university of faculty of science artificial intelligence
gﬁ,&“g / groningen / and engineering /

F1sH CATCH OPTIMISATION USING VARIATIONAL
AUTOENCODER

Bachelor’s Project Thesis

Luc Cronin, 4326245, l.cronin@student.rug.nl,
Supervisor: Prof J. D. Cardenas Cartagena

Abstract: The fishing industry plays a vital role in the global economy, particularly in Norway.
There is currently no accurate methods for fisherman to know the locations of fish, this costs
a lot of time, money and resources to find fish. These inefficiencies lead to major negative
environmental impact as predicting fish locations on a daily basis remains a significant challenge.
This study aims to investigate the effectiveness of a deep learning approach in solving this problem
by implementing a Variational Autoencoder (VAE). The nature of the task is very complex due to
the spatial and temporal aspects of the data. The model leverages spatio-temporal data, including
Sea Surface Salinity (SSS), Sea Surface Temperature (SST), and historical catch data, to capture
the complex patterns influencing fish movements. Our approach integrates convolutional and
recurrent neural network layers to handle the spatial and temporal dimensions of the data. The
results highlight the challenges in using deep learning models for this task, emphasising the need
for improved data representation to achieve reliable predictions and support sustainable fishing

practices.

1 Introduction

Fishing is a mega scale activity on the ocean that
produces a large amount of food. For instance, fish
caught represent 87% of all vertebrate animals re-
ported to be used for food or animal feed in 2019
(Mood & Brooke, 2024). In addition, fishing is a
big part of the Norwegian economy, which is Eu-
rope’s largest fishing nation. In 2022, they caught
2.6 million tonnes of fish worth €2.8 billion (Jensen,
2024).

Fishing being an important industry, there is
a lot of research on fish migration and their be-
havioural patterns (Leggett, 1977). Despite a lot
of research about factors that affect their migra-
tion patterns, finding them on a day to day basis
can be a challenge. Hence, fishermen spend a lot of
time and fuel searching for fish causing millions of
tons of Co2 to be released annually (Greer et al.,
2019). Investigating and developing methods to re-
duce the amount of Co2 released by the commercial
fishing industry is crucial to reducing its environ-
mental impact.

The FishAI: Sustainable Commercial Fishing

Challenge was set up to find new ways to make
fishing more efficient using artificial intelligence
(AI) and machine learning (ML)(Nordmo et al.,
2022). The Sustainable Commercial Fishing Chal-
lenge asked for solutions to predict the best places
to find fish and help fishermen save time and reduce
their impact on the environment. As a result, fish-
ermen would be able to plan optimal routes, save
fuel, and support sustainable fishing.

Solutions from the FishAI challenge and their im-
plementation of a variety of classical machine learn-
ing methods, such as random forrest regression ap-
proaches to solve the problem, were investigated as
an initial basis to this paper (Lambon et al., 2022).
Instead, a deep learning oriented approach was se-
lected to attempt improving how we predict fish
movements. The reasons for selecting this method
was to try and handle the complexity of the task
brought about by the large temporal and spatial
aspects of the data. By definition deep learning ap-
proaches can inherently manage more complexity
compared to classical machine learning methods.
This will be further explored as part of the theo-
retical framework.



1.1 Motivation

Addressing the inefficiencies with current fishing
practices is essential for several reasons.

First the fishing industry significantly contributes
to carbon emissions due to high fuel consumption
by fishing vessels. Estimates suggest that commer-
cial fishing globally emits around 207 million tons
of CO2 in 2016, making it a considerable source
of marine-related greenhouse gas emissions (Greer
et al., 2019). Optimising fishing routes and reduc-
ing search times for fish can significantly lower fuel
consumption and, consequently, carbon emissions,
minimising the ecological footprint of the industry.
Second, fishing is a major economic activity, partic-
ularly in Norway. Inefficient fishing practices lead
to increased operational costs, reducing the prof-
itability of fishing enterprises. Norway alone in 2022
caught 2.6 million tonnes of fish, to visualise how
brobdingnagian a scale that is, it would be equiv-
alent to the weight of 257 Eiffel towers (Jensen,
2024). Improving efficiency through better predic-
tion models can help reduce costs associated with
fuel and time, thereby increasing overall profitabil-
ity for fishermen whilst promoting more sustainable
fishing practices.

Finally, overfishing and unsustainable fishing prac-
tices have led to the depletion of several fish species,
threatening marine biodiversity. Accurate predic-
tion of fish locations can help ensure that fishing
efforts are more targeted, reducing the likelihood
of overfishing and helping maintain balanced ma-
rine ecosystems. Sustainable fishing practices are
crucial for the long-term viability of the fishing in-
dustry and the health of ocean ecosystems.

1.2 State-of-the-art

The problem with predicting fish locations involves
understanding and modelling their spatio-temporal
behaviour. Fish movement patterns are influenced
by various environmental factors such as sea surface
temperature (SST) and sea surface salinity (SSS)
to predict the locations and movements of fish, in-
corporating historical catch notes data (Leggett,
1977). Accurate spatio-temporal predictions can
significantly enhance the efficiency of fishing op-
erations by reducing resources spent searching for
fish. This, in turn, supports more sustainable fish-
ing practices and minimises the environmental im-

pact.

Predicting fish behaviour is not only about where
fish are likely to be found but also when they
will be there. This spatio-temporal prediction task
is complex due to the dynamic nature of marine
ecosystems, where multiple interacting variables in-
fluence fish movements. Therefore, advanced mod-
elling techniques may be better equipped to handle
these complex non-linear relationships.

1.2.1 Previous FishAI Challenge solutions
FishMAZE Project: The FishMAZE project

utilised regression models trained on environmen-
tal data, historical catch notes, and coordinate data
to predict fish likelihood at specific locations. This
model achieved a Root Mean Square Error (RMSE)
of 8.6830, demonstrating a significant correlation
between environmental variables and fish presence.
However, the project faced challenges in data pre-
processing and model generalisation.

Lodestar Fishing Platform: Lodestar is a web
application that integrates historical catch data
with environmental data to predict fish locations
across the Nordic seas (Brekke et al., 2022). It
uses XGBoost regression models to generate prob-
abilities of fish presence and incorporates a route-
planning algorithm to optimise fishing routes. The
platform, however, struggled with data granularity
and true positive data limitations, which affected
prediction accuracy.

The solutions proposed for the Fish Al challenge
implemented a variety of regression models with
a few incorporating ensemble methods to improve
generalisation and learning. However, since the
data presents challenges in both complexity and
sparsity it is worth investigating a deep learning ori-
ented approach, as it could be better suited to han-
dling such complexity and difficulty in a task. Us-
ing a deep learning approach offers potential bene-
fits through hierarchical feature extraction. Due to
the diverse and complex nature of the data, tra-
ditional methods would require extensive domain-
specific knowledge to manually create meaningful
features. However, deep learning models, such as
variational autoencoders (VAE), can perform hier-
archical feature extraction, allowing them to au-
tomatically learn relevant features from raw data.
This capability is particularly useful in handling
the intricate relationships in environmental data,



potentially leading to more accurate and insightful
predictions.

1.3 Contributions

The main contribution of this research is to further
understand how to model fish movement patterns
in order to promote sustainable fishing practices. It
also specifically explores the effectiveness of using a
VAE fed with a sequence of spatial maps containing
historical catch and environmental data, this being
a raw format of data. Through this approach, the
aim is to advance this domains’ knowledge on how
to best model fish movement patterns. Finally, this
research provides insights on the feasibility of using
a more raw format of data for a deep learning model
to extrapolate meaningful features and effectively
learn from that.

2 Theoretical framework

2.1 Problem Outline

The problem of trying to predict where the largest
population of fish will be at a given time is a spatio-
temporal prediction issue. There is also the chal-
lenge of a lot of data with very little substance due
to its sparsity. For example, the data is limited by
the catch-notes data that comprises of specific pin-
point locations rather than movement trajectories
of fish. This issue is exacerbated due to the curse of
dimensionality and a lack of density in data points
in the catch-notes.

2.2 Fish Migration

Salinity is a crucial environmental factor as it im-
pacts fish by influencing their osmotic balance and
metabolic costs. Different species also exhibit vary-
ing levels of tolerance to salinity changes, which
can affect their growth rates, reproductive be-
haviours, and survival. For example, some fish in-
vest more energy into nest-building when salinity
levels change, indicating that even slight environ-
mental shifts can affect their natural behaviours
(Lehtonen et al., 2016). Temperature is a vital fac-
tor in fish habitat suitability as it directly impacts
fish metabolism, reproductive cycles, and migra-
tion patterns(Shoji et al., 2011). Understanding the

thermal environment helps in predicting fish move-
ments, as different species have specific tempera-
ture preferences and thresholds. Warmer temper-
atures can induce earlier spawning and migration
in some species, aligning their reproductive cycles
with optimal environmental conditions.

2.3 Model Selection

First, the criteria had to be set, that is one ca-
pable of modelling data with spatial and temporal
aspects. For example, the task of predicting fish
locations involves understanding many similar ele-
ments to predict future frames in a video sequence.
Video data is also comprised of sequential spatial
data, which differs in two separate manner. Firstly,
rather than using pixels, we are dealing with coor-
dinates. Secondly, rather than using 3 channels of
colour, our data consists of 3 channels made up of
our historical catch-notes and environmental data.

It was deemed critical when selecting a model
that is needed to be able to handle these aspects of
the data. If the model had little to no capacity to
model relationships in the data both spatially and
temporally, the chances of producing a successful
model would have been drastically reduced.

As a result of having to handle large amount
of complexity as mentioned previously as well
as spatio-temporal data, this narrowed down the
range of feasible models for practical future use
such as a VAE and convolutional long short term
memory (ConvLSTM) next frame video prediction
(NFVP).

2.4 VAE
2.4.1 Fundamentals of Autoencoders

Autoencoders are neural networks that learn to en-
code data into an efficient compressed latent rep-
resentation and then decode it back to the original
form. This structure can be particularly useful for
noise and the dimensionality reduction. In an au-
toencoder, the encoder part reduces the input data
to a lower-dimensional space, capturing the most
significant features, while the decoder reconstructs
the data from this compact representation. Build-
ing upon the autoencoder architecture, VAEs intro-
duce additional capabilities that present potential
benefit for our predictive task.



2.4.2 Justification for VAE

VAEs are a generative model that extend the au-
toencoder architecture by incorporating a proba-
bilistic approach to the encoding process. VAEs be-
ing a generative model may present benefits to this
task as fish movement patterns are not entirely de-
terministic, VAE’s being a generative won’t come
to deterministic solutions. VAEs have been success-
fully applied in video prediction tasks, and given
the similarities to fish prediction, it is worth ex-
ploring their effectiveness in this domain. VAES’
ability to handle high-dimensional data and incor-
porate both temporal and spatial elements makes
them particularly well-suited for our task. By lever-
aging VAEs, we aim to capture the complex pat-
terns in fish movement and provide accurate and
reliable predictions, ultimately supporting more ef-
ficient and sustainable fishing practices. VAEs con-
sist of an encoder, a decoder, and a latent space
representation.

2.4.3 VAE Structure

Latent
Space

Figure 2.1: Structure of the VAE used in this
study

Encoder: The encoder in a VAE is designed to
compress the input data into a lower-dimensional
latent space. This process involves several layers
and mechanisms to capture essential features of the
data. This is done similarly to how it is done in a
conventional autoencoder. However, in VAE it gen-
erates parameters for a distribution u(z) & o(z)?,
that capture the essential aspects of the data. This
distribution can then be sampled to obtain the la-
tent variable z.

The encoder transforms the input x into latent
variables z. The output of the encoder is not a sin-
gle point but a distribution over the latent space,
characterised by the mean p and standard devia-
tion o. This distribution is given by:

q(z | 2) = N(z; u(z), 0(x)?)

This formulation allows the model to capture vari-
ability in the data, providing a more robust repre-
sentation.

Latent space: The latent space in a VAE is a
lower-dimensional space where the compressed rep-
resentation of the input data resides. Instead of
mapping each input to a single point, the VAE
maps the inputs to a distribution in the latent
space. This probabilistic method enables the model
to generate new data points by sampling from these
distributions. To enable backpropagation through
the stochastic layer, the reparameterisation trick is
used. This involves expressing the sampling opera-
tion in a way that allows gradients to pass through.
Specifically, the latent variables z are computed as:

2=+ e">7 ¢ where e ~ N(0,1)

Epsilon is a random variable drawn from a stan-

dard normal distribution. This approach ensures
that the sampling operation is differentiable, en-
abling the model to be trained using gradient de-
scent techniques.
Decoder: The decoder in a VAE) is respounsible for
reconstructing the input data from the latent vari-
ables, effectively reversing the encoding process.
This architecture is critical for generating accu-
rate and meaningful outputs that reflect the origi-
nal data’s spatial and temporal characteristics. The
geospatial data is fed as input and is processed by
several layers. This intermediate representation of
the data is combined with the latent variable Z
generated using a sampling layer that implements
the reparameterisation trick. The data is then up-
sampled to the original spatial dimensions of the
relevant map of the North sea. By integrating the
encoded information from the encoder with the re-
shaped latent variables and progressively upsam-
pling through multiple layers, the hope is that the
decoder can generate outputs that should under-
stand the movement patterns of fish.

2.5 ConvLSTM NFVP

ConvLSTM networks combine the strengths of
Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks to han-
dle spatio-temporal data effectively. This architec-
ture is particularly well-suited for tasks involving
both spatial and temporal dependencies, such as



video prediction, where the goal is to predict fu-
ture frames in a video sequence. Once again due to
the similarities with video prediction and fish pre-
diction the hope is that this architecture can be
leveraged to achieve meaningful results and serve
as a point of comparison to the VAE.

3 Methods

3.1 Data
3.1.1 Why these datasets

Historical catch-ntoes: Historical catch data is
essential for training the model as it provides em-
pirical evidence of fish locations and quantities.
This data helps the model learn from past fish-
ing activities, identifying patterns and trends about
typical locations where fish appear. This can also
provide the insights as to how typical fish locations
change over time.

Environmental data: The catch-notes data is not
an ideal dataset however as it only provides pin-
point locations for where fish were caught, this is
not accurate to how the fish were caught nor how
they were moving prior to being caught. With-
out movement trajectories of fish, it is difficult to
model their movement patterns. Hence, it was im-
portant to incorporate environmental factors as we
are aware they play a large role in the movement
and behavioural patterns. This is why data such as
the SST and SSS data were included to try increase
the models chances of having a comprehensive un-
derstanding of fish behaviour.

3.1.2 Data formatting & Missing data

SSS & SST: The SSS dataset contains global
monthly salinity averages from April 2015 to Jan-
uary 2022, focusing on the ’sss_smap’ feature, with
values ranging from 0 to 44 parts per thousand.
Similarly, the SST dataset provides daily tempera-
ture averages from 1981 to 2024. Both datasets are
extracted as three-dimensional matrices represent-
ing time, latitude, and longitude, containing their
respective data. Both the SSS and SST have have a
spatial resolution of 0.25 degrees. To maintain con-
sistency between the both environmental datasets,
the SSS monthly readings were converted to daily
readings using mean imputation. For missing data,

linear interpolation was applied to the SSS dataset
for July 2019, while any remaining missing values
in both datasets were addressed using the griddata
interpolation method, ensuring continuity and re-
liability by interpolating missing points based on
known neighbouring values.

Historical catch notes: The catch notes dataset
spans from 2000 to 2022 and includes 150 fea-
tures in CSV format. Key features relevant to our
model—such as product weight, longitude, latitude,
landing date, and species—were extracted for inte-
gration with the SSS and SST datasets. Previous
solutions to the FishAl challenge mentioned mod-
els struggling when attempting to predict the lo-
cations of fishes, so it was decided to narrow the
field of research and focus on Haddock. This is be-
cause it had the most data points out of the most
valuable fish for the industry partners (Nordmo et
al., 2022). Data points with null values in these se-
lected features were removed to maintain data qual-
ity. The preparation process involved aligning the
temporal and spatial dimensions of the catch data
with those of the environmental datasets, ensuring
seamless integration and accurate modelling.

3.1.3 Data Alignment

To aggregate all the data into one structure, the
range for the longitude and latitude were calcu-
lated using the catch-notes data. This was neces-
sary to ensure all catch-notes data points would
be included in the final data structure. The SSS
and SST data were already spatially aligned so they
were simply stacked on top of another. Using the
bounds calculated from the catch notes we were
then able to create a matrix that would be able
to include all the data points from the catch notes.
The catch data was aligned with the environmental
data by finding the closest coordinate in the dataset
for each catch point, ensuring that each data point
was within 0.24 degrees of the original location. The
temporal range for the data was based off the SSS
data as it had the shortest time span of our data.

3.1.4 Map Cropping

The initial dataset, which combined catch notes
and environmental data, had spatial dimensions
that were not conducive to applying convolutions
due to their irregular shapes. To address this is-



sue, we created two new datasets with standardised
spatial dimensions. The first dataset was designed
to encompass all data points from the catch notes,
resulting in spatial dimensions of 128x352. This en-
sured that no data points were omitted while pro-
viding a manageable shape for certain convolution
operations. The second dataset aimed to create a
more compact and dense representation of the data.
We selected a spatial dimension of 64x64, focus-
ing on the region with the highest concentration of
data points. This smaller, dense dataset allows for
more efficient processing and analysis, as it simpli-
fies the convolutional operations by reducing the
spatial complexity.

3.1.5 Splitting

To ensure the model can generalise well to unseen
data, the dataset was split into training, validation,
and test sets in a sequential manner. This method
was chosen to simulate real-world scenarios where
the model predicts future events without knowledge
of future data points. This ensures that there is no
data leakage. Test set: The most recent 20% of the
total dataset was reserved for testing the model.
This meant there was a total of 493 test samples.
The test set contains the most recent historical data
and is used to evaluate the model’s performance in
predicting future events. Validation set: From the
remaining 80% of the dataset, the latest 20% was
used for validation. This resulted in a total of 393
samples for validation purposes. This set is used to
tune hyper-parameters and assess the model during
training, ensuring it generalises well to new data.
Training set: The earliest 80% of the remaining
data after the test split (i.e., 64% of the total data)
was used for training the model. This left a total
of 1594 training samples for the model to learn the
necessary relationships and patterns in the data to
predict the location of fish.

3.1.6 Data Labelling

After splitting the data, each set was windowed to
create input-target pairs for the model. Windowing
involves segmenting the time series data into over-
lapping windows, where each window consists of a
sequence of input data points and a corresponding
target data point. Each input window comprises
5 consecutive days of spatial data, including envi-

ronmental measurements and historical catch data.
These windows provide the context necessary for
the model to make accurate predictions. The target
window corresponds to the day immediately follow-
ing the input window. Thus, the model uses 5 days
of data to predict the 6th day. The target window
only contains the feature we are trying to predict
for, that being the product weight feature of the
catch notes data. Using these parameters to gen-
erate the input-target pairs, the window was slid
across 1 day at a time, resulting in overlapping win-
dows that provide learning examples for the model
comprehensively model the dynamics of the data.

3.1.7 Normalisation

To ensure all features contributed equally during
model training and to encourage stability in train-
ing, Min-Max Scaling was applied using scikit-
learn’s MinMaxScaler. This technique normalised
each feature independently to the range [0, 1], based
on its minimum and maximum values. All features
were normalised separately, this step was crucial
as the features had significantly different ranges,
which could have led to instability in the model
learning process.

4 Model Design

4.0.1 VAE

Encoder: The encoder network compresses the in-
put geo-spatial data into a latent space, captur-
ing essential features for reconstruction. The in-
put shape is (time-steps, height, width, channels).
The encoder comprises three ConvLSTM2D layers
with ReLU activations, filter sizes of [32, 64, 128],
and HeNormal weight initialisation. Each ConvL-
STM2D layer includes L1 regularization with a fac-
tor of 0.0001. The output is flattened and fed into
two dense layers that produce the mean and log
variance to generate the latent distribution. A cus-
tom sampling layer implements the reparameteri-
sation trick, allowing gradients to flow through the
network.

Decoder: The decoder network reconstructs the
input data from the latent space, effectively revers-
ing the encoding process. It takes geo-spatial data
and the latent variable z as inputs. The geo-spatial
input passes through three ConvLSTM2D layers



with filter sizes of [32, 32, 64] and ReLU activations.
The latent variable z is processed through three
dense layers and a reshaping layer to match the di-
mensions for concatenation. The combined data is
processed by a ConvLSTM2D layer with 64 filters
and reduces the time dimension to one time-step.
The up-sampling phase restores the necessary spa-
tial dimensions using four Conv3DTranspose layers
with filter sizes of [128, 64, 32, 1]. All layers use
ReLU activation except for the final output layer,
which uses a sigmoid activation.

Loss Calculation The loss for the VAE model
is computed using a combination of reconstruc-
tion loss and Kullback-Leibler (KL) divergence loss.
This approach ensures that the model generates
outputs similar to the input data while also en-
couraging the latent space to follow a normal dis-
tribution.

The reconstruction loss measures how well the
model’s output resembles the target data. Specif-
ically, the mean absolute error (MAE) is used for
this purpose due to its robustness against sparse
data. The MAE is calculated using the following
equation:

1 X
reconstruction = N E |Ytrue — ypred|
i=1

The MAE is calculated per element between
the target data and the reconstruction, and then
summed over the spatial dimensions to obtain a sin-
gle reconstruction loss per time step. Finally, this
reconstruction loss is averaged over the batch to get
the final reconstruction loss.

The MAE is calculated per element wise between
the target data and the reconstruction. The MAE
values are then summed over the spatial dimensions
to obtain a single reconstruction loss per time step.
The reconstruction is then averaged over the batch
to get the final reconstruction loss.

The KL divergence loss encourages the latent
variables to follow a standard normal distribution.
It is computed as:

D

KL=-05Y (1+log(c?) — 13 — 03)
j=1

Where, 1 and o are the mean and standard devi-
ation of the latent variables, respectively, D, is the

dimensionality of the latent space.

To prevent the KL loss from dominating the
model and preventing it form learning the KL di-
vergence is multiplied by a weight to control its in-
fluence. Hence the total loss function is calculated
as:

Lossiotqr = reconstruction + Wightyy - KL

4.0.2 ConvLSTM NFVP

The ConvLSTM Next Frame Video Prediction
(ConvLSTM NEFVP) model is designed based on a
model from a Keras 3 code examples (Team, n.d.).
The shape of the input follows the same dimensions
as mentioned previously for the VAE.

The model comprises three ConvLSTM2D lay-
ers, each configured with ReLU activation func-
tions and followed by batch normalisation layers.
The ConvLSTM2D layers are designed with 64 fil-
ters and implement L1 and L2 regularisation with
factors both set to 0.1 to prevent overfitting. The
final ConvLSTM2D layer reduced the temporal di-
mension to one time-step to align the data with the
temporal dimension of the target data. After reduc-
ing the temporal dimension, the data is reshaped
to add the channel dimension necessary for Conv3D
processing. The final Conv3D layer has a filter size
of 1 and uses a sigmoid activation function to gen-
erate the predicted frame

4.1 Training and Evaluation
4.1.1 Training details

The VAE and ConvLSTM NFVP models were
trained over 20 epochs with a batch size of 16,
used for both training and validation. The Adam
optimiser was employed with a learning rate of
0.0001 to adjust the model’s gradients. The VAE
was trained using the data with larger spatial di-
mensions of 128x352, while the ConvLSTM NFVP
model was trained using the dataset with spatial di-
mensions of 64x64. The VAE incorporated the ‘clip-
norm’ parameter in the Adam optimiser to clip gra-
dients, preventing them from exceeding a specified
norm value set to 1. This technique helps stabilise
training by mitigating the impact of large gradi-
ent updates, which can cause instability, especially
in deep networks. The weight the KL divergence is



initially set to 0 and is incremented each epoch by
a factor of 0.01.

4.1.2 Evaluation Metrics

To evaluate the models performance, a variety of
metrics were tracked during the training and eval-
uation phases of the model. The MAE was selected
as the data is very sparse. The MAE provides a
straightforward measure of the average absolute
differences between predicted and actual values,
making it less sensitive to outliers and missing data
points. The KL divergence loss was tracked as a
metric for the VAE to monitor the performance of
the encoder. This is crucial for ensuring the param-
eters the encoder output are close to that of a nor-
mal distribution. Precision measures the propor-
tion of correct positive predictions (i.e., correctly
predicted locations with fish) among all positive
predictions, offering insights into the model’s accu-
racy. The Recall measures the proportion of correct
positive predictions (i.e., correctly predicted loca-
tions with fish) among all actual positive instances,
reflecting the model’s sensitivity in detecting rele-
vant events. These metrics provide a comprehensive
method for monitoring and evaluating the models’
learning and performance. The ConvLSTM NFVP
model tracked the same metrics except for the KL
divergence.

4.1.3 Validation Strategy

Validation was performed after each epoch to mon-
itor the model’s performance on unseen data. Early
stopping callback was implemented to prevent the
model from training needlessly without the chance
of converging. The criteria set to a patience of 10
epochs for the KL divergence of the VAE not im-
proving and 12 epochs for the total loss not improv-
ing for both models. The ConvLSTM NFVP model
implemented an additional callback to reduce the
learning rate after 10 epochs if there was no im-
provement.

Validation results were used to tune the model by
adjusting hyper-parameters, exploring different ar-
chitectures, and incorporating regularisation tech-
niques.

4.1.4 Testing

Finally the models were evaluated on the test set,
which comprised of the most recent 20% of the
dataset. The same metrics mentioned previously
were reported for the test data to provide an unbi-
ased assessment of the model’s performance.

5 Results

The primary objective of this study was to develop
a robust model to predict the locations of a specific
fish species using spatio-temporal data. Despite the
efforts to create a VAE model tailored for this task,
the results indicate several challenges and limita-
tions that affected the model’s performance. This
section details the performance metrics, example
outputs, and a comprehensive analysis of the re-
sults, highlighting the areas where the model fell
short and potential directions for future improve-
ments.

5.1 VAE
5.1.1 Train & Validation

To monitor the learning process of the VAE model,
we tracked the training and validation loss and met-
rics over the 20 epochs. The training loss represents
how well the model fits the training data, while the
validation loss indicates how well the model gener-
alises to unseen data.

Training & Validation Metrics

Training Metrics Validation Metrics
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Figure 5.1: Training and validation loss curves
showing total loss, reconstruction loss, and KL
loss over epochs.

The training loss for visible in figure 5.1 begins
at an extremely high value, initially registering as



infinity. This anomaly is why the blue line indi-
cating the total loss is not visible until the fourth
epoch. The spike in the initial loss is attributed to
the encoder struggling to fit its output parameters
to a normal distribution, resulting in infinite val-
ues. Following this phase, the total loss decreases
gradually, with the early stopping callback in Keras
preventing further overfitting.

The total loss consists of both the reconstruc-
tion loss and the KL divergence loss. Examining
these individual loss components provides more de-
tailed insights into the model’s learning process.
The reconstruction loss drops sharply, which sug-
gests that the model quickly adapts to produce out-
puts that minimize this loss. However, a low recon-
struction loss on its own does not guarantee a well-
performing model, as it could simply indicate that
the model has learned to output trivial solutions,
such as predicting zeros.

Upon further analysis of the final training and
validation loss values that are visible in table 5.1,
it is apparent that the model’s performance is sub-
optimal. The model does not make the best approx-
imation of the data, indicating potential issues with
overfitting or model complexity. These observations
highlight areas for improvement and suggest alter-
native approaches to enhance the model’s ability to
predict spatio-temporal patterns more accurately.

In addition to the loss curves, the precision and
recall metrics obtained from both training and val-
idation further illustrate the model’s limitations.
The poor precision indicates that the model has a
high rate of false positives, meaning it frequently
predicts fish locations where there are none. Simi-
larly, the low recall suggests that the model misses
a significant number of actual fish locations, indi-
cating a high rate of false negatives. These metrics
reflect the model’s difficulty in accurately identi-
fying and predicting the presence of fish, which is
crucial for its intended application.

5.1.2 Evaluation on Test Data

The performance of the VAE model was evaluated
on a separate test set, comprising of the most recent
20% of the dataset. The metrics used to evaluate
the model can be seen in the table 5.2.

The MAE of 2.18 indicates that the model’s pre-
dictions had an average error of 2.18 units from the
actual values. Given that the values are normalised,

Metric Train | Validation
MAE 6.000 1.289
KL Divergence | 139.829 29.369
Total loss 18.589 3.933
Precision 0 0
Recall 0 0

Table 5.1: Performance Metrics for Train and
Validation Sets

Metric Value
MAE 2.18
KL Divergence | 22,432
Precision 0
Recall 0

Table 5.2: Final Performance Metrics on the
Test Set

this error is quite substantial. This suggests that
the model has difficulties in accurately capturing
the underlying movement patterns of fish in order
to predict their locations

The KL Divergence value of 22,432 is extremely
high, indicating that the latent variables do not
follow the intended standard normal distribution.
This high value suggests that the encoder is strug-
gling to generate a latent space that effectively cap-
tures the crucial aspects of the data.

The precision and recall metrics both being zero
highlight the model’s complete failure to identify
true fish locations, either predicting false positives
or missing all relevant instances. These metrics col-
lectively demonstrate that the model struggled sig-
nificantly in achieving its prediction goals, indicat-
ing substantial room for improvement.

5.1.3 Example Outputs

To better assess and investigate the model’s predic-
tions, we compared the reconstructed outputs with
the target data using a portion of the test data the
model was evaluated with. This visualisation can
be seen in figure A.1 in the appendix. This was
done through the creation of a heat-map of the fish
locations laid over a map of the region we are pre-
dicting.

The example outputs of the VAE model highlight
significant discrepancies between the true and pre-



dicted fish locations. The true data shows a distinct
and isolated fish location, represented by a yellow
dot, which is clearly visible and shifts position over
time. In contrast, the predicted data exhibits ex-
tensive noise and lacks a focused fish location, in-
dicating that the model predictions are not aligned
with the actual data. The model appears to simply
try output values around zero to reduce the loss
as the data consists mostly of zeros. This explains
however why there is an initial large drop in the
reconstruction loss that begins to stagnate as can
be seen in 5.1.

5.1.4 Training & Inference Time

Discussing the computational efficiency of the
model is important as it provides insights into its
practicality for real-world applications. It is an
important aspect in how feasible such a tool could
be for fisherman.

The total training time for the model was
approximately 1 hour and 20 minutes using
the GPU of a Macbook pro with an M1 pro
chip. The training time indicates the compu-
tational resources required to train the VAE
model, which may be significant depending on the
size of the dataset and the complexity of the model.

The average inference time per sample was 2
seconds, along with the total time to evaluate
the mode being approximately 1 minute. This
metric is crucial for understanding how quickly
the model can make predictions in a real-time or
operational setting. The inference time reflects the
model’s efficiency and feasibility for practical use
in predicting fish locations.

5.2 ConvLSTM NFVP

The ConvLSTM Next Frame Video Prediction
(ConvLSTM NFVP) model was developed to serve
as a baseline for predicting fish locations. This sec-
tion evaluates the performance of the ConvLSTM
NFVP model using various metrics and compares
it to the VAE model. Despite the efforts to de-
velop this model, the results indicate significant
challenges and limitations in its ability to predict
fish locations accurately much like the VAE.

5.2.1 Training & Evaluation

Figure 5.2: Training and validation loss over 20
epochs of training

Figure 5.2 displays the training and validation loss
curves for the ConvLSTM NFVP model over 20
epochs. The training loss starts high, rapidly de-
creasing and stabilising after the second epoch.
However, despite the low loss values, the precision
and recall metrics were both zero, indicating a sig-
nificant shortfall in predictive performance. This
resembles the shape of the reconstruction loss of
the VAE but appears to perform better. This is
likely due to there being no influence of a latent
space, which in the VAEs case was not able to con-
verge to any meaningful latent representation of the
data which impeded it’s performance. The MAE for
training and validation shown in table 5.3 indicate
low absolute errors, which can be deceiving as they
represent differences in the normalised data. So the
fact that the differences are much larger is an im-
portant consideration. The precision and recall be-
ing zero highlight the model’s complete failure to
accurately predict fish locations, generating either
false positives or missing all relevant instances.

Metric Train | Validation
MAE Loss | 0.411 0.222
Precision 0 0

Recall 0 0

Table 5.3: Training and Validation Metrics for
ConvLSTM NFVP Model

5.2.2 Evaluation on test data

The performance on the test set, which is comprised
of the most recent 20% of the dataset, further il-
lustrates the limitations of the ConvLSTM NFVP
model. The final loss of the model shown in ta-
ble 5.4 was 0.222, indicating that while the model
learned to some extent, it struggled to capture the
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Metric Value
MAE Loss | 0.222
Precision 0
Recall 0

Table 5.4: Test Metrics for ConvLSTM NFVP
Model

critical relationships in the data. The precision and
recall metrics reaffirm the model’s severe difficulty
in identifying true fish locations and avoiding false
positives. Though the ConvLSTM NFVP model
achieves better results, it still does not achieve ad-
equate results. This difference in performances be-
tween the models can largely be attributed to the
lack of a latent representation in the ConvLSTM
NFVP model. This assessment can be made as the
structures of the decoder is very similar and func-
tion very similarly.

5.2.3 Example Outputs

The example outputs of the ConvLSTM NFVP
model, as shown in Figure A.4 in the appendix, il-
lustrate the significant discrepancies between the
predicted and actual fish locations. The model’s
predictions are essentially zeroes, failing to capture
any meaningful patterns in the data. This issue
arises because the product weight data is sparse,
leading the model to minimize the loss by predict-
ing zeroes. This behaviour results in a deceptively
low loss value and poor predictive performance.
Both models exhibit substantial discrepancies be-
tween the true and predicted fish locations. The
VAE model’s predictions are just noise, while the
ConvLSTM NFVP model’s predictions are overly
simplified, indicating a failure to learn from the
sparse data.

5.2.4 Training & inference time

The model took approximate 54 minutes and eval-
uation time took approximately 26 seconds. The
training and evaluation of this model was done us-
ing the same device as for the VAE. Overall the
ConvLSTM NFVP model is more computationally
efficient, with shorter training and inference times
compared to the VAE model. This efficiency, how-
ever, does not translate to better predictive perfor-
mance. The difference between the two models op-

erating in inference mode is not significant, showing
if these models are trained successfully they could
be a feasible option for practical use.

6 Conclusions

6.1 Discussion of Results

The results of the study highlight significant chal-
lenges in developing robust models for predicting
fish locations using spatio-temporal data. Both the
VAE and ConvLLSTM NFVP models exhibited lim-
itations in accurately capturing the complex pat-
terns necessary for reliable predictions.

The training and validation loss curves for the
VAE model showed an initial spike, indicating dif-
ficulties in the encoder’s ability to fit its parameters
to a normal distribution. Despite a subsequent de-
crease, the model’s overall performance remained
suboptimal, with a high KL divergence suggesting
that the latent space did not effectively capture the
underlying data structure. Additionally, the preci-
sion and recall metrics were zero, indicating a com-
plete failure to identify true fish locations. This
poor performance is further confirmed by looking
at the models’ prediction, which appear to simply
predict noise rather than provide anything infor-
mative.

Similarly, the ConvLSTM NFVP model, based
on the Keras tutorial, showed low MAE values due
to normalisation but failed to produce meaningful
predictions. The precision and recall metrics were
also zero, reflecting the model’s inability to dis-
tinguish between fish and non-fish locations. The
example outputs further illustrated this, with pre-
dicted maps showing no clear patterns or distinct
fish locations, unlike the true data.

Both models unfortunately severely underfit the
data, resulting in the VAE producing noise and
the ConvLSTM NFVP developing a quick bias to
outputting zeros. This indicates fundamentally the
models were not able to do an adequate job and
require more work on the limiting factors of the
project.

6.2 Limitations

The performance of the developed models in this
study was significantly impacted by various limita-
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tions, primarily related to the data preprocessing
and representation. Several key issues were identi-
fied that hindered the models’ ability to learn and
generalise effectively.

One major limitation is the nature of the catch
notes data, which does not provide information on
the movement trajectories of fish. This lack of tem-
poral continuity means the data suggests that fish
remain stationary for a day and then suddenly ap-
pear in different regions the next day. Such abrupt
changes create an unrealistic representation of fish
behaviour, making it challenging for the model to
discern any clear direction or movement patterns.
The absence of sequential movement data prevents
the model from learning the natural flow and migra-
tion patterns of fish, which are crucial for accurate
predictions.

Moreover, the sparsity of the catch notes data ex-
acerbates this issue. The data often indicates large
quantities of fish in specific regions while showing
no presence in other areas. This binary-like distri-
bution does not reflect the more gradual and diffuse
nature of fish populations in reality. The model,
therefore, struggles to generalise from such sparse
data, leading to poor performance in predicting fish
locations.

The preprocessing steps, while necessary to align
the data for model input, may also have introduced
further complications. The conversion of monthly
salinity readings to daily averages and the handling
of missing data through interpolation, although es-
sential, could have led to a loss of important tempo-
ral nuances. These nuances might have been critical
for the model to understand the subtle environmen-
tal factors influencing fish movements.

These limitations suggest that future work
should focus on improving the data representa-
tion by incorporating more continuous and de-
tailed movement data, potentially from tagging
studies or higher resolution spatio-temporal data
sources. Additionally, refining preprocessing tech-
niques to better preserve the inherent patterns in
the data could enhance model performance. Ad-
dressing these data-related challenges is crucial for
developing more accurate and reliable models for
predicting fish locations.

6.3 Statement of impact

The findings indicate that data preparation and
representation are the most critical areas that need
improvement for machine learning to effectively aid
in optimal and sustainable fishing practices. While
deep learning models has potential, the current
study highlights that without substantial invest-
ment in improving data representation for these
models, achieving meaningful success remains un-
likely. This research underscores the necessity for
refined data strategies to harness the full capabili-
ties of machine learning in fisheries management.

6.4 Future work
6.4.1 Incorporating fishing vessel data

A promising direction for future work is to incorpo-
rate fishing vessel data to capture movement tra-
jectories. This data can provide valuable context,
helping the model to better understand fish move-
ment patterns. By leveraging this additional data,
convolutional layers can be utilised more effectively,
allowing the model to capture spatio-temporal de-
pendencies with greater accuracy. Integrating such
trajectory data can enhance the model’s ability to
predict fish locations by learning from the paths
and behaviours of fishing vessels, which are often
correlated with fish presence.

6.4.2 Using statistical movement domain

Another significant improvement can be achieved
by encoding spatial information through statisti-
cal movement domains, as described in Dong et al.
(2016). This approach can help mitigate the issue
of data sparsity by transforming raw spatial maps
into a more informative and compact representa-
tion. By summarising the movement patterns sta-
tistically, the model can then focus on the most
relevant features, potentially improving predictive
performance. This method could provide a richer
and more informative representation of the data,
facilitating better learning by the model.

6.4.3 Altering the loss function

Modifying the loss function to penalise errors dif-
ferently based on the type of prediction error (in-
correct zero location vs. incorrect fish location) can
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also lead to substantial improvements. This tailored
loss function can guide the model to place greater
emphasis on accurately predicting fish locations,
which are more critical for the application. By dis-
tinguishing between types of errors, the model can
be trained more effectively to prioritise reducing
the most impactful mistakes, enhancing overall pre-
dictive capability.

6.4.4 Additional considerations

In addition to these primary directions, future work
could also explore applying a mask to the output
layer of the models to force lower values to zero.
This approach can help the model focus on pre-
dicting the stochastic nature of fish locations rather
than noise. Furthermore, utilising t-Distributed
Stochastic Neighbour Embedding (TSNE) to visu-
alise the latent space can provide insights into the
encoder’s performance, helping to diagnose issues
and refine the model.
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A Appendix
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Figure A.1: Frame 1 from VAE example outputs
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Figure A.2: Frame 2 from VAE example outputs
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Figure A.3: Frame 3 from VAE example outputs
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Figure A.4: Frame 1 from ConvLSTM NFVP
example outputs
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Figure A.5: Frame 2 from ConvLSTM NFVP
example outputs
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Figure A.6: Frame 3 from ConvLSTM NFVP
example outputs



