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Abstract

It is increasingly popular to use Computer Numerically Controlled machining to
mass-produce objects that require high levels of precision. These machines work
through a pre-programmed computer software that dictates the movements of the
tools and machinery. Tangent continuity is often needed throughout the surface of
the machined object for aerodynamic and aesthetic purposes.

Consequently, in this thesis we derive the necessary and sufficient conditions for
tangent continuity between the surfaces generated by two adjacent passes of a tool.
We developed an interface that allows the user to visualize the different surfaces
that can be obtained when imposing the necessary conditions for tangent continuity.
Moreover, it illustrates the geometrical elements that come into play when defining a
tool, an envelope and the continuity conditions between two envelopes.
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1 Introduction

Computer Numerically Controlled (CNC) machining is a widely used manufacturing
method in the industry. As such, it plays a crucial role in producing precise components
across various sectors, including automotive, aerospace, and electronics. This manufac-
turing method relies on computer software which defines the movements of the machin-
ery.

A big concern in these industries lies on the manufacture of objects with a smooth
finish, be it for aerodynamic or aesthetic purposes. To obtain such smoothness, the ma-
chined object must be milled with high levels of precision during the finishing stage.
Thus it has inspired numerous research in the field of computer aided design with the
goal of better approximating free form surfaces fed to the computer software while min-
imizing computation and manufacturing times. Numerous research has been carried out
with the aim of better approximating the surfaces that the industry calls for, see Bartoň
et al. (2021); Bo et al. (2016); Bo et al. (, 2017); Rajaina et al. (2023); Skopenkov et
al. (2020).

In particular, Bartoň et al. (2021) focuses on tool selection and optimal path planning
in approximating free form surfaces. However, not all research follows this school of
thought, Bo et al. (2016) deals with non-conventional tool shapes since it also looks to
optimize the shape of the milling tool.

Rather than approximating free form surfaces, in this thesis we want to study the
continuity conditions that result on such smooth finish and illustrate the elements that
come into play, in order to improve our understanding of the freedoms that we have
in designing such surfaces. As such, our goal is to define the conditions for tangent
continuity between two tool passes and provide the reader with an application that allows
them to visualize the concepts discussed. In said application the user should be able to
interact with the elements that play a role in defining the continuity constraints that
result in a smooth surface.

We will begin by formalizing some fundamental concepts which are essential for the
mathematical discussion in this project; see section 2. Once we cover our bases we will go
over the mathematical representation of a rotatory tool in section 3 and that of the surface
of a milled object in section 4. Using the latter representation, in section 5 we will define
and prove the necessary and sufficient conditions for tangent continuity of this kind of
surfaces.

We want to make an application to illustrate the concepts discussed in this thesis. As
such, one of our concerns when defining the conditions for tangent continuity is that they
help us define an algorithm for the tool movement of the second envelope. The design
and functionalities of said application will then be discussed in the last section, namely
section 6.
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2 Preliminaries

We will be working with various geometrical concepts for which we first need to establish
rigorous definitions. There exist numerous definitions for these geometrical concepts,
some of which are more general or abstract than others. For mathematically rigorous
definitions one can refer to DoCarmo (2016); Montiel & Ros (2000); Zhang (2020).
Moreover, there are also many books which redefine these concepts by focusing on the
characteristics which are useful to real world applications like Computer-Aided Design
or various areas of engineering; see Farin (1993); Radzevich (2020).

Since our interest lies in applications to CNC-machining, we will use definitions
which help us tackle this problem specifically. For instance, although we can define
curves and surfaces in any number of dimensions, we will focus on geometry that lives
in three-dimensional space. A more general definition would not add value to this paper
since one cannot find such geometries in CNC-machining. First we want to define a curve
as a subset of R3:

Definition 2.1. A (differentiable) curve is a (differentiable) map, c : I → R3, that maps an
open interval I = (a,b) ⊆R into R3.
In other words, c maps t ∈ I to a point c(t) = (x(t), y(t), z(t)) ∈R3.
The mapping c is called a parametrization of the curve. See Figure 1.

Figure 1: A mapping of an interval (a,b) into R3

For some examples of a parametrization of a curve, see Figure 2. To better understand
the mapping c(t) of a curve as defined above, note that when one of the parameters of
the mapping is a constant function, we obtain a planar curve, namely a curve that can be
parametrized as a mapping of an interval into R2.

In Definition 2.1, c being differentiable means that the functions x,y,z : I → R are
differentiable. Moreover, the vector c′(t) = (x′(t), y′(t), z′(t)) is called the tangent vector of
the curve at t ∈ I . For the study of curve properties it is essential that such tangent vector
exists at every point of the curve, namely, we require c′(t) , 0. Thus we have the following
definition.

6



Figure 2: Examples of curve parametrizations

Definition 2.2. A parametrization of a differentiable curve c : I → R3 is called regular if
c′(t) , 0 for all t ∈ I .

We can extend the definition of the curve to define a surface. A differentiable sur-
face can be defined informally as a two-dimensional subset of R3 which can be locally
approximated by a plane.

Definition 2.3. A (differentiable) surface is a (differentiable) map, s : Ω→ R3, which maps
an open set Ω ⊆R2 into R3.
In other words, s maps (a, t) ∈Ω to a point s(a, t) = (x(a, t), y(a, t), z(a, t)).
The mapping s is called a paremetrization. See Figure 3

Figure 3: A mapping of an open set Ω into R3

Similarly, s being differentiable means that the functions x,y,z : Ω → R have con-
tinuous partial derivatives and the vectors ∂

∂as(a, t) = sa(a, t) = (xa(a, t), ya(a, t), za(a, t)) and
∂
∂t s(a, t) = st(a, t) = (xt(a, t), yt(a, t), zt(a, t)) are tangent to the surface.
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Definition 2.4. A regular surface is a surface s : Ω→ R3 which satisfies the following con-
ditions:

1. s is differentiable

2. s has a continuous inverse s−1 : s(Ω)→Ω

3. at all points (a, t) ∈Ω, sa × st , 0, i.e. there exists a normal

Figure 4: Local frame of a surface

Given a regular surface s(a, t), we then have that the partial derivatives sa(a, t) and
st(a, t) span the plane tangent to the surface s at the point (a, t); see Figure 4. Moreover,
the normal of the tangent plane coincides with the normal of the surface at (a, t), so the
normal of the surface at (a, t) ∈Ω is

n(a, t) =
sa(a, t)× st(a, t)
|sa(a, t)× st(a, t)|

We can now define a local frame of a regular surface. Since we are only interested in
regular surfaces, we will now be referring to regular surfaces as surfaces for simplicity.

Definition 2.5. Given a surface s : Ω→ R3 where Ω ⊆ R2, the local frame of s at a point
(a, t) ∈Ω consists of the tangent vectors sa(a, t) and st(a, t) and the normal n(a, t), where sa and
st span the plane tangent to the surface and n is perpendicular to sa and st.

Let us consider a surface that changes size, shape or position through time. We can
regard each position of said surface as a different surface in a family of surfaces. Such
a family of surfaces can be described as a function, S(m), where m ∈ M and M ⊆ R is
a time interval. We denote S(m) a one-parameter family of surfaces. Similarly, a two-
parameter family of surfaces can be regarded as a one-parameter family of surfaces that
change through time. We can describe this family as S(m) where m = (a, t) ∈M ⊆ R2. See
Figure 5.

Furthermore, a family of surfaces define a volume whose shell or boundary is itself a
surface. We refer to this surface as an enveloping surface and we can define it formally as
follows:

8



Figure 5: A one-parameter family of surfaces (left) and two-parameter family of surfaces
(right)

Definition 2.6. An enveloping surface X is such that at every point p ∈ X, X is tangent to
one of the surfaces of the family S(m), m ∈M where M is an open set. See Figure 6.

Figure 6: Enveloping surface of a family of spheres

We are interested in enveloping surfaces since they can be used to describe a section
of the surface of an object after a passing of a cutting tool of a CNC machine. The surface
generated by the cutter is an envelope of the family of surfaces representing each position
that the cutters takes.

Furthermore, in CNC machining two passes of a cutting tool generate two unique
surfaces. Our main interest lies in defining the conditions for tangent continuity between
these surfaces. In order to define necessary and sufficient conditions for two of these
surface patches to be continuous, let us begin by defining a composite surface.

Definition 2.7. A composite surface s = s(a, t) is a surface that consists of patches or seg-
ments of different surfaces. Here, a patch is a curve bounded surface, sp : Ω → R3, whose
bounding curves result from fixing the value of one parameter of the function of the composite
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surface. See Figure 7. Note that fixing the first parameter of the composite surface s(a, t) results
in a curve c(t) = s(a0, t) with free variable t.

Figure 7: A composite surface with one of its patches highlighted.

Now that we have the tools to describe the surfaces that we encounter in CNC machin-
ing, it remains to describe the necessary and sufficient conditions for tangent continuity.
Since we can tackle this problem locally, we need to simply define tangent continuity be-
tween two patches of a composite surface, or two bounded surfaces, as shown in Figure
8.

Definition 2.8. Let s1(a, t) and s2(a, t) be two patches of a composite surface s. We say that s is
tangent plane continuous along the boundary curve of the patches, c(t) = s1(a1, t) = s2(a0, t)
where t ∈ [t0, t1], if the unit normal vectors along the boundary curve of both patches s1(a1, t)
and s2(a0, t) are parallel, namely, n1(a1, t) = ±n2(a0, t) for each t ∈ [t0, t1].

Figure 8: Tangent continuity for composite surfaces
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3 Representation of a revolving tool

A cutting tool of a CNC machine sweeps a surface of revolution, which we will denote
the enveloping surface of the tool. Following the envelope theory of sphere congruence
presented in L. M. Zhu et al. (2009), we can parameterize a rotational tool by regarding it
as the envelope of a family of spheres. The enveloping surface of the simplest of milling
tools is simply a cone or a cylinder. In this thesis we will focus on these two surfaces but
it is also possible to parametrize more complex tools the same way.

Figure 9: Sphere-swept envelope, with a vertical section on the right

Let us define q(a) and r(a) as functions of the centers and the radii respectively of the
family of spheres representing the rotatory tool. The function q(a) = [0,0, a]T denotes
the centers of all spheres which are situated along the z-axis, thus for a ∈ (a0, a1) where
a1 − a0 = H , we have that q(a) gives us the axis of the cylinder. Furthermore, a cylinder
has a constant radius and thus the function of the radii would simply be r = R0, where R0
is the radius of the base of the tool.

A natural extension is to parameterize a conical rotary tool by allowing the radius, r,
to change along the axis. Note that in this case, the family of spheres do not graze the
enveloping surface at the equator because the tangent to the spheres is not perpendicular
to the axis of revolution. For any point p on the surface of revolution, p is a grazing point
of a sphere of radius r centered at q where the vector p − q corresponds to the normal at
p. Using this property we can parameterize the radii r(a) of spheres with centers on the
axis of revolution q(a).

We can see from Figure 9 that the radius r of the sphere centered at q(a) can be ob-
tained from the opening angle of the cone ϕ and the radius of the base of the cone R0. As
a result, we obtain the following parameters.

q(a) = [0,0, a]T (1)
r(a) = R0 cosϕ + asinϕ (2)

where a ∈ [a0, a1]. Equation (2) can easily be derived by looking at the left-hand diagram
in Figure 9.
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Then the conical tool can be parametrized as follows.

s(a, t) = (r(a)cosϕ cos t, r(a)cosϕ sin t,h(a)) (3)

where t ∈ [−π,π) and h(a) = a− r(a)sinϕ. h(a) is a function of the tool height with respect
to the sphere centers which can be derived from the diagram in Figure 9.

The main focus of this thesis are conical and cylindrical tools, however, it is good to
note that this method for representing a revolving tool is highly versatile. This method
allows us to parameterize the enveloping surface of many CNC-machining tools by mod-
ifying q(a) and r(a) accordingly. For instance one can easily represent a drum shaped
cutter (see Figure 10) or a toroidal cutter in the manner described above.

Figure 10: Sphere-swept envelope of a drum shaped tool, with a vertical section on the
right

Let us parametrize a drum shaped cutter. As before, let q(a) and r(a) be functions of
the centers and the radii of the family of spheres respectively. H is then the height of the
tool and dc the diameter of the center of the tool. From this information and the diameter
dt of the top of the tool, one can easily derive R0. R0 denotes the radius of the circle which
defines the curvature of the tool as seen on the right-hand diagram of Figure 10.

Let us define

b =
dc − dt

2
.

Then using the Pythagorean theorem we can obtain an expression for R0 in terms of b

(R0 − b)2 + (
H
2

)2 = R2
0,

⇒R0 =
b2 + (H2 )2

2b
.

Now we can define q(a) = [0,0, a]T and r(a) as a function of R0 and dc using the
Pythagorean theorem (see Figure 10). Thus, obtaining the following expression
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Figure 11: Sphere-swept envelope of a hyperbolic shaped tool, with a vertical section on
the right

r(a) = R0 −
√

(R0 −
dc
2

)2 + a2.

Analogously, we can parametrize a hyperbolic shaped tool by modifying r(a) accord-
ing to the diagram in Figure 11. Thus obtaining

r(a) =

√
(R0 +

dc
2

)2 + a2 −R0.

The details are left to the reader.
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4 Enveloping surface of the tool

We can now parameterize the movement of the tool and thus its enveloping surface which
represents the surface of a milled object. Since the tool is parametrized as an envelope
of spheres, we may parametrize the tool envelope as an envelope of sphere congruence
following the method presented in L. M. Zhu et al. (, 2009).

Here, the movement of the tool depends on the tool position and orientation along
time t. Let us describe the path of the tool by defining a guiding curve P (t) which denotes
the path of the sphere centered at q(a0). Note that for a cylinder, this is simply the base
of the tool axis but in the case of a conical tool it lies slightly higher (or lower in the case
of a negative opening angle) on the tool axis (recall Figure 9). Moreover, let us define A(t)
to be the unit vector describing the orientation of the tool axis at each moment in time.
Then we can describe the movement of the tool as the surface generated by the tool axis
which is defined as

S(a, t) = P (t) + (a− a0)A(t) (4)

where (a, t) ∈ [a0, a1]× [t0, t1].

Figure 12: Surface generated by the tool movement

Note that S(a, t0) in turn describes the position of the center of the spheres that define
our cutting tool at time t0. This means that we can also see S(a, t) as the function defining
the position of the center of the family of spheres through time. Therefore, in order to
parameterize the envelope of the cutting tool we can treat it as the envelope of the 2-
parameter family of spheres with centers at S(a, t). Let us define the radius of the family
of spheres throughout time as R(a, t). Since the tool is a rigid body (namely, it should
retain its original shape throughout the milling process) we have that

R(a, t) = r(a) (5)

where r(a) is as in Equation (2).
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The cutter swept surface is then given by

X(a, t) = S(a, t) +R(a, t)n(a, t) (6)

where (a, t) = [a0, a1]× [t0, t1] and n(a, t) is the unit normal of the envelope.

Figure 13: Frame of a sphere of the family of spheres with centers at S(a, t) and the
corresponding frame of the enveloping surface at the grazing point.

We now want to obtain an expression for n(a, t). Let us denote the normal of the sur-
face S(a, t) as ns(a, t). Note that by definition ns is perpendicular to the partial derivatives
of said surface, namely Sa(a, t) and St(a, t). In fact, ns, Sa and St generally span R3 and
thus we can write n as a linear combination of these three vectors

n(a, t) = αSa(a, t) + βSt(a, t) +γns(a, t). (7)

In order to find α, β and γ we begin by computing the partial derivatives of X(a, t)

∂
∂a

X(a, t) = Sa(a, t) +Ra(a, t)n(a, t) +R(a, t)na(a, t)

= Sa(a, t) + ra(a)n(a, t) + r(a)na(a, t),
∂
∂t

X(a, t) = St(a, t) +Rt(a, t)n(a, t) +R(a, t)nt(a, t)

= St(a, t) + r(a)nt(a, t).

Note that Rt(a, t) = rt(a) = 0. Taking the inner product of the resulting partial deriva-
tives with n, namely computing Xa ·n and Xt ·n, we obtain the following expressions.

Xa(a, t) ·n(a, t) = (Sa(a, t) + ra(a)n(a, t) + r(a)na(a, t)) ·n(a, t)
= Sa(a, t) ·n(a, t) + ra(a) + r(a)na(a, t) ·n(a, t),

Xt(a, t) ·n(a, t) = (St(a, t) + r(a)nt(a, t)) ·n(a, t)
= St(a, t) ·n(a, t) + r(a)nt(a, t) ·n(a, t).
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Since n is the unit normal of the envelope surface, it is perpendicular to Xa and Xt.
Therefore, Xa ·n = Xt ·n = 0. Moreover, n is also perpendicular to its partial derivatives na
and nt. We use this to further simplify expressions (8) and (11) which we obtained above.

Xa(a, t) ·n(a, t) = Sa(a, t) ·n(a, t) + ra(a) + r(a)na(a, t) ·n(a, t) (8)
0 = Sa(a, t) ·n(a, t) + r ′(a), (9)

Sa(a, t) ·n(a, t) = −ra(a), (10)
Xt(a, t) ·n(a, t) = St(a, t) ·n(a, t) + r(a)nt(a, t) ·n(a, t), (11)
St(a, t) ·n(a, t) = 0. (12)

This results in Equations (10) and (12) which indicate the relationships between the
envelope normal and the surface S. We want to find the unknowns of Equation (7), so we
take its dot product with Sa and St. We will omit the arguments (a, t) of the functions for
compactness.

Sa ·n = αSa · Sa + βSa · St +γSa ·ns, (13)
St ·n = αSt · Sa + βSt · St +γSt ·ns. (14)

We now substitute Equations (10) and (12) into equations (13) and (14) respectively.
Furthermore, we can simplify equations (13) and (14) by observing that St and Sa are
orthogonal to ns.

−ra = αSa · Sa + βSa · St,
0 = αSt · Sa + βSt · St.

Note that the dot product is commutative, this means that Sa · St = St · Sa. This along
with the fact that vectors Sa and St cannot be parallel to each other allows us to conclude
that the matrix [

Sa · Sa Sa · St
St · Sa St · St

]
is invertible. To convince yourself of this, consider its determinant∣∣∣∣∣Sa · Sa Sa · St

St · Sa St · St

∣∣∣∣∣ = (Sa · Sa)(St · St)− (Sa · St)(Sa · St).

Note that a · b = |a||b|cosθ, where θ is the angle between the vectors. Hence, the determi-
nant is equal to zero only when (Sa ·Sa)(St ·St) = (Sa ·St)(Sa ·St) which is only the case when
Sa and St are parallel to each other.

We then have a system of equations for the unknowns α and β.[
α
β

]
=
[
Sa · Sa Sa · St
St · Sa St · St

]−1 [−ra
0

]
. (15)
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Let [
A11 A12
A21 A22

]
=
[
Sa · Sa Sa · St
St · Sa St · St

]−1

.

Then,

α = −A11ra, (16)
β = −A21ra. (17)

By substituting Equations (16) and (17) in Equation (7) we obtain the following ex-
pression:

n = −A11raSa −A21raSt +γns.

Taking the inner product with n, and using (10), (12), we can solve for γ :

n ·n = −A11raSa ·n−A21raSt ·n+γns ·n,
1 = −A11ra(−ra)−A21ra(0) +γns ·n,
1 = A11ra2 +γns ·n.

Recall that St and Sa are orthogonal to ns and compute the product ns · n using Equation
(7).

ns ·n = αns · Sa + βns · St +γns ·ns, (18)
ns ·n = γ. (19)

Thus,

γ = ±
√

1− r2
aA11. (20)

Finally we can substitute Equations (16), (17) and (20) into (7) to obtain the expression
for n(a, t):

n = −A11raSa −A21raSt ±
√

1− r2
aA11n

s. (21)

We have defined all of the parameters in our parametrization of a cutter swept surface
(see Equation 6). Using this parametrization we can now study the continuity conditions
of adjacent envelopes.
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5 Conditions for tangent continuity

In this section we define the necessary and sufficient conditions for ensuring tangent
continuity between two adjacent enveloping surfaces as done in L. Zhu & Lu (2015). Let
us define two distinct envelopes

X1(a, t) = S1(a, t) + r(a)n1(a, t), (22)

X2(a, t) = S2(a, t) + r(a)n2(a, t), (23)

where (a, t) ∈ [a0, a1]× [t0, t1].
In order to obtain tangent plane continuity, or G1-continuity, among the envelopes we

need to ensure positional continuity and tangent convergence at the junction. Therefore
the following are the necessary conditions for tangent continuity:

X1(a1, t) = X2(a0, t), (24)

n1(a1, t) = n2(a0, t), (25)

Equation (24) requires the curve at a1 of the first enveloping surface to coincide with the
curve at a0 of the second surface. Similarly, form Equation (25) we have that along said
curve, the normal vectors of both surfaces must be equal to each other. Note that we
assume the normal vectors are unit length and are oriented away from the tool centers.
Although n1(a1, t) = −n2(a0, t) would in theory result in a tangentially continuous sur-
face, we disregard this because it would not make sense for us given that our motivation
lies in milling objects through CNC-machining. These two conditions ensure tangential
convergence of the enveloping surfaces.

Figure 14: Visualization of G1-continuity between two surfaces

We now derive the necessary and sufficient conditions for tangent continuity such that
they impose the necessary constraints on the second enveloping surface. In order for these
conditions to be useful to our implementation, the aim is that they define the necessary
constraints on the tool path and orientation that generate the second enveloping surface,
X2, with respect to the parameters of the first surface X1.
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Let us first consider Equation (24). We can use the parametrizations of the surfaces
from Equations (22) and (23) to work out the following expression.

X1(a1, t) = X2(a0, t),

S1(a1, t) + r(a1)n1(a1, t) = S2(a0, t) + r(a0)n2(a0, t),

S2(a0, t) = S1(a1, t) + r(a1)n1(a1, t)− r(a0)n2(a0, t).

Using Equation (25) we then have

S2(a0, t) = S1(a1, t) + (r(a1)− r(a0))n1(a1, t). (26)

Recall Equations (10) and (12). Again, considering these and Equation (25) we obtain the
following expressions:

S2
a (a0, t) ·n1(a1, t) = −ra(a0), (27)

S2
t (a0, t) ·n1(a1, t) = 0. (28)

Since Equations (26), 27 and (28) are equivalent to Equations (24), 25, they also
present the necessary conditions for tangent continuity. Moreover, Equation (28) is su-
perfluous since it can be derived from (26) as follows:

∂
∂t

S2(a0, t) =
∂
∂t

(S1(a1, t) + (r(a1)− r(a0))n1(a1, t)),

S2
t (a0, t) = S1

t (a1, t) + (0)n1(a1, t) + (r(a1)− r(a0))n1
t (a1, t),

S2
t (a0, t) = S1

t (a1, t) + (r(a1)− r(a0))n1
t (a1, t).

Now, taking the product S2
t (a0, t) ·n1(a1, t) the equation above implies

S2
t (a0, t) ·n1(a1, t) =S1

t (a1, t) ·n1(a1, t) + (r(a1)− r(a0))n1
t (a1, t) ·n1(a1, t),

S2
t (a0, t) ·n1(a1, t) =0 + 0,

S2
t (a0, t) ·n1(a1, t) =0,

since n1
t and S1

t are perpendicular to n1.

Theorem 5.1. For the enveloping surfaces of conical tools X1(a, t) = S1(a, t) + r(a)n1(a, t) and
X2(a, t) = S2(a, t) + r(a)n2(a, t), the following are necessary and sufficient conditions for G1-
continuity:

S2(a0, t) = S1(a1, t) + (r(a1)− r(a0))n1(a1, t), (29)

S2
a (a0, t) ·n1(a1, t) = −ra(a0). (30)
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Proof. We have already shown that Equations (29) and (30) are necessary conditions for
tangent continuity, it remains to show that they are sufficient. That is, we want to show
that (29) and (30) imply n1(a1, t) = n2(a0, t) and X1(a1, t) = X2(a0, t).

We begin by showing that they imply n1(a1, t) = n2(a0, t). For this, recall how we
reached Equation (21). We can express n1(a1, t) as a linear combination of S2

a , S2
t and

n2
s because the latter span R3:

n1(a1, t) = αS2
a (a0, t) + βS2

t (a0, t) +γn2
s (a0, t). (31)

Taking the inner products S2
a (a0, t) · n1(a1, t) and S2

t (a0, t) · n1(a1, t), we obtain a system of
equations similar to that in Equation (15).

For S2
a (a0, t) ·n1(a1, t) we have

S2
a (a0, t) ·n1(a1, t) =αS2

a (a0, t) · S2
a (a0, t) + βS2

a (a0, t) · S2
t (a0, t) +γS2

a (a0, t) ·n2
s (a0, t),

−ra(a0) =αS2
a (a0, t) · S2

a (a0, t) + βS2
a (a0, t) · S2

t (a0, t).

Here, we used Equation (30) and the perpendicularity of S2
a and n2

s . This is the first
equation of our system.

For S2
t (a0, t) ·n1(a1, t) we have

S2
t (a0, t) ·n1(a1, t) =αS2

t (a0, t) · S2
a (a0, t) + βS2

t (a0, t) · S2
t (a0, t) +γS2

t (a0, t) ·n2
s (a0, t),

0 =αS2
t (a0, t) · S2

a (a0, t) + βS2
t (a0, t) · S2

t (a0, t),

where we used Equation (30) and the perpendicularity of S2
t and n2

s . This is the second
equation of our system.

Let [
A2

11 A2
12

A2
21 A2

22

]
=
[

1 Sa(a0, t) · St(a0, t)
St(a0, t) · Sa(a0, t) 1

]−1

.

Then,

α = −A2
11ra(a0), (32)

β = −A2
21ra(a0). (33)

We can plug in Equations (32) and (33) into Equation (31) resulting in

n1(a1, t) = −A2
11ra(a0)S2

a (a0, t)−A2
21ra(a0)S2

t (a0, t) +γn2
s (a0, t).

Computing n1(a1, t) ·n2(a0, t) we can find an expression for γ :

n1(a1, t) ·n2(a0, t) =−A2
11ra(a0)S2

a (a0, t) ·n2(a0, t)

−A2
21ra(a0)S2

t (a0, t) ·n2(a0, t)

+γn2
s (a0, t) ·n2(a0, t).
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We know that S2
a (a, t) ·n2(a, t) = −ra(a) and S2

t (a, t) ·n2(a, t) = 0 from Equations (10) and
(12). Using this and n2

s (a0, t) ·n2(a0, t) = γ which we derive from Equation (19), we obtain
the following expression:

n1(a1, t) ·n2(a0, t) = −A2
11ra(a0)2 +γ2. (34)

Since from Equation (20) we have that 1 = −A2
11ra(a0)2 + γ2, this and Equation (34)

imply that
n1(a1, t) = n2(a0, t).

Since we have now shown n1(a1, t) = n2(a0, t), we can use this in combination with
Equation (29) to reach X1(a1, t) = X2(a0, t):

S2(a0, t) = S1(a1, t) + (r(a1)− r(a0))n1(a1, t),

⇒S2(a0, t) = S1(a1, t) + r(a1)n1(a1, t)− r(a0)n1(a1, t),

⇒S2(a0, t) = S1(a1, t) + r(a1)n1(a1, t)− r(a0)n2(a0, t),

⇒S2(a0, t) + r(a0)n2(a0, t) = S1(a1, t) + r(a1)n1(a1, t),

⇒X2(a0, t) = X1(a1, t).

We have now shown that (29) and (30) are the necessary and sufficient conditions.

Note that Theorem 5.1 assumes that the envelopes are generated by the same tool,
namely they use the same function r(a). The result above can be generalized by re-naming
said function in each envelope to r1(a) and r2(a) respectively. Thus we can define the nec-
essary and sufficient conditions for continuity between envelopes generated by different
milling tools.

Corollary 5.2. For the enveloping surfaces of conical tools X1(a, t) = S1(a, t) + r1(a)n1(a, t)
and X2(a, t) = S2(a, t) + r2(a)n2(a, t), the following are necessary and sufficient conditions for
G1-continuity:

S2(a0, t) = S1(a1, t) + (r1(a1)− r2(a0))n1(a1, t), (35)

S2
a (a0, t) ·n1(a1, t) = −r2

a (a0). (36)

Furthermore, we can take the derivative of S2(a, t) with respect to a

S2
a (a, t) =

∂
∂a

(P 2(t) + aA2(t)− a0A
2(t)) = A2(t), (37)

and rewrite Equation (30) as

A2(t) ·n1(a1, t) = −ra(a0). (38)
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Corollary 5.3. For the enveloping surfaces of conical tools X1(a, t) = S1(a, t) + r(a)n1(a, t) and
X2(a, t) = S2(a, t) + r(a)n2(a, t), where S i(a, t) = P i(t) + (a− a0)Ai(t), i = 1,2, the following are
necessary and sufficient conditions for G1-continuity:

S2(a0, t) = S1(a1, t) + (r(a1)− r(a0))n1(a1, t), (39)

A2(t) ·n1(a1, t) = −ra(a0). (40)

Remark 5.4. In Section 4 we parametrized the surface generated by the sphere centers
by assuming that they are positioned along a straight line or axis with respect to a, see
Equation (4). This assumption is used in Corollary 5.3 but not in Theorem 5.1.

At some point we might only require positional continuity between envelopes. In this
case, we can use the following, weaker, result:

Corollary 5.5. For the enveloping surfaces of conical tools X1(a, t) = S1(a, t) + r(a)n1(a, t) and
X2(a, t) = S2(a, t) + r(a)n2(a, t), where S i(a, t) = P i(t) + (a− a0)Ai(t), i = 1,2, the following is a
necessary and sufficient condition for G0-continuity:

S2(a0, t) = S1(a1, t) + r(a1)n1(a1, t)− r(a0)n2(a0, t). (41)

Remark 5.6. Theorem 5.1 and its corollaries make use of the assumption that the tool is
rigid (thus the radius doesn’t change w.r.t. time), which should be the case for any real
life milling tool. However, it can be generalized by changing r(a) for a two-parameter
function R(a, t).

To better understand the results obtained above, let us discuss and illustrate their
significance. Note that S2(a0, t) = P 2(t), where P 2(t) is the guiding curve of the tool path
that generates the enveloping surface X2(a, t) (see Figure 15). Moreover, Equation (39) has
no free variables which means that the guiding curve of the second surface is completely
defined by the first surface.

On the other hand, Equation (40) indicates how closely the vectors n1(a1, t) and A2(t)
must align. Since rotating A2(t) around n1(a1, t) doesn’t affect the angle between said
vectors, see Figure 16, there is a choice for the second orientation of the tool axis, namely
any vector from the family of vectors that form the required angle with n1(a1, t). The
angle, θ, between n1(a1, t) and A2(t) depends on the rate of change of radii w.r.t a, namely
−ra(a0). In the case of a cone with opening angle ϕ, this relation can be expressed as
A2(t) · n1(a1, t) = −sinϕ. In the case of a cylinder, the opening angle being null (namely
r(a) = R0) means that ra = 0. Therefore for a cylindrical tool, the tool axis A2(t) must be
perpendicular to n1(a1, t).

Note that both n1(a1, t) and A2(t) are unit vectors, hence the angle, θ, between n1(a1, t)
and A2(t) is

arccos(−ra(a0)) (42)

We have derived the conditions for positional and tangent continuity for the envelopes
of a wide variety of surface families. These surface families are able to represent numer-
ous tools which are commonly used in CNC-machining. If we recall Remark 5.4, we may
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Figure 15: The guiding curve of the second envelope, P 2(t), is defined with respect to the
parameters of the first envelope, namely Q1(t) , n1(a1, t) and the respective radii of the

tools.

note that for tools parametrized as the envelope of a family of circles which don’t lie in a
straight line, we have to parametrize the surface generated by the sphere centers differ-
ently form Equation (4). This parametrization might look similar since one could define
the tool orientation using the tangent vector of the curve defining the axis of spheres.
Hence, we can claim that these results can be easily expanded on to allow for more tool
shapes.
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Figure 16: Tangent continuity requires the axis vector of the tool of the second envelope,
A2(t), to be oriented at an angle with respect to the normal vector of the bounding curve

of the first envelope, n1(a1, t). Rotating the axis vector around said normal vector
conserves this angle, giving us certain freedom over the axis orientation.

6 Application

We developed a simple application1 in order to apply our results and provide the reader
with an interactive tool to better visualize and understand the concepts discussed. Said
user interface was is written in C++, using the Qt framework and expanding on an appli-
cation that was made for the Computer Graphics course at Rijksuniversiteit Groningen.

6.1 Architecture and logic

In this section we go over the main structure of our program, which is broadly illustrated
in the class diagram in Figure 17. Our aim was to structure the application following the
model-view-controller design pattern where the view is able to display the main elements
used in the definition of the tool envelope in Section 4 with little to no knowledge of the
model logic.

Naturally, the MainView class renders the elements chosen by the user, while the Main-
Window class provides a comprehensive input control menu, which we go over in Section
6.2. The MainView enlists the help of the rendering classes in the renderers/ folder.
To allow for easy incorporation of new renderers in the future, all renderers extend the
abstract class defined in renderers/renderer.h which defines the basic functionality
applicable to every renderer. All renderers contain vertex arrays to store, in discrete
form, the elements that they need to render and, of course, they then use vertex array
objects and vertex buffer objects along with the methods of the OpenGL graphics library to
draw the objects. These components are not included in the abstract class since some ren-
derers draw more than one object, however all renderers have a reference to the settings

1The codebase for this application can be found on Github and Gitlab at the following urls: https:
//github.com/c-aranda-bassegoda/moving cylinders, https://git.lwp.rug.nl/svcg/carolina-bscthesis2024
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Figure 17: Class diagram of the application

such that they know what elements to draw. Here, Settings is a struct which allows for
communication between the controller and the view.

As follows, we go over the elements that each renderer is tasked with displaying by
following the order in which the components were presented in Sections 4, 3 and 5.

The elements that are essential to every tool are defined in tool.h. This abstract class
must define the methods that provide renderers/toolrenderer.h, and envelope.h the
information needed in order to render the tool and compute the envelope respectively.
The main attributes of the Tool class are the vertex array of the tool and its position.
Moreover, it must also include attributes concerning the axis domain and methods that
allow other classes to fetch the information concerning the family of spheres that define
the tool, namely, a method to evaluate the radius function and its derivative at a point in
the axis. Every class that defines a milling tool should inherit from tool.h in order to
ensure that they are compatible with the classes that require them.

An important element in the definition of a tool is the family of spheres described in
Section 3. Hence, we want to provide the user with an illustration of how the spheres
relate to the tool and, in turn, the envelope. For this purpose we define the Sphere

class which is a simple class defining the vertex array of a sphere with a given radius.
One could also make this class part of the Tool class using composition. This class,
tools/sphere.h, is only used by renderers/toolrenderer.h in order to compute and
draw the spheres in the family of spheres that define the tool envelope as described in
Section 3.
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Next, the renderers/moverenderer.h class draws and updates the path that is de-
fined in the header file movement/cylindermovement.h. Said path is a SimplePath,
namely, a curve parametrized as in Definition 2.1 using three cubic polynomials which
are defined in movement/polynomial.h. This class provides all members necessary to set,
update and retrieve its members, namely, the polynomials, the bounds of the interval and
the vertex array where the path is stored in discrete form. The tool movement consists
not only of the path the tool takes, but also the orientation of the tool axis at each point
along the path. Said directions are stored in axisDirections and can be set to a default
orientation or computed by interpolating the intermediate orientations from the initial
and final ones. Furthermore, to facilitate the computation of the tool transformations,
the CylinderMovement class provides a method to easily retrieve the rotation matrix that
needs to be applied to the tool transformation. This transformation is computed using
the previously defined axisDirections and rotationVectors. The latter is computed
by taking the cross product of axisDirections and the tool axis vector. Note that all
vectors that represent directions must be normalized.

Finally, we have the renderers/enveloperenderer.h which draws all the remaining
elements which are defined in envelope.h. The Envelope class is naturally the most
important class; it contains a pointer to a Tool and a CylinderMovement. These two
fields allow the Envelope class to compute the vertex arrays that store the information
of all the components of an envelope in discrete form. The main component that this
class is concerned with is the envelope itself. Furthermore, we also store the grazing
curves, the normal vectors of the envelope and the sphere centers (or tool axes) of the
family of surfaces that define the envelope. The latter geometric elements are essential
to the computation of the envelope and rendering them allows us to better visualize the
interplay of the parameters that define an envelope as described in Section 4.

Additionally, we want the user to be able to define an envelope with respect to an-
other envelope and give them certain continuity constraints. Hence, the Envelope class
also has a pointer to another envelope called adjEnv as well as booleans positToAdj and
contToAdj which indicate whether the envelope is positionally continuous only or also
tangentially continuous to adjEnv. If an envelope is positionally continuous to its ad-
jacent envelope, the path is computed according to Equation (41). Additionally, if it is
tangentially continuous, the axis orientation of the tool movement is rotated using our
understanding of Equation (40), see Figure 16.

The correct rotation of the second tool is achieved through the following algorithm:
The axis of the tool is first rotated such that it is equal to the normal vector of the adjacent
envelope at a1 and the corresponding time. Then a second rotation is applied which ro-
tates the axis vector such that it forms the desired angle with respect to the normal vector
(see Equation (40)). This rotation turns the axis vector ra degrees about the tangent vector
of the guiding path at the corresponding time. The variable ra is computed according to
equation (42). Finally, the axis vector is rotated about the normal vector according to the
user input.
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6.2 User interface

In this section, we go over the functionalities offered by the input fields in the input menu.
The application provides multiple input controls which allow the user to manipulate the
components described above. We kept the transformation widgets, consisting of a scaling
slider and three rotation knobs each of which indicates the rotation of the model about
the x-, y- or z-axis that were already implemented in the application that we expanded.
We also added new input fields to give the user ample freedom in defining the numerous
possible enveloping surfaces that we discuss in earlier sections.

Figure 18: View of the application upon initialization or the user interface

The time slider defines the position of the tool in the display with respect to the cylin-
der movement. This slider should illustrate the cylinder moving through time, it does
this by updating the time attribute of the Settings struct, updating the tool transform
and re-drawing the tool. Similarly we have the axis slider which allows the user to visu-
alize the family of spheres that define the tool envelope by moving it along the tool axis.
This slider works in a similar fashion to the time slider. Right at the top of the input
menu we find a tabWidget with four tabs, see Figure 19.

The first tab allows the user to select which elements should appear on the view by
clicking on the relevant check boxes. Moreover, here the user can edit the resolution of the
displayed meshes by writing the desired number of sectors on the spin boxes; see Figure
20. The default shading of the envelopes is normal shading, however, in order to better
visualize the continuity of the envelopes a shading option was added which simulates
reflection lines on the surface; see Figure 21. This shading is a simple procedural texture
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Figure 19: Tab widget of the input menu

computed by mapping the angles between the normal vectors and a view vector to either
black or white.

Figure 20: View of the model with different selections

The Tool tab allows the user to define the dimensions of the tool as shown in Figure
22. Additionally, when the second envelope check box is selected, any changes to these
settings will be applied to both tools. If the user wishes to modify the dimensions of the
second tool only, this can be done in the last tab. The Tool tab updates both tools such
that the user doesn’t have to switch between the Tool and Second Tool tabs if they want
both tools to have the same parameters. In this tab the user may also select a different
type of tool using the drop box at the bottom and according to the tool selected the spin
boxes relevant to the tool parametrization get enabled or disabled. Moreover, the user can
define the orientation of the tool axis at the beginning and the end of the path through the
Orientation 1 and Orientation 2 text fields respectively. The application uses a validator
to prevent the user from entering an invalid expression and displays an error message if
the user enters a trivial vector, namely (0,0,0).

The third tab indicates to the user that the path is parametrized using three cubic
polynomials and allows them to modify their coefficients as well as the range for the
variable, t. The user is not given the option to modify the constant term because it would
simply translate the displayed path.

Finally, there’s the Second Tool tab. This tab is very similar to the second tab, but it
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Figure 21: View of both envelopes with reflection-lines-shading selected. Positional
continuity on the left, Tangent continuity on the right.

Figure 22: Tool settings

provides some additional settings. The two check boxes allow the user to choose the type
of continuity between the envelopes. See Figure 23 for some illustrations of possible re-
sulting envelopes. Checking the Tangentially Continuous box will check and disable the
Positionally Continuous box. This is because tangential continuity requires positional
continuity. Moreover, as we saw in Section 5, tangential continuity imposes constraints
on the axis direction, therefore, while with positional continuity (or no continuity con-
ditions) the user should be able to define the orientation of the tool axis freely through
a vector, with tangential continuity there is less freedom to the tool orientation. Given
this, when the tangential continuity option is selected the spin box is enabled instead of
the text field. Here, the spin box represents the angle that the computed vector should be
spun around the normal vector of the first envelope, thus conserving tangential continu-
ity as seen in Figure 16.
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Figure 23: Views given different continuity settings

Figure 24: Views of tangent continuous envelopes with reflection lines given different
tool settings
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7 Conclusion

In this thesis we discussed the parametrization of the envelope of a revolving tool as
that of a family of spheres. This method is useful for representing the most common
tool shapes in CNC machining. Furthermore, it has the advantage that this kind of
parametrization allows us to represent numerous different tools by simply changing the
radius function. This allows us to study the envelopes of numerous tools by making no
assumptions regarding the exact shape of the tool.

Our parametrization of the tool allowed us to define the envelope of said tool as the
envelope of a two parameter family of spheres regardless of the shape of the particular
tool. Having achieved this we were able to derive two equations which entail the neces-
sary and sufficient conditions for tangent continuity between two such envelopes. These
equations were chosen to help us define an envelope tangent continuous to a previously
defined envelope. As such they help us define the path and orientation of the second
envelope.

In fact, as we discussed in Section 5, we found that the curve which defines path of
the second envelope is fully determined by the first envelope, however, recall that the tool
movement involves both the path the tool orientation. Regarding the tool orientation we
found that there was a relation between the orientation of the second tool axis and the
normal of the bounding curve of the first envelope at a point (this is defined in Equation
(30)). However, this relation doesn’t uniquely define the orientation of the tool at every
point, since there are infinitely many vectors that fulfill this condition.

Having derived the conditions for tangent continuity in this way allowed us to use
these as an algorithm in our user interface. Our user interface allows the user to visualize
all the elements that come into play when defining enveloping surfaces using families of
spheres. Moreover, it allows the user to visualize both positional and tangential continu-
ity between envelopes and experiment with the free variables that each type of continuity
allows.

Since this was a simple visualization tool and was not foreseen as a bigger design
application, there was little emphasis given to the scalability of the program. This means
that there are a lot of improvements that can be done regarding computational efficiency.
Because of this same reason, we have not built it with the intention of allowing the user to
define more than two envelopes, however it remains a possibility to expand it by allowing
any number of envelopes. Adding more tool shapes also remains a possibility, given our
motivation we limited ourselves to the most obvious ones.

Finally, the limitations of this project did not allow for analysis of the validity of the
surfaces generated. By validity we mean verifying that there are are no elements prevent-
ing the defined tool movement from being traced and thus the surfaces can be milled. In
order to tackle this problem, future efforts could focus on implementing and illustrating
the role of collision detection in the design of enveloping surfaces.
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