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Abstract

In 2014, Andrew Bremner and Allan Macleod published a paper regarding a cubic rep-
resentation problem. The problem is about finding positive integer solutions a, b, c to the
equation

a b c
+ +
b+c a+c a+b

where N is a positive integer. This equation has a rational solution (1,—1,0), which allows
us to transform it into an elliptic curve over the rationals, and therefore the problem can be
translated to finding rational points on an elliptic curve corresponding to positive solutions
to (%).

Elliptic curves play an important role in both pure and applied mathematics, and this
thesis explores the rich theory of elliptic curves that revolves around solving the cubic repre-
sentation problem, providing more insightful details to the paper by Bremner and Macleod.
We explain the transformation from the projective curve defined by (%) to an elliptic curve
in Weierstrass form. This is done through a change of coordinates that maps the rational
point (1 : —1 : 0) to the point at infinity on the elliptic curve. We compute the torsion
subgroup of the elliptic curve and show that the points on the torsion subgroup do not give
nonzero solutions to the original problem so points of infinite order are needed. This leads to
discussing the method of ‘2-isogeny descent’ used to compute the rank of the elliptic curve.
We provide some examples of computing the rank and give some lesser known results about
finding solutions to a quartic modulo a prime powers, useful to successfully compute the
rank of the elliptic curve.
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1 Introduction

The study of elliptic curves dates back to the Greeks studying Diophantine equations [Mar06]
and they are still widely used and studied now, as in the famous proof of Fermat’s Last Theorem
by Andrew Wiles. Elliptic curves are both interesting from a purely mathematical perspective
as well as having applications in the growing field of cryptography. This paper uses elliptic
curves to solve a seemingly very simple fruit puzzle that requires a lot of theory to be able to
find its solutions. The fruit puzzle became an internet meme, even though the authors Bremner
and Macleod of [BM14], where the solution is discussed, were not involved. Its solutions (and
different methods to reach them) were discusses on websites such as [Amil9] and [Alel6]. In this
paper we discuss the method of descent by 2—isogeny to compute the rank of the elliptic curve,
as a positive rank allows us to then find a point whose multiple will correspond to a solution to
the puzzle. From a theoretical point of view the method of descent by 2-isogeny is used in the
proof of Mordell’s Theorem in [ST15] for the case where the elliptic curve has a rational two
torsion point, and in general, methods of p-descent are studied by many mathematicians [Cre97]
[SS03]. Elliptic curves are used in cryptography and specifically, there is an area of cryptography
that uses isogenies between elliptic curves to create more secure systems [Shu09].

This thesis is based on the paper ‘An Unusual Cubic Representation Problem’ written by
Bremner and Macleod [BM14] in 2014, and the aim is to provide details to their work. We
start by transforming the fruit puzzle into the curve Bremner and Macleod work on, which is
a projective curve that depends on a parameter N, and then transform it into an elliptic curve
in Weierstrass form. We explain the method of descent by 2-isogeny to compute the rank and
provide some examples of how to do so for different values of N, presenting the solutions to the
fruit puzzle for the case where the rank is positive. In doing so we also describe some of the results
provided in the paper ‘Counterexamples to the Hasse Principle’ by Aitken and Lemmermeyer
[AL11], which illustrate the use of prime powers to show some quartic equations have no solution.
This is very useful to a part of the descent by 2-isogeny method which encounters the problem
of finding (or showing the lack of) a primitive solution to some equations. We also provide some
more remarks on the existence and size of the solutions to the fruit puzzle.

1.1 Outline

We begin the paper with some background information in Section 2, necessary to understand the
further sections. If the reader is familiar with elliptic curves and a bit familiar with projective
geometry then they can skip the first section. Throughout the rest of the paper each section
follows from the previous section. Section 3 describes the fruit puzzle, and how to transform it
into an elliptic curve. In Section 4 we show the structure of the elliptic curve and in Section 5,
we explain the method of descent by 2-isogeny to compute the rank and provide some examples.
We end with some results in Section 6 related to the conditions necessary to ensure solutions to
the fruit puzzle and the size of these solutions.



2 Background Information

In order to understand the paper, we need some background information on elliptic curves. The
following section is based on [Sil06] and [ST'15, Section 1.4]. Throughout this paper we will work
in both the affine and projective plane over the field Q, therefore let us define these concepts
over Q before we dive into the theory of elliptic curves.

Definition 2.1 (Projective plane). The set of Q—rational points on projective plane over Q,
denoted as P?(Q), is defined as

IP’2(Q) ={(z,y,2) | z,y,2 € Q not all zero }/ ~

under the equivalence relation ~ where (z,y,z) ~ (2',y',2") if (', y,2") = (A\x, Ay, \z) for some
A e Q.

We write the equivalence class as (z : y : z). These are also called homogeneous coordinates.
In a similar fashion we can define the affine plane over Q as follows.

Definition 2.2 (Affine plane). The set of Q—rational points on the affine plane over Q, denoted
as A%(Q), is defined as
AYQ) = {(z,y) | 2,y € Q}.

When we choose to map a point (z,vy,2) € P?(Q) with z # 0 to (z/,y') € A%(Q), we do so
by diving by the z—coordinate so that (z,y, z) becomes (£,%,1) and 2’ = £ and y' = £.
Remark 2.3. We could also map a projective point to an affine one by diving by a different
coordinate (such as x or y) as long as they are nonzero, however the mapping is mostly done
UsIng 2.

To allow such a transformation to happen, we define all the points where the coordinate that
we divide by, in this case the z—coordinate, is 0 to be the points at infinity. We say the line
z = 0 is the line at infinity. In the projective plane, parallel lines intersect at infinity. The idea
behind this comes from perspective drawing, where there is a focal point in the horizon where
all parallel lines meet.

Recall that two points in the projective plane are equivalent if one is the constant multiple of
the other. This creates an extra condition on how we define polynomials in the projective plane,
as we need the requirement that if a polynomial F' € Q[z, y, z| satisfies F'(z,y, z) = 0 then also
F(Ax, Ay, \z) must be equal to 0. This gives rise to the definition of homogeneous polynomials.

Definition 2.4 (Total degree). The total degree of a monomial x™y™ 2! where m,n,l € Z>q is
d=n+m+1L.

Definition 2.5 (Homogeneous polynomial). A polynomial F' € Q[x,y, 2| is said to be homoge-
neous if each monomial has the same total degree.

Definition 2.6 (Affine curve). An affine curve C is defined by a polynomial f € Q[X,Y]. Its
set of Q—rational points is

C(Q) = {(z,y) € A*(Q) : f(x,y) = 0}
A projective curve is defined similarly.

Definition 2.7 (Projective curve). Let F' € Q[X,Y, Z] be a homogeneous polynomial of degree
more than 1. Then F defines a projective curve C'. Its set of Q—rational points is

C'(Q) ={(z:y:2) € P(Q): Fla,y,2) = 0}.



There are multiple definitions of elliptic curves, however since in this paper we always work
with elliptic curves over QQ, we will define them for the case where the field is Q. Note however
that we can define elliptic curves more generally, but for the sake of this paper it is enough to
define them for the Q case.

Definition 2.8 (Elliptic curve in Weierstrass form). An elliptic curve E/Q is defined by a
Weierstrass equation
v’z = 23 + Ax’z + Bx2? + C23 (1)

where A, B,C € Q and the discriminant A = —4A3C + A?B? + 18ABC — 4B3 — 27C? # 0. Its
set of Q—rational points is

EQ)={(z:y:2) € PX(Q): v’z = 2° + Ax’z + Buz* + C2°}.

Elliptic curves have a unique point at infinity, the point (0 : 1 : 0). This specific form of an
elliptic curve is called Weierstrass form, which is the form that will be used in this paper. More
specifically, we will work with the affine version of the elliptic curve. The definition is similar to
the projective one, but this time the point at infinity is considered a special point in the affine
plane, denoted by O. For simplicity, we work with E : y? = 23 + Az? + Bx + C. If we identify
A%(Q) with its image in P?(Q) under the association of (x,y) with (z : % : 1). Then,

E(Q) = {(z,y) € A*(Q) : y* = 2° + Az” + Bz + C} U{O}

where the discriminant is nonzero.
In general, for an elliptic curve defined over Q, the nonzero discriminant ensures that a3 +
Ax? + Bz + C has three distinct roots in the algebraic closure of Q.

Remark 2.9. Throughout this paper we will always work with the case where the constant
coefficient C' is equal to 0.

A special property of elliptic curves is that the points on the curve form a group under the
addition law. The group consists of the affine points on the curve, together with the point at
infinity O which is the group’s identity element.

The group law is defined as follows. Take P;, P, € E(Q). We have the following cases:

e For all P € E(Q), P+ 0O =P.

e Let P=(x,y) € E(Q), then —P = —(z,y) = (—=x,y).

Let P; # £+P,. Then for P; = (x1,y1) and P, = (z2,y2) we have that P + P> = (x3,y3) =
(A2 —a — 21 — 22,23\ + v). Here

\ = Y2 — Y1
T2 — I

and v = y1 — T1A = Y2 — Ta .

Let P, = P, = (z,y). Then P; + P> = (3,y3) = (\> — A — 22, 2\ + v). Here we have that

for y? = f(x) being our elliptic curve, A = f;(;) and v =y — .

Let P; 7& P, such that P, = —P,. Then P, + P, = O.

e For O the identity element, O + O +...0 = O.

Although these formulas seem to come out of nowhere, there is a geometric intuition behind
them. The reader can find this geometric understanding of the addition of points on an elliptic
curve on [ST15, Section 1.4]. Another useful formula for addition of points on F is the duplication
formula, which is a shortcut to find the point 2P given a point P.



Lemma 2.10 (Duplication formula). Let E/Q be an elliptic curve and x(P) be the x-coordinate
of a point P € E(Q)\ {O}, then

x* —2Bx2% + B2 —8Cx — 4AC

=(2P) = A(z3 + Az? + Bz + C)

Proof. This follows by using the addition formulas for P, = P, and substituting 3+ A2z?+ Bz +C
for 42 in the denominator of the z—coordinate. O

Theorem 2.11. [Sil06, page 20] The group law makes the group E(Q) a commutative group.

3 Cubic Representation and Transformation

Imagine we are given a fruit puzzle as in Figure 1, where we want to know the amount of apples,
bananas and cherries so that the amount of apples/(bananas + cherries) + bananas/(apples +
cherries) + cherries/(apples + bananas) = 4.

@ & & _
S+ @t @t

Figure 1: Fruit puzzle for N =4

We can generalize the fruit puzzle for any integer IV, not only for the number 4. Writing the
puzzle this way implies that IV is a positive integer, and so are a = apples, b = bananas and ¢ =
cherries, since we want ‘full fruits’. This apparently simple fruit puzzle translates into a cubic
representation problem. Throughout this paper we will show the following theorem.

Theorem 3.1 (Solution to the fruit puzzle). The smallest N > 0 for which there is a solution
to the fruit puzzle is N = 4.

This is already shown in [BM14] but without details and relying on computer algebra to
compute ranks of elliptic curves, while in this paper we illustrate the method to do it (mostly)
by hand. Suppose we want to represent the integer N using an equation in three variables. This
is equivalent to finding positive integer solutions (a, b, ¢) to the equation

a+ b . c
b+¢ a+c a+b

N. 2)



This is the equation of a curve C in three variables in the projective 2-dimensional space
IP’(%2 over the rationals. Note that the curve is symmetric for a, b, ¢ and has the same total degree
in each term hence it is already homogenized. This is easier to see once we put all the terms to
one side. More formally, the homogenized version is the curve

Cn:N(a+b)(b+c)a+c)=ala+b)(a+c)+bb+a)(b+c)+c(c+a)(c+Db). (3)

Definition 3.2 (Trivial point). A point (a,b,c) € Cy is trivial if a+b =0 orb+c¢ =0 or
a+ c = 0. In that case there is no solution to the fruit puzzle. We say a point is nontrivial
otherwise.

The curve Cy (3) has a rational point, namely the point (1 : —1 : 0). Therefore, we can show
there exists a bijective transformation

QONICN—>EN

where Ey is an elliptic curve in Weierstrass form with an affine equation, o (Cn(Q)) = En(Q)
and on((1:—1:0)) =(0:1:0).

This is done through a series of transformations which allow us to choose the axis in such a
way so that we can transform Cp to the elliptic curve En. This way we can map the rational
point (1 : —1:0) on (3) to O. Therefore we make a linear change of coordinates so that the
rational point becomes the point at infinity, (0:1:0) = O. The idea is that the map ¢x maps
(a:b:c)to(x:y: z),sothat we define x,y, z in terms of a,b,c and then we divide by the
z—coordinate to get the affine version of the elliptic curve.

Note that the point (0 : 1 : 0) is a point of inflexion on an elliptic curve. The tangent to
(3) at the point (1 : —1 : 0) does not intersect the curve Cx again, so (1 : —1:0) is a point of
inflexion. Thus, the transformation can be done through a simple change of coordinates [Cas91,
Chapter 8]. This is done by taking the tangent to (1 : —1 : 0) and letting it be the line Z = 0.
We then take another line not passing through (1: —1:0) and let it be the line X = 0. Finally
we let the Y —axis be a third line that passes through the point (1 : —1 : 0) which we do as in
[ST15, Section 1.3] and in the proof of Proposition 5.7 in [Wut18].

The equation of the tangent line to a curve F(x,y,z) = 0 at a point P = (1 : y1 : 21) is

given by the formula
oF

ox
Computing the tangent of Cy at (1: —1:0) gives the line

L or
xr1 y 8:[/

oF
+z

2 =o. 4
Y1 0z 0 ()

€ =
21

(N+2)a+(N+2)b—c=0

and hence we move this line to be equal to Z. We want to let X = 0 be another line that passes
through the point (1 : —1 : 0) so that it maps this point to (0 : 1 : 0). We do this by letting
X =a+ b+ 2c. We can then take Y to be a different line not going through that point such
that it maps the rational point (1 : —1:0) to O. Taking Y = a — b works. In summary, we have

X=a+b+2c
Y=a-0 (5)
Z=(N+2)(a+b)—c.

If we substitute (1, —1,0) into (X, Y, Z) we get the point (0:2:0) = (0:1:0) as desired. We
have X, Y, Z in terms of a, b, ¢ but in order to substitute it into (3) to continue the transformation
we need to have a, b, ¢ in terms of X, Y, Z. Solving for a, b, ¢ gives us

X+ (2N +5)Y +27 X - (2N +5)Y +2Z (N+2)X - Z

2(2N +5) » b= 22N +5) e T B

8



Substituting a, b, ¢ into Cy (3) yields

Xz <2N3 + 11N + @ - 145> +Y?%Z <—2N3 — 15N — ? - ?)

+ XZ?(—2N —10) + X3(—2N? — 11N — 14)
_ X2Z(2N +5)(4N? +12N —3) Y?Z(2N +5)3
B 4 4
—2XZ%(2N +5) — X3(2N +5)(N + 3)
= 0.

To solve for a, b, c and substitute them into Cn we used SageMath [The21] and the code can
be found in Appendix A. We need to transform this projective curve into an affine one. This
is done mapping (X,Y, Z) — (%, %, 1) . In our case we do this by dividing both sides of the
equation by Z3 which results in

Y2(2N +35)°  —X3(2N +5)(N + 3) N X2(2N +5)(4N? + 12N — 3)

472 Z3 4
Letting the new coordinates be (z1,y1) = (%, %) and multiplying both sides by (21\;17%)
yields

—2X(2N +5).

Y2 (2N +5)% = —4(N + 3)x} + (AN? + 12N — 3)x] — 8x1.
The elliptic curve in Weierstrass form requires the right hand side to be monic. We can get

rid of the —4(N + 3) in front of the cubic term by letting = —4(N + 3)x1, so z1 = —INTE)
Substituting z1 in and clearing denominators gives

(114(2N + 5)(N +3))% = 2® + (4N? + 12N — 3)22 + 32(N + 3)z.

We are almost there: we want the coefficient of the y; term to be 1. Note that the coefficient
on the left hand side is a square, and therefore we can do the final change of coordinates by
letting y = 4(2N 4+ 5)(N +3)y;. This gives us the final result, which is the equation we will work
with throughout this paper:

Ey:y® =23 + (4AN? + 12N — 3)2” + 32(N + 3)z (7)

with discriminant A(Ey) = 2'4(N 4 3)2(2N — 3)(2N + 5)3.
Tracing back our steps, we can write x, ¥y in terms of a,b and ¢

—4(a+b+2c)(N +3) 4(a —b)(N + 3)(2N +5)

- (24 N)(a+b)—c and y = (24 N)(a+b)—c ®)

The transformation that maps (a, b, ¢) to (x,y) allows us to also define the following inverse

transformation. We used SageMath [The21] using the code found in Appendix A to solve for
a, b, c using the two equations we have for z,y. Letting s =a + b+ ¢, we get

8Ns—sx+sy+24s 8Ns—sx—sy+24s _ 4Ns+ (Ns+2s)x+12s

2(N+3)z—4AN—-12)  2(N+3)z—4N—-12) °~  (N+3)z—4N —12

We can further divide by s and rearrange the equations to get

a 8(N+3)—z+y b 8(N+3)—z—y c  —4N+3)—(N+2)x 9

s 2M4—z)(N+3)’ s 24—-2)(N+3)’ s (4—2z)(N+3) ©)

In [BM14, page 30| they provide the elliptic curve En together with the maps (8) and (9),
but they do not explain the steps of how to transform Cp into Ey.

To solve the original fruit puzzle (1) we want to find the rational points (z,y) € En(Q) of
(7) which give us positive integer solutions to the projective equation. The following sections
describe the theory needed to be able to effectively solve this simple looking fruit puzzle.




4 Mordell’s Theorem and the Torsion Subgroup

Since we want to find rational points (z,y) € Enx(Q) which then correspond to rational points
(a:b:c) in the projective plane, it is useful to know what En(Q) looks like.

As we already know, the rational points on the elliptic curve form a group, and this group
has a specific form, which is described by Mordell’s Theorem.

Theorem 4.1 (Mordell’s Theorem). [ST15, page 95] Let E be an elliptic curve in Weierstrass
form
E:y?=24ar’+br+c

where a,b,c € Q. Then E(Q) is a finitely generated abelian group.

The proof of this theorem is quite lengthy and out of scope for this paper, but if interested
the reader can find the proof for ¢ =0 in [ST15, Chapter 3].

In other words,

EQZ7¢..0Z8L/0)'2d...0Z/p57
r-copies

where t; € Z~g and p; is a prime for ¢t =1,...,s.

Here ‘r’ is called the rank of the elliptic curve. The finite order part is called the torsion.
This means F(Q) is generated by finitely many points, and hence one can all rational points
just by taking intersection of points and tangents to points.

Definition 4.2 (Torsion). The torsion subgroup of an elliptic curve, denoted E(Q)iors is the set
of rational points of finite order on E. It is denoted by

E(Q)tors = Z/p?Z D...D Z/pI;SZ-
In the case of our specific curve Ey defined in (7), the torsion subgroup is as follows.

Lemma 4.3. [BM14, Lemma 2.1] The torsion subgroup of (7) is isomorphic to Z/6Z if N # 2,
and it is isomorphic to Z/27 & Z/6Z if N = 2.

Therefore the rational points of our elliptic curve are isomorphic to the group Z" & Z/67Z
where the value of the rank depends on N. Before we begin with the proof of this lemma, we
need to introduce a theorem called ‘Mazur’s Theorem’.

Theorem 4.4 (Mazur’s Theorem). [Maz77, Theorem 8] Suppose E is an elliptic curve and that
E(Q) contains a rational point. Then the torsion subgroup of E/Q is isomorphic to one of the
following groups:

i) Z/nZ forn € {1,...,10} orn =12
i) Z)27 & Z)2nZ for n € {1,2,3,4}.

This was previously known as Ogg’s Conjecture and gives us some restrictions on which
points to compute to find what the torsion subgroup looks like. For example, if we have a point
of order 7, we know we do not need to compute higher orders, as there cannot be such a point
by Mazur’s Theorem. Using this result, let us come back to the proof of Lemma 4.3.

Proof of Lemma 4.3. A point P € Ex(Q), P # O has order 2 when 2P = O which is equivalent

to saying P = —P. Since E is in Weierstrass form and the axis of symmetry is the x—axis, the

points satisfying this are the points with y—coordinate 0 and since our curve has no constant

term, the point (0,0) is a point of order 2. The z—coordinates of other points of order two are

the rational roots of #? + (4N? + 12N — 3)z + 32(N + 3). The discriminant of the quadratic

equation is (2N — 3)(2N —5)3, which is a square when (2N — 3)(2N +5) = (2N +1)? — 16 = [J.
Claim: (2N — 3)(2N +5) is a square if and only if N = 2.

10



Proof of Claim. (<) Suppose N = 2. Then (2N +1)? — 16 = 25 — 16 = 9 which is a square.
(=) Note that 2N — 3 and 2N + 5 are both odd. Moreover

2N +5=1-(2N —3)+8

hence
8=1-(2N+5)—1-(2N —3)

and by Bezéut’s Theorem [Con, Theorem 3.5, gcd(2N + 5,2N — 3) | 8. The divisors of 8
are {1,2,4,8} but since (2N — 3) and (2N + 5) are odd, then gcd(2N + 5,2N — 3) = 1.
Since they are relatively prime, the only way (2N — 3)(2N +5) = [ is when both terms are
squares. The difference between them is 8, hence we want two squares whose difference is
8. The difference between two consecutive squares is

(n+1)2—n?=2n+1

which increases as n increases so the difference between squares always grows larger. Thus,
there are no two more squares whose difference is 8 and the only time two squares have
a difference of 8 is when one square is equal to 1 and the other is equal to 9. Suppose
2N +5=1then 2N = —4 and 2N —3 = —7 # 9. Hence 2N —3 =1 and 2N + 5 = 9 which
implies N = 2.

|

Likewise a point has order 3 if and only if 2P = —P. Recall that —(z,y) = (x, —y) so the
x—coordinate remains unchanged and we can apply the duplication formula in Lemma (2.10)
to ©(2P) = z to get

z* —2-32(N + 3)x + (32(N + 3))?
4(x3 4 (4N2 + 12N — 3)22 + 32(N + 3)x)

If we re-arrange it, we have the following equation
32 + 4(4N? + 12N — 3)23 + 6 - 32(N + 3)22 — (32(N +2))? = 0. (10)

Solving (10) for = we have that for any N, the only rational solution to (10) is z = 4. We
have found that 4 is the only rational solution by checking all the solutions to (10) and noticing
that all the others are not rational for any N. We did this using SageMath (see Appendix A).
Substituting = = 4 into (7) yields

43 4 4%(4N? 4 12N — 3) +4 - 32(N + 3) = 16(2N + 5) = 3>

hence y = £4(2N + 5) which gives the points (4, £4(2N + 5)).

Since we have points of order 2 and 3, by Lagrange’s Theorem, there must be a point of
order 6.

Let P € En(Q) be a point of order 6. Then we have that 6P = O which is equivalent to
saying there is a point P = (z,y) € Ex(Q) such that 6P = 3-2P = O. This means that to find
a point of order 6 we can take a general point (z,y) on the curve so that when you double it,
the x—coordinate corresponds to the x—coordinate of a point of order 3. We know that the only
possible x—coordinate of a point of order 3 is 4, and we can use the duplication formula to find
such a point of order 6. In other words,

(x2 — 32(N + 3))? 4
4(x3 4+ (4N2 + 12N — 3)22 + 32(N + 3))z

which implies

z — 1623 — 2(32(N + 3) + 8(4N? + 12N — 3))z? — 12-32(N + 3)z + (32(N +3))> = 0.

11



Solving for x being an integer we get that the only such point has x—coordinate x = 8(N + 3)
(see the SageMath code in Appendix A). Therefore

y? = 83 (N 4 3)3 + 64(4N? + 12N — 3)(N + 3)? + 8- 32(N + 3)?
= 8%(N +3)*(8(N +3) + 4N? + 12N — 3 + 4)
= 8%(N + 3)%(2N + 5)?

soy = £8(N + 3)(2N +5), giving us the points (8(N + 3), £8(N +3)(2N +5)). By Mazur’s
Theorem 4.4 we know there are at most two points of order six, so since 8( N + 3) is a solution to
En(Q) which gives us two points of order 6, we know there cannot be other rational solutions.
Since there is a point of order 6, we need to check whether there is also a point of order 12. We
do not need to check other multiples of 6 as 3 -6 = 18 and Mazur’s Theorem 4.4 tells us that
there is no such point.

If there were to be a point P of order 12, then such point would satisfy 12P = O so
z(2P) = 8(N + 3). By the duplication formula we have

(2% — (32(N + 3))?
4(z3 + (AN? + 12N — 3)a? + 32(N + 3)z
(2% — (32(N +3))?
= 1y
implying 8(N + 3) = 0. Hence 4 - 2(N 4+ 3) = O which means N +3 =0/2 € Z so N + 3 =
2K? <= N =2K? — 3 for some integer K. Expanding the duplication formula leads to

8(N +3) =

(2% — 32(N +3))? = 32(N + 3)(2® + (4N? + 12N — 3)2? + 32(N + 3)x)
where by substituting N = 2K? — 3 we get

= 2t — 64K%23 + (64K?(—1 + 24K? — 16K%))2? — 4096 K12 — 1024K*
= (2° + 8K (1 — 4K — 4K?)z + 64K?%) (2% + 8K (—1 — 4K + 4K?)x + 64K?)
= 0.

Solving for x means solving x2 + 8K (1 — 4K — 4K?)z + 64K? = 0. If x were to be rational it
would imply the discriminant 4K (2K + 1),/(2K — 1)(2K + 3) is rational. But one can check
(2K — 1)(2K + 3) is not a square modulo 8, and hence not a rational square. This is because
there is no value of K that satisfies (2K — 1)(2K + 3) = 0 mod 8 where O € {0, 1,4} which are
the squares modulo 8. Therefore x can only be rational when the discriminant is zero, implying
(2K —1)(2K +3)K = 0. Similarly for 22+ 8K (—1—4K +4K?)z+64K? we get that x is rational
when K(2K — 3)(2K + 1) = 0. Substituting these values of K into N = 2K? — 3 lead to the
discriminant of En being 0 which is not allowed. Hence, we cannot have a point of order 12.
O

Remark 4.5. We define Ex(R) just as En(Q). Then En/R (7) has two components as shown
in figure (2) for N = 4. One is the ‘egg’, where x < 0 and the other is the unbounded component,
with x > 0. Note that given that all the rational torsion points have positive x— coordinate then
all the rational torsion points lie on the unbounded component of the curve.

The points in the torsion subgroup do not lead us to desired solutions of (3). These points
do not help us solve our cubic representation problem as they are just rational points on Ey
corresponding to trivial points on Cy.

Lemma 4.6. An integer solution (a,b,c) to the equation Cy is non trivial if and only if the
corresponding point (z,y) € En(Q) is of infinite order.

12
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Figure 2: Plot of the elliptic curve Ej.

Proof. We can prove this lemma by proving the contrapositive statement instead: a point (a, b, ¢)
on Cl is trivial if and only if it corresponds to a point (z,y) € En(Q) of finite order. Hence, we
need to show that all the points in the torsion subgroup of En(Q) correspond to trivial solutions
and that all trivial solutions yield points in the torsion subgroup. To solve for both a,b, ¢ in
terms of z and y and vice versa, we used the SageMath (see Appendix A).

The point (0, 0) of order two corresponds to (1: 1: —1) € P?(Q) which gives division by zero
in (3). Similarly, for N = 2, the other two points of order two are (—5,0) and (—32,0). Solving
for a,b, c in (9) gives again a = b = —c. The point of order three, (4, £4(2N + 5)) gives division
by zero when solving for a, b, ¢ and thus gives no point on Cj. Similarly as the points of order
two, the point of order six, (8( N + 3), £8(N + 3)(2N + 5)) yields to a point where a = b = —c¢
and hence gives division by zero.

The rational points on (3) that we need to consider such that they give division by zero are
the following. The tuples (a : a : —a) and (a : —a : 0) correspond to (z,y) = (0,0) which is a
point of finite order. The cases where we have points of the form (a : 0: —a) and (0 : a : —a)
result in z = 4 and hence y = £(2N + 5) which is the torsion point of order three. Finally
the last points we need to consider that give division by zero in (3) are the points of the form
(—a:a:a)and (a: —a: a) which correspond to z = 8(N + 3). Thus, a point of order six in the
torsion subgroup.

O

Since the torsion points do not lead to desired solutions, we look at the other rational points
on En. This means looking at points on the subgroup En(Q) having positive rank for N > 0.

13



This brings us to the next section, where we describe methods to compute the rank of an elliptic
curve.

5 Descent by 2-Isogeny

There are several methods to compute the rank of an elliptic curve. In this paper we focus
specifically on the method of ‘descent by 2-isogeny’. We will explain the method for a general
elliptic curve E//Q and in the next section provide some examples with Ex/Q. The fact that we
are working with an elliptic curve with no constant term implies that there always exists the
point (0,0) € E(Q). This allows us to make use of isogenies between elliptic curves to compute
the rank.

Remark 5.1. In this paper we explore the method of descent by 2-isogeny, making use of the
fact that we always have a point of order 2. In [BM1}, page 32] they show isogenies of degrees 3
and 6, which can be computed as the torsion subgroup of En has order 6. Since En(Q) always
has a torsion point of order 3, we could also compute the rank using the method of descent by
3-isogeny. In the thesis [Tim15] and then later in [Beel0] the authors describe the method of
descent by 3-isogeny, and compute the rank using such method.

The following section is based on [ST15, Chapter 3] and [Bri]. The following lemma intro-
duces two maps, ¢ and 1, which are crucial in the method of isogeny by 2-descent.

Lemma 5.2. [ST15, page 83] Let a,b € Q. Define E/Q, E/Q to be two elliptic curves as follows
E:y? =23+ a2’ + bz
and
E:y2 = 2% + ax? + b
where @ = —2a,b = a® — 4b. Let T = (0,0) € E(Q). Then
(i) The map ¢ : E(Q) — E(Q) defined as

Sy — {(“’)) if (.9) # O or (1.y) #T )
(@) otherwise
is a group homomorphism with kernel {O,T'}.
(i) Let ¢ : E(Q) — E(Q) where ¢ is defined in the same way as ¢,
EQ):y? =2®+a® + b
and @ = —2a,b = a* — 4b. Then E(Q) = E(Q) via the map (z,y) — (1z, 1y).
(iii) Let T = (0,0). We define ¢ : E(Q) — E(Q) as

. {(f“g‘b)) if (#.9) # O or (.9) # T 1)
O otherwise.
Then 1) is a group homomorphism with kernel {O,T}.
(iv) The composition ¢ o ¢ : E(Q) — E(Q) is a group homomorphism that sends P+ 2P.
Proof. The proof can be found on [ST15, pages 85-88]. O

The two maps ¢ and 1 are called isogenies.

Definition 5.3. Isogenies are rational maps that are group homomorphisms between elliptic
curves.

Isogenies are defined more generally as maps between other structures, not only elliptic curves
but for the sake of this paper they will be defined between elliptic curves.

14
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Remark 5.4. Having a rational Q-t.orswn pomt' s cru- E(Q) E(Q)
ctal in the method of descent by 2-isogeny. This is be- ¢
cause the existence of the 2-torsion point T = (0,0) _
allows the construction of the map ¢. This is used in = ¢
the proof of Mordell’s Theorem 4.1 as the doubling map o
Yo ¢ helps prove that the index (E(Q) : 2E(Q)) is finite E(Q)
and so E(Q) is finitely generated. This is done using
heights (see [ST15, Sections 3.1-3.3]). Figure 3: Diagram of the maps in

) . ) ) .. Lemma 5.2.
The isogenies carry the rational points of one elliptic

curve to the other. We use them to compute the index
(E(Q) : 2E(Q)) which allows us to derive a formula to compute the rank of an elliptic curve.

Let us start by finding 2E(Q), by counting the number of points of order 2. Let Ry,..., R,
and Q1,...,Qs be such that E(Q) X ZR1 & ... DZR, ®ZQ1 D ... D ZQs. Here Ry,... R, have
infinite order and Q1, - - - Qs have finite order. Then we can write P € E(Q), as P =e1 Ry + ... +
erRr +miQ1+ ...+ msQs. If P has order 2, then 2(ey Ry + ...+ e, R +m1Q1+ ...+ msQs) = O
so all the e;’s are 0.

Moreover, we have that 2m; = 0 mod pﬁi, so if p; is odd, then m; = 0 mod p?, while if p; is
even then m; = 0 mod pfi_l. Denote the subgroup of points on E(Q) of order 2 by E(Q)[2], then
#FE(Q)[2] = 2#{Pi=2} If we compute the points of order dividing 2 on F(Q) we see that there
are either two of them, namely the point O and (0,0), or if the discriminant of the quadratic
equation x2 + ax + b is a rational square, then we get an extra two points which are given by
solving the quadratic equation.

By Mordell’s Theorem (4.1) we have that

2FB(Q) 227" ©2Z/p)' 7 & ... © 27 /p" 7.

If we quotient Z by 27 we get Z/2Z while if we quotient Z/plZ by 27Z/p7 we get two cases.
If p = 2, then it is Z/27Z. Otherwise (Z/pYZ)/(2Z/p'2Z) = {0}.
Let e = #{i : p; = 2}, then we get that
(E(Q):2E(Q) =2"" =2"-#E(Q)[2].

Remark 5.5. Note that #E(Q)[2] is either 2 if the discriminant a> —4b is not a square (namely
the points O and (0,0)) or it is 4 if the discriminant is a square as you get the two extra points
given by factoring = out of 3 + ax?® 4+ bx and solving the quadratic equation.

Here is where the 2-isogeny plays a role. As we have seen in Lemma 5.2, the composition
map is the multiplication by 2, so ¥ 0 ¢(E(Q)) = 2E(Q). We can rewrite (E(Q) : 2E(Q)) as
(E(Q) : ¥ o ¢(E(Q))) and since 2E(Q) € ¥ (E£(Q)) € E(Q), we get

(E(Q) : 2E(Q)) = (E(Q) : ¥(E(Q))) (Y (E(Q) : ¢ 0 $(E(Q)))-
The following is stated in [ST15, page 97] without a proof.

Lemma 5.6. We can further simplify this expression
(BQ:o(EQ)
(ker ¢ : (ker v N G(E(Q)))
Proof. Let v and ¢ be defined as in Proposition 5.2 and denote A = E(Q), B = ¢(F(Q)). Note
that B is a subgroup of A. Let G := A/(B + ker ). Define the following map
§:G = (A)/P(B)
g = ¥(g) mod ¢(B)

(W(E(Q)) : ¢ o d(E(Q))) =

15



where g = a + B + ker for a € A. We claim £ is a group isomorphism.
Firstly note that £ is well defined as

§(9) = &(a+ B +ker o))
= ¢(a + B + kerv))
= ¥(a) +9(B) + ¢(kery)
= y(a) mod ¥(B)

where we used the fact that ¢ is a group homomorphism. To show £ is a group homomorphism,

take g1,92 € G, then £(g1 + g2) = ¥(g1 + g2) = ¥(91) + %11(92) mod ¢(B) = &(g1) + &£(g2). For
surjectivity, let m € 1(A)/¢(B) be a representative of m’ € ¢(A). Then there exists an o’ € A

(4
such that 1(a") = m'. Thus, m = ¢(a’) + ¥(B) = (') + ¥(B) + ¢(ker1p) = (a’ + B + kerv).
Hence &(a’ + B + ker¢)) = m mod ¢(B). Thus, for each m € (A)/¢(B) we can construct some
g € G such that £(¢g’) = m mod (B), so £ is surjective.

For injectivity, let = € ker £ and ¢ defined as above. Then £(z) = 0 where z = a+ B+ker v for
some a € A, and so £(x) = {(a+B+kerv) = 0 mod ¢(B) and since 9 is a group homomorphism,
then ¥ (a) + ¢ (B) + ¢ (ker ) = 1(a) mod ¥(B) = 0 mod ¢(B). So either a € keryp soa=0€ G
ora € Bsoa=0¢€GaG.

Therefore we have

(A)/$(B) = A/ (B +ker ) = (A/B)/((B + ker¢)/B)
and by the ‘first isomorphism theorem’ in [TM18] we have that
(B +kerv)/B = kerv/(kery N B).

Hence
V(A)/¢(B) = (A/B)/(ker ¢/ (ker ) N B)).

If we rewrite it in terms of £(Q) and ¢(E(Q)) we have

Y(E(Q)/$(6(E(Q)) = (E(Q)/6(E(Q)))/ (ker 1/ (ker ) N $(E(Q))))

as desired.
O

Note that kert) = {O, T} and that T € ¢(E(Q)) if and only if b = a? — 4b = O ([ST15, page
2 ifb=0
89]), hence (ker(y) : (ker(y) N ¢(E(Q)))) = .
1 otherwise.
Rearranging (5), the formula for the rank becomes

(E(Q) : 2E(Q))

2= LR

as the denominator is either 2-2if b# Oor 4-1if b =0

The only thing left to us is to compute the indices in the numerator. We can translate the
problem of finding the indices by finding the image of a map « isomorphic to the quotient group.
Let Q* denote the units of Q.
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Definition 5.7. The subgroup (Q*)? C Q* is equal to the set of squares in Q*.

Remark 5.8. Then, in Q*/(Q*)? we have that for x € Q* where x = x2x5, then x = 2 mod
Q.
In other words, all the squares are mapped to 1. Recall that T'= (0, 0).

Definition 5.9. Let E : y? = 2% + az® + bz and P = (z,y) € E(Q). We define o : E(Q) —
Q'/Q
bmod (Q*°) fP=T
a(P)=11 if P=0
2 mod (Q*°)  otherwise.

Proposition 5.10. The map o : E(Q) — Q*/(Q*)? is a group homomorphism.

Proof. The proof can be found on [ST15, page 92].

Remark 5.11. We define a : E(Q) — Q*/(Q*") analogously.
Proposition 5.12. The image of a is isomorphic to E(Q)/%(E(Q)).
The same proposition also holds for @, as is isomorphic to E(Q)/¢(E(Q)).

Proof of Proposition 5.12. The kernel of the map « consists of all the points P € E(Q) such
that a(P) = 1 mod (Q**). Thus, ker a = {0, (0,0), {(z,y) € E(Q) : z = O}}. From [ST15, page
91] we know that O, (0,0) € ¥(E(Q)), in addition to all the points (z,y) € E(Q) such that z
is a nonzero square. Hence we can see ker o = 1)(E(Q)). From the Homomorphism Theorem in
[TM18, page 82] it follows that

a(E(Q)) = E(Q)/ kera = E(Q)/y(E(Q)).

O
Combining this information together, we can finally rewrite the formula for the rank as
E n(E
y - FE@)#3(E@) )

E(Q)) and a(E(Q)).

—

All we are left to do is compute the images «

5.1 Computing the image of «

We can illustrate how to get the image of a(E(Q)) and of a(E(Q)) using the two curves E/Q
defined as F : y? = 23 + az? + bz and E/Q defined as E : y? = 23 + az? + ba.
Rational points on an elliptic curve can be written in the form

= (32

where m,n € Z, e € Z~o and ged(m, e) = ged(e,n) = 1 (see [ST15, section 3.2]). Substituting
these points in the elliptic curve will lead to the equation

n? = m(m? + ame? + be?).

Denote ged(m, (m? + ame? + be*)) = ged(m, b) = by where the sign of mb; > 0. Note that
we assume m # 0 because the case where m = 0 is already included in the image of «. This is
because if m = 0 then (z,y) = (0,0) and «((0,0)) = b which we know will always be there, so
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we want to exclude that case. Then we can rewrite m = bymq and if we substitute it in we get
the condition that b% | n? and hence we can write n = nyb; which leads to

n% = m1 (blm% + ab1m162 + b2€4)

where by = %.

We know ged(m, e) = 1 so ged(my,e) = 1. Moreover ged(m,b) = by so ged(my,by) = 1 and
therefore ged(my, bym? 4+ abymye? +bge) = 1. This implies both terms are squares as multiplied
together they are equal to n?. Therefore my | n? and (bym? + abymie? + bae*) | n? so we can
write ny = ML where M2 = m; and L% = blm% + abymie® + byet. Substituting back in and
simplifying we get a solution (M, e, L) of the equation

L? = by M* + ae®>M? + boe with a,b1,by € Z (14)
satisfying the conditions M # 0 and
ged(M, by) = ged(e, by) = ged(L, e) = ged(M, e) = 1. (15)
Note that m = M?b; and n = LMb; hence the point (x,%) € E(Q) becomes

biM? byML
e2 7 e3

where both terms are a fraction in lowest terms. Therefore a(E(Q)) will consists of 1 and b mod
(Q*)?%, together with all = for which (14) has integer solutions (M, e, L) with M, e, L # 0, for
some by | b. Note that # = b; mod (Q*”) hence the image of o will consist of all square free by
dividing b such that (14) has an integer solution satisfying M # 0 and (15) holds.

Therefore, we need to check whether (14) does or does not have a nonzero solution for each
square free b;. The exact same procedure holds for a(E(Q)), however (14) will have a,b as
coefficients instead of a, b. Before we get to examples of how to compute the rank of our elliptic
curve En (7), we need to describe a way to check whether (14) does not have nonzero solutions.

5.2 Reducing modulo prime powers

Suppose 8 € Z is a root of a polynomial f € Z[X]. Then modulo a prime p, we will also have
f(B) = 0mod p and similarly for prime powers. Hence if f has solutions in integers, then f has
solutions modulo p¥, for all k € Z, which implies that if there are no solutions modulo p*, then
there are no solutions in integers. Note that this also holds for polynomials in more than one
variable.

Remark 5.13. A trivial solution to (14) is a solution where M,L = 0. We will always have
this solution as M, L = 0 implies e = 0 and thus we will always have the solution (0,0,0).

We will always also have the solution (0, 0,0) modulo some prime power, thus we want to find
solutions (M, e, L) such that they are not equal to (0,0,0) and satisfy (15). Thus by nontrivial
modulo a prime power we mean not all M, e, L zero satisfying (15).

To compute the rank of an elliptic curve, we need to know which equations (14) have or
do not have a nontrivial solution. A good approach to discard some equations is to show (14)
has no nontrivial solutions modulo a prime power. We also need to check that if we find some
nontrivial solutions, they also satisfy condition (15).

Theorem 5.14. [AL11, Theorem 5] Let ay,as,a4 € Z\ {0}, a2 € Z and a3 — 4ayas be nonzero.
The equation
a X+ aa X?2Y? + a3V = a4 7> (16)

has solutions modulo p* for every prime p such that p{ 2a1asza4(as® — 4ayas) and k € Z.
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This theorem tells us that to check (14) has no solutions modulo a prime power, it is enough to
check it has no nontrivial solutions modulo powers of p where p | 2b1ba(a? — 4b1bo) = 2b(a® — 4b).
In order to prove it, we first need some other results.

Definition 5.15. A tuple (v,y,z) € Z3 is called primitive if ged(x,y,z) = 1.

Lemma 5.16. [AL11, Lemma 12] Let p be a prime such that p* | a4 and let k € Z~o. Then the
system

a1U2 + (12‘/2 + a3W2 = a4Z2

17
UW =V? an
where ay,as,a3,aq € Z, has a primitive solution modulo p* if and only if (16) has a primitive
solution modulo p*.

Lemma 5.17. [AL11, Lemma 13] Let p be a prime. The system (17), where a; € F), for
i=1,2,3,4 has a nontrivial Fp, solution for any prime p{ 2a1asa4(az? — 4ayaz).

The proof of the two lemmas can be found in [AL11], pages 15 and 17. The idea of the proof
of Lemma 5.16 is that if one has a solution modulo p* for (17) then one can produce a solution
modulo p* for (16) and vice versa. We will prove Lemma 5.17 but before we present the proof
we need to introduce some other results.

In [AL11, Section 3] it is explained how to parametrize the unit circle to find Pythagorean
triples. The following lemma extends this parametrization to conics of the form

az® + by? = 1 where a,b € Zy. (18)

This will later allow us to construct a solution in the proof of Lemma 5.17. We will briefly
explain the procedure of parametrizing (18) for a specific point, which then can be generalized
to a point (xg,yo) on (18).

Suppose we have a conic as in (18) over R. This is defined by

{(z,y) e R? : az® + by? = 1 for a,b € Ry}

with a point on the conic being P = (\_/—é, 0) , as shown in Figure 4.

We can then draw a line with slope ¢ that goes through P, namely the line y = t(z + 1/+v/a).
—bt? 2at
\/§(a+bt2)’ \/a(aibﬁ)

in Figure 5. Since @ is on the conic, we get the following identity in R[¢]

. This is shown

The line intersects the conic once more, at the point () = (

ala — bt*)? + b(2at)? = a(a + bt?)2.

We can do this more generally for a starting point (z¢,yp) and a more general base field,
which leads to the polynomials defined in Lemma 5.19.

Definition 5.18 (Associate polynomials). [AL11, page 6] Let K be a field. Two polynomials
in K[t] are called associates if one is a constant multiple of the other.

Lemma 5.19. [AL11, Lemma 1] Let K be a field and a,b € K \ {0}. Suppose there exist
xo, Yo € K such that axo + byo = 1. Then in K[T|

agi + b = g3
where q1 = bxoT? — 2byoT —axy g2 = —byoT? — 20T + ayy and g3 = bT? + a. Furthermore, at

least two of qi1,q2,qs have degree exactly 2, and if char(K) # 2, then each q1,q2,q3 is nonzero
and no two are associates.
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Figure 4: ax? + by? =1

O

The following definition and theorem are useful tools that we will also use further in our

paper. Let p be a prime. For p{a we call a € Z a quadratic residue if a is a square modulo p,
and a quadratic nonresidue otherwise.

Definition 5.20 (Legendre symbol). For a prime p and a € Z, the Legendre symbol

1 if a is a quadratic residue

a
<p> =< —1 if a is a quadratic nonresidue
0 if a is 0 modulo p.

Theorem 5.21 (Euler’s criterion). For a prime p and a € Z such that a # 0 mod p then the
Legendre symbol is as follows
a p—1
<> =a 2 mod p.
p

Proof. The proof can be found on [Rosl1, page 418]. O

Theorem 5.22. Let p be an odd prime. Then

ab a b
5)-G)G)
Proof. The proof can be found on [Rosll1, page 419]. O
The last lemma we need before we begin the proof of Lemma 5.17 is the following.
Lemma 5.23. [AL11, page 8] Let p be prime and f,g € F,[X] be non zero polynomials of degree

at most two. If (%) = (%) or (%) =— <%) for allt € I, then f and g are associates.

The proof is based on the proof by [AL11].
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Figure 5: az? + by? =1

Proof. Let p be a prime and f,g € Fp[X]. Suppose there exists a ¢ € F,, such that (M> =

(%) . Then (%) — (%) = 0 and by Euler’s criterion p

1) —g®)F =0modp. (%)
Both f and g are of degree at most two so the left hand side of (x) is of degree at most p — 1.
However, every t € F,, is a root of the left hand side (x) so the degree of (%) must be p. This
implies left hand side of (x) is the zero polynomial. Therefore, f (t)%, g(t)% are associates.
If we factorize them into irreducible elements then they will have the same irreducible factors
up to multiplication by constants. Hence, so will f and g and therefore f and g are associates.

Assume that (%) = — (%) . Let a € ), be a quadratic nonresidue. Then (%) = —1so
(%) = <%ft)> . By the same argument as above, we conclude that f and ag are associates
and hence f and g are associates. O

The following proof is based on [AL11, Lemma 13].

Proof of Lemma 5.17. Let p be a prime and p { 2ajazas(a3 — 4ajaz). Since we are working over
F, and a4 is nonzero, we can always multiply the whole equation by aZl and work with the case
where we have a system of equations of the form

a1U2 + a2V2 + CL3W2 =72
UW = V2
Consider the equation f(X,Y) = a1 X? + a2 XY + a3Y?. Since pta; and p { (a3 — 4aia3) then
2
also az — 4% # 0 mod p and thus we can apply Lemma 5.19. Consider the polynomials q1, g2, ¢3
found in Lemma 5.19 applied to
2

a
X2 o 2 Y2 — 22
ai + (a3 746“)
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so that we have

a1qi + (a3 — L%)QQ = q3
1 da, 3
In this case
a% 2 2
X+ (a3 — =) =7° <—
4@1
X2 a% Y2
= -2y =1
“gg Tlas— 1) 7

Note that in this case we have that xyp and yp as in Lemma 5.19 correspond to % and %
respectively.
I
Let q; = q1 — 72 q2, then

as as
f(d), @) = a1(qn — —q2)* + ao(q1 — —)q2 + a3q3

2a1 2@1
2 a% 2 a% 2 2
= aq] — a2q1q2 + ralqz + a2q192 — 24, g3 + a3qs
2 a% 2
= aqi + (az — Tas )%
ai

2
By Lemma 5.19 we know ¢i, g2 are not associates and since ¢} is nonzero then ¢/, g2 are not
associates. By Lemma 5.23 there exists a ¢t € [}, such that

(57) - (%)

so that means ¢} (t)g2(t) = s* for some s € Fp[t]. Hence, (U,V,W, Z) = (¢} (t), s,q2(t), g3(t)) is a
nontrivial solution to (17).

O]

We can also double check that the solution (¢ (t), s, ¢2(t), ¢3(t)) works by direct substitution.
From Lemma 5.19 we know the polynomials g; for i = 1,2, 3 are given by
q1 (t) = bﬂ?otQ — Qbyot — a1xg
q2(t) = —byot® — 2a1z0t + a1y
g3(t) = bt* + a1

2
where b = (ag + 4%) and a1z + byo = 1. We only need to check whether a;q? + bg3 = ¢3 as we
already know from the proof that substituting ¢} (¢) and g2(t) in the left hand side of (17) gives
us a1q? + bgs. Thus
a1q} + bgs = (ar1b*xd + b3yt + 3(albad + arbyd)t* + afad + aibiyd
= b%(ar22 + byd)t? 4 2a1b(arad + byd)t? + a?(a1xd + byd)
= b*t! + 2a1bt* + af
exactly as we wanted.
Lemma 5.17 tells us that (17) has a nontrivial F, solution for primes p { 2a1a3a4(a3 — 4a;1as),
and by Lemma 5.16 this then implies that (16) has a nontrivial F,, solution.
The following lemma tells us that if we have a solution modulo a prime p, then we can ‘lift’

the solution modulo p* for all k € Z~. Hence, this helps us prove we have solutions modulo p*
in Theorem 5.14.
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Lemma 5.24 (Hensel's Lemma). Let f € Z[X], k € Z~1 and p a prime. Suppose there is an
s € 7 such that f(s) = 0 mod p*~' and f'(s) # 0 mod p. Then, there exists a unique r € 7,
0<r<p, given by r = —(f’(s))*l% mod p such that !

f(s+rp"1) =0 mod p*.

A more precise version of this lemma together with its proof can be found in [Ros11, Chapter
4.4]. Having introduced these tools, we can proceed to prove Theorem 5.14.

Proof of Theorem 5.14. Let p be prime and p { 2ajazas(as®—4a1a3). By Lemma 5.17, the system
(17) has a nontrivial F), solution and hence by Lemma 5.16, also (16) has a nontrivial I, solution.
Let (z0,¥0,20) € Z> be such a solution. Without loss of generality the solution is primitive, as
we can always factor out the common term. If p | g and p | yo then p | zp, so at least one of
x0, Yo has to be coprime to p. Since they are symmetric, suppose ged(p,yo) = 1. Then yo € Fy,
and multiplying by its inverse we get that (zoyy ', 1,20y, ") is also a solution to (16) (modulo
p). Denote = = xy; ', 2 = 20y, ', then substituting it in (16) we have ajz* + agx? + ag = as2>.
Then we can have two cases.

Case I: 2 = Omod p. Then z is a root of f(T) = ayT* + axT? + a3 € F,[T]. Suppose
f'(z) = 4a12® + 2asz = 0 mod p. Note = # 0 mod p as otherwise f(z) = az = 0 mod p which
is a contradiction as we assumed p t az. Hence da123 = —2a92? mod p so as = —2a12? mod p.
Therefore

0= f(z)
= (—4a1)a1z* 4 (—4a;)asz® + (—4ay)a,
= —4a%3:4 + 2(—2a1x2)a2 — 4aia3
= —a3 4 243 — 4aa3

= a% — 4ay1a3 mod p

which is a contradiction since we assumed p { (a3 — 4ajas). Therefore f'(x) # 0 mod p. By
Hensel’s Lemma 5.24 there exists a unique r € Z, 0 < r < p, such that f(r) = 0 mod p>.
Therefore (r,1,0) is a solution to a1 X* + aa X?Y? + a3Y* — a4Z? = 0 mod p?. We can repeat
this procedure to get solutions modulo p* for all k € Z+1.

Case II: 2z # 0 mod p. Then z is a root of f(T) = asT? — (a12* + asa? + a3) € F,[T]. Note
that f'(2) = 2a42z # 0 mod p since p t 2a4. Thus by Hensel’s Lemma there exists a unique r € Z,
0 < r < p, such that f(r) = 0 mod p?. Therefore (z,1,7) is a solution modulo p?. We can repeat

the process to get solutions modulo p* for all k € Z~ ;.
O

In this subsection we worked with the idea that if there are solutions to some polynomial
over the integers, then there is a solution to that polynomial modulo some prime power, and
we showed which primes to consider for the case of the quartic (16). However, having solutions
to a polynomial modulo some prime power, or even over the real numbers, does not imply that
the same polynomial will have solutions in the integers. Hasse’s Theorem [AL11, Theorem 2]
tells us some information on the case where we work with a homogeneous polynomial of degree
2, but for higher degrees we cannot deduce much about integer solutions from real solutions or
solutions modulo p* for p prime and k € Zy.

One of the issues of the 2-isogeny descent method is if we encounter such a situation while
computing the rank of the curve. The best we can do is apply some smart tricks. In the method
of descent by 2-isogeny, we know that #a(F(Q))#a(E(Q) is a power of 2. Suppose for example,
that for F(Q) we get four equations of the form (14) and also that b is not a square. If we find

!'Note that (f'(s))"* refers to the inverse of f’(s) modulo p.
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the first two have a solution but the third one does not, then we know the fourth one will not
either as we cannot have 5 elements in the image of «.

Having acquired all the necessary tools to compute the rank we proceed to illustrate how it
works with a couple of examples.

5.3 Examples of rank of Ey

Recall that we want to compute the rank of (7) since the points in the torsion subgroup do
not lead to desired solutions. Consider the following examples, where we compute the rank for
N =1 and N = 4. Recall that the isogeny maps the rational points on En to the rational
points on Ey defined as

En :y* = 2% + aa® + bx where @ = —2a and b = a® — 4b. (19)
More specifically we have an isogeny between elliptic curves
(Z) :En — E_'N
2 (.2
vy (x—32(N +3))y
(2,9) < ( ( )

z2’ x2
where Ey : y? = 2% — 2(4N3 + 12N — 3)z% + (2N — 3)(2N + 5)3z [BM14, page 32].
Example 5.25 (N =1). When N = 1, our elliptic curve Ex (7) becomes

Ep:y? =23 +132%2 + 128
and the curve given by the isogeny is
Ey :y? = 2% — 2622 — 343.

Let us compute first the image of a(E;(Q)). Here a = 13 and b = 128. We can factorize b as
b = biby = +1-+£128 = £2 . 464, which are the only square free options for b;. Note that
a(128) = 2 mod Q’, so we already know 1,2 € a(E(Q)). This leaves us to check whether
—1,—2 are in the image, which gives rise to the following equations

I L? =—-M*"+13¢2M? — 128¢*

II. L? = —2M* + 13M?e? — 64e’.
We compute 2b(a? —4b) = 2-128(132 —4-128) = —87808 = —28-73, so we can use Theorem 5.14
to check whether I and II have solutions modulo p | 2b(a? — 4b), as those are the primes (and
their powers) that might give us no solutions according to Theorem 5.14. To check for solutions
modulo a prime power p* we used SageMath [The21] (see Appendix A). Both equations have no

nontrivial solutions modulo 7, and hence no rational solutions. Therefore —1,—2 ¢ a(E1(Q)),
so #a(Ey(Q)) = 2, namely a(E(Q)) = {1,2).

For a(E1(Q)), we get have a = —26 and b = —343 = —7 mod Q*”, so we know that 1, —7 €
a(E1(Q)) and thus we only need to check by = —1,7. Hence we get

I L* = —M*— 26> M? + 343¢*

II. L? = 7M* — 26M?%e? — 49¢*.
We compute 2b(a?—4b) = —1404928 = —2!2.73. Both equations have nontrivial solutions modulo
24, but none of these solutions satisfying being not all zero and (15). Therefore —1,7 ¢ a(£1(Q))
and hence a(E1(Q)) = {1, -T7}.

Substituting into the rank formula we get
2-2

QTZT—l

sor =20.
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The example did not lead to desired solutions to the fruit puzzle, as the rank is 0. Another
example which leads to a desired solution is for N = 4.

Example 5.26 (N = 4). Substituting N = 4 we get the equations
Ey:y? =23 +1092% + 2242
and )
Ey:y? = 2% — 21822 + 10985z.

For E,; we have a = 109 and b = 224 = 14 mod Q* so we know that 1,14 € a(E4(Q)). We
can factorize b in the following ways to get b1 # 1,14 squarefree: b = £2 - +112 = £7 - £32 =
—14(—16). This leads to the following equations

I. L?2 = 2M* +109¢2M? + 112¢* IV. L? = —TM* 4+ 109¢2M? — 32¢4
II. 12 = —2M* +109e2M? — 112¢% V. L? = —14M* + 109¢2M? — 16¢*
II1. 1?2 = TM* + 109e2M? + 32¢4 VI. L2 = —M* +109e2M? — 224¢4.

Here we have that 2b(a? —4b) = 2-224(109% —4-224) = 26.5.7-133. Again we use Theorem
5.14 to check for powers of primes p | 2b(a® — 4b), so the primes 2,5, 7,13 and their powers. To
check for solutions modulo these primes we used SageMath (again, see Appendix A).

For I, note that gcd(M,112) = 1 so M = 1 mod 2. Therefore M = 1mod 4 or M
3 mod 4, and since 3* = 32 = 1mod 4, we get that reducing modulo 4, I becomes N2
2 + e? mod 4 which has no solutions. We get that II also has no solutions modulo 4, and III
no solutions modulo 5 and IV has no solutions modulo 13. Equations V and VI both have
the same solution, namely (M, e, L) = (2,1, 14). Note that because in Equation (14) both M, e
are squared, then (—2,1,14),(2,—1,14),(—2,—1,14) are also solutions. Therefore we get that
a(Ex(Q)) = {£1,+14}.

The curve Ey has a = —218 and b = 10985 = 65 mod (Q*)2, so 1,65 € a(FE4(Q)). Since
a < 0 and b > 0, factorizing b to get by, by < 0 will lead to L? < 0 and since we want integer
solutions that does not work. Hence, factorizing b to get square free, positive b;’s (excluding
1,65) we have

I. L2 = 5M* — 218¢2M62 + 2197¢*
I1. 12 = 13M* — 2182 M 62 + 845¢2.

Here 2b(a? — 4b) = 78740480 = 2'0.5.7-133. Reducing I and II modulo 7 we get that they both

do not have nontrivial solutions, so a&(E(Q)) = {1,65}. Hence, the rank formula gives us

_2'4_

2’!’
4

2
ans thus r = 1. Therefore we have that

Ei(Q) X Z & Z/6Z.

Since the rank is one, Lemma 4.6 tells us that we get nontrivial solutions for (a,b,¢) in the
projective plane. Looking back at our elliptic curve for N = 4,

Ey:y? =23 +1092% + 224z
we got the following results from equations V and VI:

We have that for V, the solutions (2,1, 14) and (-2, —1,14) give us (z,y) = (—4, —28). This
point only gives us the trivial solution (a,b,c) = (0,0,0). However, the points (—2,1,14) and
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(2,—1,14) give the point (z,y) = (—4,28) which corresponds to (a,b,c) = (11,2,—1) in the
projective plane.

For VI we have the opposite. The points (—2,1,14) and (2, —1, 14) give us (z,y) = (—56, 392)
which leads to the trivial solution, while the other two points lead to nontrivial solutions, namely
(x,y) = (=56, —392) corresponding to (a,b,c) = (—5,9,11).

Let P = (—4,28). The point P is of infinite order and it can be written as P = (—56, —392)+
(0,0) where (—56,—392) is a point of infinite order and (0,0) is a point of order 2. However,
there is no point S € E4(Q) such that a multiple of S is equal to P. A generator for E4(Q) given
by SageMath is the point (—100,260), which is equal to P + Q3 where ()3 is a point of order
3 or equivalently, is equal to (—56, —392) + Q¢ where Qg € Z/6Z is a point of order 6. Recall
that F4(Q) = Z ® Z/67Z and therefore we can also generate it by letting P be a generator for
the infinite part while the torsion subgroup is cyclic and is generated by a point of order 6 (see
[BM14, Remark 2.2]). Thus, every rational point in F4(Q) can be written as nP + m(Q) where
n € Z, Q is a torsion point of order 6 and m € {0,1,2,3,4,5}.

We can compute multiples of the point P until we reach a point on E4(Q) which corresponds
to a, b, ¢ > 0. We do this using SageMath, in the code that can be found in the Appendix A. As
also stated in [BM14], we find that the smallest integer n, for which a,b,c¢ > 0, is n = 9. The
point of 9P and the corresponding point (a : b: ¢) are as follows:

9P — —66202368404229585264842409883878874707453676645038225
| 13514400292716288512070907945002943352692578000406921
5880083515730808330737675172734718133008567285029673035187174871330798870061 1210)

1571068668597978434556364707291896268838086945430031322196754390420280407346469

with corresponding values

(a:b:c)=(154476802108746166441951315019919837485664325669565431700026634898253202035277999 :
36875131794129999827197811565225474825492979968971970996283137471637224634055579 :
4373612677928697257861252602371390152816537558161613618621437993378423467772036).

In fact P is the generator of E(Q) modulo the torsion subgroup, for which the smallest
multiple corresponds to a positive solution to the fruit puzzle. If we define a new point P’ = P+T
where T is in the torsion subgroup of E4(Q), we can see that indeed there is no m € Z such
that mP’ corresponds to all a, b, ¢ > 0 for m < 9. In some cases, for example for ) being a point
of order 3 we see that 9P’ corresponds to a,b,c > 0. The values of mP’ and the corresponding
points (a : b : ¢) are not written in this paper, but one can find them using the SageMath code
we used, found in Appendix A. We will elaborate more on the size of these solutions in a later
section. In the table below we summarized the first multiple of P’, denoted by n, for all the
different torsion points, for which there are positive solutions to the fruit puzzle.

P n | # digits of a | # digits of b | # digits of ¢
P +(0,0) 13 168 167 167
P+ (4,52) 9 81 80 79
P+ (4,-52) 9 81 80 79
P +(46,728) | 13 167 194 167
P+ (46,-728) | 13 167 167 168

Table 1: Smallest n for which nP’ corresponds to a,b,c > 0.

However, if we compute higher multiples of P’, although the number of digits of a,b,c
increases (see the last subsection of Section 6) a, b, ¢ can be negative again. This is because in
order to get positive a, b, ¢ we need the xz—coordinate of the point P’ to be within certain bounds
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which depend on N and as P’ grows it can happen that x is not within those bounds anymore.
We will elaborate more on this in later sections.

A later result tells us that the rank of En(Q) will be 0 for all odd N. Thus, if we want to
know which smallest positive N yields rank 1, we only need to check the rank of the elliptic
curve En(Q) for the case where N = 2.

Example 5.27 (N=2). Let N = 2. Then

E>(Q) :y* = 2 + 372% + 1602 and
Eo(Q) : 92 = 23 — 742 + 729

For Es, we have b = 160 = 10 mod (Q*)?, thus 1,10 € a(FE2(Q)). We can factorize b as follows
b= b1by = —1(—160), £2 - 80, +5 - £32

where we excluded the case of =1 £ 160 as we already know it is contained in the image of a.
Using Theorem 5.14, we find that the primes whose powers we need to check to exclude some
equations of the form

L? = by M* + aM?e? + boe?

are 2,3 and 5. The equations corresponding to by = —1,2,5 have no solution modulo 3 (or
some power of 3). For by = —2 we have the solution (M,e, L) = (2,1,36). For by = —5 we
find the same solution, (2,1,36). For all the remaining values of b; we find the equations have
no solution modulo 22. Thus, a(E>(Q)) = {1,10, -2, —5}. For the isogenous curve we see that
b=3%=1mod (Q*)?, and that we can only factor it as byby = (4-3)(4:243). For the case where
b1 = —3 and by = —243 we see that it yields the equation

L? = —3M* — 74e2M? — 243¢*

which cannot have any solutions as we have that the right hand side is always negative and we
cannot have a negative square. If b = 3 we see instead that L? = 3M* - 742 M? + 243¢* has
no solution modulo 2* for which ged(M, e), ged(L, e) = 1. Therefore #a(Es(Q)) = 1.

Thus,

#a(E2(Q))#a(E2(Q)
2

_ 41

2" =

=1
so the rank is 0 and thus E»(Q) = Z/2Z & 7 /6Z.

This proves Theorem 3.1, as we know that the rank can only be positive if N is even. Since
N = 2 gives 0 rank, then the smallest positive rank for En(Q) occurs when N = 4.

6 Positive Solutions to the Fruit Puzzle

The example with N = 4 gave us positive rank and thus a solution (a, b, c) to Cn (3). However,
if we want to solve the fruit puzzle, we cannot have negative fruits. This focuses our attention
on finding (z,y) € En(Q) such that they give positive (a, b, c) on Cy. For the case where N > 0
the following theorem gives some conditions on x that give the desired positive solution.
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Theorem 6.1 ([BM14]). Let (z,y) € En(Q) with corresponding (a,b,c) € Cn(Q). Then a,b, c >
0 if and only if

% (3 — 12N — 4N? — (2N +5)/(2N + 5)(2N — 3)) <z <—-2(N+3)(N++VN2-4) (20)

or

—2(N+3)(N—-+vVN2-4)<z< 4(N+3> (21)

N +2
The following proof is based on the proof of Theorem 4.1 in [BM14].

Proof. (=) Suppose a,b,c > 0. Then s = a+b+cis also positive. Then we have that %, g 0
and in particular substituting (9)

ab _ (8(N+3)—z+y)(8(N +3) —z—y)

= > 0.
52 52

This happens if and only if

0<@BN+3)—z+y)B8(N+3)—z—y)
= —16(N +3)z + 64(N +3)? + 2% — ¢°
= —16(N + 3)z + 64(N + 3)% + 2% — 2> — (AN? + 12N — 3)2? — 32(N + 3)z
= 64(N +3)% — 2% —AN(N + 3)2? + 42? — 48(N + 3)
= (4 —2)(x* + 4N(N + 3)x + 16(N + 3)?).
Either both terms are negative or both positive. Suppose they are both negative, so x > 4, then
22 +4N(N +3)z 4+ 16(N +3)? < 0 which can only happen when z is negative, contradicting the

fact that = > 4. Therefore both terms are positive, so z < 4 and 2?4+4N(N+3)z+16(N+3)% > 0.
Using the quadratic formula we find that this happens when either

x> —2(N+3)(N—-+N2—

or

z < —2(N +3)(N + /N2 — 4).

Similarly
c —4N+3)—(N+2)x
c_ — 4
p A-n(N13 VTS

The inequality y? > 0 gives one last bound for x. Note that

N +3
N+3)°

y? =23 + (4N? + 12N — 3)2? + 32(N +3)z > 0

when z > (3 —4AN(N +3) — (2N +5)/(2N +5)(2N —3)).
Thus we have

%(3 —4N(N +3) — (2N +5)/(2N +5)(2N —3)) < —2(N + 3)(N + /N2 — 4),

and —2(N 4 3)(N + vV N? — 2(N 4+ 3)(N — VN2 —4),
N
and —2(N +3)(N — VN? —4) < —4 <N:tg) .

The first inequality follows from assuming (3 —4N(N +3) — (2N +5)/(2N + 5)(2N —3)) >
—2(N + 3)(N + vV N? — 4) which leads to a contradiction as it implies N < 0. The second
inequality follows from the fact that —2(N +3)v/N? — 4 < 2(N+3)v/ N2 — 4. The last inequality
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follows from assuming —2(N + 3)(N — VN2 —4) > —4 (%—ig) which leads again to N being
negative. This leads to the desired bounds for x

% (3 — 12N — 4AN% — (2N +5)\/(2N + 5)(2N — 3)) <2< —2(N+3)(N+V/N2—4)

or

N +2

(<) Suppose (z,y) € En(Q) such that z satisfies (20) and (21). Substituting x as in (8)
into one of the bounds gives

—4(a+b+2c)(N +3) _4<N+3>

—2(N+3)(N—-VN2-4)<zx<—4 <N+3> .

(N+2)(a+b)—c N +2
¢$a+b+%>a+b—N12

< (2(N+2)+1)c>0.
Since N > 0 then 2(N +2) + 1 > 0 which implies ¢ > 0. Likewise

—4(a+b+2c)(N +3)
(N+2)(a+b)—c
< 2(a+b+2c) <(N—-+VN2—4)((N+2)(a+b)—c)
= (a+b)((N+2)(N—VN2—4)—2)> (N +4—+/N2—4).

We want to check whether the right hand side is negative. We have that N +4 — v N2 —4 <0
if and only if 16N + 20 < 0 and since N > 0, that is impossible. Since ¢ > 0 then the
right hand side is positive. Next we need to know what the sign of a + b is, so we need to
check whether ((N + 2)(N — VN2 —4) —2) < 0 (as it could happen that both expressions on
the right hand side are negative thus being positive once multiplied together). If we assume
((N+2)(N—+VN?2—-4)—2) <0itleads to N < 0. Therefore (N +2)(N — VN2 —4)—2)>0
and hence a+b > 0. Thus, the last thing we need to check is if one of a or b is negative. Suppose
that is the case. Then, ab < 0 and hence

> —2(N +3)(N — /N2 —4

ab

32 < 0.
But we know from the first part of the proof that this would imply < —2(N +3)(N —vN? — 4)
or x > —2(N + 3)(N + vVN? —4) and it contradicts our assumption of = satisfying (20) and
(21), therefore both a,b > 0. O

This theorem tells us that the rational points (z,y) € En(Q) that correspond to the points
(a,b,c) € Cy that are solutions to the fruit puzzle live on the ‘egg’ component of the elliptic
curve. Therefore we have some restriction on x, so the next question to ask is whether we have
restriction on V.

Remark 6.2. In [BM14, Section 6] it is explained if there is a rational point on the egg com-
ponent of En, there there will be a point that satisfies the inequalities of Theorem 6.1 and thus
leads to desired solutions of the fruit puzzle. This is because the rational points are dense on
both the egg and the unbounded component of En. Therefore, there will always be a solution to
the fruit puzzle.
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6.1 Odd N and parametrization of N

The following theorem tells us that for odd N there are no rational points on the egg component,
thus no positive solutions to the fruit puzzle.

Theorem 6.3. [BM1/, Theorem 5.1] Suppose N = 1 mod 2. Then all rational points (x,y) €
En(Q) satisfy x > 0.

The proof is based on the proof of Theorem 5.1 in [BM14]. Throughout the proof we will
repeatedly use the Jacobi symbol, which is defined as follows.

Definition 6.4 (Jacobi symbol). Let n € Z odd with prime factorization n = p’il...pfj, ti € Z,
where p; # pj for alli# 5, 1,5 =1,...,s. For gcd(a,n) =1 the Jacobi symbol is

B-() ()

where each <p£> is the Legendre symbol for the prime p; and i € {1,...,s}.

The Jacobi symbol behaves similarly as the Legendre symbol, as described in the Theorem
below.

Theorem 6.5 ([Rosl1] page 444). Let n € Z be odd and a,b € Z be relatively prime to n. Then
i. if a = b mod n then (%) = (%);
i () = (3) (3);

n—1

iii. (=) = (-1)(*2);
w. (%) = (—1)<%)

Theorem 6.6 (The reciprocity law for Jacobi symbols). [Ros11, page 446] For n,m € Z~1 odd

and relatively prime, then
n m n=1 m-=1
(@) (7)==
m/ \n

The proof of both theorems can be found on [Rosll, pages 444-447]. Using these tools we
go back to the proof of Theorem 6.3.

»

Proof of Theorem 6.3. Suppose N = 1 mod 2. Then N + 3 is even and hence we can write it as
N + 3 = 2M, so that it simplifies the equation of the elliptic curve Ey. Substituing M into (7)
yields
y? = 23 + AN (N + 3)2? — 32% + 32(N + 3)z
= 23 + 4(2M — 3)(2M)x? — 32° + 64Mx
=23 + (16M? — 24M — 3)2® + 64 M.

Note that if (z,y) € En(Q) then the x—coordinate is of the form x = dSL; where d,r,s € Z, d is
square free and ged(r, s) = 1 Substituting this in we get

d d2 4 2
Y= — ( + (16M?* — 24M — 3) +64M>

s st
3,.2 2
(yf) d + (16M2 — 24M — 3)‘”
"
3
(yd) = dr + (16M? — 24M — 3)r2s2 % (*)
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2
and since the square on the left hand side is an integer that implies d | 64 M. Letting (%) =0,
multiplying by 4d and completing the square gives

4d0 = 4d*r* + 4d(16M? — 24M — 3)r?s*> 4+ 4 - 64M s*
= (2dr® + (16M? — 24M — 3)s*)? — (16 M? — 24M — 3)*s* + 4 - 64M s*
= (2dr? + (16M? — 24M — 3)s?)? — (4M — 1)3(4M — 9)s*  (%%)

and in particular since d | 64M and is square free, d | 2M.
The idea is to show that there can be no solutions r, s € Z to (x) when d < 0. We do this by
considering different cases for d.
Case I. d < 0 and odd. Let d = —u where u > 0 and odd. Since d | M, let M = wm. Then
(%) becomes
4 2 2.0  04um 4
O=—ur®+ (16M* — 24M — 3)r°s +—7us

= —ur + (16 M? — 24M — 3)1%s* — 64ms™.

Note that gcd(—u,um — 1) = 1 so the Jacobi symbol

(ar” > (o) ()

Then ( —1 1) = (—1)4M == = (—1)?M~1 = —1 which follows from applying Theorem 6.5. Note
that (4 ) is its own inverse, as (4M ) = 1 so together with applying Theorem 6.6 we have
u u—1 AM — 1
—(—1) 7T
(=) = 0 ()
Here

(#2)-(=)- ()

as 4um — 1 = —1 mod u. Putting it back together gives

(rs) =07 ()
o

Therefore there exists a prime p | (4M — 1) such that ( ) = —1. This is because if for all

5

(—2ur? + (16M2024M — 3)s?)? = —4ud mod p

primes p dividing 4M — 1 we had (%‘) = 1 then (

(xx) becomes

1. Therefore modulo that prime

which can only happen if (—2ur? + (16M2024M — 3)s?)? = 0 mod p since —u is not a square
modulo p. Since 4M — 1 = 0 mod p, then 4M = 1 mod p so
—2ur? + (16 M? + 24M — 3)s*> = 0 mod p
= —2ur’(1 -6 —3)s>=0mod p
= —2ur? —8s?> = 0 mod p
= 45? = —ur? mod p.
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Since u is not a square this implies s = 7 = 0 mod p which contradicts the fact that ged(r, s) = 1.
Case II. d < 0 and even. Set d = —2u,u > 0 odd and M = um as before. Then (xx) becomes

(—4ur?(16M? — 24M — 3)s%)? — (4M — 1)3(4M — 9)s* = —8ul.

We apply the same method as in case I, but first we need to subdivide into two subcases.
Subcase I. M even. Then, by Theorem 6.5

(1) = () (=)
(o) = (') (=)

Evaluating those Jacobi symbols we have

1 _ -1 2_ _
(4M_ 1) _ (_1)2M 1 _ _1and <4M_ 1) _ (_1)2M M _ (_1)M(2M 1) 1,

where

since M is even. By Theorem 6.6

(=) -0 () =0

<
() ()7 (3)

Hence

Therefore there exists a prime p | (4M — 1) such that (_72“> = —1. Then (xx) becomes

(—4ur?(16 M? — 24M — 3)s*)? = —8ud mod p
and since —8ull = —2u - 400 and we know —2u is not square, this can only happen if

—4ur? (16 M? — 24M — 3)s*> = 0 mod p
= —4ur? + (1 -6 —3)s> =0 mod p
= 4s* = —2ur? mod p
and again, since —2u is not a quadratic residue modulo p, then this can only happen when
r = s = 0 mod p which again contradicts the fact that r and s are relatively prime.

Subcase II. M odd. Write M = um with both u,m odd and d = —2u as before. Then (%)
becomes

64um 4

— S
—2u

= —2ur® + (16M? — 24M — 3)s*r? — 32ms™.

0= —2ur? + (16 M? — 24M — 3)s*r? +

Modulo 4, it becomes
r2(2ur? + s?) = O mod 4.

The squares modulo 4 are 0 and 1. Suppose s is even, then we can write it as s = 2k for some
k € Z and hence s* = 0 mod 4. Since r and s are relatively prime, then r can either be 1 or 3
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modulo 4. Note that u is odd and r* = 1 mod 4 for both r = 1,3 mod 4. Therefore we have the
following
2-1=2 ifu=1mod4

r2(2ur? + 5?) = 2urt = 2u =
2.3=2 ifu=3mod4

and since 2 is not a square modulo 4, then s must be odd. We know r and s are relatively prime,
so r is even. We can write r = 2k so

2urt + (16M? — 24M — 3)s%r? — 32ms® = O 'mod 8
< —3r’s° =0 mod 8
— —3(r/2)? = 0/45* mod 8

since r is divisible by 2. Therefore (r/2) = 0 mod 8 so it is even. Write £ = 2t for some t € Z
so r = 4t. Therefore

O = —2ur® + (16M? — 24M — 3)s*r* — 32ms?
= —2ud*t? + (16 M? — 24M — 3)s*16t> — 32ms®.

Dividing everything by 16 yields
—32ut? + (16 M? — 24M — 3)t?s> — 2ms? =0

and modulo 4 it becomes
—3(r/4)%s* — 2ms* = O mod 4.

Note that s is odd and hence s = 1 mod 4 or s = 3 mod 4 so s2 = 1 mod 4. Therefore we have
-3 (2)2—2771 = [0 mod 4 and since m is odd we have that 2m =2-1=2mod 4 if m =1 mod 4
or2m=2-3=2mod4 if m =3 mod 4 and thus

2
—3(1) — 9 =0mod 4.

Here
3 (f)2_25 2 %f (r/4)? = 0 mod 4
4 3 if (r/4)>=1mod 4

which are both not a square modulo 4 so this is also impossible.
O

This result narrows down the options we have for N to get positive solutions to the fruit
puzzle. Together with Theorem 6.1 we know that not only we need even N, but we also need
x to be negative (in fact, less than —4) to be able to get positive solutions at all. The next
questions we can ask ourselves is whether there are infinitely many even positive integers N
which result in positive solutions to Cl.

Theorem 6.7. [BM1/, Theorem 5.3] There exist infinitely many positive even integers N such
that (3) has positive solutions.

Proof. We want infinitely many positive values of N, so we try to write NV as a polynomial N(t),
and we want N (t) to be always even. Let N € Z[t] such that N = t2+t+4, then N(t) = >+t =0
mod 2 for all ¢, thus N (t) is always even. Moreover, N(t) is always positive as t2 4+t > 0 for all
t € Z. Let x = —4(t> +t +1)?. Substituting z = —4(t* +t+1)? and N = t? 4+t +4 into the right
hand side of (7) leads to the right hand side being equal to (4(2t + 1)(t? +t + 1)(3t% + 3t + 7))?
and hence y = 4(2t +1)(t? +t +1)(3t> + 3t + 7). One can check that x = —4(t> +t +1)? satisfies
the inequalities given in Theorem 6.1 and thus ensures positive a, b, c. ]

33



Remark 6.8. There could be different parametrizations of N for which (3) has positive solutions.
Such a parametrization needs to satisfy the requirements of being a polynomial in Z[t] such that
it is always even and positive. For that polynomial one needs to be able to find = satisfying
Theorem 6.1 and for which the right hand side of (7) is a square.

The points a, b, ¢ corresponding to such a parametrization [BM14, Remark 5.4] are given by
a=+1)B + 82+ 14t +11) b= —(t* +2t +2)(3t> + > + 7t — 2)
=10+ 3t + 1164 + 1743 + 2062 + 12t — 1.

Therefore a multiple of the point (z,y) = (—4(#? +t+ 1)2,42t + 1)(#2 +t + 1)(3t2 + 3t + 7))
would be necessary in order to get positive a, b, c.

6.2 Height of the points

We can make a few comments on the size of solutions we found in Example 5.3, and how these
relate to nP. Before we do this we need to introduce the notion of height.

Definition 6.9 (Height). [ST15, Section 3.1] Let x € Q so that x = " for m,n € Z, written
in lowest terms. The height function H(-) is defined by

H(x) == max{|m|, |n|}.

Definition 6.10 (Height of a point). The height of a rational point P = (x,y) is defined to be
the height of the x— coordinate of P. We write H(P) = H(x).

The height tells us how ‘complicated’ a point is. If m and n are ‘close’, then z will be close
to 1, but the absolute values of m and n could still be very large.

Definition 6.11. The logarithmic height h(P) of a point P = (z,y) is defined by
h(P) :=log H(P).
The height function has the following properties.
Lemma 6.12. [ST15, Lemma 3.1] Let K € R~q. Then the set

(P e E@): h(P) < K}
s finite.

Lemma 6.13. [ST15, Lemma 3.3] Let P € E(Q), then there exists a constant k that depends
on the coefficients of E(Q) such that

h(2P) > 4h(P) — k.

Lemma 6.12 is stated in [ST15] without proof, while the proof of Lemma (6.13) can be found
in [ST15, Section 3.3].

There is a generalization of Lemma 6.13 that replaces the 2 in h(2P) for n € Z, thus being
the logarithmic height of nP. Hence we double a point, Lemma 6.13 tells us that the we expect
the height to increase. Thus, for a point P € E(Q) we expect the height of nP to increase as
n increases. In Example 5.3 we can see this happening, as the height of nP increases as n goes
from 1 to 9. Moreover, in (9) we see that a,b and ¢ are defined in terms of x and y and hence
as the height of nP increases, we expect the size of the corresponding a, b, ¢ to increase too. We
showed the case when this happens corresponding to Example 5.3, where P = (—4,28) and for
n =9 all a, b, c are positive integers.

Remark 6.14. As future work, some more rigorous theory could be developed about the height
of a point on En(Q) whose multiples correspond to positive solutions to the fruit puzzle and
relation to the number of digits of each a,b and c.
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n | h(nP) | # digits of a | # digits of b | # digits of ¢
1| ~1.39 2 1 1
2| ~6.52 4 4 4
3| ~135 9 9 9
41 ~ 230 16 16 16
5| ~39.1 25 25 25
6 | ~539 36 36 36
7| ~T4.2 49 49 48
8| ~ 98.6 64 64 63
9 | ~122.0 81 80 79

Table 2: Height of P versus size of a, b, ¢

A Appendix

Code used to perform the calculations needed in the transformation from Cy to Ey.

# Importing SageMath
from sage.all import var, solve, show

# Define the wvariables
var('a b c x y z N')

# Define the system of equations

eql = x == (a + b + 2%c)

eq2 =y == (a - b)

eq3 =z == (N + 2)x(a + b) - ¢

# Solve the system for a, b, and c
solutions = solve([eql, eq2, eq3], a, b, c)

# Display the solutions
show(solutions)

abc = solutions[0]

def

abc[0].ths()
abc[1] .rhs()
abc[2] .rhs()

proj_eq(a,b,c):

return N*¥(a + b)*(a + c)*x(b + c) - ax(a + b)*x(a + ¢c) - bx(a + b)*(b + c) - cx(a + c)*(b
proj_eq_in_xyz = expand(proj_eq(al, bl, c1))

show(proj_eq_in_xyz)

To check for integer solutions to (10) we used the following SageMath code.

#name the variables and set N to be an integer

var('x")
N:

var('N', domain='integer')
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#define what a and b are in our elliptic curve

a = 4xN"2+12xN-3

b=32% (N+3)

#equation satifying duplication formula for a point of order 3
eq_order_3 = 3*%x"4 + 4*axx"3 +6*b*x"2 -b"2==0

#equation satifying duplication formula for a point of order 3
eq_order_6 = x74 -16%x"3 - 2%(b+8*a)*x"2 - 16%b*x +b"2

#function that takes as input the equation we want to
#solve and returns the integer solutions
def int_sol_finder(f):

solutions = solve(f, x, solution_dict=True)

integer_solutions = []
for sol in solutions:
if soll[x].is_integer():
integer_solutions.append(sol[x])

return integer_solutions
SageMath code used to solve the system of equations in (9).

var('N, a, b, c")

#put values of (z,y) to solve for a, b and c
x= 0
y=0

#a/s, b/s, c/s expressions

f_a=(8x (N+3) -x+y) /(2% (4-x) * (N+3))
f_b=(8x(N+3)-x-y) /(2% (4-x) * (N+3))
f_c=(-4x(N+3) - (N+2) *x) / ((4-x) * (N+3) )

s= atb+c

#solve the expressions for a, b and c
solve([a/s == f_a, b/s==f_b, c/s==f_c], a, b, c)

SageMath code used to substitute values of a, b, ¢ into the equations of = and y (8).
var('N')

#urite values of a, b and c to find (z,y)

a=-1
b=1
c=1

#expressions of x,y in terms of a,b,c
(=4* (atb+2xc*x (N+3))) / ((2+N) * (a+b) -c)
(4% (a-b)* (N+3) * (2*N+5) ) / ((2+N) * (a+b) -c)

X

y

print('(', x, ',", ¥y, DD
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var('abc Nxys')

# Define the equations

eql = x == (~4x(a+b+2+c)*(N+3)) / ((N+2)*(a+b) - c)
eq2 = y == (4x(a-b)*(N+3)*(2+N+5)) / ((N+2)*(a+b) - c)
eq3 = s ==a+b+c

# Solve the system for a, b, c
solution = solve([eql, eq2, eq3], a, b, c)

solution
This is the SageMath code used in the examples 5.3.

# Define function f that takes the wvalues b1,b2,a of our equation and p being
#the prime we want to check, r the prime power
def f(bl, b2, a, p, r):

# Define wartables

var('M, e, N')

# Check solutions for all M, e, N satisfying the equation
#N"2 = b1*M"4 + ae”2M"2 + b2e™4
solutions = solve_mod(N"2 == blxM"4 + axe”2*M"2 + b2*e"4, p°r)

# Function to check tf gcd of all wariables in a solution is 1
def is_valid_solution(sol):

gcd_M_e = gcd(sol[0], sol[1])
gcd_M_N = gcd(sol[0], sol[2])
gcd_e_N = gcd(sol[1], sol[2])

return (gcd_M_e == gcd_M_N == gcd_e_N == 1)

# Filter solutions based on gcd conditions
valid_solutions = [sol for sol in solutions if is_valid_solution(sol)]

return valid_solutions

# Call function f with given parameters

Code used to find multiples of the point (—4,28) € E4(Q) and to compute the corresponding
values of a, b, c.

#compute multiples of the elliptic curve

N=4

a2 = 4*N"2+12xN-3

ad = 32x(N+3)

E = EllipticCurve([0,a2,0,a4,0])
P = E([-4,28]); #P

n=9
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n*xP
Q = nxP

#solve for a b c
var('a b c')

#r and y coordinates of the point nP

x = Q.x0
y=Q.y0
s = atb+c
a_expr = a == s*((8%(N+3)-x+y)) /(2% (4-x)* (N+3))

b_expr = b == s*((8+(N+3)-x-y))/ (2% (4-x)*(N+3))
== g% (=4x (N+3) - (N+2) *x) / ((4-x) * (N+3))

]
(@]
|
Il

c_expr
solve([a_expr,b_expr, c_expr],a,b,c)

Code used to find the multiples of P’ together with the corresponding values of (a : b : ¢).
The code provided is for the case where P’ = P + @Q where P = (—4,28) and @ is a point of
order 2.

P = E([-4,28])
N=4

#torsion points given by

#point of order 2
Q-2 = EC[0,0)

#points of order 3
Q_3_1 = E([4, 4*x(2*N+5)])
Q_3_2 = E([4, -4%(2*N+5)])

#points of order 6
Q_6_1 = E([8%(N+3), 8% (N+3)*(2xN+5)])
Q_6_2 = E([8+%(N+3), -8*x(N+3)*(2+N+5)])

#a,b,c equations
def equations(x, y):
a, b, c =var('a b c')

s = atb+c

eql = a == s*x((8*(N+3)-x+y)) /(2% (4-x) *(N+3))
eq2 = b == s*((8+x(N+3)-x-y)) /(2% (4-x) *(N+3))
eq3 = c == s*(~4x(N+3) - (N+2)*x) / ((4-x)*(N+3))
return [eql, eq2, eq3]

#define the torston point, in this case the one of order 2
P2 =P+ Q.2

38



# Compute nP for m in range 1 to 9 and solve the system of equations
solutions = []
for n in range(l, 10):

nP_2 =n * P_2

X, y = nP_2.xy0

eqs = equations(x, y)

sol = solve(eqgs, a, b, ¢)

solutions.append(sol)

# Prant the solutions

for i, sol in enumerate(solutions, 1):
print (f"Solution for {i}P_2:")
print(sol)
print ()
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