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Abstract

In 2014, Andrew Bremner and Allan Macleod published a paper regarding a cubic rep-
resentation problem. The problem is about finding positive integer solutions a, b, c to the
equation

a

b+ c
+

b

a+ c
+

c

a+ b
= N (⋆)

where N is a positive integer. This equation has a rational solution (1,−1, 0), which allows
us to transform it into an elliptic curve over the rationals, and therefore the problem can be
translated to finding rational points on an elliptic curve corresponding to positive solutions
to (⋆).

Elliptic curves play an important role in both pure and applied mathematics, and this
thesis explores the rich theory of elliptic curves that revolves around solving the cubic repre-
sentation problem, providing more insightful details to the paper by Bremner and Macleod.
We explain the transformation from the projective curve defined by (⋆) to an elliptic curve
in Weierstrass form. This is done through a change of coordinates that maps the rational
point (1 : −1 : 0) to the point at infinity on the elliptic curve. We compute the torsion
subgroup of the elliptic curve and show that the points on the torsion subgroup do not give
nonzero solutions to the original problem so points of infinite order are needed. This leads to
discussing the method of ‘2-isogeny descent’ used to compute the rank of the elliptic curve.
We provide some examples of computing the rank and give some lesser known results about
finding solutions to a quartic modulo a prime powers, useful to successfully compute the
rank of the elliptic curve.
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1 Introduction

The study of elliptic curves dates back to the Greeks studying Diophantine equations [Mar06]
and they are still widely used and studied now, as in the famous proof of Fermat’s Last Theorem
by Andrew Wiles. Elliptic curves are both interesting from a purely mathematical perspective
as well as having applications in the growing field of cryptography. This paper uses elliptic
curves to solve a seemingly very simple fruit puzzle that requires a lot of theory to be able to
find its solutions. The fruit puzzle became an internet meme, even though the authors Bremner
and Macleod of [BM14], where the solution is discussed, were not involved. Its solutions (and
different methods to reach them) were discusses on websites such as [Ami19] and [Ale16]. In this
paper we discuss the method of descent by 2−isogeny to compute the rank of the elliptic curve,
as a positive rank allows us to then find a point whose multiple will correspond to a solution to
the puzzle. From a theoretical point of view the method of descent by 2-isogeny is used in the
proof of Mordell’s Theorem in [ST15] for the case where the elliptic curve has a rational two
torsion point, and in general, methods of p-descent are studied by many mathematicians [Cre97]
[SS03]. Elliptic curves are used in cryptography and specifically, there is an area of cryptography
that uses isogenies between elliptic curves to create more secure systems [Shu09].

This thesis is based on the paper ‘An Unusual Cubic Representation Problem’ written by
Bremner and Macleod [BM14] in 2014, and the aim is to provide details to their work. We
start by transforming the fruit puzzle into the curve Bremner and Macleod work on, which is
a projective curve that depends on a parameter N , and then transform it into an elliptic curve
in Weierstrass form. We explain the method of descent by 2-isogeny to compute the rank and
provide some examples of how to do so for different values of N , presenting the solutions to the
fruit puzzle for the case where the rank is positive. In doing so we also describe some of the results
provided in the paper ‘Counterexamples to the Hasse Principle’ by Aitken and Lemmermeyer
[AL11], which illustrate the use of prime powers to show some quartic equations have no solution.
This is very useful to a part of the descent by 2-isogeny method which encounters the problem
of finding (or showing the lack of) a primitive solution to some equations. We also provide some
more remarks on the existence and size of the solutions to the fruit puzzle.

1.1 Outline

We begin the paper with some background information in Section 2, necessary to understand the
further sections. If the reader is familiar with elliptic curves and a bit familiar with projective
geometry then they can skip the first section. Throughout the rest of the paper each section
follows from the previous section. Section 3 describes the fruit puzzle, and how to transform it
into an elliptic curve. In Section 4 we show the structure of the elliptic curve and in Section 5,
we explain the method of descent by 2-isogeny to compute the rank and provide some examples.
We end with some results in Section 6 related to the conditions necessary to ensure solutions to
the fruit puzzle and the size of these solutions.
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2 Background Information

In order to understand the paper, we need some background information on elliptic curves. The
following section is based on [Sil06] and [ST15, Section 1.4]. Throughout this paper we will work
in both the affine and projective plane over the field Q, therefore let us define these concepts
over Q before we dive into the theory of elliptic curves.

Definition 2.1 (Projective plane). The set of Q−rational points on projective plane over Q,
denoted as P2(Q), is defined as

P2(Q) := {(x, y, z) | x, y, z ∈ Q not all zero }/ ∼

under the equivalence relation ∼ where (x, y, z) ∼ (x′, y′, z′) if (x′, y′, z′) = (λx, λy, λz) for some
λ ∈ Q∗.

We write the equivalence class as (x : y : z). These are also called homogeneous coordinates.
In a similar fashion we can define the affine plane over Q as follows.

Definition 2.2 (Affine plane). The set of Q−rational points on the affine plane over Q, denoted
as A2(Q), is defined as

A2(Q) := {(x, y) | x, y ∈ Q}.

When we choose to map a point (x, y, z) ∈ P2(Q) with z ̸= 0 to (x′, y′) ∈ A2(Q), we do so
by diving by the z−coordinate so that (x, y, z) becomes (xz ,

y
z , 1) and x

′ = x
z and y′ = y

z .

Remark 2.3. We could also map a projective point to an affine one by diving by a different
coordinate (such as x or y) as long as they are nonzero, however the mapping is mostly done
using z.

To allow such a transformation to happen, we define all the points where the coordinate that
we divide by, in this case the z−coordinate, is 0 to be the points at infinity. We say the line
z = 0 is the line at infinity. In the projective plane, parallel lines intersect at infinity. The idea
behind this comes from perspective drawing, where there is a focal point in the horizon where
all parallel lines meet.

Recall that two points in the projective plane are equivalent if one is the constant multiple of
the other. This creates an extra condition on how we define polynomials in the projective plane,
as we need the requirement that if a polynomial F ∈ Q[x, y, z] satisfies F (x, y, z) = 0 then also
F (λx, λy, λz) must be equal to 0. This gives rise to the definition of homogeneous polynomials.

Definition 2.4 (Total degree). The total degree of a monomial xnymzl where m,n, l ∈ Z≥0 is
d = n+m+ l.

Definition 2.5 (Homogeneous polynomial). A polynomial F ∈ Q[x, y, z] is said to be homoge-
neous if each monomial has the same total degree.

Definition 2.6 (Affine curve). An affine curve C is defined by a polynomial f ∈ Q[X,Y ]. Its
set of Q−rational points is

C(Q) = {(x, y) ∈ A2(Q) : f(x, y) = 0}

A projective curve is defined similarly.

Definition 2.7 (Projective curve). Let F ∈ Q[X,Y, Z] be a homogeneous polynomial of degree
more than 1. Then F defines a projective curve C ′. Its set of Q−rational points is

C ′(Q) = {(x : y : z) ∈ P2(Q) : F (x, y, z) = 0}.
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There are multiple definitions of elliptic curves, however since in this paper we always work
with elliptic curves over Q, we will define them for the case where the field is Q. Note however
that we can define elliptic curves more generally, but for the sake of this paper it is enough to
define them for the Q case.

Definition 2.8 (Elliptic curve in Weierstrass form). An elliptic curve E/Q is defined by a
Weierstrass equation

y2z = x3 +Ax2z +Bxz2 + Cz3 (1)

where A,B,C ∈ Q and the discriminant ∆ = −4A3C +A2B2 + 18ABC − 4B3 − 27C2 ̸= 0. Its
set of Q−rational points is

E(Q) = {(x : y : z) ∈ P2(Q) : y2z = x3 +Ax2z +Bxz2 + Cz3}.

Elliptic curves have a unique point at infinity, the point (0 : 1 : 0). This specific form of an
elliptic curve is called Weierstrass form, which is the form that will be used in this paper. More
specifically, we will work with the affine version of the elliptic curve. The definition is similar to
the projective one, but this time the point at infinity is considered a special point in the affine
plane, denoted by O. For simplicity, we work with E : y2 = x3 + Ax2 + Bx + C. If we identify
A2(Q) with its image in P2(Q) under the association of (x, y) with (x : y : 1). Then,

E(Q) = {(x, y) ∈ A2(Q) : y2 = x3 +Ax2 +Bx+ C} ∪ {O}

where the discriminant is nonzero.
In general, for an elliptic curve defined over Q, the nonzero discriminant ensures that x3 +

Ax2 +Bx+ C has three distinct roots in the algebraic closure of Q.

Remark 2.9. Throughout this paper we will always work with the case where the constant
coefficient C is equal to 0.

A special property of elliptic curves is that the points on the curve form a group under the
addition law. The group consists of the affine points on the curve, together with the point at
infinity O which is the group’s identity element.

The group law is defined as follows. Take P1, P2 ∈ E(Q). We have the following cases:

• For all P ∈ E(Q), P +O = P.

• Let P = (x, y) ∈ E(Q), then −P = −(x, y) = (−x, y).

• Let P1 ̸= ±P2. Then for P1 = (x1, y1) and P2 = (x2, y2) we have that P1+P2 = (x3, y3) =
(λ2 − a− x1 − x2, x3λ+ v). Here

λ =
y2 − y1
x2 − x1

and v = y1 − x1λ = y2 − x2λ.

• Let P1 = P2 = (x, y). Then P1 + P2 = (x3, y3) = (λ2 −A− 2x, xλ+ v). Here we have that

for y2 = f(x) being our elliptic curve, λ = f ′(x)
2y and v = y − xλ.

• Let P1 ̸= P2 such that P1 = −P2. Then P1 + P2 = O.

• For O the identity element, O +O + . . .O = O.

Although these formulas seem to come out of nowhere, there is a geometric intuition behind
them. The reader can find this geometric understanding of the addition of points on an elliptic
curve on [ST15, Section 1.4]. Another useful formula for addition of points on E is the duplication
formula, which is a shortcut to find the point 2P given a point P.
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Lemma 2.10 (Duplication formula). Let E/Q be an elliptic curve and x(P ) be the x-coordinate
of a point P ∈ E(Q) \ {O}, then

x(2P ) =
x4 − 2Bx2 +B2 − 8Cx− 4AC

4(x3 +Ax2 +Bx+ C)
.

Proof. This follows by using the addition formulas for P1 = P2 and substituting x3+Ax2+Bx+C
for y2 in the denominator of the x−coordinate.

Theorem 2.11. [Sil06, page 20] The group law makes the group E(Q) a commutative group.

3 Cubic Representation and Transformation

Imagine we are given a fruit puzzle as in Figure 1, where we want to know the amount of apples,
bananas and cherries so that the amount of apples/(bananas + cherries) + bananas/(apples +
cherries) + cherries/(apples + bananas) = 4.

Figure 1: Fruit puzzle for N = 4

We can generalize the fruit puzzle for any integer N , not only for the number 4. Writing the
puzzle this way implies that N is a positive integer, and so are a = apples, b = bananas and c =
cherries, since we want ‘full fruits’. This apparently simple fruit puzzle translates into a cubic
representation problem. Throughout this paper we will show the following theorem.

Theorem 3.1 (Solution to the fruit puzzle). The smallest N > 0 for which there is a solution
to the fruit puzzle is N = 4.

This is already shown in [BM14] but without details and relying on computer algebra to
compute ranks of elliptic curves, while in this paper we illustrate the method to do it (mostly)
by hand. Suppose we want to represent the integer N using an equation in three variables. This
is equivalent to finding positive integer solutions (a, b, c) to the equation

a

b+ c
+

b

a+ c
+

c

a+ b
= N. (2)
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This is the equation of a curve CN in three variables in the projective 2-dimensional space
P2
Q over the rationals. Note that the curve is symmetric for a, b, c and has the same total degree

in each term hence it is already homogenized. This is easier to see once we put all the terms to
one side. More formally, the homogenized version is the curve

CN : N(a+ b)(b+ c)(a+ c) = a(a+ b)(a+ c) + b(b+ a)(b+ c) + c(c+ a)(c+ b). (3)

Definition 3.2 (Trivial point). A point (a, b, c) ∈ CN is trivial if a + b = 0 or b + c = 0 or
a + c = 0. In that case there is no solution to the fruit puzzle. We say a point is nontrivial
otherwise.

The curve CN (3) has a rational point, namely the point (1 : −1 : 0). Therefore, we can show
there exists a bijective transformation

φN : CN → EN

where EN is an elliptic curve in Weierstrass form with an affine equation, φN (CN (Q)) = EN (Q)
and φN ((1 : −1 : 0)) = (0 : 1 : 0).

This is done through a series of transformations which allow us to choose the axis in such a
way so that we can transform CN to the elliptic curve EN . This way we can map the rational
point (1 : −1 : 0) on (3) to O. Therefore we make a linear change of coordinates so that the
rational point becomes the point at infinity, (0 : 1 : 0) = O. The idea is that the map φN maps
(a : b : c) to (x : y : z), so that we define x, y, z in terms of a, b, c and then we divide by the
z−coordinate to get the affine version of the elliptic curve.

Note that the point (0 : 1 : 0) is a point of inflexion on an elliptic curve. The tangent to
(3) at the point (1 : −1 : 0) does not intersect the curve CN again, so (1 : −1 : 0) is a point of
inflexion. Thus, the transformation can be done through a simple change of coordinates [Cas91,
Chapter 8]. This is done by taking the tangent to (1 : −1 : 0) and letting it be the line Z = 0.
We then take another line not passing through (1 : −1 : 0) and let it be the line X = 0. Finally
we let the Y−axis be a third line that passes through the point (1 : −1 : 0) which we do as in
[ST15, Section 1.3] and in the proof of Proposition 5.7 in [Wut18].

The equation of the tangent line to a curve F (x, y, z) = 0 at a point P = (x1 : y1 : z1) is
given by the formula

x · ∂F
∂x

∣∣∣
x1

+ y · ∂F
∂y

∣∣∣
y1

+ z · ∂F
∂z

∣∣∣
z1

= 0. (4)

Computing the tangent of CN at (1 : −1 : 0) gives the line

(N + 2)a+ (N + 2)b− c = 0

and hence we move this line to be equal to Z. We want to let X = 0 be another line that passes
through the point (1 : −1 : 0) so that it maps this point to (0 : 1 : 0). We do this by letting
X = a + b + 2c. We can then take Y to be a different line not going through that point such
that it maps the rational point (1 : −1 : 0) to O. Taking Y = a− b works. In summary, we have

X =a+ b+ 2c

Y =a− b

Z =(N + 2)(a+ b)− c.

(5)

If we substitute (1,−1, 0) into (X,Y, Z) we get the point (0 : 2 : 0) = (0 : 1 : 0) as desired. We
haveX,Y, Z in terms of a, b, c but in order to substitute it into (3) to continue the transformation
we need to have a, b, c in terms of X,Y, Z. Solving for a, b, c gives us

a =
X + (2N + 5)Y + 2Z

2(2N + 5)
, b =

X − (2N + 5)Y + 2Z

2(2N + 5)
, c =

(N + 2)X − Z

(2N + 5)
. (6)
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Substituting a, b, c into CN (3) yields

X2Z

(
2N3 + 11N +

27N

2
− 15

4

)
+ Y 2Z

(
−2N3 − 15N − 75N

2
− 125

4

)
+XZ2(−2N − 10) +X3(−2N2 − 11N − 14)

=
X2Z(2N + 5)(4N2 + 12N − 3)

4
− Y 2Z(2N + 5)3

4
− 2XZ2(2N + 5)−X3(2N + 5)(N + 3)

= 0.

To solve for a, b, c and substitute them into CN we used SageMath [The21] and the code can
be found in Appendix A. We need to transform this projective curve into an affine one. This
is done mapping (X,Y, Z) 7→

(
X
Z ,

Y
Z , 1

)
. In our case we do this by dividing both sides of the

equation by Z3 which results in

Y 2(2N + 35)3

4Z2
=

−X3(2N + 5)(N + 3)

Z3
+
X2(2N + 5)(4N2 + 12N − 3)

4
− 2X(2N + 5).

Letting the new coordinates be (x1, y1) =
(
X
Z ,

Y
Z

)
and multiplying both sides by 4

(2N+5)
yields

y21(2N + 5)2 = −4(N + 3)x31 + (4N2 + 12N − 3)x21 − 8x1.

The elliptic curve in Weierstrass form requires the right hand side to be monic. We can get
rid of the −4(N + 3) in front of the cubic term by letting x = −4(N + 3)x1, so x1 = x

−4(N+3) .
Substituting x1 in and clearing denominators gives

(y14(2N + 5)(N + 3))2 = x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x.

We are almost there: we want the coefficient of the y1 term to be 1. Note that the coefficient
on the left hand side is a square, and therefore we can do the final change of coordinates by
letting y = 4(2N +5)(N +3)y1. This gives us the final result, which is the equation we will work
with throughout this paper:

EN : y2 = x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x (7)

with discriminant ∆(EN ) = 214(N + 3)2(2N − 3)(2N + 5)3.
Tracing back our steps, we can write x, y in terms of a, b and c

x =
−4(a+ b+ 2c)(N + 3)

(2 +N)(a+ b)− c
and y =

4(a− b)(N + 3)(2N + 5)

(2 +N)(a+ b)− c
(8)

The transformation that maps (a, b, c) to (x, y) allows us to also define the following inverse
transformation. We used SageMath [The21] using the code found in Appendix A to solve for
a, b, c using the two equations we have for x, y. Letting s = a+ b+ c, we get

a = − 8Ns− sx+ sy + 24 s

2 ((N + 3)x− 4N − 12)
, b = − 8Ns− sx− sy + 24 s

2 ((N + 3)x− 4N − 12)
, c =

4Ns+ (Ns+ 2 s)x+ 12 s

(N + 3)x− 4N − 12
.

We can further divide by s and rearrange the equations to get

a

s
=

8(N + 3)− x+ y

2(4− x)(N + 3)
,

b

s
=

8(N + 3)− x− y

2(4− x)(N + 3)
,

c

s
=

−4(N + 3)− (N + 2)x

(4− x)(N + 3)
. (9)

In [BM14, page 30] they provide the elliptic curve EN together with the maps (8) and (9),
but they do not explain the steps of how to transform CN into EN .

To solve the original fruit puzzle (1) we want to find the rational points (x, y) ∈ EN (Q) of
(7) which give us positive integer solutions to the projective equation. The following sections
describe the theory needed to be able to effectively solve this simple looking fruit puzzle.
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4 Mordell’s Theorem and the Torsion Subgroup

Since we want to find rational points (x, y) ∈ EN (Q) which then correspond to rational points
(a : b : c) in the projective plane, it is useful to know what EN (Q) looks like.

As we already know, the rational points on the elliptic curve form a group, and this group
has a specific form, which is described by Mordell’s Theorem.

Theorem 4.1 (Mordell’s Theorem). [ST15, page 95] Let E be an elliptic curve in Weierstrass
form

E : y2 = x3 + ax2 + bx+ c

where a, b, c ∈ Q. Then E(Q) is a finitely generated abelian group.

The proof of this theorem is quite lengthy and out of scope for this paper, but if interested
the reader can find the proof for c = 0 in [ST15, Chapter 3].

In other words,
E(Q) ∼= Z⊕ ...⊕ Z︸ ︷︷ ︸

r-copies

⊕Z/pt11 Z⊕ ...⊕ Z/ptss Z

where ti ∈ Z>0 and pi is a prime for i = 1, . . . , s.
Here ‘r’ is called the rank of the elliptic curve. The finite order part is called the torsion.

This means E(Q) is generated by finitely many points, and hence one can all rational points
just by taking intersection of points and tangents to points.

Definition 4.2 (Torsion). The torsion subgroup of an elliptic curve, denoted E(Q)tors is the set
of rational points of finite order on E. It is denoted by

E(Q)tors ∼= Z/pt11 Z⊕ ...⊕ Z/ptss Z.

In the case of our specific curve EN defined in (7), the torsion subgroup is as follows.

Lemma 4.3. [BM14, Lemma 2.1] The torsion subgroup of (7) is isomorphic to Z/6Z if N ̸= 2,
and it is isomorphic to Z/2Z⊕ Z/6Z if N = 2.

Therefore the rational points of our elliptic curve are isomorphic to the group Zr ⊕ Z/6Z
where the value of the rank depends on N. Before we begin with the proof of this lemma, we
need to introduce a theorem called ‘Mazur’s Theorem’.

Theorem 4.4 (Mazur’s Theorem). [Maz77, Theorem 8] Suppose E is an elliptic curve and that
E(Q) contains a rational point. Then the torsion subgroup of E/Q is isomorphic to one of the
following groups:

i) Z/nZ for n ∈ {1, . . . , 10} or n = 12

ii) Z/2Z⊕ Z/2nZ for n ∈ {1, 2, 3, 4}.

This was previously known as Ogg’s Conjecture and gives us some restrictions on which
points to compute to find what the torsion subgroup looks like. For example, if we have a point
of order 7, we know we do not need to compute higher orders, as there cannot be such a point
by Mazur’s Theorem. Using this result, let us come back to the proof of Lemma 4.3.

Proof of Lemma 4.3. A point P ∈ EN (Q), P ̸= O has order 2 when 2P = O which is equivalent
to saying P = −P . Since EN is in Weierstrass form and the axis of symmetry is the x−axis, the
points satisfying this are the points with y−coordinate 0 and since our curve has no constant
term, the point (0, 0) is a point of order 2. The x−coordinates of other points of order two are
the rational roots of x2 + (4N2 + 12N − 3)x + 32(N + 3). The discriminant of the quadratic
equation is (2N − 3)(2N − 5)3, which is a square when (2N − 3)(2N +5) = (2N +1)2− 16 = □.

Claim: (2N − 3)(2N + 5) is a square if and only if N = 2.
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Proof of Claim. (⇐) Suppose N = 2. Then (2N +1)2− 16 = 25− 16 = 9 which is a square.
(⇒) Note that 2N − 3 and 2N + 5 are both odd. Moreover

2N + 5 = 1 · (2N − 3) + 8

hence
8 = 1 · (2N + 5)− 1 · (2N − 3)

and by Bezóut’s Theorem [Con, Theorem 3.5], gcd(2N + 5, 2N − 3) | 8. The divisors of 8
are {1, 2, 4, 8} but since (2N − 3) and (2N + 5) are odd, then gcd(2N + 5, 2N − 3) = 1.
Since they are relatively prime, the only way (2N − 3)(2N +5) = □ is when both terms are
squares. The difference between them is 8, hence we want two squares whose difference is
8. The difference between two consecutive squares is

(n+ 1)2 − n2 = 2n+ 1

which increases as n increases so the difference between squares always grows larger. Thus,
there are no two more squares whose difference is 8 and the only time two squares have
a difference of 8 is when one square is equal to 1 and the other is equal to 9. Suppose
2N +5 = 1 then 2N = −4 and 2N − 3 = −7 ̸= 9. Hence 2N − 3 = 1 and 2N +5 = 9 which
implies N = 2.

■

Likewise a point has order 3 if and only if 2P = −P . Recall that −(x, y) = (x,−y) so the
x−coordinate remains unchanged and we can apply the duplication formula in Lemma (2.10)
to x(2P ) = x to get

x4 − 2 · 32(N + 3)x+ (32(N + 3))2

4(x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x)
= x.

If we re-arrange it, we have the following equation

3x4 + 4(4N2 + 12N − 3)x3 + 6 · 32(N + 3)x2 − (32(N + 2))2 = 0. (10)

Solving (10) for x we have that for any N, the only rational solution to (10) is x = 4. We
have found that 4 is the only rational solution by checking all the solutions to (10) and noticing
that all the others are not rational for any N . We did this using SageMath (see Appendix A).
Substituting x = 4 into (7) yields

43 + 42(4N2 + 12N − 3) + 4 · 32(N + 3) = 16(2N + 5) = y2

hence y = ±4(2N + 5) which gives the points (4,±4(2N + 5)).
Since we have points of order 2 and 3, by Lagrange’s Theorem, there must be a point of

order 6.
Let P ∈ EN (Q) be a point of order 6. Then we have that 6P = O which is equivalent to

saying there is a point P = (x, y) ∈ EN (Q) such that 6P = 3 · 2P = O. This means that to find
a point of order 6 we can take a general point (x, y) on the curve so that when you double it,
the x−coordinate corresponds to the x−coordinate of a point of order 3. We know that the only
possible x−coordinate of a point of order 3 is 4, and we can use the duplication formula to find
such a point of order 6. In other words,

(x2 − 32(N + 3))2

4(x3 + (4N2 + 12N − 3)x2 + 32(N + 3))x
= 4

which implies

x4 − 16x3 − 2(32(N + 3) + 8(4N2 + 12N − 3))x2 − 12 · 32(N + 3)x+ (32(N + 3))2 = 0.
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Solving for x being an integer we get that the only such point has x−coordinate x = 8(N + 3)
(see the SageMath code in Appendix A). Therefore

y2 = 83(N + 3)3 + 64(4N2 + 12N − 3)(N + 3)2 + 8 · 32(N + 3)2

= 82(N + 3)2(8(N + 3) + 4N2 + 12N − 3 + 4)

= 82(N + 3)2(2N + 5)2

so y = ±8(N +3)(2N +5), giving us the points (8(N +3),±8(N +3)(2N +5)). By Mazur’s
Theorem 4.4 we know there are at most two points of order six, so since 8(N+3) is a solution to
EN (Q) which gives us two points of order 6, we know there cannot be other rational solutions.
Since there is a point of order 6, we need to check whether there is also a point of order 12. We
do not need to check other multiples of 6 as 3 · 6 = 18 and Mazur’s Theorem 4.4 tells us that
there is no such point.

If there were to be a point P of order 12, then such point would satisfy 12P = O so
x(2P ) = 8(N + 3). By the duplication formula we have

8(N + 3) =
(x2 − (32(N + 3))2

4(x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x

=
(x2 − (32(N + 3))2

4y2

implying 8(N + 3) = □. Hence 4 · 2(N + 3) = □ which means N + 3 = □/2 ∈ Z so N + 3 =
2K2 ⇐⇒ N = 2K2 − 3 for some integer K. Expanding the duplication formula leads to

(x2 − 32(N + 3))2 = 32(N + 3)(x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x)

where by substituting N = 2K2 − 3 we get

= x4 − 64K2x3 + (64K2(−1 + 24K2 − 16K4))x2 − 4096K4x− 1024K4

= (x2 + 8K(1− 4K − 4K2)x+ 64K2)(x2 + 8K(−1− 4K + 4K2)x+ 64K2)

= 0.

Solving for x means solving x2 + 8K(1 − 4K − 4K2)x + 64K2 = 0. If x were to be rational it
would imply the discriminant 4K(2K + 1)

√
(2K − 1)(2K + 3) is rational. But one can check

(2K − 1)(2K + 3) is not a square modulo 8, and hence not a rational square. This is because
there is no value of K that satisfies (2K − 1)(2K + 3) ≡ □ mod 8 where □ ∈ {0, 1, 4} which are
the squares modulo 8. Therefore x can only be rational when the discriminant is zero, implying
(2K−1)(2K+3)K = 0. Similarly for x2+8K(−1−4K+4K2)x+64K2 we get that x is rational
when K(2K − 3)(2K + 1) = 0. Substituting these values of K into N = 2K2 − 3 lead to the
discriminant of EN being 0 which is not allowed. Hence, we cannot have a point of order 12.

Remark 4.5. We define EN (R) just as EN (Q). Then EN/R (7) has two components as shown
in figure (2) for N = 4. One is the ‘egg’, where x < 0 and the other is the unbounded component,
with x ≥ 0. Note that given that all the rational torsion points have positive x−coordinate then
all the rational torsion points lie on the unbounded component of the curve.

The points in the torsion subgroup do not lead us to desired solutions of (3). These points
do not help us solve our cubic representation problem as they are just rational points on EN
corresponding to trivial points on CN .

Lemma 4.6. An integer solution (a, b, c) to the equation CN is non trivial if and only if the
corresponding point (x, y) ∈ EN (Q) is of infinite order.
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Figure 2: Plot of the elliptic curve E4.

Proof. We can prove this lemma by proving the contrapositive statement instead: a point (a, b, c)
on CN is trivial if and only if it corresponds to a point (x, y) ∈ EN (Q) of finite order. Hence, we
need to show that all the points in the torsion subgroup of EN (Q) correspond to trivial solutions
and that all trivial solutions yield points in the torsion subgroup. To solve for both a, b, c in
terms of x and y and vice versa, we used the SageMath (see Appendix A).

The point (0, 0) of order two corresponds to (1 : 1 : −1) ∈ P2(Q) which gives division by zero
in (3). Similarly, for N = 2, the other two points of order two are (−5, 0) and (−32, 0). Solving
for a, b, c in (9) gives again a = b = −c. The point of order three, (4,±4(2N + 5)) gives division
by zero when solving for a, b, c and thus gives no point on CN . Similarly as the points of order
two, the point of order six, (8(N + 3),±8(N + 3)(2N + 5)) yields to a point where a = b = −c
and hence gives division by zero.

The rational points on (3) that we need to consider such that they give division by zero are
the following. The tuples (a : a : −a) and (a : −a : 0) correspond to (x, y) = (0, 0) which is a
point of finite order. The cases where we have points of the form (a : 0 : −a) and (0 : a : −a)
result in x = 4 and hence y = ±(2N + 5) which is the torsion point of order three. Finally
the last points we need to consider that give division by zero in (3) are the points of the form
(−a : a : a) and (a : −a : a) which correspond to x = 8(N +3). Thus, a point of order six in the
torsion subgroup.

Since the torsion points do not lead to desired solutions, we look at the other rational points
on EN . This means looking at points on the subgroup EN (Q) having positive rank for N > 0.
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This brings us to the next section, where we describe methods to compute the rank of an elliptic
curve.

5 Descent by 2-Isogeny

There are several methods to compute the rank of an elliptic curve. In this paper we focus
specifically on the method of ‘descent by 2-isogeny’. We will explain the method for a general
elliptic curve E/Q and in the next section provide some examples with EN/Q. The fact that we
are working with an elliptic curve with no constant term implies that there always exists the
point (0, 0) ∈ E(Q). This allows us to make use of isogenies between elliptic curves to compute
the rank.

Remark 5.1. In this paper we explore the method of descent by 2-isogeny, making use of the
fact that we always have a point of order 2. In [BM14, page 32] they show isogenies of degrees 3
and 6, which can be computed as the torsion subgroup of EN has order 6. Since EN (Q) always
has a torsion point of order 3, we could also compute the rank using the method of descent by
3-isogeny. In the thesis [Tim15] and then later in [Bee10] the authors describe the method of
descent by 3-isogeny, and compute the rank using such method.

The following section is based on [ST15, Chapter 3] and [Bri]. The following lemma intro-
duces two maps, ϕ and ψ, which are crucial in the method of isogeny by 2-descent.

Lemma 5.2. [ST15, page 83] Let a, b ∈ Q. Define E/Q, Ē/Q to be two elliptic curves as follows

E : y2 = x3 + ax2 + bx

and
Ē : y2 = x3 + āx2 + b̄x

where ā = −2a, b̄ = a2 − 4b. Let T = (0, 0) ∈ E(Q). Then

(i) The map ϕ : E(Q) → Ē(Q) defined as

ϕ(x, y) =

{(
y2

x2
, y(x

2−b)
x2

)
if (x, y) ̸= O or (x, y) ̸= T

Ō otherwise
(11)

is a group homomorphism with kernel {O, T}.

(ii) Let ϕ̄ : Ē(Q) → ¯̄E(Q) where ϕ̄ is defined in the same way as ϕ,

¯̄E(Q) : y2 = x3 + ¯̄ax2 + ¯̄bx

and ¯̄a = −2ā, ¯̄b = ā2 − 4b̄. Then ¯̄E(Q) ∼= E(Q) via the map (x, y) 7→ (14x,
1
8y).

(iii) Let T̄ = (0̄, 0̄). We define ψ : Ē(Q) → E(Q) as

ψ(x̄, ȳ) =

{(
ȳ2

4x̄2
, ȳ(x̄

2−b̄)
8x̄2

)
if (x̄, ȳ) ̸= Ō or (x̄, ȳ) ̸= T̄

O otherwise.
(12)

Then ψ is a group homomorphism with kernel {Ō, T̄}.

(iv) The composition ψ ◦ ϕ : E(Q) → E(Q) is a group homomorphism that sends P 7→ 2P.

Proof. The proof can be found on [ST15, pages 85-88].

The two maps ϕ and ψ are called isogenies.

Definition 5.3. Isogenies are rational maps that are group homomorphisms between elliptic
curves.

Isogenies are defined more generally as maps between other structures, not only elliptic curves
but for the sake of this paper they will be defined between elliptic curves.
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E(Q) E(Q)

E(Q)

ϕ

ψ

ϕ̄∼=

Figure 3: Diagram of the maps in
Lemma 5.2.

Remark 5.4. Having a rational 2-torsion point is cru-
cial in the method of descent by 2-isogeny. This is be-
cause the existence of the 2-torsion point T = (0, 0)
allows the construction of the map ϕ. This is used in
the proof of Mordell’s Theorem 4.1 as the doubling map
ψ ◦ϕ helps prove that the index (E(Q) : 2E(Q)) is finite
and so E(Q) is finitely generated. This is done using
heights (see [ST15, Sections 3.1-3.3]).

The isogenies carry the rational points of one elliptic
curve to the other. We use them to compute the index
(E(Q) : 2E(Q)) which allows us to derive a formula to compute the rank of an elliptic curve.

Let us start by finding 2E(Q), by counting the number of points of order 2. Let R1, . . . , Rr
and Q1, . . . , Qs be such that E(Q) ∼= ZR1 ⊕ . . .⊕ ZRr ⊕ ZQ1 ⊕ . . .⊕ ZQs. Here R1, . . . Rr have
infinite order and Q1, · · ·Qs have finite order. Then we can write P ∈ E(Q), as P = e1R1+ ...+
erRr+m1Q1+ . . .+msQs. If P has order 2, then 2(e1R1+ ...+ erRr+m1Q1+ . . .+msQs) = O
so all the ei’s are 0.

Moreover, we have that 2mi ≡ 0 mod ptii , so if pi is odd, then mi ≡ 0 mod ptii , while if pi is
even then mi ≡ 0 mod pti−1

i . Denote the subgroup of points on E(Q) of order 2 by E(Q)[2], then
#E(Q)[2] = 2#{pi=2}. If we compute the points of order dividing 2 on E(Q) we see that there
are either two of them, namely the point O and (0, 0), or if the discriminant of the quadratic
equation x2 + ax + b is a rational square, then we get an extra two points which are given by
solving the quadratic equation.

By Mordell’s Theorem (4.1) we have that

2E(Q) ∼= 2Zr ⊕ 2Z/pt11 Z⊕ ...⊕ 2Z/ptss Z.

If we quotient Z by 2Z we get Z/2Z while if we quotient Z/ptii Z by 2Z/ptii Z we get two cases.
If p = 2, then it is Z/2Z. Otherwise (Z/ptii Z)/(2Z/p

ti
i 2Z) ∼= {0}.

Let e = #{i : pi = 2}, then we get that

(E(Q) : 2E(Q)) = 2r+e = 2r ·#E(Q)[2].

Remark 5.5. Note that #E(Q)[2] is either 2 if the discriminant a2−4b is not a square (namely
the points O and (0, 0)) or it is 4 if the discriminant is a square as you get the two extra points
given by factoring x out of x3 + ax2 + bx and solving the quadratic equation.

Here is where the 2-isogeny plays a role. As we have seen in Lemma 5.2, the composition
map is the multiplication by 2, so ψ ◦ ϕ(E(Q)) = 2E(Q). We can rewrite (E(Q) : 2E(Q)) as
(E(Q) : ψ ◦ ϕ(E(Q))) and since 2E(Q) ⊆ ψ(Ē(Q)) ⊆ E(Q), we get

(E(Q) : 2E(Q)) = (E(Q) : ψ(Ē(Q)))(ψ(Ē(Q) : ψ ◦ ϕ(E(Q))).

The following is stated in [ST15, page 97] without a proof.

Lemma 5.6. We can further simplify this expression

(ψ(Ē(Q)) : ψ ◦ ϕ(E(Q))) =
(Ē(Q) : ϕ(E(Q)))

(kerψ : (kerψ ∩ ϕ(E(Q)))
.

Proof. Let ψ and ϕ be defined as in Proposition 5.2 and denote A = Ē(Q), B = ϕ(E(Q)). Note
that B is a subgroup of A. Let G := A/(B + kerψ). Define the following map

ξ : G→ ψ(A)/ψ(B)

g 7→ ψ(g) mod ψ(B)
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where g = a+B + kerψ for a ∈ A. We claim ξ is a group isomorphism.
Firstly note that ξ is well defined as

ξ(g) = ξ(a+B + kerψ)

≡ ψ(a+B + kerψ)

≡ ψ(a) + ψ(B) + ψ(kerψ)

≡ ψ(a) mod ψ(B)

where we used the fact that ψ is a group homomorphism. To show ξ is a group homomorphism,
take g1, g2 ∈ G, then ξ(g1 + g2) ≡ ψ(g1 + g2) ≡ ψ(g1) + ψ(g2) mod ψ(B) = ξ(g1) + ξ(g2). For
surjectivity, let m ∈ ψ(A)/ψ(B) be a representative of m′ ∈ ψ(A). Then there exists an a′ ∈ A
such that ψ(a′) = m′. Thus, m = ψ(a′) +ψ(B) = ψ(a′) +ψ(B) +ψ(kerψ) = ψ(a′ +B +kerψ).
Hence ξ(a′ +B+kerψ) ≡ m mod ψ(B). Thus, for each m ∈ ψ(A)/ψ(B) we can construct some
g′ ∈ G such that ξ(g′) ≡ m mod ψ(B), so ξ is surjective.

For injectivity, let x ∈ ker ξ and g defined as above. Then ξ(x) = 0 where x = a+B+kerψ for
some a ∈ A, and so ξ(x) = ξ(a+B+kerψ) ≡ 0 mod ψ(B) and since ψ is a group homomorphism,
then ψ(a)+ψ(B)+ψ(kerψ) ≡ ψ(a) mod ψ(B) ≡ 0 mod ψ(B). So either a ∈ kerψ so a ≡ 0 ∈ G
or a ∈ B so a ≡ 0 ∈ G.

Therefore we have

ψ(A)/ψ(B) ∼= A/(B + kerψ) ∼= (A/B)/((B + kerψ)/B)

and by the ‘first isomorphism theorem’ in [TM18] we have that

(B + kerψ)/B ∼= kerψ/(kerψ ∩B).

Hence
ψ(A)/ψ(B) ∼= (A/B)/(kerψ/(kerψ ∩B)).

If we rewrite it in terms of Ē(Q) and ϕ(E(Q)) we have

ψ(Ē(Q))/ψ(ϕ(E(Q))) ∼= (Ē(Q)/ϕ(E(Q)))/(kerψ/(kerψ ∩ ϕ(E(Q))))

as desired.

Note that kerψ = {Ō, T̄} and that T̄ ∈ ϕ(E(Q)) if and only if b̄ = a2 − 4b = □ ([ST15, page

89]), hence (ker(ψ) : (ker(ψ) ∩ ϕ(E(Q)))) =

{
2 if b̄ = □

1 otherwise.

Rearranging (5), the formula for the rank becomes

2r =
(E(Q) : 2E(Q))

#E(Q)[2]

=
(E(Q) : ψ(Ē(Q))(Ē(Q) : ϕ(E(Q)))

#E(Q)[2] · (ker(ψ) : (ker(ψ) ∩ ϕ(E(Q))))

=
(E(Q) : ψ(Ē(Q)))(Ē(Q) : ϕ(E(Q)))

4

as the denominator is either 2 · 2 if b̄ ̸= □ or 4 · 1 if b̄ = □.
The only thing left to us is to compute the indices in the numerator. We can translate the

problem of finding the indices by finding the image of a map α isomorphic to the quotient group.
Let Q∗ denote the units of Q.
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Definition 5.7. The subgroup (Q∗)2 ⊂ Q∗ is equal to the set of squares in Q∗.

Remark 5.8. Then, in Q∗/(Q∗)2 we have that for x ∈ Q∗ where x = x21x2, then x ≡ x2 mod
Q∗2 .

In other words, all the squares are mapped to 1. Recall that T = (0, 0).

Definition 5.9. Let E : y2 = x3 + ax2 + bx and P = (x, y) ∈ E(Q). We define α : E(Q) →
Q∗/Q∗2

α(P ) =


b mod (Q∗2) if P = T

1 if P = O
x mod (Q∗2) otherwise.

Proposition 5.10. The map α : E(Q) → Q∗/(Q∗)2 is a group homomorphism.

Proof. The proof can be found on [ST15, page 92].

Remark 5.11. We define ᾱ : Ē(Q) → Q∗/(Q∗2) analogously.

Proposition 5.12. The image of α is isomorphic to E(Q)/ψ(Ē(Q)).

The same proposition also holds for ᾱ, as is isomorphic to Ē(Q)/ϕ(E(Q)).

Proof of Proposition 5.12. The kernel of the map α consists of all the points P ∈ E(Q) such
that α(P ) ≡ 1 mod (Q∗2). Thus, kerα = {O, (0, 0), {(x, y) ∈ E(Q) : x = □}}. From [ST15, page
91] we know that O, (0, 0) ∈ ψ(Ē(Q)), in addition to all the points (x, y) ∈ E(Q) such that x
is a nonzero square. Hence we can see kerα ∼= ψ(Ē(Q)). From the Homomorphism Theorem in
[TM18, page 82] it follows that

α(E(Q)) ∼= E(Q)/ kerα ∼= E(Q)/ψ(Ē(Q)).

Combining this information together, we can finally rewrite the formula for the rank as

2r =
#α(E(Q))#ᾱ(Ē(Q))

4
. (13)

All we are left to do is compute the images α(E(Q)) and ᾱ(Ē(Q)).

5.1 Computing the image of α

We can illustrate how to get the image of α(E(Q)) and of ᾱ(Ē(Q)) using the two curves E/Q
defined as E : y2 = x3 + ax2 + bx and Ē/Q defined as Ē : y2 = x3 + āx2 + b̄x.

Rational points on an elliptic curve can be written in the form

(x, y) =
(m
e2
,
n

e3

)
where m,n ∈ Z, e ∈ Z>0 and gcd(m, e) = gcd(e, n) = 1 (see [ST15, section 3.2]). Substituting
these points in the elliptic curve will lead to the equation

n2 = m(m2 + ame2 + be4).

Denote gcd(m, (m2 + ame2 + be4)) = gcd(m, b) = b1 where the sign of mb1 > 0. Note that
we assume m ̸= 0 because the case where m = 0 is already included in the image of α. This is
because if m = 0 then (x, y) = (0, 0) and α((0, 0)) ≡ b which we know will always be there, so

17



we want to exclude that case. Then we can rewrite m = b1m1 and if we substitute it in we get
the condition that b21 | n2 and hence we can write n = n1b1 which leads to

n21 = m1(b1m
2
1 + ab1m1e

2 + b2e
4)

where b2 =
b
b1
.

We know gcd(m, e) = 1 so gcd(m1, e) = 1. Moreover gcd(m, b) = b1 so gcd(m1, b2) = 1 and
therefore gcd(m1, b1m

2
1+ab1m1e

2+ b2e
4) = 1. This implies both terms are squares as multiplied

together they are equal to n21. Therefore m1 | n21 and (b1m
2
1 + ab1m1e

2 + b2e
4) | n21 so we can

write n1 = ML where M2 = m1 and L2 = b1m
2
1 + ab1m1e

2 + b2e
4. Substituting back in and

simplifying we get a solution (M, e, L) of the equation

L2 = b1M
4 + ae2M2 + b2e

4 with a, b1, b2 ∈ Z (14)

satisfying the conditions M ̸= 0 and

gcd(M, b2) = gcd(e, b1) = gcd(L, e) = gcd(M, e) = 1. (15)

Note that m =M2b1 and n = LMb1 hence the point (x, y) ∈ E(Q) becomes(
b1M

2

e2
,
b1ML

e3

)
where both terms are a fraction in lowest terms. Therefore α(E(Q)) will consists of 1 and b mod
(Q∗)2, together with all x for which (14) has integer solutions (M, e, L) with M, e, L ̸= 0, for
some b1 | b. Note that x ≡ b1 mod (Q∗2) hence the image of α will consist of all square free b1
dividing b such that (14) has an integer solution satisfying M ̸= 0 and (15) holds.

Therefore, we need to check whether (14) does or does not have a nonzero solution for each
square free b1. The exact same procedure holds for ᾱ(Ē(Q)), however (14) will have ā, b̄ as
coefficients instead of a, b. Before we get to examples of how to compute the rank of our elliptic
curve EN (7), we need to describe a way to check whether (14) does not have nonzero solutions.

5.2 Reducing modulo prime powers

Suppose β ∈ Z is a root of a polynomial f ∈ Z[X]. Then modulo a prime p, we will also have
f(β) ≡ 0 mod p and similarly for prime powers. Hence if f has solutions in integers, then f has
solutions modulo pk, for all k ∈ Z, which implies that if there are no solutions modulo pk, then
there are no solutions in integers. Note that this also holds for polynomials in more than one
variable.

Remark 5.13. A trivial solution to (14) is a solution where M,L = 0. We will always have
this solution as M,L = 0 implies e = 0 and thus we will always have the solution (0, 0, 0).

We will always also have the solution (0, 0, 0) modulo some prime power, thus we want to find
solutions (M, e, L) such that they are not equal to (0, 0, 0) and satisfy (15). Thus by nontrivial
modulo a prime power we mean not all M, e, L zero satisfying (15).

To compute the rank of an elliptic curve, we need to know which equations (14) have or
do not have a nontrivial solution. A good approach to discard some equations is to show (14)
has no nontrivial solutions modulo a prime power. We also need to check that if we find some
nontrivial solutions, they also satisfy condition (15).

Theorem 5.14. [AL11, Theorem 5] Let a1, a3, a4 ∈ Z \ {0}, a2 ∈ Z and a22 − 4a1a3 be nonzero.
The equation

a1X
4 + a2X

2Y 2 + a3Y
4 = a4Z

2 (16)

has solutions modulo pk for every prime p such that p ∤ 2a1a3a4(a22 − 4a1a3) and k ∈ Z>0.
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This theorem tells us that to check (14) has no solutions modulo a prime power, it is enough to
check it has no nontrivial solutions modulo powers of p where p | 2b1b2(a2−4b1b2) = 2b(a2−4b).
In order to prove it, we first need some other results.

Definition 5.15. A tuple (x, y, z) ∈ Z3 is called primitive if gcd(x, y, z) = 1.

Lemma 5.16. [AL11, Lemma 12] Let p be a prime such that p2 ∤ a4 and let k ∈ Z>0. Then the
system

a1U
2 + a2V

2 + a3W
2 = a4Z

2

UW = V 2
(17)

where a1, a2, a3, a4 ∈ Z, has a primitive solution modulo pk if and only if (16) has a primitive
solution modulo pk.

Lemma 5.17. [AL11, Lemma 13] Let p be a prime. The system (17), where ai ∈ Fp for
i = 1, 2, 3, 4 has a nontrivial Fp solution for any prime p ∤ 2a1a3a4(a22 − 4a1a3).

The proof of the two lemmas can be found in [AL11], pages 15 and 17. The idea of the proof
of Lemma 5.16 is that if one has a solution modulo pk for (17) then one can produce a solution
modulo pk for (16) and vice versa. We will prove Lemma 5.17 but before we present the proof
we need to introduce some other results.

In [AL11, Section 3] it is explained how to parametrize the unit circle to find Pythagorean
triples. The following lemma extends this parametrization to conics of the form

ax2 + by2 = 1 where a, b ∈ Z>0. (18)

This will later allow us to construct a solution in the proof of Lemma 5.17. We will briefly
explain the procedure of parametrizing (18) for a specific point, which then can be generalized
to a point (x0, y0) on (18).

Suppose we have a conic as in (18) over R. This is defined by

{(x, y) ∈ R2 : ax2 + by2 = 1 for a, b ∈ R>0}.

with a point on the conic being P =
(

−1√
a
, 0
)
, as shown in Figure 4.

We can then draw a line with slope t that goes through P, namely the line y = t(x+1/
√
a).

The line intersects the conic once more, at the point Q =
(

a−bt2√
a(a+bt2)

, 2at√
a(a+bt2)

)
. This is shown

in Figure 5. Since Q is on the conic, we get the following identity in R[t]

a(a− bt2)2 + b(2at)2 = a(a+ bt2)2.

We can do this more generally for a starting point (x0, y0) and a more general base field,
which leads to the polynomials defined in Lemma 5.19.

Definition 5.18 (Associate polynomials). [AL11, page 6] Let K be a field. Two polynomials
in K[t] are called associates if one is a constant multiple of the other.

Lemma 5.19. [AL11, Lemma 1] Let K be a field and a, b ∈ K \ {0}. Suppose there exist
x0, y0 ∈ K such that ax0 + by0 = 1. Then in K[T ]

aq21 + bq22 = q23

where q1 = bx0T
2− 2by0T − ax0 q2 = −by0T 2− 2x0T + ay0 and q3 = bT 2+ a. Furthermore, at

least two of q1, q2, q3 have degree exactly 2, and if char(K) ̸= 2, then each q1, q2, q3 is nonzero
and no two are associates.
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Figure 4: ax2 + by2 = 1

The following definition and theorem are useful tools that we will also use further in our
paper. Let p be a prime. For p ∤ a we call a ∈ Z a quadratic residue if a is a square modulo p,
and a quadratic nonresidue otherwise.

Definition 5.20 (Legendre symbol). For a prime p and a ∈ Z, the Legendre symbol

(
a

p

)
=


1 if a is a quadratic residue

−1 if a is a quadratic nonresidue

0 if a is 0 modulo p.

Theorem 5.21 (Euler’s criterion). For a prime p and a ∈ Z such that a ̸≡ 0 mod p then the
Legendre symbol is as follows (

a

p

)
≡ a

p−1
2 mod p.

Proof. The proof can be found on [Ros11, page 418].

Theorem 5.22. Let p be an odd prime. Then(
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof. The proof can be found on [Ros11, page 419].

The last lemma we need before we begin the proof of Lemma 5.17 is the following.

Lemma 5.23. [AL11, page 8] Let p be prime and f, g ∈ Fp[X] be non zero polynomials of degree

at most two. If
(
f(t)
p

)
=

(
g(t)
p

)
or

(
f(t)
p

)
= −

(
g(t)
p

)
for all t ∈ Fp then f and g are associates.

The proof is based on the proof by [AL11].
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Figure 5: ax2 + by2 = 1

Proof. Let p be a prime and f, g ∈ Fp[X]. Suppose there exists a t ∈ Fp such that
(
f(t)
p

)
=(

g(t)
p

)
. Then

(
f(t)
p

)
−
(
g(t)
p

)
= 0 and by Euler’s criterion

f(t)
p−1
2 − g(t)

p−1
2 ≡ 0 mod p. (⋆)

Both f and g are of degree at most two so the left hand side of (⋆) is of degree at most p − 1.
However, every t ∈ Fp is a root of the left hand side (⋆) so the degree of (⋆) must be p. This

implies left hand side of (⋆) is the zero polynomial. Therefore, f(t)
p−1
2 , g(t)

p−1
2 are associates.

If we factorize them into irreducible elements then they will have the same irreducible factors
up to multiplication by constants. Hence, so will f and g and therefore f and g are associates.

Assume that
(
f(t)
p

)
= −

(
g(t)
p

)
. Let a ∈ Fp be a quadratic nonresidue. Then

(
a
p

)
= −1 so(

f(t)
p

)
=

(
ag(t)
p

)
. By the same argument as above, we conclude that f and ag are associates

and hence f and g are associates.

The following proof is based on [AL11, Lemma 13].

Proof of Lemma 5.17. Let p be a prime and p ∤ 2a1a3a4(a22 − 4a1a3). Since we are working over
Fp and a4 is nonzero, we can always multiply the whole equation by a−1

4 and work with the case
where we have a system of equations of the form

a1U
2 + a2V

2 + a3W
2 = Z2

UW = V 2.

Consider the equation f(X,Y ) = a1X
2 + a2XY + a3Y

2. Since p ∤ a1 and p ∤ (a22 − 4a1a3) then

also a3−
a22
4a1

̸≡ 0 mod p and thus we can apply Lemma 5.19. Consider the polynomials q1, q2, q3
found in Lemma 5.19 applied to

a1X
2 + (a3 −

a22
4a1

)Y 2 = Z2
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so that we have

a1q
2
1 + (a3 −

a22
4a1

)q22 = q23.

In this case

a1X
2 + (a3 −

a22
4a1

)Y 2 = Z2 ⇐⇒

a1
X2

Z2
+ (a3 −

a22
4a1

)
Y 2

Z2
= 1.

Note that in this case we have that x0 and y0 as in Lemma 5.19 correspond to X
Z and Y

Z
respectively.

Let q′1 = q1 − a2
4a1
q2, then

f(q′1, q2) = a1(q1 −
a2
2a1

q2)
2 + a2(q1 −

a2
2a1

)q2 + a3q
2
2

= aq21 − a2q1q2 +
a22
4a1

q22 + a2q1q2 −
a22
2a2

q22 + a3q
2
2

= aq21 + (a3 −
a22
4a1

)q22

= q23.

By Lemma 5.19 we know q1, q2 are not associates and since q′1 is nonzero then q′1, q2 are not
associates. By Lemma 5.23 there exists a t ∈ Fp such that(

q′1(t)

p

)
̸= −

(
q2(t)

p

)
so that means q′1(t)q2(t) = s2 for some s ∈ Fp[t]. Hence, (U, V,W,Z) = (q′1(t), s, q2(t), q3(t)) is a
nontrivial solution to (17).

We can also double check that the solution (q′1(t), s, q2(t), q3(t)) works by direct substitution.
From Lemma 5.19 we know the polynomials qi for i = 1, 2, 3 are given by

q1(t) = bx0t
2 − 2by0t− a1x0

q2(t) = −by0t2 − 2a1x0t+ a1y0

q3(t) = bt2 + a1

where b =
(
a3 +

a22
4a1

)
and a1x0+ by0 = 1. We only need to check whether a1q

2
1 + bq22 = q23 as we

already know from the proof that substituting q′1(t) and q2(t) in the left hand side of (17) gives
us a1q

2
1 + bq22. Thus

a1q
2
1 + bq22 = (a1b

2x20 + b3y20)t
4 + 3(a21bx

2
0 + a1by

2
0)t

2 + a31x
2
0 + a21b1y

2
0

= b2(a1x
2
0 + by20)t

2 + 2a1b(a1x
2
0 + by20)t

2 + a21(a1x
2
0 + by20)

= b2t4 + 2a1bt
2 + a21

= q23

exactly as we wanted.
Lemma 5.17 tells us that (17) has a nontrivial Fp solution for primes p ∤ 2a1a3a4(a22−4a1a3),

and by Lemma 5.16 this then implies that (16) has a nontrivial Fp solution.
The following lemma tells us that if we have a solution modulo a prime p, then we can ‘lift’

the solution modulo pk for all k ∈ Z>0. Hence, this helps us prove we have solutions modulo pk

in Theorem 5.14.
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Lemma 5.24 (Hensel’s Lemma). Let f ∈ Z[X], k ∈ Z>1 and p a prime. Suppose there is an
s ∈ Z such that f(s) ≡ 0 mod pk−1 and f ′(s) ̸≡ 0 mod p. Then, there exists a unique r ∈ Z,
0 ≤ r < p, given by r = −(f ′(s))−1 f(s)

pk−1 mod p such that 1

f(s+ rpk−1) ≡ 0 mod pk.

A more precise version of this lemma together with its proof can be found in [Ros11, Chapter
4.4]. Having introduced these tools, we can proceed to prove Theorem 5.14.

Proof of Theorem 5.14. Let p be prime and p ∤ 2a1a3a4(a22−4a1a3). By Lemma 5.17, the system
(17) has a nontrivial Fp solution and hence by Lemma 5.16, also (16) has a nontrivial Fp solution.
Let (x0, y0, z0) ∈ Z3 be such a solution. Without loss of generality the solution is primitive, as
we can always factor out the common term. If p | x0 and p | y0 then p | z0, so at least one of
x0, y0 has to be coprime to p. Since they are symmetric, suppose gcd(p, y0) = 1. Then y0 ∈ F∗

p,

and multiplying by its inverse we get that (x0y
−1
0 , 1, z0y

−1
0 ) is also a solution to (16) (modulo

p). Denote x = x0y
−1
0 , z = z0y

−1
0 , then substituting it in (16) we have a1x

4 + a2x
2 + a3 = a4z

2.
Then we can have two cases.

Case I: z ≡ 0 mod p. Then x is a root of f(T ) = a1T
4 + a2T

2 + a3 ∈ Fp[T ]. Suppose
f ′(x) = 4a1x

3 + 2a2x ≡ 0 mod p. Note x ̸≡ 0 mod p as otherwise f(x) ≡ a3 ≡ 0 mod p which
is a contradiction as we assumed p ∤ a3. Hence 4a1x

3 ≡ −2a2x
2 mod p so a2 ≡ −2a1x

2 mod p.
Therefore

0 ≡ f(x)

≡ (−4a1)a1x
4 + (−4a1)a2x

2 + (−4a1)ax

≡ −4a21x
4 + 2(−2a1x

2)a2 − 4a1a3

≡ −a22 + 2a22 − 4a1a3

≡ a22 − 4a1a3 mod p

which is a contradiction since we assumed p ∤ (a22 − 4a1a3). Therefore f
′(x) ̸≡ 0 mod p. By

Hensel’s Lemma 5.24 there exists a unique r ∈ Z, 0 ≤ r < p, such that f(r) ≡ 0 mod p2.
Therefore (r, 1, 0) is a solution to a1X

4 + a2X
2Y 2 + a3Y

4 − a4Z
2 ≡ 0 mod p2. We can repeat

this procedure to get solutions modulo pk for all k ∈ Z>1.
Case II: z ̸≡ 0 mod p. Then z is a root of f(T ) = a4T

2 − (a1x
4 + a2x

2 + a3) ∈ Fp[T ]. Note
that f ′(z) = 2a4z ̸≡ 0 mod p since p ∤ 2a4. Thus by Hensel’s Lemma there exists a unique r ∈ Z,
0 ≤ r < p, such that f(r) ≡ 0 mod p2. Therefore (x, 1, r) is a solution modulo p2. We can repeat
the process to get solutions modulo pk for all k ∈ Z>1.

In this subsection we worked with the idea that if there are solutions to some polynomial
over the integers, then there is a solution to that polynomial modulo some prime power, and
we showed which primes to consider for the case of the quartic (16). However, having solutions
to a polynomial modulo some prime power, or even over the real numbers, does not imply that
the same polynomial will have solutions in the integers. Hasse’s Theorem [AL11, Theorem 2]
tells us some information on the case where we work with a homogeneous polynomial of degree
2, but for higher degrees we cannot deduce much about integer solutions from real solutions or
solutions modulo pk for p prime and k ∈ Z>0.

One of the issues of the 2-isogeny descent method is if we encounter such a situation while
computing the rank of the curve. The best we can do is apply some smart tricks. In the method
of descent by 2-isogeny, we know that #α(E(Q))#ᾱ(Ē(Q) is a power of 2. Suppose for example,
that for E(Q) we get four equations of the form (14) and also that b is not a square. If we find

1Note that (f ′(s))−1 refers to the inverse of f ′(s) modulo p.
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the first two have a solution but the third one does not, then we know the fourth one will not
either as we cannot have 5 elements in the image of α.

Having acquired all the necessary tools to compute the rank we proceed to illustrate how it
works with a couple of examples.

5.3 Examples of rank of EN

Recall that we want to compute the rank of (7) since the points in the torsion subgroup do
not lead to desired solutions. Consider the following examples, where we compute the rank for
N = 1 and N = 4. Recall that the isogeny maps the rational points on EN to the rational
points on ĒN defined as

ĒN : y2 = x3 + āx2 + b̄x where ā = −2a and b̄ = a2 − 4b. (19)

More specifically we have an isogeny between elliptic curves

ϕ : EN → ĒN

(x, y) 7→
(
y2

x2
,
(x2 − 32(N + 3))y

x2

)
where ĒN : y2 = x3 − 2(4N3 + 12N − 3)x2 + (2N − 3)(2N + 5)3x [BM14, page 32].

Example 5.25 (N = 1). When N = 1, our elliptic curve EN (7) becomes

E1 : y
2 = x3 + 13x2 + 128

and the curve given by the isogeny is

Ē1 : y
2 = x3 − 26x2 − 343.

Let us compute first the image of α(E1(Q)). Here a = 13 and b = 128. We can factorize b as
b = b1b2 = ±1 · ±128 = ±2 · ±64, which are the only square free options for b1. Note that
α(128) ≡ 2 mod Q∗2 , so we already know 1, 2 ∈ α(E1(Q)). This leaves us to check whether
−1,−2 are in the image, which gives rise to the following equations

I. L2 = −M4 + 13e2M2 − 128e4

II. L2 = −2M4 + 13M2e2 − 64e4.

We compute 2b(a2−4b) = 2 ·128(132−4 ·128) = −87808 = −28 ·73, so we can use Theorem 5.14
to check whether I and II have solutions modulo p | 2b(a2 − 4b), as those are the primes (and
their powers) that might give us no solutions according to Theorem 5.14. To check for solutions
modulo a prime power pk we used SageMath [The21] (see Appendix A). Both equations have no
nontrivial solutions modulo 7, and hence no rational solutions. Therefore −1,−2 /∈ α(E1(Q)),
so #α(E1(Q)) = 2, namely α(E1(Q)) = {1, 2}.

For ᾱ(Ē1(Q)), we get have a = −26 and b = −343 ≡ −7 mod Q∗2 , so we know that 1,−7 ∈
ᾱ(Ē1(Q)) and thus we only need to check b1 = −1, 7. Hence we get

I. L2 = −M4 − 26e2M2 + 343e4

II. L2 = 7M4 − 26M2e2 − 49e4.

We compute 2b(a2−4b) = −1404928 = −212·73. Both equations have nontrivial solutions modulo
24, but none of these solutions satisfying being not all zero and (15). Therefore −1, 7 /∈ ᾱ(Ē1(Q))
and hence ᾱ(Ē1(Q)) = {1,−7}.

Substituting into the rank formula we get

2r =
2 · 2
4

= 1

so r = 0.
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The example did not lead to desired solutions to the fruit puzzle, as the rank is 0. Another
example which leads to a desired solution is for N = 4.

Example 5.26 (N = 4). Substituting N = 4 we get the equations

E4 : y
2 = x3 + 109x2 + 224x

and
Ē4 : y

2 = x3 − 218x2 + 10985x.

For E4 we have a = 109 and b = 224 ≡ 14 mod Q∗2 so we know that 1, 14 ∈ α(E4(Q)). We
can factorize b in the following ways to get b1 ̸= 1, 14 squarefree: b = ±2 · ±112 = ±7 · ±32 =
−14(−16). This leads to the following equations

I. L2 = 2M4 + 109e2M2 + 112e4

II. L2 = −2M4 + 109e2M2 − 112e4

III. L2 = 7M4 + 109e2M2 + 32e4

IV. L2 = −7M4 + 109e2M2 − 32e4

V. L2 = −14M4 + 109e2M2 − 16e4

VI. L2 = −M4 + 109e2M2 − 224e4.

Here we have that 2b(a2−4b) = 2 ·224(1092−4 ·224) = 26 ·5 ·7 ·133. Again we use Theorem
5.14 to check for powers of primes p | 2b(a2 − 4b), so the primes 2, 5, 7, 13 and their powers. To
check for solutions modulo these primes we used SageMath (again, see Appendix A).

For I, note that gcd(M, 112) = 1 so M ≡ 1 mod 2. Therefore M ≡ 1 mod 4 or M ≡
3 mod 4, and since 34 ≡ 32 ≡ 1 mod 4, we get that reducing modulo 4, I becomes N2 ≡
2 + e2 mod 4 which has no solutions. We get that II also has no solutions modulo 4, and III
no solutions modulo 5 and IV has no solutions modulo 13. Equations V and VI both have
the same solution, namely (M, e, L) = (2, 1, 14). Note that because in Equation (14) both M, e
are squared, then (−2, 1, 14), (2,−1, 14), (−2,−1, 14) are also solutions. Therefore we get that
α(E4(Q)) = {±1,±14}.

The curve Ē4 has a = −218 and b = 10985 ≡ 65 mod (Q∗)2, so 1, 65 ∈ ᾱ(Ē4(Q)). Since
a < 0 and b > 0, factorizing b to get b1, b2 < 0 will lead to L2 < 0 and since we want integer
solutions that does not work. Hence, factorizing b to get square free, positive b1’s (excluding
1, 65) we have

I. L2 = 5M4 − 218e2M62 + 2197e4

II. L2 = 13M4 − 218e2M62 + 845e4.

Here 2b(a2− 4b) = 78740480 = 210 · 5 · 7 · 133. Reducing I and II modulo 7 we get that they both
do not have nontrivial solutions, so ᾱ(Ē(Q)) = {1, 65}. Hence, the rank formula gives us

2r =
2 · 4
4

= 2

ans thus r = 1. Therefore we have that

E4(Q) ∼= Z⊕ Z/6Z.

Since the rank is one, Lemma 4.6 tells us that we get nontrivial solutions for (a, b, c) in the
projective plane. Looking back at our elliptic curve for N = 4,

E4 : y
2 = x3 + 109x2 + 224x

we got the following results from equations V and VI:
We have that for V, the solutions (2, 1, 14) and (−2,−1, 14) give us (x, y) = (−4,−28). This

point only gives us the trivial solution (a, b, c) = (0, 0, 0). However, the points (−2, 1, 14) and
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(2,−1, 14) give the point (x, y) = (−4, 28) which corresponds to (a, b, c) = (11, 2,−1) in the
projective plane.

For VI we have the opposite. The points (−2, 1, 14) and (2,−1, 14) give us (x, y) = (−56, 392)
which leads to the trivial solution, while the other two points lead to nontrivial solutions, namely
(x, y) = (−56,−392) corresponding to (a, b, c) = (−5, 9, 11).

Let P = (−4, 28). The point P is of infinite order and it can be written as P = (−56,−392)+
(0, 0) where (−56,−392) is a point of infinite order and (0, 0) is a point of order 2. However,
there is no point S ∈ E4(Q) such that a multiple of S is equal to P . A generator for E4(Q) given
by SageMath is the point (−100, 260), which is equal to P + Q3 where Q3 is a point of order
3 or equivalently, is equal to (−56,−392) + Q6 where Q6 ∈ Z/6Z is a point of order 6. Recall
that E4(Q) ∼= Z ⊕ Z/6Z and therefore we can also generate it by letting P be a generator for
the infinite part while the torsion subgroup is cyclic and is generated by a point of order 6 (see
[BM14, Remark 2.2]). Thus, every rational point in E4(Q) can be written as nP +mQ where
n ∈ Z, Q is a torsion point of order 6 and m ∈ {0, 1, 2, 3, 4, 5}.

We can compute multiples of the point P until we reach a point on E4(Q) which corresponds
to a, b, c > 0. We do this using SageMath, in the code that can be found in the Appendix A. As
also stated in [BM14], we find that the smallest integer n, for which a, b, c > 0, is n = 9. The
point of 9P and the corresponding point (a : b : c) are as follows:

9P =

(
−66202368404229585264842409883878874707453676645038225

13514400292716288512070907945002943352692578000406921
,

58800835157308083307376751727347181330085672850296730351871748713307988700611210

1571068668597978434556364707291896268838086945430031322196754390420280407346469

)
with corresponding values

(a : b : c) = (154476802108746166441951315019919837485664325669565431700026634898253202035277999 :

36875131794129999827197811565225474825492979968971970996283137471637224634055579 :

4373612677928697257861252602371390152816537558161613618621437993378423467772036).

In fact P is the generator of E(Q) modulo the torsion subgroup, for which the smallest
multiple corresponds to a positive solution to the fruit puzzle. If we define a new point P ′ = P+T
where T is in the torsion subgroup of E4(Q), we can see that indeed there is no m ∈ Z such
that mP ′ corresponds to all a, b, c > 0 for m < 9. In some cases, for example for Q being a point
of order 3 we see that 9P ′ corresponds to a, b, c > 0. The values of mP ′ and the corresponding
points (a : b : c) are not written in this paper, but one can find them using the SageMath code
we used, found in Appendix A. We will elaborate more on the size of these solutions in a later
section. In the table below we summarized the first multiple of P ′, denoted by n, for all the
different torsion points, for which there are positive solutions to the fruit puzzle.

P ′ n # digits of a # digits of b # digits of c

P + (0, 0) 13 168 167 167

P + (4, 52) 9 81 80 79

P + (4,−52) 9 81 80 79

P + (46, 728) 13 167 194 167

P + (46,−728) 13 167 167 168

Table 1: Smallest n for which nP ′ corresponds to a, b, c > 0.

However, if we compute higher multiples of P ′, although the number of digits of a, b, c
increases (see the last subsection of Section 6) a, b, c can be negative again. This is because in
order to get positive a, b, c we need the x−coordinate of the point P ′ to be within certain bounds
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which depend on N and as P ′ grows it can happen that x is not within those bounds anymore.
We will elaborate more on this in later sections.

A later result tells us that the rank of EN (Q) will be 0 for all odd N. Thus, if we want to
know which smallest positive N yields rank 1, we only need to check the rank of the elliptic
curve EN (Q) for the case where N = 2.

Example 5.27 (N=2). Let N = 2. Then

E2(Q) : y2 = x3 + 37x2 + 160x and

Ē2(Q) : y2 = x3 − 74x2 + 729x.

For E2, we have b = 160 ≡ 10 mod (Q∗)2, thus 1, 10 ∈ α(E2(Q)). We can factorize b as follows

b = b1b2 = −1(−160),±2 · ±80,±5 · ±32

where we excluded the case of ±1 ± 160 as we already know it is contained in the image of α.
Using Theorem 5.14, we find that the primes whose powers we need to check to exclude some
equations of the form

L2 = b1M
4 + aM2e2 + b2e

4

are 2, 3 and 5. The equations corresponding to b1 = −1, 2, 5 have no solution modulo 3 (or
some power of 3). For b1 = −2 we have the solution (M, e, L) = (2, 1, 36). For b1 = −5 we
find the same solution, (2, 1, 36). For all the remaining values of b1 we find the equations have
no solution modulo 22. Thus, α(E2(Q)) = {1, 10,−2,−5}. For the isogenous curve we see that
b = 36 ≡ 1 mod (Q∗)2, and that we can only factor it as b1b2 = (±3)(±243). For the case where
b1 = −3 and b2 = −243 we see that it yields the equation

L2 = −3M4 − 74e2M2 − 243e4

which cannot have any solutions as we have that the right hand side is always negative and we
cannot have a negative square. If b1 = 3 we see instead that L2 = 3M4 − 74e2M2 + 243e4 has
no solution modulo 24 for which gcd(M, e), gcd(L, e) = 1. Therefore #ᾱ(Ē2(Q)) = 1.

Thus,

2r =
#α(E2(Q))#ᾱ(Ē2(Q)

2

=
4 · 1
4

= 1

so the rank is 0 and thus E2(Q) ∼= Z/2Z⊕ Z/6Z.

This proves Theorem 3.1, as we know that the rank can only be positive if N is even. Since
N = 2 gives 0 rank, then the smallest positive rank for EN (Q) occurs when N = 4.

6 Positive Solutions to the Fruit Puzzle

The example with N = 4 gave us positive rank and thus a solution (a, b, c) to CN (3). However,
if we want to solve the fruit puzzle, we cannot have negative fruits. This focuses our attention
on finding (x, y) ∈ EN (Q) such that they give positive (a, b, c) on CN . For the case where N > 0
the following theorem gives some conditions on x that give the desired positive solution.
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Theorem 6.1 ([BM14]). Let (x, y) ∈ EN (Q) with corresponding (a, b, c) ∈ CN (Q). Then a, b, c >
0 if and only if

1

2

(
3− 12N − 4N2 − (2N + 5)

√
(2N + 5)(2N − 3)

)
< x < −2(N + 3)(N +

√
N2 − 4) (20)

or

−2(N + 3)(N −
√
N2 − 4) < x < −4

(
N + 3

N + 2

)
. (21)

The following proof is based on the proof of Theorem 4.1 in [BM14].

Proof. ( =⇒ ) Suppose a, b, c > 0. Then s = a+b+c is also positive. Then we have that a
s ,

b
s > 0

and in particular substituting (9)

ab

s2
=

(8(N + 3)− x+ y)(8(N + 3)− x− y)

s2
> 0.

This happens if and only if

0 < (8(N + 3)− x+ y)(8(N + 3)− x− y)

= −16(N + 3)x+ 64(N + 3)2 + x2 − y2

= −16(N + 3)x+ 64(N + 3)2 + x2 − x3 − (4N2 + 12N − 3)x2 − 32(N + 3)x

= 64(N + 3)2 − x3 − 4N(N + 3)x2 + 4x2 − 48(N + 3)

= (4− x)(x2 + 4N(N + 3)x+ 16(N + 3)2).

Either both terms are negative or both positive. Suppose they are both negative, so x > 4, then
x2+4N(N +3)x+16(N +3)2 < 0 which can only happen when x is negative, contradicting the
fact that x > 4. Therefore both terms are positive, so x < 4 and x2+4N(N+3)x+16(N+3)2 > 0.
Using the quadratic formula we find that this happens when either

x > −2(N + 3)(N −
√
N2 − 4)

or
x < −2(N + 3)(N +

√
N2 − 4).

Similarly
c

s
=

−4(N + 3)− (N + 2)x

(4− x)(N + 3)
> 0 ⇐⇒ x < −4

(
N + 3

N + 3

)
.

The inequality y2 > 0 gives one last bound for x. Note that

y2 = x3 + (4N2 + 12N − 3)x2 + 32(N + 3)x > 0

when x > 1
2(3− 4N(N + 3)− (2N + 5)

√
(2N + 5)(2N − 3)).

Thus we have

1

2
(3− 4N(N + 3)− (2N + 5)

√
(2N + 5)(2N − 3)) < −2(N + 3)(N +

√
N2 − 4),

and − 2(N + 3)(N +
√
N2 − 4) < −2(N + 3)(N −

√
N2 − 4),

and − 2(N + 3)(N −
√
N2 − 4) < −4

(
N + 3

N + 2

)
.

The first inequality follows from assuming 1
2(3− 4N(N + 3)− (2N + 5)

√
(2N + 5)(2N − 3)) >

−2(N + 3)(N +
√
N2 − 4) which leads to a contradiction as it implies N < 0. The second

inequality follows from the fact that −2(N+3)
√
N2 − 4 < 2(N+3)

√
N2 − 4. The last inequality
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follows from assuming −2(N + 3)(N −
√
N2 − 4) > −4

(
N+3
N+2

)
which leads again to N being

negative. This leads to the desired bounds for x

1

2

(
3− 12N − 4N2 − (2N + 5)

√
(2N + 5)(2N − 3)

)
< x < −2(N + 3)(N +

√
N2 − 4)

or

−2(N + 3)(N −
√
N2 − 4) < x < −4

(
N + 3

N + 2

)
.

( ⇐= ) Suppose (x, y) ∈ EN (Q) such that x satisfies (20) and (21). Substituting x as in (8)
into one of the bounds gives

−4(a+ b+ 2c)(N + 3)

(N + 2)(a+ b)− c
< −4

(
N + 3

N + 2

)
⇐⇒ a+ b+ 2c > a+ b− c

N + 2

⇐⇒ (2(N + 2) + 1)c > 0.

Since N > 0 then 2(N + 2) + 1 > 0 which implies c > 0. Likewise

−4(a+ b+ 2c)(N + 3)

(N + 2)(a+ b)− c
> −2(N + 3)(N −

√
N2 − 4

⇐⇒ 2(a+ b+ 2c) < (N −
√
N2 − 4)((N + 2)(a+ b)− c)

⇐⇒ (a+ b)((N + 2)(N −
√
N2 − 4)− 2) > c(N + 4−

√
N2 − 4).

We want to check whether the right hand side is negative. We have that N + 4−
√
N2 − 4 < 0

if and only if 16N + 20 < 0 and since N > 0, that is impossible. Since c > 0 then the
right hand side is positive. Next we need to know what the sign of a + b is, so we need to
check whether ((N + 2)(N −

√
N2 − 4) − 2) < 0 (as it could happen that both expressions on

the right hand side are negative thus being positive once multiplied together). If we assume
((N +2)(N −

√
N2 − 4)− 2) < 0 it leads to N < 0. Therefore ((N +2)(N −

√
N2 − 4)− 2) > 0

and hence a+b > 0. Thus, the last thing we need to check is if one of a or b is negative. Suppose
that is the case. Then, ab < 0 and hence

ab

s2
< 0.

But we know from the first part of the proof that this would imply x < −2(N+3)(N−
√
N2 − 4)

or x > −2(N + 3)(N +
√
N2 − 4) and it contradicts our assumption of x satisfying (20) and

(21), therefore both a, b > 0.

This theorem tells us that the rational points (x, y) ∈ EN (Q) that correspond to the points
(a, b, c) ∈ CN that are solutions to the fruit puzzle live on the ‘egg’ component of the elliptic
curve. Therefore we have some restriction on x, so the next question to ask is whether we have
restriction on N.

Remark 6.2. In [BM14, Section 6] it is explained if there is a rational point on the egg com-
ponent of EN , there there will be a point that satisfies the inequalities of Theorem 6.1 and thus
leads to desired solutions of the fruit puzzle. This is because the rational points are dense on
both the egg and the unbounded component of EN . Therefore, there will always be a solution to
the fruit puzzle.
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6.1 Odd N and parametrization of N

The following theorem tells us that for odd N there are no rational points on the egg component,
thus no positive solutions to the fruit puzzle.

Theorem 6.3. [BM14, Theorem 5.1] Suppose N ≡ 1 mod 2. Then all rational points (x, y) ∈
EN (Q) satisfy x ≥ 0.

The proof is based on the proof of Theorem 5.1 in [BM14]. Throughout the proof we will
repeatedly use the Jacobi symbol, which is defined as follows.

Definition 6.4 (Jacobi symbol). Let n ∈ Z odd with prime factorization n = pt11 ...p
ts
s , ti ∈ Z,

where pi ̸= pj for all i ̸= j, i, j = 1, . . . , s. For gcd(a, n) = 1 the Jacobi symbol is(a
n

)
=

(
a

p1

)t1
...

(
a

ps

)ts
where each

(
a
pi

)
is the Legendre symbol for the prime pi and i ∈ {1, ..., s}.

The Jacobi symbol behaves similarly as the Legendre symbol, as described in the Theorem
below.

Theorem 6.5 ([Ros11] page 444). Let n ∈ Z be odd and a, b ∈ Z be relatively prime to n. Then

i. if a ≡ b mod n then
(
a
n

)
=

(
b
n

)
;

ii.
(
ab
n

)
=

(
a
n

) (
b
n

)
;

iii.
(−1
n

)
= (−1)(

n−1
2 );

iv.
(
2
n

)
= (−1)

(
n2−1

8

)
.

Theorem 6.6 (The reciprocity law for Jacobi symbols). [Ros11, page 446] For n,m ∈ Z>1 odd
and relatively prime, then ( n

m

)(m
n

)
= (−1)

n−1
2

·m−1
2 .

The proof of both theorems can be found on [Ros11, pages 444-447]. Using these tools we
go back to the proof of Theorem 6.3.

Proof of Theorem 6.3. Suppose N ≡ 1 mod 2. Then N + 3 is even and hence we can write it as
N + 3 = 2M, so that it simplifies the equation of the elliptic curve EN . Substituing M into (7)
yields

y2 = x3 + 4N(N + 3)x2 − 3x2 + 32(N + 3)x

= x3 + 4(2M − 3)(2M)x2 − 3x2 + 64Mx

= x3 + (16M2 − 24M − 3)x2 + 64Mx.

Note that if (x, y) ∈ EN (Q) then the x−coordinate is of the form x = dr2

s2
where d, r, s ∈ Z, d is

square free and gcd(r, s) = 1 Substituting this in we get

y2 =
dr2

s2

(
d2r4

s4
+ (16M2 − 24M − 3)

r2

s2
+ 64M

)
⇐⇒

(ys
r

)2
=
d3r2

s2
+ (16M2 − 24M − 3)

d2rr

s2
+ 64Md

⇐⇒
(
ys3

rd

)2

= dr4 + (16M2 − 24M − 3)r2s2 +
64M

d
(⋆)
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and since the square on the left hand side is an integer that implies d | 64M. Letting
(
ys3

rd

)2
= □,

multiplying by 4d and completing the square gives

4d□ = 4d2r4 + 4d(16M2 − 24M − 3)r2s2 + 4 · 64Ms4

= (2dr2 + (16M2 − 24M − 3)s2)2 − (16M2 − 24M − 3)2s4 + 4 · 64Ms4

= (2dr2 + (16M2 − 24M − 3)s2)2 − (4M − 1)3(4M − 9)s4 (⋆⋆)

and in particular since d | 64M and is square free, d | 2M.
The idea is to show that there can be no solutions r, s ∈ Z to (⋆) when d < 0. We do this by

considering different cases for d.
Case I. d < 0 and odd. Let d = −u where u > 0 and odd. Since d |M , let M = um. Then

(⋆) becomes

□ = −ur4 + (16M2 − 24M − 3)r2s2 +
64um

−u
s4

= −ur4 + (16M2 − 24M − 3)r2s2 − 64ms4.

Note that gcd(−u, um− 1) = 1 so the Jacobi symbol(
−u

4M − 1

)
=

(
−1

4M − 1

)(
u

4M − 1

)
.

Then
(

−1
4M−1

)
= (−1)

4M−1−1
2 = (−1)2M−1 = −1 which follows from applying Theorem 6.5. Note

that
(
4M−1
u

)
is its own inverse, as

(
4M−1
u

)2
= 1 so together with applying Theorem 6.6 we have(

u

4M − 1

)
= (−1)

u−1
2

(
4M − 1

u

)
Here (

4M − 1

u

)
=

(
4um− 1

u

)
=

(
−1

u

)
as 4um− 1 ≡ −1 mod u. Putting it back together gives(

−u
4M − 1

)
= −(−1)

u−1
2

(
−1

u

)
= −(−1)

u−1
2 (−1)

u−1
2

= −1.

Therefore there exists a prime p | (4M − 1) such that
(
−u
p

)
= −1. This is because if for all

primes p dividing 4M − 1 we had
(
−u
p

)
= 1 then

(
−u

4M−1

)
= 1. Therefore modulo that prime

(⋆⋆) becomes
(−2ur2 + (16M2024M − 3)s2)2 ≡ −4u□ mod p

which can only happen if (−2ur2 + (16M2024M − 3)s2)2 ≡ 0 mod p since −u is not a square
modulo p. Since 4M − 1 ≡ 0 mod p, then 4M ≡ 1 mod p so

−2ur2 + (16M2 + 24M − 3)s2 ≡ 0 mod p

⇒ −2ur2(1− 6− 3)s2 ≡ 0 mod p

⇒ −2ur2 − 8s2 ≡ 0 mod p

⇒ 4s2 ≡ −ur2 mod p.
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Since u is not a square this implies s ≡ r ≡ 0 mod p which contradicts the fact that gcd(r, s) = 1.
Case II. d < 0 and even. Set d = −2u, u > 0 odd and M = um as before. Then (⋆⋆) becomes

(−4ur2(16M2 − 24M − 3)s2)2 − (4M − 1)3(4M − 9)s4 = −8u□.

We apply the same method as in case I, but first we need to subdivide into two subcases.
Subcase I. M even. Then, by Theorem 6.5(

−2u

4M − 1

)
=

(
−2

4M − 1

)(
u

4M − 1

)
,

where (
−2

4M − 1

)
=

(
−1

4M − 1

)(
2

4M − 1

)
.

Evaluating those Jacobi symbols we have(
−1

4M − 1

)
= (−1)2M−1 = −1 and

(
−1

4M − 1

)
= (−1)2M

2−M = (−1)M(2M−1) = 1,

since M is even. By Theorem 6.6(
u

4M − 1

)
= (−1)

u−1
2

(
4M − 1

u

)
= (−1)

u−1
2

(
−1

u

)
.

Hence (
−2

4M − 1

)(
u

4M − 1

)
= −(−1)

u−1
2

(
−1

u

)
= −(−1)

u−1
2 (−1)

u−1
2

= −1.

Therefore there exists a prime p | (4M − 1) such that
(
−2u
p

)
= −1. Then (⋆⋆) becomes

(−4ur2(16M2 − 24M − 3)s2)2 ≡ −8u□ mod p

and since −8u□ = −2u · 4□ and we know −2u is not square, this can only happen if

−4ur2(16M2 − 24M − 3)s2 ≡ 0 mod p

⇒ −4ur2 + (1− 6− 3)s2 ≡ 0 mod p

⇒ 4s2 ≡ −2ur2 mod p

and again, since −2u is not a quadratic residue modulo p, then this can only happen when
r ≡ s ≡ 0 mod p which again contradicts the fact that r and s are relatively prime.

Subcase II. M odd. Write M = um with both u,m odd and d = −2u as before. Then (⋆)
becomes

□ = −2ur4 + (16M2 − 24M − 3)s2r2 +
64um

−2u
s4

= −2ur4 + (16M2 − 24M − 3)s2r2 − 32ms4.

Modulo 4, it becomes
r2(2ur2 + s2) ≡ □ mod 4.

The squares modulo 4 are 0 and 1. Suppose s is even, then we can write it as s = 2k for some
k ∈ Z and hence s4 ≡ 0 mod 4. Since r and s are relatively prime, then r can either be 1 or 3
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modulo 4. Note that u is odd and r4 ≡ 1 mod 4 for both r ≡ 1, 3 mod 4. Therefore we have the
following

r2(2ur2 + s2) ≡ 2ur4 = 2u =

{
2 · 1 ≡ 2 if u ≡ 1 mod 4

2 · 3 ≡ 2 if u ≡ 3 mod 4

and since 2 is not a square modulo 4, then s must be odd. We know r and s are relatively prime,
so r is even. We can write r = 2k so

2ur4 + (16M2 − 24M − 3)s2r2 − 32ms4 ≡ □ mod 8

⇐⇒ −3r2s2 ≡ □ mod 8

⇐⇒ −3(r/2)2 ≡ □/4s2 mod 8

since r is divisible by 2. Therefore (r/2) ≡ 0 mod 8 so it is even. Write r
s = 2t for some t ∈ Z

so r = 4t. Therefore

□ = −2ur4 + (16M2 − 24M − 3)s2r2 − 32ms4

= −2u44t4 + ((16M2 − 24M − 3)s216t2 − 32ms4.

Dividing everything by 16 yields

−32ut4 + (16M2 − 24M − 3)t2s2 − 2ms4 = □

and modulo 4 it becomes
−3(r/4)2s2 − 2ms4 ≡ □ mod 4.

Note that s is odd and hence s ≡ 1 mod 4 or s ≡ 3 mod 4 so s2 ≡ 1 mod 4. Therefore we have
−3

(
r
4

)2− 2m ≡ □ mod 4 and since m is odd we have that 2m ≡ 2 · 1 ≡ 2 mod 4 if m ≡ 1 mod 4
or 2m ≡ 2 · 3 ≡ 2 mod 4 if m ≡ 3 mod 4 and thus

−3
(r
4

)2
− 2 ≡ □ mod 4.

Here

−3
(r
4

)2
− 2 ≡

{
2 if (r/4)2 ≡ 0 mod 4

3 if (r/4)2 ≡ 1 mod 4

which are both not a square modulo 4 so this is also impossible.

This result narrows down the options we have for N to get positive solutions to the fruit
puzzle. Together with Theorem 6.1 we know that not only we need even N , but we also need
x to be negative (in fact, less than −4) to be able to get positive solutions at all. The next
questions we can ask ourselves is whether there are infinitely many even positive integers N
which result in positive solutions to CN .

Theorem 6.7. [BM14, Theorem 5.3] There exist infinitely many positive even integers N such
that (3) has positive solutions.

Proof. We want infinitely many positive values of N , so we try to write N as a polynomial N(t),
and we want N(t) to be always even. Let N ∈ Z[t] such that N = t2+t+4, then N(t) ≡ t2+t ≡ 0
mod 2 for all t, thus N(t) is always even. Moreover, N(t) is always positive as t2 + t > 0 for all
t ∈ Z. Let x = −4(t2+ t+1)2. Substituting x = −4(t2+ t+1)2 and N = t2+ t+4 into the right
hand side of (7) leads to the right hand side being equal to (4(2t+1)(t2 + t+1)(3t2 +3t+7))2

and hence y = 4(2t+1)(t2+ t+1)(3t2+3t+7). One can check that x = −4(t2+ t+1)2 satisfies
the inequalities given in Theorem 6.1 and thus ensures positive a, b, c.
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Remark 6.8. There could be different parametrizations of N for which (3) has positive solutions.
Such a parametrization needs to satisfy the requirements of being a polynomial in Z[t] such that
it is always even and positive. For that polynomial one needs to be able to find x satisfying
Theorem 6.1 and for which the right hand side of (7) is a square.

The points a, b, c corresponding to such a parametrization [BM14, Remark 5.4] are given by

a = (t2 + 1)(3t3 + 8t2 + 14t+ 11) b = −(t2 + 2t+ 2)(3t3 + t2 + 7t− 2)

c = t6 + 3t5 + 11t4 + 17t3 + 20t2 + 12t− 1.

Therefore a multiple of the point (x, y) = (−4(t2 + t + 1)2, 4(2t + 1)(t2 + t + 1)(3t2 + 3t + 7))
would be necessary in order to get positive a, b, c.

6.2 Height of the points

We can make a few comments on the size of solutions we found in Example 5.3, and how these
relate to nP. Before we do this we need to introduce the notion of height.

Definition 6.9 (Height). [ST15, Section 3.1] Let x ∈ Q so that x = m
n for m,n ∈ Z, written

in lowest terms. The height function H(·) is defined by

H(x) := max{|m|, |n|}.

Definition 6.10 (Height of a point). The height of a rational point P = (x, y) is defined to be
the height of the x−coordinate of P. We write H(P ) = H(x).

The height tells us how ‘complicated’ a point is. If m and n are ‘close’, then x will be close
to 1, but the absolute values of m and n could still be very large.

Definition 6.11. The logarithmic height h(P ) of a point P = (x, y) is defined by

h(P ) := logH(P ).

The height function has the following properties.

Lemma 6.12. [ST15, Lemma 3.1] Let K ∈ R>0. Then the set

{P ∈ E(Q) : h(P ) ≤ K}

is finite.

Lemma 6.13. [ST15, Lemma 3.3] Let P ∈ E(Q), then there exists a constant κ that depends
on the coefficients of E(Q) such that

h(2P ) ≥ 4h(P )− κ.

Lemma 6.12 is stated in [ST15] without proof, while the proof of Lemma (6.13) can be found
in [ST15, Section 3.3].

There is a generalization of Lemma 6.13 that replaces the 2 in h(2P ) for n ∈ Z, thus being
the logarithmic height of nP . Hence we double a point, Lemma 6.13 tells us that the we expect
the height to increase. Thus, for a point P ∈ E(Q) we expect the height of nP to increase as
n increases. In Example 5.3 we can see this happening, as the height of nP increases as n goes
from 1 to 9. Moreover, in (9) we see that a, b and c are defined in terms of x and y and hence
as the height of nP increases, we expect the size of the corresponding a, b, c to increase too. We
showed the case when this happens corresponding to Example 5.3, where P = (−4, 28) and for
n = 9 all a, b, c are positive integers.

Remark 6.14. As future work, some more rigorous theory could be developed about the height
of a point on EN (Q) whose multiples correspond to positive solutions to the fruit puzzle and
relation to the number of digits of each a, b and c.
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n h(nP ) # digits of a # digits of b # digits of c

1 ∼ 1.39 2 1 1

2 ∼ 6.52 4 4 4

3 ∼ 13.5 9 9 9

4 ∼ 23.0 16 16 16

5 ∼ 39.1 25 25 25

6 ∼ 53.9 36 36 36

7 ∼ 74.2 49 49 48

8 ∼ 98.6 64 64 63

9 ∼ 122.0 81 80 79

Table 2: Height of P versus size of a, b, c

A Appendix

Code used to perform the calculations needed in the transformation from CN to EN .

# Importing SageMath

from sage.all import var, solve, show

# Define the variables

var('a b c x y z N')

# Define the system of equations

eq1 = x == (a + b + 2*c)

eq2 = y == (a - b)

eq3 = z == (N + 2)*(a + b) - c

# Solve the system for a, b, and c

solutions = solve([eq1, eq2, eq3], a, b, c)

# Display the solutions

show(solutions)

abc = solutions[0]

a1= abc[0].rhs()

a2= abc[1].rhs()

a3= abc[2].rhs()

def proj_eq(a,b,c):

return N*(a + b)*(a + c)*(b + c) - a*(a + b)*(a + c) - b*(a + b)*(b + c) - c*(a + c)*(b + c) == 0

proj_eq_in_xyz = expand(proj_eq(a1, b1, c1))

show(proj_eq_in_xyz)

To check for integer solutions to (10) we used the following SageMath code.

#name the variables and set N to be an integer

var('x')

N = var('N', domain='integer')
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#define what a and b are in our elliptic curve

a = 4*N^2+12*N-3

b=32*(N+3)

#equation satifying duplication formula for a point of order 3

eq_order_3 = 3*x^4 + 4*a*x^3 +6*b*x^2 -b^2==0

#equation satifying duplication formula for a point of order 3

eq_order_6 = x^4 -16*x^3 - 2*(b+8*a)*x^2 - 16*b*x +b^2

#function that takes as input the equation we want to

#solve and returns the integer solutions

def int_sol_finder(f):

solutions = solve(f, x, solution_dict=True)

integer_solutions = []

for sol in solutions:

if sol[x].is_integer():

integer_solutions.append(sol[x])

return integer_solutions

SageMath code used to solve the system of equations in (9).

var('N, a, b, c')

#put values of (x,y) to solve for a, b and c

x= 0

y= 0

#a/s, b/s, c/s expressions

f_a=(8*(N+3)-x+y)/(2*(4-x)*(N+3))

f_b=(8*(N+3)-x-y)/(2*(4-x)*(N+3))

f_c=(-4*(N+3)-(N+2)*x)/((4-x)*(N+3))

s= a+b+c

#solve the expressions for a, b and c

solve([a/s == f_a, b/s==f_b, c/s==f_c], a, b, c)

SageMath code used to substitute values of a, b, c into the equations of x and y (8).

var('N')

#write values of a, b and c to find (x,y)

a = -1

b = 1

c = 1

#expressions of x,y in terms of a,b,c

x = (-4*(a+b+2*c*(N+3)))/((2+N)*(a+b)-c)

y = (4*(a-b)*(N+3)*(2*N+5))/((2+N)*(a+b)-c)

print('(', x, ',', y, ')')
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var('a b c N x y s')

# Define the equations

eq1 = x == (-4*(a+b+2*c)*(N+3)) / ((N+2)*(a+b) - c)

eq2 = y == (4*(a-b)*(N+3)*(2*N+5)) / ((N+2)*(a+b) - c)

eq3 = s == a + b + c

# Solve the system for a, b, c

solution = solve([eq1, eq2, eq3], a, b, c)

solution

This is the SageMath code used in the examples 5.3.

# Define function f that takes the values b1,b2,a of our equation and p being

#the prime we want to check, r the prime power

def f(b1, b2, a, p, r):

# Define variables

var('M, e, N')

# Check solutions for all M, e, N satisfying the equation

#N^2 = b1*M^4 + ae^2M^2 + b2e^4

solutions = solve_mod(N^2 == b1*M^4 + a*e^2*M^2 + b2*e^4, p^r)

# Function to check if gcd of all variables in a solution is 1

def is_valid_solution(sol):

gcd_M_e = gcd(sol[0], sol[1])

gcd_M_N = gcd(sol[0], sol[2])

gcd_e_N = gcd(sol[1], sol[2])

return (gcd_M_e == gcd_M_N == gcd_e_N == 1)

# Filter solutions based on gcd conditions

valid_solutions = [sol for sol in solutions if is_valid_solution(sol)]

return valid_solutions

# Call function f with given parameters

Code used to find multiples of the point (−4, 28) ∈ E4(Q) and to compute the corresponding
values of a, b, c.

#compute multiples of the elliptic curve

N=4

a2 = 4*N^2+12*N-3

a4 = 32*(N+3)

E = EllipticCurve([0,a2,0,a4,0])

P = E([-4,28]); #P

n=9
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n*P

Q = n*P

#solve for a b c

var('a b c')

#x and y coordinates of the point nP

x = Q.x()

y = Q.y()

s = a+b+c

a_expr = a == s*((8*(N+3)-x+y))/(2*(4-x)*(N+3))

b_expr = b == s*((8*(N+3)-x-y))/(2*(4-x)*(N+3))

c_expr = c == s*(-4*(N+3)-(N+2)*x)/((4-x)*(N+3))

solve([a_expr,b_expr, c_expr],a,b,c)

Code used to find the multiples of P ′ together with the corresponding values of (a : b : c).
The code provided is for the case where P ′ = P + Q where P = (−4, 28) and Q is a point of
order 2.

P = E([-4,28])

N=4

#torsion points given by

#point of order 2

Q_2 = E([0,0])

#points of order 3

Q_3_1 = E([4, 4*(2*N+5)])

Q_3_2 = E([4, -4*(2*N+5)])

#points of order 6

Q_6_1 = E([8*(N+3), 8*(N+3)*(2*N+5)])

Q_6_2 = E([8*(N+3), -8*(N+3)*(2*N+5)])

#a,b,c equations

def equations(x, y):

a, b, c = var('a b c')

s = a+b+c

eq1 = a == s*((8*(N+3)-x+y))/(2*(4-x)*(N+3))

eq2 = b == s*((8*(N+3)-x-y))/(2*(4-x)*(N+3))

eq3 = c == s*(-4*(N+3)-(N+2)*x)/((4-x)*(N+3))

return [eq1, eq2, eq3]

#define the torsion point, in this case the one of order 2

P_2 = P + Q_2

38



# Compute nP for n in range 1 to 9 and solve the system of equations

solutions = []

for n in range(1, 10):

nP_2 = n * P_2

x, y = nP_2.xy()

eqs = equations(x, y)

sol = solve(eqs, a, b, c)

solutions.append(sol)

# Print the solutions

for i, sol in enumerate(solutions, 1):

print(f"Solution for {i}P_2:")

print(sol)

print()
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