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 5 − Gaussian Noise − Gemini

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 0 − Gemini

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 1 − Defocus Blur − Gemini

0

3

6

9

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 2 − Defocus Blur − Gemini

0

5

10

15

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 3 − Defocus Blur − Gemini

0

3

6

9

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 4 − Defocus Blur − Gemini

0

3

6

9

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 5 − Defocus Blur − Gemini

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 0 − Gemini

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 1 − JPEG Compression − Gemini

0

5

10

15

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 2 − JPEG Compression − Gemini

0

5

10

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 3 − JPEG Compression − Gemini

0

5

10

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 4 − JPEG Compression − Gemini

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Confidence

F
re

qu
en

cy

Severity 5 − JPEG Compression − Gemini

Figure D.5: Confidecne histograms Gemini hard VQA
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Figure D.6: Confidecne histograms Claude hard VQA
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E Appendix

In Table E.1 GPT-4 first answers the question correctly and then as the severity increases, gets confused
with the added noise and in the end it refuses to answer.

Table E.1: GPT-4V answers with Gaussian noise
Question: What is on the sheep?
Correct answer: An eartag

Severity 0 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
Tag on ear
(95%)

There is an
ear tag on
the sheep
(confidence
100%).

There is
nothing
unusual on
the sheep; it
appears to
be just wool-
covered,
typical for
a sheep.
Answer
(confidence
95%).

There is
nothing
unusual on
the sheep; it
looks like a
typical sheep
with its wool
coat. Answer
(100%).

The sheep
is wear-
ing a blue
blanket or
cover (90%
confidence).

It is difficult to
accurately discern
specifics about
the sheep due to
the distorted and
noisy nature of the
image. The image
quality suggests it
may have been al-
tered or degraded,
mostly showing
pixelated and
multicolored noise
patterns rather
than clear objects
or textures. Thus, I
cannot definitively
make out detailed
attributes such
as what might
be on the sheep.
(Confidence: 30%)

In Table E.2, Claude even identifies the exact bridge in Kyoto but as the severity of the blur increases,
it gives incorrect or more and more general answers instead of refusing to answer.
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Table E.2: Claude answers with defocus blur
Question: Where was this photo taken?
Correct answer: Japan, Kyoto, Arashiyama Area, the Bridge is named Togetsu-kyo Bridge (or
Toei Bridge)

Severity 0 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
Based on
the wooden
bridge
structure
spanning the
water and
the moun-
tains in the
background,
this photo
appears to
have been
taken in Ky-
oto, Japan at
the famous
Togetsukyo
Bridge in
Arashiyama
(confidence
90%).

Kyoto,
Japan (80%)

Kyoto,
Japan (75%)

Based on the
mountainous
landscape
and the
traditional
wooden
houses along
the river-
bank, this
photo ap-
pears to have
been taken
in Kyoto,
Japan (70%
confidence).

Based on the
mountainous
landscape
and the
body of
water, which
appears to
be a lake,
this photo
was likely
taken at
Lake Como
in Italy (75%
confidence).

Lake (60%)
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