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“Amplitudo potentiae [...] magna abundantia.”
-Marcus Tullius Cicero,

De Inventione 2.166 (around the year 90 B.C.)

The amplitude is a great abundance of power.
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1 Introduction
Quantum mechanical amplitudes are arguably the most interesting objects in physics. An
amplitude as a quantity tells us the degree to which two states overlap in the Hilbert space
of the quantum mechanical system under consideration. Hence, it is a way of quantifying
the degree to which two states are alike. More practically, if a system happens to occupy
one of these two states, it almost directly gives us the probability of obtaining the other. As
such, amplitudes sit right on the edge between the theoretical machinations that underpin
quantum mechanics as a theory and the concrete, measurable evolution of the world we
inhabit.

The degree to which it is then the goal of physics to predict the future, to that same
degree it is the goal of quantum mechanics to calculate these amplitudes. (Where we ignore
for a moment the completely valid goal of discovering what is and thus the goal of computing
properties of states.) In principle, then, as long as the calculated amplitudes stay the same,
the method which produces them can be altered.

As such, one can approach quantum mechanics in a myriad of different ways. This
ambiguity necessarily spawns alternative formulations, such as the canonical versus path
integral quantizations, and differing ‘interpretations’ which–though important–tend to verge
on the side of philosophy. In addition to all this, the typical Lagrangian is plagued by
‘redundancy’. That is, Lagrangians may admit several symmetry transformations which
ultimately leave the Lagrangians and therefore the amplitudes invariant. One can conclude
that a Lagrangian contains much redundant information which ultimately gets lost at the
level of amplitudes.

Furthermore, it is a laborious task to compute the amplitude for a particular process. In
quantum field theory, one typically calculates scattering amplitudes as a series of Feynman
diagrams. When one calculates amplitudes of processes with increasing numbers of particles
or to a higher level of precision, one needs to calculate ever more Feynman diagrams, quickly
approaching the tens and hundreds of thousands for relatively small processes. Compare
table 1.1.

It would seem that in the typical ways of doing quantum mechanics, there exists a divide
between theory and that which the theory aims to achieve, amplitudes. It would then be a
very nice surprise if there would exist methods of calculating scattering amplitudes directly
without the need of referencing Feynman diagrams or even Lagrangians. As it turns out, this
happens to be the precise domain of study of the so-called Scattering Amplitudes Program.

The Scattering Amplitudes Program canonically finds its roots in the discovery of the
Parke-Taylor formula in the 1980s [2]. Here, it was discovered that up to n = 6, for certain
combinations of helicities (the projection of the particle’s spin on its momentum), the gluon

n 4 5 6 7 8 9 10
# of diagrams 4 25 220 2485 34300 559405 10525900

Table 1.1: Number of Feynman diagrams contributing to the scattering n-point gluon scat-
tering process [1].
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color-ordered scattering amplitude, reduces to

An[1
+, . . . , i−, . . . , j−, . . . , n+] =

〈i j〉4

〈1 2〉〈2 3〉 . . . 〈n 1〉
. (1.1)

This notation is explained in great detail in chapter 2. However, even without knowing the
notation well, its great simplicity can be admired. Since then, it has been proven that this
formula holds for arbitrary n and we will do the same in chapter 4.

Naturally, the simplicity of this formula elicits the thought that there may be some
structure to scattering amplitudes not explicit on the level of the theory’s Lagrangian. This,
especially in contrast to the required amount of Feynman diagrams mentioned before. Since
then, many other structures have been discovered in the field of scattering amplitudes. Per-
haps most famously, the ‘double copy’ or BCJ relations.

A ‘full’ Yang-Mills amplitude scattering amplitude contains contribution from the overall
color structure of the SU(N) gauge group and from the momenta and helicities of the external
particles. It turns out that a full amplitude can be decomposed into several contibution as
follows:

An(1
h1
a1
, 2h2

a2
, . . . , nhn

an ) =
∑

σ∈Sn/Zn

Tr
(
Tσ(a1)Tσ(a2) . . . Tσ(an)

)
An[σ(1

h1), σ(2h2), . . . , σ(nhn)].

Here, we are summing over all permutations of n labels up to cyclic permutation. Ta is
the ath generator of the associated SU(N) Lie group and An[. . .], distinguished by square
brackets, is the color ordered amplitude of which equation (1.1) is an example. The labels
hi indicate the helicities of the particles, i.e. whether the particle’s spin is alligned with its
momentum or points in the opposite direction. (For spin 1/2 particles or massless spin 1
particles, two opposite spin states automatically form a basis for every possible spin state,
so it is only necessary to consider two spin states when working generally.)

Subsequently, the traces over the generators can be evaluated and divided into products
of structure constants fabc. Upon doing so and grouping together all equivalent structure
constant products, one acquires a new decomposition

An(1
h1
a1
, 2h2

a2
, . . . , nhn

an ) =
∑
i

cini

di
. (1.2)

Here, ci are so-called color factors which are products of structure constants,

fa1a2x1fx1a3x2fx2a4x3 . . . fxn−3an−1an ,

with each ci a different ordering of the external labels. The ni are the kinematic factors,
dependent on the particles’ helicities and momenta. At 4-point, the color factors unsurpris-
ingly satisfy the Jacobi identity, which, from a Lagrangian perspective, directly follows from
the Lie group structure of the gauge group.

cs + ct + cu = 0,

where each color factor corresponds to a specific channel contributing to the overall am-
plitude. But seemingly miraculously, the kinematic factors which one would expect to be
completely unrelated to any Lie group structure, also satisfy the Jacobi identity,

ns + nt + nu = 0,
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which in this case simply means that they sum to zero.
Hence, one is lead to believe that there may exist some hidden connection between the

color and kinematic structures of Yang-Mills. Furthermore, one could be tempted to replace
one structure for the other to see what happens. It turns out that if one replaces ci → ni in
the expression for the n-point gluon amplitude, one spectacularly gets the n-point graviton
amplitude in return:

Mn(1
h1h2 , 2h2h2 , . . . , nhnhn) =

∑
i

ñini

di
. (1.3)

The duality between (1.2) and (1.3) is called the BCJ relations after Bern, Carrasco and
Johansson [3, 4]. The BCJ relations have been proven to hold at tree level for arbitrary
n-point and also hold for several examples at loop level where less is understood [5]. Be-
side this ‘double copy’ there also exist BCJ relations between several other quantum field
theories, where it is a case of mix and match when it comes to their respective kinematic
factors and color structures. Beside the BCJ relations, there also exists a different double
copy between gauge theory and gravity called the KLT relations (after Kawai, Lewellen and
Tye) [6]. This double copy uses and combines amplitudes from a different decomposition of
the full gluon amplitude.

However, the focus of this thesis will be on on-shell recursion relations, pioneered by
Britto, Cachazo and Feng [7] with later contributions from Witten [8]. In contrast to the dou-
ble copy, which establishes relationships between amplitudes of different theories, recursion
relations establish relationships between amplitudes of the same theory. Specifically, they
are used to derive higher point scattering amplitudes from lower point amplitudes. Hence,
starting from several lower point ‘seed amplitudes’ it is possible to recursively construct the
entire tower of higher point scattering amplitudes, given some favorable conditions.

Tree-level on-shell recursion relations rely on the fact that when sums of external particle
momenta become on-shell, the amplitude factorizes into lower-point subamplitudes. Let’s
say we have an n-point amplitude An, dependent on a set of momenta P ≡ {p1, p2, . . . , pn},
and we sum some subset of these momenta together

PI =
∑

pi∈P ′⊂P

pi.

Then the statement above means that if we send P 2
I → 0, we obtain the factorization

An −→ AL
1

P 2
I

AR.

Here AR and AL are lower point amplitudes than An.
The trick of on-shell recursion relations is to invert this relationship in order to construct

the higher point from the lower point relationships. This is done by introducing a linear shift
in the momenta with a complex parameter z. This, when applied to an amplitude, allows one
to associate the amplitude’s residues in the complex plane with lower point subamplitudes
and thereby establish a relationship between these subamplitudes and the amplitude overall.
For instance, when PI = p1 + p2 goes on shell, the 4-point gluon scattering amplitude,
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dependent on momenta p1 through p4, decomposes into two 3-gluon scattering amplitudes
dependent on p1, p2 and PI and pI , p3 and p4.

The problem is that the theory under consideration needs to be sufficiently “special”
in order for the recursion relations to work. If the Lagrangian of the theory contains one
or more unexpected terms at higher multiplicity, then this introduces behavior into higher
point amplitudes which cannot be anticipated at lower point. A more gradual and explicit
introduction will follow in later chapters.

It can be quite a task to demonstrate that recursion relations indeed work for a given
theory and we will dedicate much attention to this in this thesis. If it turns out that a theory
indeed admits recursion relations for tree-amplitudes, we get the following recursion formula:

An =
1

2

∑
{I|zIpole}

Â|I|+1(zI)
1

P 2
I

Ân−|I|+1(zI). (1.4)

Here, one effectively sums over all factorization channels of the amplitude, i.e. over all mo-
mentum sums which cause the amplitude to factorize when rendered on-shell.

In this thesis, it will be our goal to explore how recursion relations can be used to derive
higher-point interactions in terms of lower-point interactions. Specifically, there is a number
of scalar field theories, derived by Li et al. [9], which will be of interest to us. These
theories, the gauged non-linear sigma model and DBI-Lovelock, are arrived at by imposing
compatibility with the BCJ double copy and certain ‘soft limits’. We will ask the question
whether recursion relations can be used to derive the higher multiplicity amplitudes of these
theories in terms of lower-point amplitudes. If recursion relations work for these theories, it
would mean that the requirement of BCJ relations in combination with specific soft limits
suffices for fixing all tree-level amplitudes in the relevant theories and by extension, for fixing
their corresponding Lagrangians.

To build up to this result, we will treat recursion the working of on-shell, tree-level recur-
sion in excruciating detail. In chapter 3, we will discuss the causes of amplitude factorization
into subamplitudes together with a general formalism for recursion. In chapter, 4, we will
also prove that on-shell recursion works for several theories with a specific focus on Yang-
Mills gluon scattering, culminating in a proof of the Parke-Taylor formula (1.1). In appendix
A, we will use a similar proof to that used for Yang-Mills to show that recursion also works
for graviton scattering. Finally, we will provide an introduction to soft recursion, a type of
recursion employing the soft limits of amplitudes. This will lead us to discuss several scalar
field theories, among which those derived in [9]. In the next chapter, however, we will start
off by discussing the so-called spinor helicity formalism. Apart from being worthwhile in its
own right, this formalism features prominently in some of the derivations performed in later
chapters. It is the formalism used in equation (1.1). I will introduce the formalism properly
at the start of the next section.

Throughout, it has been my goal to justify every statement exactly to the degree required
to convince a starting 2nd year master student, largely without deferring to external mate-
rial. Thus, almost every aspect of an argument that is not treated in the standard course
curriculum for particle physics at the University of Groningen is made explicit.
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To this end, I have often sacrificed conciseness for explicitness. However, many arguments
will still require thought and careful consideration. The thesis merely attempts to make
everything explicit and aims to remain self-contained. I hope that these choices have not
been made to the detriment of the reading experience, but rather enable any potential future
student to continue where I left off, if necessary.
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2 The Massless Spinor Helicity Formalism
In this section, we will be interested in producing a formalism which allows for a much
simpler expression of scattering amplitudes and BCFW recursion relations, which will be
the topic of later chapters. The spinor helicity formalism (originally from [10, 11]) aims to
express 4D massless particle states in terms of spinor momentum and helicity eigenstates.
That is, it uses massless Dirac spinors, i.e. Weyl spinors, to express states not only for
spin-1/2 fermions, but also bosons. This is possible because the direct product of the spinor
representation of the Lorentz group with itself contains vector the vector representation as
an irrep. Beside the massless spinor helicity formalism, there also exists an extension to the
massive case [12], but we will not treat this extension.

The goal of this chapter has largely been to rederive the expressions given by Elvang
and Huang [13], but with the (+,−,−,−) metric in concordance with the rest of the thesis.
Elvang and Huang’s exercises also happen to be a great addition to this chapter. A number
of derivations have been directly inspired by this resource, some others by have been adapted
from Thomas Bader’s lecture notes at the TU München [14].

The most important relations are marked using equation numbering, while those that
merely serve to continue the derivation remain unmarked. Naturally, we will be working in
4D in this chapter.

2.1 The Weyl Spinors and Equations
In our pursuit of a formalism which is able to represent the simultaneous momentum and
helicity eigenstates of massless fermions, the obvious place to look is at an already known
way to represent fermions, i.e. Dirac spinors. For massless particles, m = 0, the Dirac
equation reduces

(iγµ∂µ −m)ψ = iγµ∂µψ = 0.

Going to momentum space, the momentum eigenstates for momentum p are given by

ψ(x) = u(p)e−ipx, ψ(x) = v(p)e+ipx,

for the positive and negative frequency solutions of the Dirac equation respectively. Since
we are only considering on-shell massless particles,

p2 = 0, p0 = |p|,

the Dirac equation becomes

γµpµu(p) = 0, γµpµv(p) = 0.

Considering only v(p) for the moment, we can define the two-component spinors λp and λ̃p
such that

v(p) ≡
(
λp
λ̃p

)
,
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where v(p) is the solution to the momentum-space massless Dirac equation for the negative
frequency solutions or anti-particles.
If we choose the chiral basis for the gamma matrices,

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (2.1)

where σµ = (1,σ) and σ̄µ = (1,−σ) , then the λp and λ̃p are the so-called Weyl spinors,
named after Hermann Weyl. It follows that the massless Dirac equation decouples into two
separate equations,

σµpµλ̃p = 0, σ̄µpµλp = 0. (2.2)

These equations are known as the Weyl equation.

In the spinor representation and chiral basis, the helicity operator is given by

h ≡ p̂ · S = −1

2
p̂i

(
σi 0
0 σi

)
,

where p̂ is the normalized momentum operator. That is, a state with momentum p has
eigenvalue p/|p| for this operator. When acting with the helicity operator on v(p) and using
equation (2.2), we get

hv(p) =
1

2|p|

(
p · σλp
p · σλ̃p

)
=

1

2p0

(
−p0λp
p0λ̃p

)
=

(
−1/2λp
1/2λ̃p

)
.

We see that the momentum and helicity operators are simultaneously diagonalizable, where
states of the form (λp, 0) have h = −1/2 or ‘negative helicity’ and states of the form

(
0, λ̃p

)
have h = +1/2 or ‘positive helicity’.

It is then natural to invent a symbol for these helicity eigenfunctions. We will write

|p] ≡
(
0

λ̃p

)
, h = +1/2, |p〉 ≡

(
λp
0

)
, h = −1/2. (2.3)

A similar treatment of the Dirac conjugate of u(p), ū(p) ≡ u†(p)γ0, reveals that it satisfies

ū(p)γµpµ = 0,

which, if we define
ū(p) ≡ (ρp, ρ̃p) ,

results in
ρ̃pσ̄

µpµ = 0, ρpσ
µpµ = 0. (2.4)

This can be rewritten by taking the hermitian conjugate to give

σ̄µ(pµ)
∗ρ̃†p = 0, σµ(pµ)

∗ρ†p = 0,
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where we have used the hermiticity of the Pauli matrices. Hence, by comparing to equation
(2.2), we can identify,

ρ̃p∗ = λ†p, ρp∗ = λ̃†p, (2.5)

Please note that the ρ spinors depend on the complex conjugate of the momentum, the λ
do not. We pick the normalisation and relative phase of these spinors such that the identity
holds. Also, of course, if p is real then p∗ = p.

Now acting with the helicity operator h from the right on ū(p), we can again pick a
notation for the helicity eigenstates,

[p| ≡ (0, ρ̃p) , h = +1/2, 〈p| ≡ (ρp, 0), h = −1/2. (2.6)

Following from equation (2.5), we see that

[p∗| = γ0(|p〉)†, 〈p∗| = γ0(|p])†. (2.7)

The brackets of equation (2.3) and (2.6) are what constitute the spinor helicity formalism.
It turns out that we can conveniently express any 4D massless scattering amplitude in terms
of these brackets, making it a worthwhile effort to investigate these brackets further. It is thus
our goal in the upcoming sections to derive more identities surrounding these brackets, so
we can use and interpret them more effectively. Eventually, we will derive enough identities
to abandon the notation in terms of λ and ρ in favor of a cleaner and simpler notation in
terms of the brackets alone.

We are not interested in the Weyl spinors that are associated with u(p) and v̄(p). This is
because we will only look at these brackets inside the expressions for scattering amplitudes.
One may recall that ū(p) and v(p) appear in amplitudes due to the Feynman rules for the
external legs of outgoing fermions and anti-fermions respectively. It turns out that, after
having calculated an amplitude for a given process, one is allowed to make the substitutions
u(p) ↔ v(−p) and v̄(p) ↔ ū(−p) to acquire the amplitude for a new process where one
outgoing particle (anti-particle) is now replaced by an incoming anti-particle (particle) and
vice versa. This is called crossing symmetry [15]. Hence, by only considering the amplitudes
for outgoing particles, one effectively covers the range of all possible interactions.

One should keep in mind that what it means for a particle to be outgoing is that it is
a particle that remains after the relevant interaction has taken place and was thus not part
of the prepared collection of particles. Hence, a process of only outgoing particles is not
physical. Yet, this poses no problems for the calculations that we will be performing.

It is also important to note that the brackets of the spinor helicity formalism are not to
be confused with Dirac bras and kets, as they are not the objects that reside in our Hilbert
space in a quantum field-theoretical context. They should be thought of as single particle
wavefunctions that solve the Dirac equation for a specific momentum and helicity. As such,
they simply represent specific functions, which happen to be useful in expressing amplitudes
later on. Nevertheless, I will occasionally refer to them as bras and kets (squas and squets)
or spinor brackets.
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2.2 Defining Spinor Helicity Identities
Here, we will start looking at and proving some identities that hold within the spinor he-
licity to make the formalism more practical. The identities here also serve to impose a
(relative) normalisation on the spinors. Hence, these identities also serve to further define
the spinor brackets, as the definitions given in the previous section leave redundancy in the
normalisation and phase.

In the next subsection, we will also derive identities; these will directly follow from the
Weyl equation and the normalisation imposed in this section.

Following from (2.3) and (2.6), we see that for any four-momenta p and q,

〈p||q] = [p||q〉 = 0,

and,
〈p q〉 ≡ 〈p||q〉 = ρpλq, [p q] ≡ [p||q] = ρ̃pλ̃q. (2.8)

Combinations such as
|p〉[q|, and, |p]〈q|,

are 4× 4 matrices that take one from the square subspace to the angled subspace or back.
There is a nice relationship between σµ and σ̄µ that will allow us to relate some more spinors.
Specifically,

EσµET = (σ̄µ)∗, where E ≡
(

0 1
−1 0

)
.

Note that E is simply the two-dimensional Levi-Civita symbol in matrix form. We have
E−1 = ET = −E . Using this to rewrite the Weyl equation (2.2) into its conjugates (2.4) gives
us

0 = σµpµλ̃p = EσµETEpµλ̃p = (σ̄µ)∗pµE λ̃p ⇐⇒ 0 = (E λ̃p)†(σ̄µ)∗(pµ)
∗ = (E λ̃p)T σ̄µpµ,

0 = σ̄µpµλp = ET σ̄µEETpµλp = (σµ)∗pµETλp ⇐⇒ 0 = (ETλp)
†(σµ)∗(pµ)

∗ = (ETλp)
Tσµpµ.

Here, we used the Hermiticity of the Pauli matrices. Again by fixing the relative phase and
normalisation, we can conclude

ρ̃p = (E λ̃p)T , ρp = (ETλp)
T . (2.9)

The anti-symmetry of E gets handed down to the brackets:

〈p q〉 = ρpλp = λTp Eλq = (λTp Eλq)T = λTq ETλp = −λTq Eλp = −ρqλp = −〈q p〉.

With a near identical calculation for [p q], we get

〈p q〉 = −〈q p〉, [p q] = −[q p]. (2.10)

This trivially implies that
〈p p〉 = [p p] = 0.
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We have now fixed the phases and normalizations of the brackets such that given a specific
solution for λ̃p, we know the explicit form of Weyl spinors ρ̃p, λp∗ and ρp∗ through equa-
tions (2.5) and (2.9). However given such a solution, it is still possible to shift λ̃p → zpλ̃p,
ρ̃p → zpρ̃p, λp∗ → z∗pλp∗ and ρp∗ → z∗pρp∗ to acquire a new solution to the Weyl equation.
Furthermore, the conjugate set of spinors (λ̃p∗ etc.) remain completely independent and one
can shift those with a separate zp∗ . Let us say that we have picked a λ̃p, it is then possible
to pick a corresponding zp∗ such that we acquire a nice property. This we will examine now.

Let us examine the 2×2 matrix pµσ
µ. We can compute its determinant to find that

det(pµσ
µ) = pµp

µ = 0. Since this matrix is not the zero-map, it follows that the matrix is
of rank 1 implying that its kernel and column space are both one-dimensional. This means
that we can write this matrix non-uniquely as the outer product of two non-zero column
vectors u and v (not to be confused with the spinors in the previous section), where u is
in the column space of our matrix and v inhabits the orthogonal complement of its kernel.
That is,

pµσ
µ = uvT .

Using the Weyl equation (2.2, 2.4) together with identity (2.9), we find that

0 = pµσ
µλ̃p = uvT λ̃p = u(vTET ρ̃p).

Since u 6= 0, we find that vTET ρ̃p = 0 implying v ∝ ρ̃Tp . We can also act with ρp from the
left and determine u ∝ λp. This implies that

pµσ
µ = αpλpρ̃p, (2.11)

where αp depends on the normalisation of the relevant spinors. This can be rewritten to
obtain

(pµσ
µ)T = pµ(σ

µ)∗ = αpρ̃
T
p λ

T
p = αpE λ̃pρpET =⇒ pµσ̄

µ = αpλ̃pρp,

with the same αp. Furthermore, exploiting the hermiticity of σµ, we learn that

(pµσ
µ)† = (pµ)

∗σµ = α∗
pρ̃

†
pλ

†
p = α∗

pλp∗ ρ̃p∗ .

This is clearly the same equation as (2.11) but for the spinors for momentum p∗. Hence, we
can conclude that αp∗ = α∗

p.
Given all of this information, we can rescale the spinors with zp and zp∗ appropriately,

to obtain

pµσ
µ = αpλpρ̃p,

pµσ̄
µ = αpλ̃pρp,

(pµ)
∗σµ = α∗

pλp∗ ρ̃p∗ ,

(pµ)
∗σ̄µ = α∗

pλp∗ ρ̃p∗ ,

→

pµσ
µ = αpz

∗
p∗zpλ

′
pρ̃

′
p

pµσ̄
µ = αpz

∗
p∗zpλ̃

′
pρ

′
p

(pµ)
∗σµ = α∗

p(z
∗
p∗zp)

∗λ′p∗ ρ̃
′
p∗

(pµ)
∗σ̄µ = α∗

p(z
∗
p∗zp)

∗λ′p∗ ρ̃
′
p∗

= λ′pρ̃
′
p,

= λ̃′pρ
′
p,

= λ′p∗ ρ̃
′
p∗ ,

= λ′p∗ ρ̃
′
p∗ ,

(2.12)

if we pick zp∗ = 1/(zpαp)
∗. This can always be done and, in fact, some authors choose these

identities as their starting point in developing the spinor helicity formalism [4, 16]. We will
always assume that for any p, the spinors have been appropriately shifted such that (2.12)
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obtains. Note that we can still shift λp → tλp together with λ̃p → t−1λ̃p for some complex t,
while still maintaining all previously derived relations. If the momentum associated to the
spinor is real, then zp∗ = zp and the only allowed shift will be a pure phase. We will use this
fact later in section 2.5.

It follows that for any momentum p,

/p ≡ pµγ
µ = |p〉[p|+ |p]〈p|. (2.13)

2.3 Resultant Spinor Helicity Identities
We continue our task of deriving identities within the spinor helicity formalism. In contrast
to the previous section, the identities derived here result directly from the previous sections
and do not impose any new conditions on the spinor brackets.

Interestingly, following from equation (2.7), we have the result that

(〈p q〉)∗ = (|q〉)†(〈p|)† = γ0[q∗||p∗]γ0 = [q∗ p∗]. (2.14)

Using equation (2.12), we can find

〈p q〉[p q] = −〈p q〉[q p] = −|p]b〈p|a|q〉a[q|b = −Tr{(|p]〈p|)(|q〉[q|)}
= −pµqν Tr{σ̄µσν} = −pµqν2ηµν = −2(p · q) = −(p+ q)2.

(2.15)

Combining equations (2.14) and (2.15), we can conclude that for real momenta,

〈p q〉 =
√

2p · qeiφ, [p q] = −
√

2p · qe−iφ, (2.16)

where φ possibly depends on the (order of the) individual momenta. Hence, if we have an
expression given in terms of spinor helicity brackets, we can now make sense of the expression
up to phase.

Beside the angled and square brackets we have seen, we are also interested in objects of
the form 〈p|γµ|q] and other combinations of the spinor brackets and γµ. From the definitions
of our brackets, it immediately follows that

0 = 〈p|γµ|q〉 = [p|γµ|q].

Considering equation (2.8) and the one above, we see that one can only multiply brackets
of the ‘same type’ to acquire a non-zero answer, unless there is a gamma matrix wedged in
between. In that case, one can only multiply brackets of the ‘opposite type’.
It also follows that

〈1|γµ|2]〈3|γµ|4] = 2〈1 3〉[2 4]. (2.17)
This is the so-called Fierz identity. Here, |i〉 ≡ |pi〉 etc., which is a useful notation if one has
multiple momenta p1, p2, . . . , pn. The Fierz identiy follows from the identity (σµ)ab(σ

µ)cd =
2εacεbd. That is,

〈1|γµ|2]〈3|γµ|4] = ρ1σµλ̃2ρ3σ
µλ̃4 = 2ρ1EρT3 λ̃T2 E λ̃4 = 2〈1 3〉[2 4].
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We also have
〈p|γµ|q] = [q|γµ|p〉, 〈p|γµ|q]∗ = 〈q∗|γµ|p∗]. (2.18)

These are easily proved:

〈p|γµ|q] = (〈p|γµ|q])T = λ̃Tq (σ
µ)TρTp = ρ̃qE(σµ)∗ETλp = ρ̃qσ̄µλp = [q|γµ|p〉,

〈p|γµ|q]∗ = 〈p|γµ|q]† = λ̃†q(σ
µ)†ρ†p = ρq∗σ

µλ̃p∗ = 〈q∗|γµ|p∗].

Furthermore,

〈p|γµ|p] = Tr{γµ|p]〈p|} =
1

2
Tr{γµ(|p]〈p|+ |p〉[p|)} =

1

2
pν Tr{γµγν} = 2pµ. (2.19)

We will often write
〈p|k|q] ≡ 〈p|/k|q], 〈p|n|q] ≡ 〈p| /pn|q]. (2.20)

Hence, when a number or momentum is wedged between two spinor helicity brackets, we
interpret it as the corresponding momentum contracted with a gamma matrix. Hence, it
trivially follows from (2.19) that

〈p|q|p] = 2p · q. (2.21)
We are almost finished with spinor helicity identities. Continuing, however, it is good to note
that any spinor bracket only has two nonzero components. Furthermore, the type of spinor
helicity bracket determines which components are nonzero. This means that if we have two
linearly independent spinor helicity brackets of the same type (i.e. angled or square), say |p〉
and |q〉, we can express any other spinor helicity bracket again of the same type, say |k〉, as
a linear combination of the prior two,

|k〉 = α|p〉+ β|q〉.

It turns out that our formalism allows us to determine α and β. We simply compute

〈q k〉 = α〈q p〉+ β〈q q〉 = α〈q p〉 ⇒ α =
〈q k〉
〈q p〉

.

We get the general identity

|p〉〈q k〉+ |k〉〈p q〉+ |q〉〈k p〉 = 0. (2.22)

This is called the van Schouten identity. Note the cyclic permutativity.
The final identity to look at only holds in the case we are working with an amplitude con-
sisting of only outgoing particles. When all particles are outgoing, momentum conservation
is expressed as

∑n
i=1 p

µ
i = 0. This directly implies

n∑
i=1

/pi =
n∑

i=1

(|i〉[i|+ |i]〈i|) = 0.

Furthermore, this holds for the two terms of the summand separately, since they project
into two distinct orthogonal subspaces. This can be read off directly from the brackets’
definitions. We have

n∑
i=1

|i〉[i| = 0,
n∑

i=1

|i]〈i| = 0. (2.23)

We now move on to practice with the identities derived.
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Example: Calculating Yukawa Diagrams
To demonstrate the power of the spinor helicity formalism and to simultaneously integrate
what we have learned in previous sections, let us calculate a couple of tree-level Yukawa
processes. Specifically, let us calculate the amplitudes for four outgoing fermions A(ffff)
and two outgoing fermions and two outgoing scalars A(ffφφ). We will see that the identities
of the previous sections can be a large helping hand in deriving and simplifying amplitude
expressions.

The Lagrangian of massless Yukawa theory is given by

L = iψ̄ /∂ψ +
1

2
∂µφ∂µφ− gψ̄ψφ.

This gives the following Feynman rules:

Diagrammatic feature Feynman rule
Two fermion, one scalar vertex −ig,

Scalar propagator i/p2,
Fermion propagator i/p/p2,

Outgoing scalar 1,
Outgoing fermion ūs(p),

Outgoing anti-fermion vs(p).

2.3.1 Four-Fermion Amplitude

At tree level in Yukawa theory, the four-fermion scattering amplitude is given by the following
Feynman diagrams,

−(p1 + p4)

φ

f̄h4
4

fh1
1 f̄h2

2

fh3
3

+ −(p1 + p2) φ

fh1
1 f̄h2

2

fh3
3f̄h4

4

,

for arbitrary helicities of the external particles. However, we can see that certain combi-
nations of helicities trivially give rise to a vanishing amplitude. This is because for each
diagram, the spinors of particles meeting at the same vertex are multiplied. For exam-
ple, the first vertex in the first diagram results in a factor of ūh1(p1)v

h4(p4), which in the
spinor helicitiy formalism corresponds to 〈1 4〉, 〈1||4], [1||4〉, [1 4] corresponding to helicities
(h1, h4) = (−,−), (−,+), (+,−), and (+,+) respectively. Only the first and last of these
result in a non-vanishing diagram. We get the non-vanishing amplitudes

A4(f
+f̄+f−f̄−) = (−ig)2ū+(p1)v+(p2)

i

(p1 + p2)2
ū−(p3)v

−(p4),
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= ig2
[1 2]〈3 4〉
〈1 2〉[1 2]

= ig2
〈3 4〉
〈1 2〉

.

and possibly

A4(f
+f̄+f+f̄+) = (−ig)2

[
ū+(p1)v

+(p4)
i

(p1 + p4)2
ū+(p3)v

+(p2)

+ū+(p1)v
+(p2)

i

(p1 + p2)2
ū+(p3)v

+(p4)

]
,

= ig2
[
[1 4][3 2]

〈1 4〉[1 4]
+

[1 2][3 4]

〈1 2〉[1 2]

]
,

= ig2
[
[3 2]〈1 2〉+ [3 4]〈1 4〉

〈1 4〉〈1 2〉

]
.

Here we have used equation (2.15). We can still rewrite the all-plus amplitude, seeing an
opportunity to use momentum conservation (2.23). Using

[3 4]〈1 4〉 = −[3 4]〈4 1〉 = −[3| (|4]〈4|) |1〉 = [3|

(∑
i 6=4

|i]〈i|

)
|1〉 = [3 2]〈2 1〉,

we can conclude that A4(f
+f+f+f+) = 0. When the four fermions have identical helicity,

the contributions from both diagrams annihilate one another in total destructive interference.
Using the spinor helicity formalism, we could easily see that certain helicity configurations

produce vanishing contributions. With typical Dirac spinor notation, this would escape us
at first. We would be left with a specific expression in terms of spinors without immediate
further insight.

2.3.2 Two-Fermion, Two-Scalar Amplitude

For the two-fermion A(f̄h1fh2φφ), two-scalar amplitude, we have the diagrams

−(p1 + p4)

f

φ4

f̄h1
1 fh2

2

φ3

+

−(p1 + p3)

f

φ3

f̄h1
1 fh2

2

φ4

,

which, using the Feynman rules, correspond to

= (−ig)2ūh2(p2)
−i(/p1 + /p4)

(p1 + p4)2
vh1(p1) + (−ig)2ūh2(p2)

−i(/p1 + /p3)

(p1 + p3)2
vh1(p1).

We can simplify this expression using the Weyl equation /p1v
h1(p1) = 0 or equivalently using

equations (2.10) and (2.13). Then, in the spinor helicity formalism, we can quickly see that
the amplitude vanishes for identical helicities. For example,

A(f̄+f+φφ) = ig2[2|
[
|4〉[4|+ |4]〈4|
〈1 4〉[1 4]

+
|3〉[3|+ |3]〈3|
〈1 3〉[1 3]

]
|1] = 0.
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The external square brackets cancel the angled brackets in the numerators, but this leaves
no non-zero term in the entire amplitude.

We only acquire a non-vanishing amplitude for distinct helicities. For instance,

A(f̄+f−φφ) = ig2〈2|
[
|4〉[4|+ |4]〈4|
〈1 4〉[1 4]

+
|3〉[3|+ |3]〈3|
〈1 3〉[1 3]

]
|1],

= ig2
[
〈2 4〉[4 1]
〈1 4〉[1 4]

+
〈2 3〉[3 1]
〈1 3〉[1 3]

]
= −ig2

[
〈2 4〉
〈1 4〉

+
〈2 3〉
〈1 3〉

]
.

2.4 Vectors and Tensors
Up until now, we have developed the spinor helicity formalism in order to describe massless
fermions. Perhaps surprisingly, the same formalism can also be used to describe massless
vector and tensor particles without introducing new mathematical objects. This opens the
formalism up to the calculation of photon, gluon and graviton amplitudes. We will see how
we can express the wavefunctions of these particles in the spinor helicity formalism in this
section.

2.4.1 Polarization Vectors

Our analysis starts with the observation that we can easily construct objects that transform
as vectors (and tensors) from spinors, which is something we have secretly already done.
Specifically, we have

〈p|γµ|q] → 〈Λp|γµ|Λq] = 〈p|(Λ−1
1/2)γ

µ(Λ1/2)|q] = Λµ
ν〈p|γν |q],

where Λ1/2 is a Lorentz transformation in the spinor representation. The last equality is due
to a transformation property of gamma matrices [15, p. 32]. It now simply remains to be
shown that these objects solve the relevant equations for polarization vectors.

In the Lorenz gauge, vector potentials satisfy the Klein-Gordon equation per component,

(∂µ∂µ +m2)Aν = 0,

which in the massless case reduces to the homogeneous Maxwell equations

∂µ∂µA
ν = 0. (2.24)

The Lorenz gauge condition is
∂µA

µ = 0. (2.25)

We can derive equivalent equations for the polarization vectors by Fourier transforming to
momentum space

p2εµ(p) = 0, pµε
µ(p) = 0. (2.26)

We can see that the homogeneous Maxwell equations kill the polarization vector whenever p
becomes off-shell. Hence, these off-shell states are non-physical. The Lorenz gauge condition
allows us to solve for the components of εµ(p). We can easily solve (2.26) for a simplified
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momentum pµ = (1, 0, 0, 1). Because (2.26) is Lorentz invariant, we can simply Lorentz
transform p to any other momentum and apply to the same transformation to εµ(p) to
acquire the polarization vector for the corresponding momentum, i.e.

εµ(Λp) = Λµ
νε

ν(p).

It is not difficult to see that for pµ = (1, 0, 0, 1), any linear combination of

εµ+ ≡ −1√
2
(0, 1, i, 0), εµ− ≡ 1√

2
(0, 1,−i, 0), (2.27)

solves (2.26), normalized such that ε∗µεµ = 1. Furthermore any vector proportional to pµ can
be added to such a solution to acquire a new solution. This latter fact reflects the remaining
gauge freedom after imposing the Lorenz gauge.
The polarization vectors (2.27) have been chosen such that they are helicity eigenstates. We
can show this just as before by introducing the helicity operator in the vector representation
of the Lorentz group

h ≡ p̂ · S = Sz = i


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .

We can see that
hε± = ±ε±, h± = ±1.

Now, in the spinor helicity formalism, it turns out that we can rewrite

εµ+(p) = −〈q|γµ|p]√
2〈q p〉

, εµ−(p) = −〈p|γµ|q]√
2[q p]

, (2.28)

where q is an arbitrary ‘reference’ four-momentum. As already shown, these objects trans-
form in the desired way under Lorentz transformations. They solve equation (2.26),

pµε
µ
+(p) =

1

2
〈p|γµ|p]εµ+(p) ∝ 〈p q〉[p p] = 0,

using the Fierz identity (cf. equations 2.10, 2.17, and 2.19). They are normalized identically
to (2.27),

εµ+(p)ε
∗
+µ(p) =

〈q|γµ|p]〈p∗|γµ|q∗]
2〈q p〉[p∗ q∗]

=
〈q p∗〉[p q∗]
〈q p〉[p∗ q∗]

= 1,

for real momenta.
As an exercise, let us analyze the difference between two polarization vectors using distinct
reference momenta q and r:

εµ+(p; q)− εµ+(p; r) =
〈r|γµ|p]√
2〈r p〉

− 〈q|γµ|p]√
2〈q p〉

,

=
1√

2〈r p〉〈q p〉
(〈q|γµ|p]〈p r〉+ 〈q p〉[p|γµ|r〉) ,
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=
1√

2〈r p〉〈q p〉
〈q|
(
γµ/p+ /pγ

µ
)
|r〉,

=
1√

2〈r p〉〈q p〉
〈q r〉2ηµνpν ,

∝ pµ.

For the last equality we used the defining relation for the gamma matrices {γµ, γν} = 2ηµν .
We thus see that picking a different reference momentum is equivalent to applying the
transformation εµ(p) → εµ(p) + cpµ, i.e. a gauge transformation. We can therefore also
expect any amplitude calculated using polarization vectors to be independent from the choice
of reference spinor. In order to make sure that the needed cancellation of reference momenta
occurs, it is necessary that identical external particles occupy the same gauge and thus use
the same reference momentum across Feynman diagrams.

2.4.2 The Polarization (Helicity) of Polarization Vectors

Now, in order to accept the spinor helicity notation for ε+ and ε−, it only remains to be
shown that they are indeed helicity eigenstates. However, it turns out that they are not;
it also turns out that this is not a problem. To show this, however, requires a somewhat
lengthy calculation. Nevertheless, I will present this here, although this part may be skipped
if this exact subject is not of much interest to the reader.

We will apply

h =
1

|~p|
~p · ~S = − 1

|~p|
εijk

2
piJ jk

to ε+(p; q). Here, p is the momentum of the polarization vector that h is applied to, ~S is
the vector of spin operators in the vector representation and J ij is the generator of Lorentz
transformations in the vector representation.
When we apply h to ε+ we get:

hµνε
ν
+(p) = − 1

|~p|
εijk

2
pi
(
J jk
)µ

ν

〈q|γν |p]√
2〈q p〉

,

= − 1

|~p|
√
2〈q p〉

εijk

2
pi〈q|

[
γµ, J jk

1/2

]
|p],

= − 1

|~p|
√
2〈q p〉

pi〈q|
[
γµ, Si

1/2

]
|p],

= − 1

|~p|
√
2〈q p〉

pi〈q|
[
γµ, Si

1/2

]
|p],

=
−〈q|γµ

(
1
|~p|~p · ~S1/2

)
|p]

√
2〈q p〉

−
−〈q|

(
1
|~p|~p · ~S1/2

)
γµ|p]

√
2〈q p〉

.

(2.29)

J ij
1/2 is the generator corresponding to J ij in the spinor representation. Consequently, ~S1/2
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is the spin operator for spinors. In the second line, we used [15, p. 42],

(Jρσ)µνγ
ν =

[
γµ, Jρσ

1/2

]
.

The first term in (2.29) is easy to evaluate. We know that the helicity (as a spinor) of |p] is
1/2. Hence,

−〈q|γµ
(

1
|~p|~p · ~S1/2

)
|p]

√
2〈q p〉

= (1/2)εµ+(p).

The second term in (2.29) requires some more creativity. The helicity of 〈q| is −1/2. The
helicity operator for this bra would be 1

q0
~q · ~S1/2. But in the second term, we are applying

1
|~p|~p · ~S1/2. We can project ~p onto ~q to recover the relevant helicity operator:

〈q|
(

1

|~p|
~p · ~S1/2

)
=

1

|~p|
〈q|
[
~p · ~q
|~q|2

~q +

(
~p− ~p · ~q

|~q|2
~q

)]
· ~S1/2. (2.30)

Thus here, in the first term,

〈q| ~p · ~q
|~p||~q|2

~q · ~S1/2 = −1/2

(
~p · ~q
|~p||~q|

)
〈q|.

Now, the vector
(
~p− ~p·~q

|~q|2~q
)

, occurring in the second term of (2.30), is the component of ~p

orthogonal to ~q. Since 〈q| has spin-down in the ~q direction by construction,
(
~p− ~p·~q

|~q|2~q
)
· ~S1/2

must be a linear combination of raising and lowering operators for 〈q|. The lowering part
will annihilate 〈q|, the raising part will convert 〈q| into [q|. Therefore the second term of
(2.29) becomes,

−〈q|
(

1
|~p|~p · ~S1/2

)
γµ|p]

√
2〈q p〉

= −1/2

(
~p · ~q
|~p||~q|

)
−〈q|γµ|p]√

2〈q p〉
+ α[q|γµ|p],

for some proportionality constant α. The latter term vanishes, as [q|γµ|p] = 0.

We get

hµνε
ν
+(p) =

−〈q|γµ
(

1
|~p|~p · ~S1/2

)
|p]

√
2〈q p〉

−
−〈q|

(
1
|~p|~p · ~S1/2

)
γµ|p]

√
2〈q p〉

,

= 1/2εµ+(p) + 1/2

(
~p · ~q
|~p||~q|

)
εµ+(p),

=
1

2
(1 + cos θ) εµ+(p).

We were expecting an eigenvalue of 1, not an eigenvalue dependent on the angle between ~p
and ~q. If we wish the eigenvalue to be 1, then we have to require ~p · ~q = |~p||~q|. However, this
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means that p · q (the 4-vector inner product) would vanish. We do not allow this, because
then 〈p q〉 is zero and εµ+(p) contains a division by zero in its definition.
It seems like we are at a loss. But in fact, this is not a problem at all as long as we apply
εµ± correctly. As we saw previously, changing q amounts to a gauge transformation of the
overall polarization vector. Thus any explicit q dependence will drop out of any physical
amplitude. Therefore, in our definition of ε± in the spinor helicity formalism, we can pick a q
such that ε± do not actually have helicities ±1, because when inserted into an amplitude, the
expression will simplify as if ε± do have the desired helicity. The fact that the polarizations
change as a function of q is briefly remarked by [4] as well. It follows that equation (2.28)
cannot be used in any gauge dependent expression.

2.4.3 Polarization Tensors

We will briefly remark upon the fact that gravitons can also be expressed in the spinor
helicity formalism. For gravitons, we have two distinct polarization tensors εµν++ and εµν−−.
These polarization tensors can be expressed in terms of polarization vectors [17, 13] as follows

εµν±±(p) = εµ±(p)ε
ν
±(p). (2.31)

Hence, the expression of graviton polarization vectors in terms of spinor brackets immediately
follows.
This choice immediately serves to make the graviton tensors symmetric and traceless, which
is one way of satisfying the de Donder gauge. Furthermore, contractions with the particle’s
momentum cause the polarization vector to vanish

pµε
µν
±± = 0.

2.5 Little Group Scaling and Bootstrapping Amplitudes
Apart from simplified notation and computation, the spinor helicity formalism also allows
one to ‘bootstrap’ specific three-point amplitudes. That is, simply using various known
properties of amplitudes, one can immediately infer what expression an amplitude ought to
have without relying on the Lagrangian formalism explicitly. The bootstrap we will see here
relies on the ‘little group scaling’ of spinor brackets, Lorentz invariance of amplitudes and
momentum conservation to arrive at the 3-point gluon scattering amplitude. We will largely
follow Cheung [4] in this discussion.

We start by analyzing the transformation properties of a spinor helicity bracket under
a little group transformation. Given a particular momentum vector, the little group is the
unique subgroup of all Poincaré transformations leaving that particular momentum invariant.
Massless momenta always come in the shape (|~p|, ~p). Therefore, the little group of such a
momentum will, for instance, include those spatial rotations around ~p, keeping the length
and orientation of ~p fixed. (The full little group of masseless fourmomenta is ISO(2), confer
section 2.5 in [18].)

Let us consider a spinor helicity bracket |p〉 with momentum pµ. If we act on |p〉 with
a little group transformation in the correct representation, we expect it to transform into a
spinor helicity bracket with identical momentum. As we have seen in section 2.2, such a little
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group transformation need not keep the entire bracket invariant. The spinor helicity brackets
still admit an overall phase shift, as long as multiple brackets of the same momentum are
shifted simultaneously. The spinor bracket |p〉 → t|p〉 describes the same momentum after
being shifted as before given |p] → t−1|p], where t is a pure phase.

For vector particles, this implies that

εµ+ =
〈q|γµ|p]√
2〈q p〉

→ t−1〈q|γµ|p]√
2t〈q p〉

= t−2εµ+,

and for arbitrary helicity,
εµh → t−2hεµh. (2.32)

Since amplitudes are linear in polarization vectors, one gains the transformation rule

An(1
h1 , 2h2 , . . . , nhn) →

(
n∏

i=1

t−2hi

)
An(1

h1 , 2h2 , . . . , nhn). (2.33)

The amplitude need not be fully invariant under Lorentz transformations. A phase change,
as occurs here, cancels out in the computation of any physical probability guaranteeing
overall Lorentz invariance.
We are then lead to bootstrapping by considering “three particle special kinematics”. When
we are dealing with a three particle amplitude, momentum conservation guarantees a special
relation between the spinor helicity brackets that is particularly useful to us right now. Since
p1 + p2 + p3 = 0, we have

〈1 2〉[1 2] = (p1 + p2)
2 = p23 = 0,

since every external particle is on-shell. So either 〈1 2〉 or [1 2] vanishes. Let us suppose the
latter. Then through (2.13) and (2.23),

〈1 2〉[2 3] = 〈1|p2|3] = −〈1|(p1 + p3)|3] = 0.

Hence, it follows that [2 3] vanishes. One can continue showing that other bracketes vanish
as well.
Generalizing from there, for any three particle amplitude, we automatically obtain

[1 2] = [2 3] = [3 1] = 0,

or,
〈1 2〉 = 〈2 3〉 = 〈3 1〉 = 0.

This is called three particle special kinematics.
We can now perform the bootstrap for the three particle pure Yang-Mills amplitude. Due

to three particle special kinematics, we know that the amplitude will either only consist of
square brackets or of angled brackets. Let us first consider angled brackets. We make the
Ansatz

A3(1
h12h23h3) = 〈1 2〉n3〈2 3〉n1〈3 1〉n2 .
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Under a little group transformation of p1, the left-hand side gains a factor t−2h1 . The right-
hand side will gain t(n2+n3). In this way, we can generate a system of equations, allowing us
to solve for n1, n2 and n3 depending on the helicities of the external particles. We get

−2h1 = n2 + n3,

−2h2 = n3 + n1,

−2h3 = n1 + n2,

⇒


n1 = h1 − h2 − h3,

n2 = h2 − h3 − h1,

n3 = h3 − h1 − h2.

The mass dimension of the three particle amplitude cannot be negative, because this requires
dividing by momenta, which can only be possible if one adds a propagator. Since every
contribution at three point requires is contact, we must conclude that

0 < n1 + n2 + n3 = −(h1 + h2 + h3).

Hence our ‘angled bracket only’ Ansatz is only compatible with a mostly negative helicity.
Naturally, the opposite holds for the ‘square’ Ansatz. We get the amplitudes

A3(1
−, 2−, 3+) =

〈1 2〉3

〈2 3〉〈3 1〉
, A3(1

+, 2+, 3−) =
[1 2]3

[2 3][3 1]
. (2.34)

This is an example of the three-point Parke-Taylor formula, discussed in the introduction.
We will use the amplitudes above to prove the general Parke-Taylor formula recursively in
section 4.4.

This is the end of our discussion centered around the spinor helicity formalism. For the
remainder of this thesis, we will focus exclusively on on-shell recursion relations. At several
points, in certain proofs, the spinor helicity formalism will feature prominently.
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“Dent modo Fata recursus!”
-Publius Ovidius Naso,

Heroides 6 (around the year 20 B.C.)

May the Fates just give us recursion!
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3 General On-Shell Recursion Relations
In this chapter we will shift our focus to the topic of recursion relations. As stated in the
introduction, the goal of recursion is to derive higher-point scattering amplitudes from lower-
point scattering amplitudes. That is, for example, if one is given the three-point scattering
amplitude of some theory and recursion ‘works’ for this theory, one can use these three-point
amplitudes to generate the expression of the equivalent four-point. The three- and four-point
can in turn be used to generate the five-point and so on. Hence, when recursion works, one
can construct the entire tower of scattering amplitudes up to an arbitrary amount of particles
in, hopefully, a more efficient way than using Feynman diagrams.

There exist several types of recursion. Our scope will be limited to on-shell tree-level
recursion relations, meaning that we will only be interested in recursively deriving tree-level
scattering amplitudes. Furthermore, all amplitudes we consider will only depend on ‘on-shell’
momenta. In addition to tree-level, loop-level recursion also exists [13, p. 117].

The main principle that allows recursion to work is that when ‘intermediate momenta’
go on shell, the scattering amplitudes that depend on these momenta decompose into lower-
point ‘subamplitudes’. Intermediate momenta are simply sums of external momenta, corre-
sponding to the momenta of intermediate particles or propagators in Feynman diagrams. An
example would be p1 + p3 + p6 for a six-point amplitude or higher. When this goes on-shell,
i.e. (p1+ p3+ p6)

2 = 0, any tree-level amplitude which depends on these momenta factorizes
into some lower-point amplitudes AL and AR,

An −→ AL
1

(p1 + p3 + p6)2
AR.

These amplitudes will be tree-level scattering amplitudes as well, describing collisions be-
tween the same particle types as the original amplitude.

Recursion employs this relationship between amplitudes of varying particle number to
derive higher-point from lower-point. The factorization is, as it were, inverted to give the
higher-point using complex analysis. The details will all be treated below.

The precise goal of this chapter will be to derive the recursion formula (1.4) presented
in the introduction and to explain how it is used. We will use the first sections to work
our way up to the recursion formula. This precise formula will be derived in section 3.4,
at first for scalar fields alone. We will then use section 3.5 to generalize the result to other
particle types. As mentioned in the introduction, on-shell recursion relations were pioneered
by Britto, Cachazo and Feng [7] with later contributions from Witten [8]. However, this
chapter will be more general than their seminal contribution. BCFW present a specific
momentum shift, whereas this chapter keeps the momentum shift general. (What this means
will become clear soon enough.) This is to keep our formalism open to other types of shifts,
such as different types of all-line shift [19, 20]. Nevertheless, the BCFW shift will be the
main topic of the next chapter, chapter 4. The formalism presented in this chapter is largely
taken from Elvang & Huang [13]; subsection 3.1, 3.2 and 3.4 are based on their textbook.
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3.1 Definitions and Requirements for General Shifts
We will start by considering an n-point amplitude An. We are interested in finding an
expression for An in terms of An−1, An−2, . . . , A3. Consider our amplitude An which is a
function of n momenta and helicities, corresponding to the external particles:

An = An(p
h1
1 , p

h2
2 , . . . , p

hn
n ).

These momenta satisfy momentum conservation, are massless and on-shell,
n∑

i=1

pµn = 0, µ = 0, 1, 2, 3, p2i = 0 i = 1, . . . , n.

We can now introduce a so-called momentum shift. That is, we introduce a shift to pi
linear in complex variable z such that our momentum becomes a function of this z, p̂i(z).
Specifically,

∀i : pµi −→ p̂µi ≡ pµi + zrµi . (3.1)

Here, ri is the “shift vector”, which can be different (and generically1 is) for every i.

The reason for performing this shift may seem somewhat unclear at this point. By shifting
these momenta, our ultimate goal is to arrive at an equivalently shifted amplitude, whose
poles in the complex plane correspond to factorization channels. It turns out that we will
be able to apply Cauchy’s residue theorem to this shifted amplitude to relate An to its cor-
responding lower-point subamplitudes. How all of this works, will become clear very soon.
Until then, it will be necessary to just follow along, while we make these seemingly arbitrary
steps.

We require the shift vectors satisfy certain conditions for our shift to be useful. Namely,

(i)
n∑

i=1

rµi = 0, (ii) ri · rj = 0 ∀i, j, (iii) ri · pi = 0 ∀i. (3.2)

It trivially follows from condition (ii) that r2i = 0. These combined properties guarantee that

(i)
n∑

i=1

p̂µi = 0, (ii) p̂2i = 0.

We define
P µ
I ≡

∑
i∈I

pµi , RI ≡
∑
i∈I

rµi .

1I use the word ‘generically’ different from ‘generally’. If some statement is generally true, it is true for all
cases. If something is generically true, it is true for almost all cases. Specifically, some function f : D → T
satisfies some property generically, if it satisfies that property on a large subset of its domain, D. That is,
the subset of its domain where it does not satisfy this property is measure-zero or has zero volume in the
entire domain.
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For each distinct I barring some exceptions, PI , as a sum of external momenta, represents
some ‘intermediate momentum’ as mentioned above. Hence, these are the quantities, that,
when on-shell, cause the amplitude to factorize.

When shifting the intermediate momenta themselves, we acquire

P̂I(z)
2 = P 2

I + z2PI ·RI , (3.3)

where P̂I(z) ≡ PI + zRI =
∑

i∈I p̂i(z). The R2
I term vanishes, because of (3.2.ii). In chapter

5, we will discuss cases where this condition is violated, slightly complicating things.
Equation (3.3) can be rewritten as

P̂ 2
I = −P

2
I

zI
(z − zI), zI ≡ − P 2

I

2PI ·RI

. (3.4)

We can see on the basis of this equation that the shifted intermediate momentum becomes
on-shell exactly when z = zI .
As was our intention, shifting the momenta in z allows us to shift the amplitude An as well
through analytic continuation. We simply define

An(p1, p2, . . . , pn) −→ Ân(z) ≡ An(p̂1, p̂2, . . . , p̂n). (3.5)

The analytic continuation of An is well-defined and we recover the original amplitude by
An = Ân(0).
We now have a shifted amplitude which depends on z for which various values of z, (shifted)
intermediate momenta to go on-shell. As stated various times now, for these specific values
of z, the amplitude factorizes. In the next two sections, we will treat the analytic structure
of Ân(z) in detail and give a clear demonstration of this much cherised factorization.

3.2 Poles and Residues
For a tree-level scattering process, the only possible poles that an amplitude has are those
given by propagators blowing up. This is because propagators are the only objects in Feyn-
man diagrams that scale with some inverse power of momentum, at least for local La-
grangians. The Lagrangian being local means that fields only couple to each other at the
same spacetime point, disallowing terms such as

φ(x)φ(x+ a),

or expansions thereof. If the Lagrangian is local, we can be assured that vertices only scale
with positive powers of momentum.

It turns out that these propagators contain precisely the intermediate momenta PI .
Specifically,

D̃F (PI) ∝
1

P 2
I −m2

.

Thus now we can see that in the generic massless case Â(z) is singular when for some sets
I, P̂I(z)

2 = 0 or, stated differently, when these external particle momentum sums become
on-shell. As we saw before, this occurs exactly at zI for those propagators containing PI .
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(a) (b)

Figure 3.1: (a) The poles of the shifted amplitude Ân(z); (b)The contour for integrating
Ân(z)/z.

However, we can only guarantee that Ân(z) is singular at zI if there is an actual propa-
gator with momentum ∝ 1/P 2

I for the I under consideration. This complicates the matter.
We know for instance that due to momentum conservation, there will not be propagators
∝ 1/P 2

I if I contains all indices, I = {1, 2, 3, . . . , n}. Also, because there only exist vertices
with more than two particles, no diagram will contain a propagator ∝ 1/P 2

I if I contains
only one label (or all but one label). If we want to consider only those I for which there is
a singularity, we can exclude these two cases by checking that R2

I 6= 0 for our particular I.
If we are working in a theory of only one particle type admitting three-particle vertices,

the R2
I 6= 0 condition is sufficient for having a singularity at zI . For theories of multiple

particle types (e.g. QED) or for theories of one particle type but admitting only vertices
with more than three particles (e.g. φ4), additional criteria are needed for guaranteeing the
presence of a singularity at zI . These criteria depend on the theory at hand, thus it does not
make sense to discuss them here. We can visualize the singularities of the shifted amplitude
as in figure 3.1(a). All these singularities are first-order poles in z.

Because the original amplitude An is finite-valued for generic external momenta (and
thus Ân(z) is finite-valued at z = 0), we can introduce an additional first order pole at the
point z = 0 by considering Ân(z)/z. Subsequently, using Cauchy’s residue theorem, we can
recover An = Ân(0) by integrating along a contour Γ around the origin. See figure 3.1(b).
We take care to make the contour small enough so it only contains the pole at the origin.
We have the expression

An =
1

2πi

∫
Γ

Ân(z)

z
dz. (3.6)

In this way, we can recover the original amplitude. However, the residue theorem can be
used as well to relate this original amplitude to the residues of all other poles. We see
that the counter-clockwise contour around the origin can simultaneously be considered a
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clockwise contour around all other poles, including a potential pole at z = ∞. Summing up
the residues at those poles, we get the expression

An = −1

2

∑
{I}

Res
(
zI ; Ân(z)/z

)
+B∞, (3.7)

where B∞ is the contribution from the pole at infinity.
The sum over {I} means that we are summing over every possible set I ⊆ {1, 2, 3, . . . , n}.

We do not have to take care to exclude sets I for which zI is not a pole, since at those points
in the complex plane, we have a vanishing residue anyway. We have to add the factor of 1/2
in front of the sum to prevent double counting. This is because any I produces the same pole
as {1, 2, 3, . . . , n}\I (the set of labels with I taken out). It is possible to take away the factor
1/2 one only sums over indexing sets that exclude a specific label, e.g. by summing over all
I that do not contain ‘1’. Something like this is typically done in the literature implicitly.

3.3 Finding the Residue for Scalar Fields
We have now related the unshifted amplitude An to the residues of the various poles of
the shifted amplitude Ân(z). In addition to this, we have argued that these poles occur at
exactly those zI for which intermediate momenta go on-shell and propagators explode. It
would be nice if we could perform a more concrete calculation of these residues.

In this section, we will calculate the value of these residues. We will see that amplitudes
indeed factorize when intermediate momenta go on-shell and we will relate the residues of
the relevant poles to subamplitudes. Here, we will limit ourselves to the case of scalar fields,
while in a later section, we will generalize this result.

To calculate the residue of a first order pole at zI , we can take the following limit

Res
(
zI ; Ân(z)/z

)
= lim

z→zI
(z − zI)

Ân(z)

z
.

It is thus beneficial to find out what happens to Ân(z) in the limit of z → zI .
If there is in fact a pole at zI , then in this limit Ân(z) blows up. If no such pole exists,

then the residue simply vanishes. We will assume that we have picked an I with an actual
singularity.

Because Ân(z) consists of a sum of Feynman diagrams and we have identified that the
particular singularity under consideration comes from a propagator ∝ 1/P̂ 2

I , it is precisely
those diagrams that contain such a propagator ∝ 1/P̂ 2

I that become infinitely large in this
limit compared to all other diagrams. To improve our understanding of these diagrams in
particular, let us consider a specific example.

Consider an arbitrary diagram for φ3 theory contributing to a seven-point amplitude,
with a pole at zI , where I = {1, 3, 4}. See figure 3.2(a). In order to have a propagator
∝ 1/P̂ 2

I , where P̂I = p̂1 + p̂3 + p̂4, momentum conservation dictates that on one side of the
propagator, we encounter precisely the particles with momentum p̂1, p̂3, p̂4. Naturally, on
the other side of the propagator, we will then encounter all other momenta, p̂2, p̂5, p̂6, p̂7.
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1/P̂ 2
I

p̂1

p̂3

p̂4

p̂2

p̂5

p̂6

p̂7

(a) 1/P̂ 2
I

p̂1

p̂3

p̂4

p̂2

p̂6

p̂7

p̂5

(b)

Figure 3.2: Two arbitrary 7-point Feynman diagrams with a pole at zI for I = {1, 3, 4}.

Precisely those diagrams with a propagator satisfying this requirement will blow up in the
limit z → zI .

Consider our arbitrary diagram once again. If we vary, for instance, the RHS (right hand
side) of the diagram, it is clear that we acquire a new diagram that blows up in the same
limit. This is because the external momenta retain their position relative to the propagator
after such a variation. Compare the variation on figure 3.2(a) in figure 3.2(b).

We see that all diagrams blowing up in the limit with the exact same LHS (left hand
side) can be written as 

1/P̂ 2
I

p̂1

p̂3

p̂4


× (V1 + V2 + . . .) ,

which is the identical LHS times every possible variation of the RHS. For scalar diagrams, the
Feynman rule for external legs is simply 1. This means that all of these variations exactly sum
up to the 5-point scalar amplitude for φ3, A5(−P̂I , p̂2, p̂5, p̂6, p̂7). Importantly, if the external
leg Feynman rule would have been anything else, the variations V1, . . . would not necessarily
have summed up to be the amplitude. This follows since we have a propagator connected
to these variations and thus these variations would not contain the required external leg to
form full-fledged amplitudes. Nevertheless, as we are currently treating scalars, we do not
have to worry about this here. We will call the subamplitude that emerges from the RHS,
including any potential external legs, ÂR.

To capture all diagrams that blow up in our limit, we can also vary the LHS. This ends
up giving a 4-point subamplitude, ÂL. As z → zI , all diagrams contributing to Â(z) become
negligibly small compared to those that collectively sum up to ÂLÂR/P̂

2
I . We can now

compute the limit:

Res
(
zI ; Ân(z)/z

)
= lim

z→zI
(z − zI)

Ân(z)

z
,
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= lim
z→zI

z − zI
z

ÂL(z)
1

P̂ 2
I

ÂR(z),

= − lim
z→zI

z − zI
z

ÂL(z)
zI

P 2
I (z − zI)

ÂR(z),

= −ÂL(zI)
1

P 2
I

ÂR(zI),

where we used equation (3.4).
Evidently, the residue at pole zI is, as predicted, two subamplitudes multiplied together

with an additional remnant from the propagator that was taken on-shell. The subamplitudes
are shifted themselves with the same shift as the original amplitude to the location of the
former pole zI . From the diagrammatic analysis above, we see that if have an n-point
amplitude and we take P̂ 2

I on-shell where I has k elements, then the left subamplitude will
be (k+1)-point, whereas the right subamplitude will be (n−k+1)-point. Since indexing sets I
with fewer than 2 or more than n−2 elements do not contribute any poles, all subamplitudes
will always be lower-point than the original n-point amplitude. The propagator included in
the residue is unshifted.

3.4 The Recursion Formula
We can now throw the results from the previous sections together to arrive at our desired
recursion formula. Combining the previous analysis with equation (3.7) yields us

An =
1

2

∑
{I|zIpole}

Â|I|+1(zI)
1

P 2
I

Ân−|I|+1(zI) +B∞, (3.8)

This is the same formula as presented in the introduction, i.e. equation (1.4). Here, |I| is the
amount of elements in I and Â|I|+1(zI) is the (|I|+1)-point shifted amplitude. This amplitude
depends on the momenta of the particles with labels included in I and an additional external
particle with momentum P̂I(zI) of the same type as the propagator. Ân−|I|+1(zI) depends on
the remaining particles and an additional particle with momentum −P̂I(zI). It is (n−|I|+1)-
point. The additional term B∞ appears from a potential pole that Â(z)/z has at infinity.

In this case of (3.8), we should take care to not sum over every possible set I, but make
sure to only include those I for which zI is in fact a pole. Whereas in equation (3.7), those
sets I for which Ân(zI) was finite-valued were guaranteed to give a vanishing contribution,
this is not the case in (3.8).

Equation (3.8) lends itself to a nice interpretation. We see that An is given in terms
of different amplitudes in addition to a boundary term. We have inferred that only those
amplitudes which are lower point than An contribute to the sum. If for some reason B∞ = 0,
we can see that any n-point amplitude is constructible solely from lower point amplitudes. If
B∞ = 0 for any n ≤ N , we can thus recursively construct AN from three point amplitudes in
our theory. That is, we can construct A4 from A3, then A5 from A3 and A4 and build up all
the way up to N without ever having to rely on explicit Feynman-diagrammatic calculations.
If B∞ = 0 for all n, then we can construct all three level amplitudes of this theory in this
fashion. This is the essence of on-shell recursion relations.
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It is important to note that B∞ does not vanish in general. Recursion will not work for the
vast majority of conceivable quantum field theories. This makes sense. If one is to calculate
a lower-point scattering amplitude using the typical Lagrangian, Feynman-diagrammatic
procedure, the higher-order terms of in the Lagrangian will not play any role. These terms
do start to play a role when one calculates higher-point scattering amplitudes. It follows
that many distinct theories sharing identical lower-point amplitudes, differ in higher-point.
It should thus not be possible to derive higher-point amplitudes from lower-point amplitudes
in general.

It follows that for recursion to work and for B∞ to vanish, the theory under consideration
needs to be rather special. It needs to be the theory whose amplitudes are generated by
ignoring B∞. These are typically theories which satisfy a certain property, allowing one to
fix higher-order terms in the Lagrangian based on this property, e.g. gauge symmetry or
certain soft limits.

In addition to the fact that a vanishing B∞ is relatively rare, showing that B∞ vanishes
practically is also hard. One can show that B∞ = 0 by proving that

lim
z→∞

Ân(z) = 0. (3.9)

If one would already know An, then it would be easy to shift all the momenta and acquire
Ân(z) to subsequently take the limit. However, the whole point of the recursion relations
is that we do not know An, which we wish to derive. Hence, one needs to use more clever
arguments to show that B∞ vanishes, relying on the special properties of the theory.

In the upcoming chapter, we will show that B∞ vanishes in the so-called BCFW shift
for various amplitudes in various theories, such as Yang-Mills and gravity. We will see that
gauge symmetry plays an important role in the argumentation. Afterwards, we will focus
on the role of soft limits in allowing recursion to work.

3.5 Generalizing to Other Particle Types: Unitarity
In our derivation of (3.8), we made use of the assumption that we were dealing with scalar
fields. We made this assumption in order to justify that the sum of variations of the LHS
or RHS V1 + V2 + . . . indeed coverges to a proper tree-level amplitude. We have used the
property, particular to scalar fields, that the Feynman rule for external legs is 1, because
the variations V1, V2 etc. do not contain the external leg Feynman rules for the intermediate
particle of the propagator. It is a natural question to ask whether equation (3.8) also holds
for other particle types.

In the case of other particle types, there are two relevant changes. First off, as implied
above, the external legs change. Specifically, the external legs for some particle are the mo-
mentum space wave functions corresponding to that particle type. Secondly, the propagator
numerator becomes non-trivial. The propagator numerator for scalar particles is simply 1,
but changes for other particle types to a more complicated expression, sometimes dependent
on the particle’s momentum. If it turns out that these properties exactly cancel each other
out when we change particle type, then (3.8) may hold more generally.
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For spin-1/2 fermions, this question is relatively easily answered. The external legs for
fermions are given by the momentum space Dirac spinors ūs(p), v̄s(p), us(p) and vs(p). With
proper normalization, these satisfy the spin sum completion relation

2∑
s=1

us(p)ūs(p) = /p+m,

2∑
s=1

vs(p)v̄s(p) = /p−m.

Equation (2.13) from the previous chapter is a special case of this identity. Excitingly, for
massless particles the fermion propagator numerator also equals /p up to phase. Hence, equa-
tion (3.8) also holds for fermions, as long as we sum over the spin of the exchange particle
in the factorization channel in (3.8).

For spin-1 gauge bosons, there is a similar argument. The external legs for fermions are
given by the polarization vectors εµ±(p) or εµ±(p)∗. Analogously with the fermion case,

2∑
s=1

εµs (p)ε
ν
s(p)

∗ = −ηµν + kµpν + kνpµ

p · k
.

See, for instance, [15, p. 174]. When contracting this with the subamplitudes, the second
term drops away due to the ward identity. Hence, if the gauge boson propagator numerator
is −gµν , equation (3.8) also holds for this particle type. Well, we’re in luck. In an arbitary
ξ Lorenz gauge, the Feynman propagator is given by

D̃µν
F (p) =

−i
p2 + iε

(
ηµν − (1− ξ)

pµpν

k2

)
.

See [15, p. 297]. Again, due to the ward identity, the second term drops out in the limit
z → zI if p = PI . Hence, the propagator numerator is effectively given by −gµν up to phase.
Since each subamplitude is independently gauge invariant, the mere existence of a gauge
where the amplitude factorizes properly implies that it does so independently of gauge. We
conclude that amplitudes with intermediate gauge bosons also admit on-shell recursion.

For gravitons, we can also consider their sum relation
2∑

s=1

εµs (p)ε
ν
s(p)ε

ρ
s(p)

∗εσs (p)
∗ = Πµνρσ(p),

where
Πµνρσ(p) =

1

2
[Πµρ(p)Πνσ(p) + Πµσ(p)Πνρ(p)− Πµν(p)Πρσ(p)] ,

Πµν(p) being the spin sum for spin-1 bosons. The propagator numerator will also equal
Πµνρσ [21]. The explicit form of Πµνρσ in the de Donder gauge in 4D [13] is given by

Πµνρσ(p) =
1

2
[ηµρηνσ + ηµσηνρ − ηµνηρσ] .

Admittedly, this striking coincidence for the particles above is no coincidence at all. This
fact that the propagator numerator can be substituted by a sum over two combined external
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Figure 3.3: A contribution to A5.

particle states is universal. This is a direct consequence of the optical theorem [15, p. 230],
which is a direct consequence of the unitarity of a theory’s S matrix,

S†S = 1.

The S matrix being unitarity has the physical interpretation that if one winds back time after
a scattering process has occurred, one retrieves the original state one started with. (Note
that the propagator numerator is not always equal to the spin sum completion relation. It
merely turns out that one can exchange these two inside the expression for an amplitude.)

As stated, the S matrix being unitarity awards one the optical theorem, which states that
the imaginary part of any amplitude can be expressed as a sum over amplitudes dependent
on every possible intermediate state. Schematically, this can be expressed as:

ImA(a→ b) =
∑
x

A∗(b→ x)A(a→ x).

The optical theorem in combination with the known pole structure of amplitudes gives us
factorization, the latter being due to the locality of the Lagrangian. Hence, amplitude
factorization and by extension the recursion formula, (3.8), follow directly from locality and
unitarity, as per the standard catchphrase. Since this holds for any quantum field theory
that we might be interested in at the moment, we can rest assured that (3.8) holds generally.

3.6 The Recursion Recipe
Here, I will briefly summarize the discussion above with the goal of making it more practical.
Let us say that we are interested in determining the n-point amplitude An. Let us assume
that we already know all amplitudes in the relevant theory Ak with k < n. These are the
steps to follow in order to derive An:

1. Choose a collection of shift vectors {ri} satisfying equation (3.2). Make sure that the
residue at infinity of Ân vanishes, i.e. B∞ = 0, for this particular shift. Showing this
is the most non-trivial.

2. Collect lower point amplitudes together in pairs. For both amplitudes in each pair,
select a particle that will function as an intermediate particle. Make sure that the
external particles in each pair that are not intermediate particles have the momenta
of the external particles of An.
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That is, if we want to derive A5(p1, p2, p3, p4, p5) collect pairs of A3 and A4 amplitudes.
A valid pair could be A3(p1, p4, PI) and A4(p2, p3, p5,−PI). The particle with momen-
tum PI will function as the intermediate particle. In this case PI = −(p1 + p4) =
p2 + p3 + p5. If we combine these two amplitudes, we will get a contribution to A5

with PI taken out. Compare figure 3.3. Make sure to divide the contribution by the
intermediate momentum squared.
If the theory involved allows for vertices with multiple particle types, care needs to be
taken to make sure that the intermediate particle in either amplitude is of the same
type and has identical quantum numbers.
In principle, any pair of amplitudes that ‘works’ visually as in figure 3.3, is an actual
contribution to the greater amplitude. Exchanging external momenta within a sub-
amplitude does not give a new contribution; exchanging external momenta between
subamplitudes does.

3. Looking at the current contribution under consideration, determine I for that partic-
ular contribution. Shift each momentum using the selected shift from z = 0 to z = zI .
Then sum each contribution according to equation (3.8).
It is important to make sure that the subamplitudes are shifted to ÂL(zI) and ÂR(zI),
but the factor 1/P 2

I is unshifted.

This is the basic recipe for recursion relations. We will see a couple of examples in the next
chapter.
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4 BCFW Recursion Relations
In the previous chapter, we saw a relatively general treatment of on-shell tree-level recursion
relations. We did not apply recursion to any specific theories and we kept the shift vectors
ri arbitrary (see equation (3.1)).

In this chapter, however, we will discuss a specific type of shift, called the Britto-Cachazo-
Feng-Witten (BCFW) shift. This shift keeps all but two momenta unshifted, while shifting
two selected momenta in the opposite direction: ri = −rj for two specific i and j. We will
also treat several examples.

The BCFW recursion relations are the most famous recursion relations, first introduced
by BCF, later clarified by Witten and applied to prove of the Parke-Taylor formula [2, 7, 8],
which we saw in the introduction. (See equation 1.1.)

The simplicity of this shift makes it relatively easy to work with, compared to certain
all-line shifts, where the large number of shifted momenta introduces more computational
complexity. In addition to its simplicity, BCFW is also remarkably applicable. BCFW
recursion has been shown to work for several important theories, such as Yang-Mills and
gravity.

We will start off defining the BCFW shift, both in the spinor helicity formalism and using
regular D-vectors. Then, after seeing an example of recursion relations in action, we will
move on to prove that BCFW recursion holds for several amplitudes in scalar QED. That
means, we will show that the boundary term B∞ vanishes for certain amplitudes of this
theory. This will be a buildup towards showing that BCFW also works in pure Yang-Mills
gluon scattering. For both these proofs, we will rely on the work by Nima Arkani-Hamed and
Jared Kaplan [22]. After seeing that BCFW works for gluon scattering, the chapter’s climax
will be to prove the Parke-Taylor formula ourselves, using the spinor helicity formalism in
combination with the bootstrapped three-point gluon amplitudes we derived in chapter 2,
equation (2.34). We also include a proof that BCFW recursion works for graviton scattering,
which has been committed to appendix A.

4.1 Defining the Shift
In the spinor helicity formalism, BCFW recursion relations can be expressed as the shift

|i] → |̂i] ≡ |i] + z|j], |j〉 → |ĵ〉 ≡ |j〉 − z|i〉,
[i| → [̂i| ≡ [i|+ z[j|, 〈j| → 〈ĵ| ≡ 〈j| − z〈i|.

(4.1)

Here, |i] and |j〉 are the positive and negative helicity spinors for the ith and jth particle
in the amplitude An respectively. All other brackets are left unshifted. This is called an
|i, j〉-shift.

For the sake of defining the BCFW shift, the choice of which momenta to shift and which
to keep fixed is essentially arbitrary. However, it turns out that depending on the helicities of
the external particles, whether the boundary term B∞ vanishes can often depend on which
particles are picked for the shift. Thus in practice, one needs to be selective in choosing the
specific shift.

One can verify that this shift preserves the established identities between the square and
angle brackets of the spinor helicity formalism. More pressingly, we can also show that this
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is a valid shift satisfying (3.2). The shifted momentum for particle i is given by equation
(2.19):

p̂µi =
1

2
〈̂i|γµ|̂i] = 1

2
〈i|γµ|i] + z

2
〈i|γµ|j] = pµi +

z

2
〈i|γµ|j].

Similarly,
p̂µj = pµj −

z

2
〈i|γµ|j].

We can thus identify the shift vectors as follows:

ri = q, rj = −q, rk = 0, (k 6= i, j) (4.2)

where qµ ≡ 〈i|γµ|j]/2. One can use the Fierz identity (2.17) to verify that this satisfies
the requirement for shift vectors (3.2). In fact, in arbitrary dimensions, equation (4.2) can
be used as the defining feature of the BCFW shift. This, in conjunction with the general
requirements of shift vectors, completely fixes q up to normalization. Hence, in 4D equations
(4.1) and (4.2) are equivalent.

Interestingly, we can note that for generic momenta we can make a gauge choice such
that

ε−i = ε+j ∝ q, ε+i = ε−j ∝ q∗,

following from the fact that the polarization vectors in the Lorenz gauge and the shift vector
have to satisfy the same condition: pµεµ(p) = pµq

µ = 0.
When shifted, this becomes

ε̂−i (z) = ε̂+j (z) ∝ q, ε̂+i (z) ∝ q − zpj, ε̂−j (z) ∝ q + zpi. (4.3)

We can easily verify this by shifting the spinor helicity expression for the polarization vectors
(2.27).

Now that we have a definition for the BCFW shift, it is time we finally treat an example.

Example: Calculating a Scalar QED Amplitude
We will now use the BCFW recursion relations to calculate the scalar QED amplitude
A4(φ1φ

∗
2γ

+
3 γ

−
4 ). That is, the amplitude for two scalars and two photons with opposite helic-

ities.

The three-point amplitudes of this theory are given by

A3(φaφ
∗
bγ

−
c ) = −iẽ〈a c〉〈b c〉

〈a b〉
, A3(φaφ

∗
bγ

+
c ) = −iẽ [a c][b c]

[a b]
.

These can be easily calculated using Feynman diagrams, resulting from the Lagrangian

L = (Dµφ)
∗Dµφ− 1

4
FµνF

µν , (4.4)

or they can be bootstrapped using a similar approach to the on used in section 2.5.
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We will apply a |4, 3〉-shift: |4] → |4̂] = |4] + z|3]; |3〉 → |3̂〉 = |3〉 − z|4〉. It turns out
that for this particular shift B∞ vanishes. For the opposite shift (|3, 4〉) or for shifts of the
scalar momenta, the amplitude does not vanish for large z. In this section, we will simply
assume that B∞ vanishes for this particular shift of this amplitude. Later in this chapter,
we will prove that B∞ = 0 in this precise case.

Using equation (3.8), we see that

A4(φ1φ
∗
2γ

+
3 γ

−
4 ) = Â

(
φ1φ

∗
−P̂13

γ+
3̂

) 1

P 2
13

Â
(
φP̂13

φ∗
2γ

−
4̂

)
+ Â

(
φ−P̂23

φ∗
2γ

+

3̂

) 1

P 2
23

Â
(
φ1φ

∗
P̂23
γ−
4̂

)
.

(4.5)
These are the only two contributions. Importantly, the external particles match on either
side of the equation in type and helicity. Furthermore, each subamplitude only contains
one particle with shifted momentum. This is because those I which contain both shifted
labels do not contribute any poles to the shifted amplitude. Momentum conservation in this
case guarantees that the corresponding propagator remains unshifted for any z. Whether a
specific I contributes to the amplitude can be verified by confirming that R2

I 6= 0.
It should be noted that both terms in equation (4.5) come from a different label set I,

namely I = {1, 3} and I = {2, 3}. Consequently, the subamplitudes in these terms are also
shifted with different values of z, to z = z13 and z = z23 respectively. Therefore, when writ-
ing out these subamplitudes, a shifted spinor , e.g. |3̂〉, has a different meaning dependent
on the term in which it occurs. Hence, in order to properly evaluate equation (4.5), it is
useful to first evaluate each term separately at first and only to combine both expressions
into one larger expression once both separate terms have been rewritten in terms of unshifted
momenta.

To this end, let us look at the first term. This is given by

Â
(
φ1φ

∗
−P̂13

γ+
3̂

) 1

P 2
13

Â
(
φP̂13

φ∗
2γ

−
4̂

)
= −ẽ2 [1 3̂][−P̂13 3̂]

[1 (−P̂13)]

1

〈1 3〉[1 3]
〈P̂13 4̂〉〈2 4̂〉
〈P̂13 2〉

.

We will now heavily rely on various spinor helicity identities to rework this expression. First,
we we will use the identity

|−p〉 = −|p〉, |−p] = −|p], (4.6)

derivable from (2.15) and (2.16), to get rid of the minuses inside the spinor brackets. We
will use the antisymmetric property (2.10) and the property regarding the contraction with
gamma matrices (2.13) to rewrite the expression:

[1 3̂][−P̂13 3̂]

[1 (−P̂13)]

1

〈1 3〉[1 3]
〈P̂13 4̂〉〈2 4̂〉
〈P̂13 2〉

= − [1 3̂][3̂|p1 + p̂3|4̂〉〈2 4̂〉
〈1 3〉[1 3][1|p1 + p̂3|2〉

.

Here we are using the ‘slashless’ notation (2.20). We can use the Weyl equation to kill some
momenta wedged between spinor brackets. We can then rewrite the expression purely in
terms of spinor brackets once again.

− [1 3̂][3̂|p1 + p̂3|4̂〉〈2 4̂〉
〈1 3〉[1 3][1|p1 + p̂3|2〉

= − [1 3̂][3̂|p1|4̂〉〈2 4̂〉
〈1 3〉[1 3][1|p̂3|2〉

= − [1 3̂][1 3̂]〈1 4̂〉〈2 4̂〉
〈1 3〉[1 3][1 3̂]〈2 3̂〉

.
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Since |3̂] = |3] and |4̂〉 = |4〉, we can simplify this expression.

Â
(
φ1φ

∗
−P̂13

γ+
3̂

) 1

P 2
13

Â
(
φP̂13

φ∗
2γ

−
4̂

)
= ẽ2

〈1 4〉〈2 4〉
〈1 3〉〈2 3̂〉

.

It is now our task to write this in terms of unshifted momentum only. Firstly, note that z13
has the exact value such that P̂13 becomes on-shell. Hence,

0 = P̂ 2
13 = −〈1 3̂〉[1 3̂] = −〈1 3̂〉[1 3]. (4.7)

Since [1 3] is nonzero for generic momenta, this leads us to conclude that 〈1 3̂〉 = 0. Of
course, this identity does not hold in general. It only works for shifts where P̂13 becomes on
shell.
Secondly, if we analyse the unrelated bracket 〈3 3̂〉, using the antisymmetric property, we
deduce that

〈3 3̂〉 = 〈3|(|3〉 − z13|4〉) = −z13〈3 4〉.

Using these two identities together with the Van Schouten identity (2.22), we get

Â
(
φ1φ

∗
−P̂13

γ+
3̂

) 1

P 2
13

Â
(
φP̂13

φ∗
2γ

−
4̂

)
= −ẽ2 〈1 4〉〈2 4〉

〈1 3̂〉〈3 2〉+ 〈1 2〉〈3̂ 3〉
= − ẽ2

z13

〈1 4〉〈2 4〉
〈1 2〉〈3 4〉

.

One can easily calculate the value of z13 using equation (3.4). For this shift z13 = 〈1 3〉/〈1 4〉,
hence

Â
(
φ1φ

∗
−P̂13

γ+
3̂

) 1

P 2
13

Â
(
φP̂13

φ∗
2γ

−
4̂

)
= −ẽ2 〈1 4〉2〈2 4〉

〈1 2〉〈1 3〉〈3 4〉
.

With near identical reasoning, we can determine that the second term of equation (4.5) is

Â
(
φ−P̂23

φ∗
2γ

+

3̂

) 1

P 2
23

Â
(
φ1φ

∗
P̂23
γ−
4̂

)
= ẽ2

〈1 4〉〈2 4〉2

〈1 2〉〈2 3〉〈3 4〉
.

Combining these two expressions gives

A4(φ1φ
∗
2γ

+
3 γ

−
4 ) = −ẽ2 〈1 4〉〈2 4〉

〈1 3〉〈2 3〉

(
〈1 4〉〈2 3〉 − 〈1 3〉〈2 4〉

〈1 2〉〈3 4〉

)
= ẽ2

〈1 4〉〈2 4〉
〈1 3〉〈2 3〉

,

where the Van Schouten identity has been used once again in the last step.
And there we have it. Acquiring a valid expression for the amplitude was in essence

effortless, as we already obtained a valid expression in equation (4.5). Reworking this ex-
pression into an elegant form completely given in terms of unshifted momenta did require
some work. In contrast, the calculation of this amplitude using traditional methods requires
calculating three Feynman diagrams, two exchange diagrams and one contact diagram. It
is overall difficult to say which method was simpler in this case. Of course, for higher-point
amplitudes, where the amount of Feynman diagrams explodes, this method wins out rather
quickly.
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4.2 Proving BCFW Recursion for Scalar QED
In the previous example, we calculated a 4-point scalar QED scattering amplitude using
recursion relations. In the process of calculating this amplitude, we simply assumed that the
residue at infinity B∞ vanishes. It thus remains to be shown that in the specific example
above B∞ indeed vanishes before we can fully trust the result.

In this section, we will show that for a wide range of scalar QED amplitudes, it is indeed
true that there is a vanishing residue at infinity, allowing one to perform recursion. We will
largely restrict our focus to the type of diagram with two shifted scalars and n unshifted
photons. As is typical, we will demonstrate that that scalar QED amplitudes of the type we
are considering vanish in the high-z limit,

Â(z) → 0, as z → ∞,

guaranteeing a vanishing B∞. Despite the fact that this differs from the scenario of two
shifted photons in the example above, we can still use this result for arguing that B∞
vanishes in the previous example. We will briefly touch upon this.

However, the main motivation for treating scalar QED amplitudes in this section with
two shifted scalars and n unshifted photons is to build up towards showing that B∞ vanishes
for gluon scattering amplitudes in Yang-Mills in the next section. The proof we will see in
the next section for Yang-Mills is comparatively technical compared to rest of the thesis.
Hence, it serves us well to treat an easier, yet analogous proof in an earlier section. In either
section, we will follow Arkani-Hamed et al. [22]. The concepts introduced in this section
will return in the next.

After showing that BCFW recursion works for Yang-Mills in the next section, we will
arrive at this chapter’s climax: proving the Parke-Taylor formula.

We start by considering the scalar QED Lagrangian once more

L = (Dµφ)
∗Dµφ− 1

4
FµνF

µν ,

with Dµ = ∂µ − ieAµ and Fµν = ∂µAν − ∂νAµ. We will analyze the various components
of Feynman diagrams in this theory and determine their z-dependence separately. We will
then be able to make conclusions about the overall z-dependence of various amplitudes.
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The Lagrangian provides us with the following vertices:

φ, p

φ, p′

γ±, µ ∝ −ie(p− p′)µ,

φ, p

γ±, ν

φ, p′ γ±, µ ∝ 2ie2gµν .

(4.8)

We can see that since the second of these vertices does not depend on the momenta of its
particles, this vertex is always independent of z and thus scales with ∝ z0.

The first of these vertices, as it scales linearly with scalar momentum, can have a potential
z-dependence, with a term ∝ z1. This of course if and only if some of the contributions to
p̂ or p̂′ are shifted, with the added condition that these shifts do not cancel each other.
Otherwise, the vertex will have ordinary ∝ z0 dependence.

The propagators of the theory are all proportional to

1

p̂2
∝ 1

p2(z − zI)
∝ z−1,

if the momentum of the intermediate particle is shifted, as appears from the discussion in
sections 3.1 and 3.2.

Now, let us consider the amplitude with n external photons and two external scalars. We
will call this amplitude M2;n. If we choose our two shifted particles to be the two external
scalars, then all external leg contributions to the Feynman diagram will scale with z0, as the
scalar external leg is independent of particle momentum and the photon polarization vectors
are unshifted.

Because of the two vertex types available in this theory, we can already conclude that
every Feynman diagram contributing to this amplitude will have the shape

. (4.9)
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That is, we have one continuous scalar line from one shifted particle to the other with photon
branches. There is no gauge boson self-interaction in this theory. This precludes us from
having any intermediate photons at tree level for a two-scalar amplitude.

We can now make an estimate of the overall z-dependence of such diagrams. First of
all, we know that for any scalar propagator in this type of diagram, we will gain an overall
z−1-dependence in the limit. We also know that for each three point vertex, we will gain an
overall z1-dependence.

Thus the worst contribution to the amplitude M2;n will be a diagram only featuring
three-point vertices. One can see that in that case, one will have an overall z-dependence of

M2;n ∼ zn−(n−1) = z1 → ∞.

It seems as if the amplitude blows up in the limit and thus that scalar QED amplitudes of
this type are not on-shell constructible.

However, this argumentation has been a little too quick. We have assumed that there are
no cancellations of the z-dependence inside or between the diagrams. It is actually possible
to pick a specific gauge, where it becomes visible that much of this z-dependence actually
cancels. This gauge choice is the so-called lightcone gauge.

4.2.1 The Lightcone Gauge for Gauge Bosons

The lightcone gauge for some 4-vector q is a specific Lorenz gauge choice such that

qµA
µ = 0,

where Aµ is the gauge boson field. If for q we pick our shift vector from equation (4.2), the
lightcone gauge gives us the property that

P̂ µ
I εµ = (P µ

I + zqµ) εµ = P µ
I εµ, (4.10)

if PI contains the positively shifted external momentum pi.
Typically, we can use the lightcone gauge to manifestly eliminate all z-dependence from

vertices. For the case of diagrams of the same type as diagram (4.9), all positive z-dependence
comes from three-particle vertices (4.8). At every such vertex, a contraction occurs similar
to equation (4.10). Hence, by picking the lightcone gauge for the gauge boson field, we
can eliminate all such z-dependence from the vertices. Hence, this demonstrates that the
actual z-dependence of scalar QED amplitudes is markedly better than stated in the previous
section. By choosing the lightcone gauge, this improved z-dependence can be made manifest.
Since amplitudes are gauge invariant, amplitudes in other gauges feature identically improved
z-dependence.

To make things explicit, in the case of scalar QED the ‘worst offender’ in terms of z-
dependence contributing to a typical M2;n amplitude will be the diagram featuring only four-
particle vertices, contrary to what seemed to be the case before we discussed the lightcone
gauge. This is because this is the diagram featuring the smallest amount of propagators.
After all, every propagator adds a factor of ∝ 1/z, whereas the amount of vertices does not
alter the overall z-dependence. Such a diagram gains a propagator for every two additional
external gauge bosons.
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As the z-dependence of an amplitude in the limit is dominated by the z-dependence of
the least favorable diagram, this gives us a maximum z-dependence (for n ≥ 2) of

M2;n ∼

{
z1−n/2 n is even,
z1−(n+1)/2 n is odd.

(4.11)

We observe that M2;n → 0 for every n, except for the n = 2 case. This is due to the
contact diagram

φ

γ
φ

γ

pi

p2

pj p1 ,

which lacks propagators. We thus see that the BCFW recursion relations work for construct-
ing amplitudes M2;n for n > 2.

This result seems problematic, given that the example calculation we performed above
featured an M2;2 amplitude. However, whereas in this section, we are discussing shifts of
the two external scalar momenta, in the example, we shifted two photon momenta. It turns
out that the shifting of the two photons confers slightly improved z-dependence in our case.
This is due to the shifted polarization vectors. In combination with the Ward identity, it is
possible to show that this results in an additional factor of 1/z, making also the M2;2 vanish
in the large-z limit. This topic will be left for what it is now. It is more appropriate to
discuss the Ward identity in the next section, as this will be very relevant for Yang-Mills
amplitudes.

We have now argued that M2;n is on-shell constructible using a BCFW shift for n > 2.
Even though this conclusion is correct, the argument has left out an important detail. We
assumed that we could pick the lightcone gauge freely, but it turns out there are some
technicalities to consider in doing so. This will be important later, so we must discuss this
now.

Let Aµ be some vector field in some Lorenz gauge. We acquire the lightcone gauge by
imposing

Aµ → A′µ = Aµ + ∂µΛ(x),

such that
qµA

′µ = 0.

To evaluate the feasibility of the existence of such a Λ, we can go to momentum space by
Fourier-transforming the above condition. We get

qµε
′µ(k) = qµε

µ(k) + qµk
µΛ̃(k) = 0, ∀k.

This poses a problem, since for any q, there is definitely some collection of ks such that q ·k =
0, eliminating the second term in the equation above. These k lie on the lightcone originating
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from q in the vector space of all four-momenta. (See figure 4.1.) For these k, it is impossible to
transform ε(k) to the q-lightcone gauge unless ε(k) was already in the lightcone gauge to begin
with.

Figure 4.1: The lightcone of mo-
menta k orthogonal to momentum q,
i.e. k · q = 0.

This, however, is not a problem for our purposes
in most cases. We do not need qµε

µ(k) to vanish for
every k, but only for those specific k which would
result in the cancellation of z-dependence from ver-
tices. These k are specifically the momenta of gauge
bosons meeting a particle with a shifted momentum
at a vertex. Which k these are is determined by ex-
ternal particle momentum.

Luckily, the lightcone on which k is orthogonal
to q is in fact very small in comparison to the entire
space of possible momenta k, as can be seen in the
figure. In fact, these k form a measure zero subset of
the total possible space of allowed momenta. Impor-
tantly, every k for which k · q = 0 borders a region
where k · q 6= 0.

Since every problematic k borders a region of non-
problematic k, we can typically construct the ampli-
tude for this untroublesome region by recursion to
subsequently take the limit to this problematic k. It seems as if this would require us to first
construct the amplitude for every external momentum configuration not resulting in any
problematic k. One would then have to take the limit of the external momenta such that
we enter the difficult region and get the expression of the amplitude there too. In practice,
however, it simply means that this entire concern can be ignored. By continuity arguments,
one can show that B∞ vanishes on this lightcone as well, allowing for undisturbed recursion.

After this initial concern, it seems like we are back on solid ground when it comes to our
previously derived result. However, we have now glossed over another fact. For some specific
amplitudes, it is never possible to enter the non-problematic region. This occurs when there
is a Feynman diagram contributing to the amplitude, where momentum conservation dictates
that a gauge boson always has a momentum orthogonal to q. A specific example of such a
Feynman diagram would be

−(pi + pj)

pi pj

,

where, by construction, pi and pj are orthogonal to q, thus −(pi + pj) is as well. (Compare
equation 3.2.iii.)

If we would perform the BCFW shift for this diagram, the vertex in this diagram would
have z-dependence which we could not explicitly eliminate with a lightcone gauge transfor-
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mation. For scalar QED, this is the only diagram of this type. Since this diagram contributes
to the M2;1 amplitude, we conclude that

M2;1(z) → ∞,

as z → ∞ for scalar QED. But since we are never interested in derived a three-point ampli-
tude through recursion, this is of little concern to us.

In general, we have the following type of diagram posing a similar problem:

−(pi + pj)

pi pj

(4.12)

That is, a diagram featuring the two shifted particles coupled directly to a gauge boson.
This gauge boson, in case it is self-interacting, may in turn be coupled to any number of
external particles.

These diagrams also contain a vertex whose z-dependence cannot be eliminated by choos-
ing the lightcone gauge. For scalar QED, the only diagram of this type is the one seen above.
For other theories, however, there can often be more diagrams of such a problematic nature.
When discussing those theories, we will have to pay special attention to these diagrams, as
they will be leading the the theory’s z-dependence.

We will now move on to prove that BCFW recursion works for general Yang-Mills ampli-
tudes. There, such diagrams feature extensively, which is something we will have to address
in the proof.

4.3 Proving BCFW Recursion for Yang-Mills
In this subsection, we will prove that one can use the BCFW recursion relations to construct
any pure Yang-Mills amplitude beyond three-point. This is in contrast to the scalar QED
case, where we only looked at two-scalar amplitudes. Our arguments will be valid for full
and partial amplitudes. Afterwards, we will spend a section to use this result in proving the
famous Parke-Taylor formula.

Our method for proving the validity of BCFW for Yang-Mills will again rely on a consid-
eration of the lightcone gauge, but also the so-called background field method [23, p. 249].
That is, since in the large z limit of the amplitude, we can consider the two shifted particles
to have a very large momentum, much larger than any other particles involved in the ampli-
tude. This allows us to make the substitution Aµ → Aµ + aµ, where Aµ is the original, low
energy, background field and aµ the boosted field. How this is exactly applied will become
apparent soon.
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We will use all of this to calculate the z-dependence of M̂µν
n (z), which is the shifted n-

point amplitude, as of yet to be contracted with the polarization vectors of the two external
particles. Focusing on this amplitude instead of the complete amplitude at first will allow
us to determine the z-dependence in a more organized fashion.

As before, we will start by stating the Lagrangian. We will then perform some manipu-
lations to cast the Lagrangian in a form that is convenient for our purposes, following [22].

The Yang-Mills Lagrangian is given by

L = −1

2
Tr [F µνFµν ] ,

where Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]. After performing the shift Aµ → Aµ + aµ, we get

Fµν → Fµν +D[µaν] − iga[µAν] − ig [aµ, aν ] .

The Lagrangian will then consist of many terms. However, we will specifically be interested
in those terms which contain aµ twice, i.e. quadratic in aµ. Those are

L|a2 = −1

2
Tr
(
D[µaν]D

[µaν] − 2ig [aµ, aν ]F
µν
)
.

Here, the covariant derivative is given by the traditional Dµ = ∂µ − igAµ. We are inter-
ested specifically in the terms containing aµ, because these terms alone will provide the
z-dependent vertices. After all, aµ is the shifted field. Furthermore, we are never interested
in terms with a higher power in aµ, since momentum conservation dictates that two (and
only two) shifted fields meet at any given vertex.

We add a gauge fixing term for aµ,

−1

2
(Dµa

µ)2 .

Now our Lagrangian of interest becomes

L|a2 = −1

2
Tr (ηρσDµaρD

µaσ − 2ig [aρ, aσ]F
ρσ) .

Here, the indices have been chosen to make the scaling with ηρσ of the first term more
explicit. When performing the BCFW shift, we will always have two shifted external par-
ticles. Each diagram contributing to the overall amplitude will then have a single unique
path of shifted internal lines from shifted external particle to shifted external particle. The
typical amplitude will thus again have the same shape as figure (4.9), where the straight
lines correspond to the shifted field, but now with possible gluon self-interactions.

The first term in the Lagrangian gives the kinetic term for aµ, but also vertices that scale
with z, due to the derivative acting on the shifted field. Since this first term scales with ηρσ,
the three particle vertex gives us
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aρ

a′σ

ε±µ
∝ ηρσ (pµ + zqµ).

In a diagram, ηρσ is contracted with external or internal shifted particle lines and the mo-
menta are contracted with the unshifted gluon field.

Both the first and second term of the Lagrangian produce a four particle vertex of the
type

aρ

ε±µ

a′σ ε′±ν ∝ ηρσ + Aρσ.

Here, Aρσ is a tensor already containing the contribution from the unshifted gluons, to be
contracted with the shifted gluons within an actual diagram. Aρσ is anti-symmetric, inher-
iting its anti-symmetry from the field strength tensor F ρσ in the second term.

Since the z-dependence of any diagram is contained in terms where qµ contracts with
gluon fields, we can once again apply the lightcone gauge. Note that since we have gluon
self-interactions, not every z-dependent vertex is directly contracted with an external gluon,
but sometimes with gluon propagators. However, as discussed in section 3.5, the propagator
numerators can be substituted with polarization vectors. Hence, choosing the lightcone
gauge is effective in eliminating the z-dependence in these vertices as well.

Thus everything discussed in section 4.2.1 for scalar QED holds here too. The only truly
z-dependent diagram with a diverging limit is of the type of (4.12).

Furthermore, every shifted propagator scales with ∝ 1/z. Thus we can conclude that any
diagram with at least one shifted propagator scales with ∝ 1/z or better. Hence, the only
diagrams which have a term scaling with z0 are again the type of diagram of (4.12) above
and a similar diagram with a four particle vertex:

aρ a′σ
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We get an overall z-dependence of

M̂ρσ
n ∝ (cz + 1) ηρσ + Aρσ +

1

z
Bρσ + . . . ,

where c is a proportionality constant and B an unknown tensor.

The task at hand is to contract this incomplete amplitude above with the polarization
vectors of the shifted particles. For this, we will use the Ward identity for gluons, which is

pµA
µ = 0,

if εµ(p)Aµ is the complete amplitude. Similarly, it will hold that

p̂iρM̂
ρσ
n ε̂jσ = 0,

where we are using the shifted quantities. This holds identically for exchanged i and j. Since
p̂i = pi + zq and p̂j = pj − zq, the Ward identity gives us

qρM̂
ρσ ε̂jσ = −1

z
piρM̂

ρσ ε̂jσ, qρM̂
ρσ ε̂iσ = +

1

z
pjρM̂

ρσ ε̂iσ. (4.13)

Hence, contracting with the shift vector q results in an additional factor 1/z of overall z-
dependence.

Using this together with the identities in equation (4.3), we can easily determine the
overall z-dependence based on the helicities of the external particles. For example,

M̂−+
n = ε̂−iρM̂

ρσ ε̂+jσ,

= qρM̂
ρσqσ,

∝ qρ

[
(cz + 1) ηρσ + Aρσ +

1

z
Bρσ + . . .

]
qσ,

=
1

z
qρB

ρσqσ + . . . ,

relying on the on-shell property of q and the anti-symmetry of A. Or,

M̂−−
n = ε̂−iρM̂

ρσ ε̂−jσ,

= qρM̂
ρσε+jσ,

= −1

z
piρM̂

ρσε+jσ,

= −1

z
piρM̂

ρσ(qσ + zpiσ),

∝ 1

z
piρA

ρσqσ + . . . .

Here, both equations (4.13) and (4.3) have been used. Subsequently, the on-shellness of
pi,the anti-symmetry of A and the orthogonality of q and pi.
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εi\εj − +
− 1/z 1/z
+ z3 1/z

Table 4.1: The z-dependence of pure Yang-Mills amplitudes depending on shifted particle
amplitude.

For scalar QED, the ward identity holds as well. So when we shift the photons instead
of the scalars in the two-scalar two-photon case of example 4.1, we gain an additional factor
of 1/z compared to (4.11). This additional factor makes the amplitude vanish in the large z
limit, proving that our original recursion works.

Doing similar calculations for every polarization combination in Yang-Mills gets us the
result shown in table 4.1. We see thus that depending on the polarizations of the shifted
particles, the gluon amplitude is either on-shell constructible or it is not. The only non-
constructible case is the M̂+−

n amplitude. However, this can be made constructible simply
by deciding to shift pi and pj oppositely. That is, by shifting pi as if it were pj (pi → pi−zq)
and pj as if it were pi (pj → pj + zq), effectively exchanging labels i and j. In this way, we
can see that every tree-level pure gluon amplitude is on-shell constructible.

4.4 Proving the Parke-Taylor Formula
The Parke-Taylor formula is a very simple formula, giving the expression for maximally
helicity violating, color-ordered Yang-Mills tree amplitudes.

An n-point Yang-Mills amplitude is maximally helicity violation (MHV) when n − 2 of
its external gluons have a helicity opposite to the remaining 2 gluons. This is maximally
helicity violating, because any greater uniformity in helicities reduces the amplitude to zero.
That is,

An(p
±
1 , p

±
2 , . . . , p

±
n ) = An(p

∓
1 , p

±
2 , . . . , p

±
n ) = 0,

for n ≥ 4.
The Parke-Taylor formula then gives the color-ordered MHV tree amplitude:

An[p
+
1 , . . . , p

−
i , . . . , p

−
j , . . . , p

+
n ] =

〈i j〉4

〈1 2〉〈2 3〉 . . . 〈n 1〉
, (4.14)

and for flipped helicities,

An[p
−
1 , . . . , p

+
i , . . . , p

+
j , . . . , p

−
n ] =

[i j]4

[1 2][2 3] . . . [n 1]
. (4.15)

In this section, we will prove the Parke-Taylor formula using BCFW recursion, now
that we know that this method holds for Yang-Mills amplitudes. We will do so inductively,
limiting to the mostly minus case.

We inadvertedly showed that the Parke-Taylor formula holds for the 3-point case in
section 2.5, by deriving (2.34). The complete result is given here.

A3[p
−
1 , p

−
2 , p

+
3 ] =

〈1 2〉4

〈1 2〉〈2 3〉〈3 1〉
, A3[p

+
1 , p

+
2 , p

−
3 ] =

[1 2]4

[1 2][2 3][3 1]
.
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Hence, we need to show that if Parke-Taylor formula holds up to (n − 1)-point, it will
also hold for n point. In this, we will follow the derivation laid out in Elvang & Huang [13].

We will use a |−,−〉 = |1, 2〉 BCFW shift, applied to the recursion formula (3.8). We
will be able to ignore the factor 1/2 in the recursion formula by only summing over indexing
sets that contain momentum label ‘1’.

It is important to note that we want to derive a color-ordered amplitude. The only
Feynman diagrams that contribute to such an amplitude have a specific ordering of their
external legs. For instance, the color-ordered amplitude An[1, 2, 3, 4] will only consist of
Feynman diagrams where the external momenta p1, p2 etc. are arranged in a clockwise
fashion. This fact means that color-ordered tree amplitudes decompose solely into color-
ordered amplitudes when intermediate momenta go on-shell. Hence, these are the only
contribution in our recursion formula.

In this case, we get

An =
∑
h=±

n∑
k=4

Â3+(n−k)[k
+, (k + 1)+ . . . , n+, 1̂−, P̂ h

I ]
1

P 2
I

Âk−1[−P̂−h
I , 2̂−, 3+, . . . , (k − 1)+].

Here, PI = p2 + p3 + . . .+ pk−1. We sum over the helicity of the internal line, because both
helicities contribute diagrams to the overall amplitude. The mediating gluon has an opposite
helicities in the two amplitudes (h and −h). One needs to flip the momentum in one of the
two amplitudes to make sure that the particle is outgoing in both amplitudes. Since spin
stays the same, the helicity is then flipped as well.

Interestingly, since the mediating particle can only have negative helicity in one subam-
plitude at the same time, always one of the two amplitudes will be ‘more than maximally
helicity violating’ at the same time. This is true, except when one of the two subamplitudes
is three-point, where the MHV amplitude has only one distinct particle. Hence, we are only
left with the contributions:

An[1
−, 2−, 3+, 4+, . . . , n+] = Â3[n

+, 1̂−, P̂+
n1]

1

P 2
n1

Ân−1[−P̂−
n1, 2̂

−, 3+, . . . , (n− 1)+]

+ Ân−1[4
+, 5+, . . . , 1̂−, P̂−

23]
1

P 2
23

Â3[−P̂+
23, 2̂

−, 3+].

We will treat these two terms separately. Starting with the first term,

Â3[n
+, 1̂−, P̂+

n1]
1

P 2
n1

Ân−1[−P̂−
n1, 2̂

−, 3+, . . . , (n− 1)+]

=
[n P̂n1]

4

[n 1̂][1̂ P̂n1][P̂n1 n]

1

P 2
n1

〈−P̂n1 2̂〉4

〈−P̂n1 2̂〉〈2̂ 3〉 . . . 〈(n− 1) (−P̂n1)〉
,

= − [n P̂n1]
3

[n 1̂][1̂ P̂n1]

1

P 2
n1

〈P̂n1 2̂〉3

〈2̂ 3〉 . . . 〈(n− 1) P̂n1〉
,

=
([n|1̂ + n|2̂〉)3

[n 1̂]〈n 1〉[n 1]〈2̂ 3〉 . . . 〈n− 1|1̂ + n|1̂]
,

=
[n 1̂]3〈1̂ 2̂〉3

[n 1̂]〈n 1〉[n 1]〈2̂ 3〉 . . . 〈(n− 1)n〉[n 1̂]
,
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=
[n 1̂]

[n 1]

〈1̂ 2̂〉4

〈1̂ 2̂〉〈2̂ 3〉 . . . 〈n 1〉
.

Here, we used equation (2.10) and (2.13). We can already recognize the outline of the Parke-
Taylor formula. Now, because of the BCFW shift, we know that |1̂〉 = |1〉. This means
that

〈1̂ 2̂〉 = 〈1 2̂〉 = 〈1|(|2〉 − zn1|1〉) = 〈1 2〉.
Hence, we get

[n 1̂]

[n 1]

〈1 2〉4

〈1 2〉〈2̂ 3〉 . . . 〈n 1〉
.

Finally, since the shifted internal particle goes on-shell, we have

0 = P̂ 2
n1 = 〈n 1̂〉[n 1̂] = 〈n 1〉[n 1̂] ⇒ [n 1̂] = 0,

in the same vein as in equation (4.7). This naturally yet surprisingly means that the first
term entirely vanishes,

Â3[n
+, 1̂−, P̂+

n1]
1

P 2
n1

Ân−1[−P̂−
n1, 2̂

−, 3+, . . . , (n− 1)+] = 0.

It turns out, however, that our efforts were not for nothing. Using a near identical
calculation for the second term, we get

Ân−1[4
+, 5+, . . . , 1̂−, P̂−

23]
1

P 2
23

Â3[−P̂+
23, 2̂

−, 3+] =
〈2̂ 3〉
〈2 3〉

〈1 2〉4

〈1 2〉〈2̂ 3〉 . . . 〈n 1〉
.

Since, in this term, the shift is such that P̂ 2
23 vanishes, it can be shown here that 〈2̂ 3〉

disappears. But now, since this same bracket appears in the denominator, the zeroes cancel.
(Dividing by zero is not problematic here, as the final value of these terms is formally arrived
at by taking a limit in the residue calculation.)

We are left with

An[1
−, 2−, 3+, 4+, . . . , n+] =

〈1 2〉4

〈1 2〉〈2 3〉 . . . 〈n 1〉
.

Hence, we have shown that given the validity of the (mostly positive helicity) Parke-Taylor
formula up to multiplicity n − 1, it follows that it also holds for n. Since the Parke-Taylor
formula holds for n = 3, it must therefore hold for arbitrary n. The mostly negative helicity
case follows from a similar line of argumentation. Hence, we have shown that the Parke-
Taylor formula holds.

We have now completed the chapter on BCFW recursion. For the interested reader, a
section discussing a proof that BCFW recursion works for gravity has been added to the
appendix (appendix A). This proof follows from the same ideas as the ones for scalar QED
and Yang-Mills, but with slightly increased complexity.

In the main text, we now move on to discuss our main topic of interest, which is soft
recursion for scalar effective field theories. This chapter will feature a detailed exposition of
this topic.
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“Cui permittit necessitas sua,
circumspiciat exitum mollem.”

-Lucius Annaeus Seneca Minor,
Epistulae Morales 70 (between 62 and 65 A.D.)

To whom it is permitted by necessity, let him consider a soft method.
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5 Soft Recursion
Our research question is whether recursion relations can be used to fix the higher multiplicity
amplitudes in terms of lower-point amplitudes for the theories derived in [9]. These are a
type of theory called scalar effective field theories. It turns out that BCFW recursion does
not work for scalar effective field theories and that we will have to consider a new type of
recursion: soft recursion. Soft recursion is a type of recursion that employs an amplitude’s
soft limit to acquire an improved z-dependence compared to BCFW. Similarly to BCFW, it
employs the factorization of amplitudes into subamplitudes in the limit where intermediate
particles go on-shell.

Hence, in this chapter, after seeing a brief introduction to scalar effective field theories and
their incompatibility with BCFW, we will provide a reasonably in-depth discussion of soft
recursion. Here, the particular shift and recursion method stray slightly from the principles
discussed in chapter 3. Therefore it will be necessary to expand upon the formalism of
chapter 3 before we can put this new form of recursion to the test. We will distinguish
between two types of soft recursion, i.e. graded and non-graded soft recursion. The former
is relevant for theories with ‘variable power counting’, the latter for theories with ‘fixed
power counting’. What this distinction entails, will be explained later. After discussing soft
recursion in a more general fashion, we will pay specific attention to the theories derived by
Li et al. in [9], called Gauged NLSM and DBI-Lovelock. We will be interested in discussing
the feasibility of various (soft) recursion methods working for these theories. Afterwards, we
will conclude the thesis.

5.1 Scalar EFTs and BCFW
A scalar effective field theory is an effective field theory (EFT) describing the interactions
between scalars. These theories serve to capture the low energy behaviour of more compli-
cated theories by removing less relevant degrees of freedom at the low energy scale, typically
involving some form of spontaneous symmetry breaking.

Some famous examples of scalar EFTs include the Dirac-Bord-Infeld model (DBI), so-
called non-linear sigma models (NLSM) and various galileon models. These theories have
applicability in a large range of areas within physics. Some examples include: the Goldstone
boson for chiral symmetry breaking in QCD describing pion scattering is a NLSM [24], DBI
has been used to model inflation [25] and the galileon has been proposed as a modifcation
to gravity [26, 27]. Interestingly, it has been shown that DBI and the special galileon (a
galileon with specific, special properties) satisfy an analogue to GR’s equivalence principle
[28].

It turns out that the theories mentioned above all share an interesting property. That
is, when you scale any one of the external momenta of these theories’ amplitudes with some
constant sent to zero, i.e. you take the soft limit, the amplitude vanishes. That is,

lim
c→0

An(p1, . . . , cpi, . . . , pn) = 0.

This property is called the Adler zero [29] or a vanishing soft limit. Some other theories have
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non-vanishing soft limits, such as gauge theory and gravity, with different, yet interesting
scaling behaviour[17, 18].

In the case of an Adler zero, we can speak of a theory’s soft degree σ, expressing the
speed at which the amplitude goes to zero in the soft limit. A theory is said to have soft
degree σ if the amplitude scales with cσ when c is small. That is,

An ∼ cσ, if c small.

Alternatively, this is often written as An ∼ pσi .2 The theories above all have a specific soft
degree σ, valid for every amplitude in the theory.

Given the wide range of use cases for these theories, it would be useful to have a way
of performing recursion on these theories. However, if try to shift these amplitudes with a
BCFW shift, we run into trouble. The Lagrangians of these theories contain many high-
derivative operators, creating a large positive z-dependence in the amplitudes in a BCFW
shift, giving us a persistent boundary term and obstructing BCFW recursion. Furthermore,
there is no gauge symmetry enforcing cancellations in this z-dependence. BCFW does not
work.

If recursion is to work for scalar EFTs, the absence of BCFW recursion necessitates an
alternative recursion method. Such an alternative recursion method is precisely what has
been found by Cheung et al. [20]. This method exploits the soft behaviour of these scalar
EFTs discussed above. It turns out that the presence of a consistent soft degree for all
amplitudes in a theory functions to constrain the higher-point amplitudes in a similar way
that gauge freedom constrains the amplitudes in the theories discussed earlier.

We will develop this method of recursion in this chapter. In the next section, we will
provide the necessary generalizations of chapter 3 in order to treat this type of recursion.

5.2 Generalized Contour Integral
One of the insights leading into soft recursion is the realization that one can construct
alternative contour integrals beside the one given in equation (3.6). That is, in chapter 3
we saw that if we integrate Ân(z)/z along a contour tightly encircling the origin, we recover
the original unshifted amplitude An. This relied on the fact that Ân equals the original
amplitude at the origin,

Ân(0) = An,

and that in at least some neighbourhood containing the origin, Ân is analytic. We then
concluded that we could derive An from the residues of Ân’s poles situated at finite z, if
Ân(z) → 0 as z → ∞. These particular residues could be calculated in terms of lower-point
subamplitudes.

The novelty here is that there exist alternatives to the integrand of the previously stated
contour integral, which are equally valid and–in some cases–more useful than Ân(z)/z. We
will label these alternatives by f(z)/z. Naturally, a valid f should satisfy the same conditions
as Ân listed above. That is, if we can find some f such that

2Technically, a better definition would be the maximal σ such that for any An,
limpi→0 [An(p1, . . . , pn)/p

σ
i ] < ∞.
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• f(0) = An,

• The residues of f(z) can be given in terms of subamplitudes, lower-point than An,

• fn(z) → 0 as z → ∞, especially when Ân(z) blows up,

then f is a good alternative to Ân. That is, it can be substituted in the contour integral to
give the (improved) recursion relations for the original amplitude An.

Given these properties, in analogy with equation (3.6), we have

An =
1

2πi

∫
Γ

f(z)

z
dz =

∑
Some expression containing lower point amplitudes.

Of course, finding such an f is the actual difficult part. In practice, f(z) will be given by
some expression containing shifted amplitudes. We will now see how we can construct an
adequate function f for theories with soft theorems.

In the next section, we will apply this to derive a new way of doing recursion using
vanishing soft limits, which will be advantageous compared to BCFW in the case of scalar
EFTs.

5.3 Soft Recursion
The advantage that soft limits provide in the realm of recursion, is that the amplitudes of a
theory with soft limits feature zeroes at known locations and of known degree. Indeed, these
locations are where individual external momenta go to zero; the zeroes are of degree σ, the
soft degree of the theory. Here, we will discuss the exact method by which these zeroes are
exploited.

In the case of soft recursion, we perform a shift which is distinct from BCFW. We shift

pi → p̂i(z) ≡ pi(1− zai) (5.1)

and accordingly shift
An → Ân(z) ≡ An(p̂1(z), . . . , p̂n(z)),

in analogy to equations (3.1) and (3.5) respectively. After performing this shift, sending
z → 1/ai is equivalent to sending pi → 0. Hence, given that we are working within a theory
with soft degree σ, we expect that

Ân(z) ∼ (1− zai)
σ,

as z → 1/ai. Subsequently, a nice choice for f(z) presents itself

f(z) ≡ Ân(z)∏n
i=1(1− aiz)σ

. (5.2)

This f nicely satisfies all three conditions mentioned above. Clearly, f(0) = An since
Ân(0) = An. Furthermore, f has the same poles as Ân. Even though we divide by a
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polynomial, this does not introduce any new poles, since they are exactly cancelled by the
soft zeroes of Ân. Consequently, f also has residues given in terms of subamplitudes, inherited
for Ân as well. And crucially, f has improved z-dependence compared to Ân since we are
dividing by a polynomial in z. Particularly,

f(z) ∼ zm−nσ,

if Ân(z) ∼ zm for large z.
If m − nσ < 0, then f(z) will not feature any pole at infinity and every residue of f(z)

will be expressible in terms of subamplitudes. We conclude that if BCFW or some other
recursion method fails, this method of recursion might still yield results.

There are, however, a few caveats to take into account when performing this shift. First
of all, the shift vectors aipi do not satisfy all three shift conditions outlined in equation
(3.2). They particularly do not satisfy condition (iii), as for a generic collection of momenta,
pi · pj 6= 0. Therefore, intermediate momenta squared contain an extra term

P̂ 2
I (z) = P 2

I + z2PI ·RI + z2R2
I ,

in contrast to equation (3.3). This entails that there are twice as many points in the complex
plane where our shifted amplitude factorizes, because P̂ 2

I (z), being a second degree polyno-
mial, now has two zeroes instead of only one. We will label these two zeroes z+I and z−I .
Note that due to the factorization of polynomials, we can write

P̂ 2
I (z) = R2

I(z − z+I )(z − z−I ).

As far as the other conditions are concerned, (3.2.ii), the requirement that pi · ri =
pi · aipi = 0, is automatically satisfied by the on-shell {pi}. However, the first condition
(3.2.i),

n∑
i=1

aipi = 0,

is not satisfied automatically and puts a constraint on the constants {ai}.
In addition, there are two other conditions that {ai} have to satisfy. All ai need to be

nonzero, since otherwise the additional coveted z-dependence in the denominator of f is
immediately cancelled. Furthermore, all ai need to be distinct. That is because if we take
the limit of z → 1/ai, we want to be sure that we are taking the soft limit of only one of the
n external momenta at the same time. (If for instance ai = aj where i 6= j, then z → 1/ai
takes both p̂i(z) → 0 and p̂j(z) → 0 simultaneously.) In this simultaneous soft limit, we can
no longer be guaranteed that the pole in the denominator of f(z) is exactly cancelled by its
zero in the numerator.

So in summary, given a set of momenta {pi}, we need to pick our {ai} such that

(i)
n∑

i=1

aipi = 0, (ii) ai 6= 0 ∀i, (iii) i 6= j ⇒ ai 6= aj ∀i, j.
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This is only possible for a generic set of momenta if

n > d+ 1,

where d is the spacetime dimension and n the amount of particles in the interaction. Hence,
with this type of recursion, depending on the dimension, there will be a certain amount of
particles above which this recursion method will start working.

This requirement comes from the fact that requirement (i) can be reformulated in terms
of the matrix equation

(
p1 p2 . . . pn

)

a1
a2
...
an

 = 0.

Due to momentum conservation, we know that the nth vector can always be given as a linear
combination of the first (n−1) vectors. Also, since the momentum vectors are d-dimensional,
at most d of these vectors will be linearly independent. For a generic set of momenta, then,
the rank of the matrix

(
p1 p2 . . . pn

)
will be n− 1 if n ≤ d + 1 and d if n > d + 1. From

the rank-nullity theorem, we get that the dimension of the null-space (nullity) of this matrix
is n minus the matrix’ rank. Hence, if n ≤ d + 1, we have a nullity of only one, while if
n > d+ 1, we get nullities greater than one.

Since, due to momentum conservation, we know that (1, 1, 1, . . . , 1) is a solution to the
equation, we also know that if we have a nullity of only one, all solutions will be spanned by
this vector. Hence, all of those solutions will have identical a1 = a2 = . . . = an in violation
of requirement (iii). It follows that we need n > d + 1 to satisfy requirement (i) and (iii)
simultaneously.

Furthermore, for a generic set of momenta with n > d+1, one expects that the solutions
to requirement (i) will typically have coefficients a1 6= a2 6= . . . 6= an. This follows since
for a generic set of momenta, there will be no relationship between any individual momenta
conspiring to make individual coefficients equal. As before, we only care about recursion for
generic sets of momenta, For recursion of an amplitude to work, it is sufficient we show that
recursion works almost everywhere in the domain of the desired amplitude.

If we have a nullity of greater than one, it is also easy to satisfy requirement (ii) simply
by tweaking the solution.

Luckily, most of the scalar EFTs described in section 5.1 do not admit a non-vanishing
three- or five-point interaction. (The most general galileon admits 5-point.) In addition,
the theories in which we are interested by Li et al. in [9] lack three-point and five-point
interactions as well. Hence, in so far as there is a vanishing boundary term at infinity, one
can use these theories’ four-point interactions as seed amplitudes to generate the complete
tree-level structures in four dimensions, i.e. for six-point and beyond.

Hence, if we have m < nσ and n > d + 1, we can find a shift pi → pi(1 − zai), corre-
spondingly An → Ân(z), such that for f given in equation (5.2),

An =

∫
Γ

dz
f(z)

z
= −1

2

∑
{I}

∑
s=±

Res{f(z)/z; zsI}.
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Computing the residue, we get

Res
{
f(z)/z; z+I

}
= lim

z→z+I

(z − z+I )
f(z)

z
,

= lim
z→z+I

z − z+I
z

ÂL(z)ÂR(z)

P̂ 2
I (z)

∏n
i=1(1− aiz)σ

,

= lim
z→z+I

z − z+I
zR2

I(z − z+I )(z − z−I )

ÂL(z)ÂR(z)∏n
i=1(1− aiz)σ

,

= lim
z→z+I

z+I z
−
I

zP 2
I (z − z−I )

ÂL(z)ÂR(z)∏n
i=1(1− aiz)σ

,

= − 1

P 2
I (1− z+I /z

−
I )

ÂL(z
+
I )ÂR(z

+
I )∏n

i=1(1− aiz
+
I )

σ
.

We can then, analogously to equation (3.8), derive the corresponding recursion formula:

An =
1

2

∑
{I}

1

P 2
I (1− z+I /z

−
I )

ÂL(z
+
I )ÂL(z

+
I )∏n

i=1(1− aiz
+
I )

σ
+ (z+I ↔ z−I ). (5.3)

For a discussion regarding the factor 1/2, please consult page 31 (and by extension page 29).

Example: Deriving the NLSM Six-Point Amplitude
To demonstrate this form of recursion relations, an example is in order. Here, we will derive
the six-point flavor-ordered non-linear sigma model amplitude. This amplitude is the easiest
to derive for the scalar EFTs mentioned above, since the flavor-ordering reduces the amount
of contributing factorization channels, decreasing the amount of residues we have to calculate.
This works similarly to the color-ordered amplitudes we calculated for Yang-Mills.

The six-point NLSM amplitude is has a large enough multiplicity to satisfy n > d + 1
in 4D. Furthermore, all NLSM amplitudes satisfy m < nσ. We will hear more about this
latter condition below. NLSM has σ = 1. We will use this fact below.

Superficially looking at equation (5.3) gives the impression that soft recursion is a more
complicated computational process than BCFW. This impression is not wrong. In our ef-
fort to calculate the six-point amplitude, we will use Cauchy’s residue theorem three times,
following [20]. Our particular computational method will allow us to avoid having to pick
concrete {ai}, being eliminate the amplitude’s dependence on these constants.

We start off by considering the four-point flavor-ordered NLSM amplitude,

A4[1, 2, 3, 4] = s12 + s23, (5.4)

which is the only amplitude we will need to construct the six-point. Here, the mandelstams
are defined as sij ≡ (pi + pj)

2.
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The six-point amplitude will have three factorization channels,

A6 =
P123

2

1

3 4

5

6

+
P234

3

2

4 5

6

1

+
P345

4

3

5 6

1

2

.

We will label these contributions A(123), A(234) and A(345) respectively for obvious reasons.
We will first only focus on A(123) and then generate the complete result using cyclic

permutability. The contribution A(123) is given by

A(123) =
1

P 2
123(1− z+123/z

−
123)

(ŝ12(z
+
123) + ŝ23(z

+
123))(ŝ45(z

+
123) + ŝ56(z

+
123))∏6

i=1(1− aiz
+
123)

+ (z+123 ↔ z−123),

where we have combined equation (5.3) and (5.4). Note that we have picked σ = 1 in the
denominator.

Instead of moving forward from this result, we will retrace a couple of our steps in the
derivation of equation (5.3) to reintroduce a more explicit residue dependent calculation.
Recall that the above contribution equals

A(123) = −
∑

zp=z±123

lim
z→zp

z − zp
z

(ŝ12(z) + ŝ23(z))(ŝ45(z) + ŝ56(z))

P̂ 2
123(z)

∏6
i=1(1− aiz)

,

= −
∑

zp=z±123

Res

[
(ŝ12(z) + ŝ23(z))(ŝ45(z) + ŝ56(z))

zP̂ 2
123(z)

∏6
i=1(1− aiz)

; zp

]
.

In this expression, we are summing over two of the residues of the function which is contained
within the brackets. These two residues directly stem from the poles introduced by the factor
of 1/P̂ 2

123(z). Apart from these two poles, we have seven other poles in the function under
consideration, one pole at z = 0 and one pole at each z = 1/ai. Using Cauchy’s residue
theorem again, we can equate the residues above to the residues of these seven other poles.
We then receive

A(123) =
(s12 + s23)(s45 + s56)

P 2
123

+
6∑

j=1

Res

[
(ŝ12(z) + ŝ23(z))(ŝ45(z) + ŝ56(z))

zP̂ 2
123(z)

∏6
i=1(1− aiz)

; z = 1/aj

]
.

(5.5)
The first term comes from the pole at z = 0. This gives us a very nice result in terms of
unshifted amplitudes. The second term, however, will require some more work to interpret.
Let us explicitly calculate a couple of residues in this sum to see what happens. First, it is
useful to derive an expression for the shifted Mandelstam variables:

ŝij(z) = 2p̂i(z) · p̂j(z) = 2pi · pj(1− aiz)(1− ajz) = sij(1− aiz)(1− ajz).
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We see that as z appraoches 1/ai or 1/aj, sij goes to zero. It is also useful to expand the
momentum P̂ 2

123(z).

P̂ 2
123 = (p̂1 + p̂2 + p̂3)

2,

= 2p̂1 · p̂2 + 2p̂1 · p̂3 + 2p̂2 · p̂3,
= ŝ12 + ŝ13 + ŝ23,

where we have omitted explicit z-dependence. If we then, for instance, calculate the residue
for j = 1, we get

Resj=1[. . .] = lim
z→1/a1

z − 1/a1
z

(ŝ12(z) + ŝ23(z))(ŝ45(z) + ŝ56(z))

(ŝ12(z) + ŝ13(z) + ŝ23(z))
∏6

i=1(1− aiz)
.

Here, the fraction (z−1/a1)/z will cancel the zero in the denominator. But more interestingly,
every mandelstam dependent on momentum p̂1 will vanish. This will cause ŝ12 to disappear
from the numerator and denominator and ŝ13 from the denominator alone. The two ŝ23 will
subsequently cancel. We can rewrite this limit as an identical limit of a different function:

Resj=1[. . .] = lim
z→1/a1

z − 1/a1
z

ŝ45(z) + ŝ56(z)∏6
i=1(1− aiz)

.

Continuing this logic, for j = 2, the entire contribution will be killed, for j = 3 the we
get a similar result as for j = 1 but then with the limit going to 1/a3. For j = 4, 5, 6 we
get very similar results to j = 1, 2, 3, since we can use momentum conservation to rewrite
P 2
123 = s45 + s56 + s64. For example, we get

Resj=6[. . .] = lim
z→1/a6

z − 1/a6
z

ŝ12(z) + ŝ23(z)∏6
i=1(1− aiz)

.

It is not obvious how we could get a nice result from this independent of {ai}. But it turns
out there is a way. Recall that this is the result for only one of the three factorization
channels. We can get the other factorization channels simply by cyclically permuting this
result 1 → 2 → . . . → 6 → 1. We see that the A(234) channel also gives a Res[. . .]j=1

contribution, which we obtain by applying the permutation once to the j = 6 result for the
A(123) channel. Since the j = 5 contribution vanishes for A(123), A(345) will not contribute to
j = 1. We can write the complete j = 1 contribution as

lim
z→1/a1

z − 1/a1
z

ŝ23(z) + ŝ34(z) + ŝ45(z) + ŝ56(z)∏6
i=1(1− aiz)

= lim
z→1/a1

z − 1/a1
z

ŝ12(z) + ŝ23(z) + ŝ34(z) + ŝ45(z) + ŝ56(z) + ŝ61(z)∏6
i=1(1− aiz)

,

= Res

[
ŝ12(z) + ŝ23(z) + ŝ34(z) + ŝ45(z) + ŝ56(z) + ŝ61(z)

z
∏6

i=1(1− aiz)
; z = 1/a1

]
.

This is the result for j = 1 resulting from the second term of equation (5.5) but then for all
three factorization channels. We could simply add in the additional mandelstams since they
vanish in the limit. We then rewrote this result as a residue.
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If we repeat this for other values of j, we get a similar result. Adding this all up, we get

6∑
j=1

Res

[
ŝ12(z) + ŝ23(z) + . . .+ ŝ61(z)

z
∏6

i=1(1− aiz)
; z = 1/aj

]
.

However, this is nothing more than a sum over residues. Specifically, this is a sum over the
residue of every pole except for the pole at the origin. Hence, we can use Cauchy’s residue
theorem once more to get

6∑
j=1

Res

[
ŝ12(z) + ŝ23(z) + . . .+ ŝ61(z)

z
∏6

i=1(1− aiz)
; z = 1/aj

]
= −(s12 + s23 + . . .+ s61).

Now also adding the contributions from the first term of equation (5.5), we get the complete
flavor-ordered amplitude

A6 =
(s12 + s23)(s45 + s56)

P 2
123

+
(s23 + s34)(s56 + s61)

P 2
234

+
(s34 + s45)(s61 + s12)

P 2
345

− (s12 + s23 + s34 + s45 + s56 + s61).

This is the same as the result from Feynman diagrams. The first three terms are from
different exchange diagram while the second line is from a contract contribution.

5.4 Power Counting Parameter
It turns out that it is possible to classify a subset of scalar effective field theories in terms
of the soft degree, σ, which we have already seen, and a new parameter, ρ, called the power
countering parameter. The power counting parameter expresses the ratio between the mass
dimension of Feynman diagrams (or amplitudes) and the number of external fields. Directly
related to this, it expresses the amount of derivatives per field present in the terms of a
Lagrangian of a scalar field theory. A more comprehensive definition follows below.

In this section, we will focus on this power counting parameter. We do this for several
reasons. First off, it turns out that it is possible to formulate a sufficient condition for soft
on-shell constructibility in terms of the power counting parameter and the soft degree of a
scalar field theory. This condition, ρ ≤ σ, directly follows from m < nσ, but is independent
of the amplitude-specific parameter n. Rather this condition is specific to theories. Secondly,
as mentioned before, it is possible to classify a subset of scalar effective field theories using
ρ and σ. It turns out that for various combinations of these two parameters, there only
exists one possible scalar EFT. Hence, the subject at hand will allow us to briefly talk about
this classification. Thirdly and most importantly, the theories we are particularly concerned
with in Li et al. are of a specific type of theory called variable-ρ or variable power counting
parameter theories. Hence, in order to understand the behaviour of these theories when it
comes to recursion, we need to discuss power counting. We will largely base this discussion
on [30].
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Let us consider the Lagrangian of some field theory with an arbitrary amount of terms

L =
∑
V

gVLV .

Here, each gVLV is a unique term with coupling constant gV , responsible for a unique vertex
type in this theory’s resultant Feynman diagram. For each term, it is possible to define a
so-called power counting parameter ρV , which in the case of scalar fields is given by

ρV ≡ DV − 2

NV − 2
.

NV is the power of scalar fields featured in LV and DV is the mass dimension of the ver-
tex, equivalent to the amount of derivatives acting on the fields in LV or momenta in its
corresponding vertex.

The amount of derivatives per field in each term of the Lagrangian is of interest to us
from a recursion perspective, since each derivative is responsible for a momentum in the
corresponding vertex rule in Feynman diagrams. If we wish to find the behaviour of an
amplitude in the high z limit, then finding how the amplitude depends on momentum is
crucial. Thus, in this way, we are naturally led to the power counting parameter.

Given the power counting parameter(s) of the Lagrangian terms of a theory, we want to
translate this information to the z-dependence of individual diagrams and amplitudes. It
turns out that this can be done very naturally by extending the notion of the power counting
parameter to individual diagrams. For each diagram Γ, we define

ρΓ ≡ DΓ − 2

NΓ − 2
,

where DΓ is the mass dimension of a single Feynman diagram and NΓ the amount of its
external legs.

As we will see, if a theory only features terms for one particular ρV , i.e. there is some ρ
such that for all V , ρV = ρ, then every diagram Γ will also have the same value: for all Γ
ρΓ = ρ.

Indeed, some theories only feature diagrams with one particular ρΓ, these are called
single-ρ theories. Other theories feature diagrams with variable ρΓ, called multi-ρ theories.
These are also called graded and non-graded or interpolating versus non-interpolating. The
scalar EFTs mentioned above are all single-ρ theories. However, we will treat the most gen-
eral case here.

We now wish to perform a general derivation of ρΓ by considering mass dimension of all
objects that collectively shape Feynman diagram Γ. We will thus consider each vertex V
entering into the Feynman diagram, for which we have already seen DV and NV above. In
addition, we will consider the mass dimension due to propagators entering into the diagram.
In particular, we have the relation

DΓ = −2IΓ + 4LΓ +
∑
V

DV ,
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(a) (b)

Figure 5.1: Diagrams representing the power counting parameters of Feynman diagrams.
(a) The slope of this vector represents the power counting parameter of a single tree-level
diagram. One can see that the vector consists of the vectors corresponding to the various
vertices the diagram contains. (b) The gray region (wedge) represents the power counting
parameters accessible to a single theory. The red lines indicate the diagrams with the
maximal or minimal power counting parameter inside a theory.

NΓ = −2IΓ +
∑
V

NV .

Each time, we are summing over each vertex the amount of times that it enters into Γ. Here,
IΓ is the amount of internal lines in the diagram, LΓ the amount of loops and, as before, DV

and NV are the mass dimension and fields per vertex respectively. Every loop increases the
mass dimension by four, because of the loop integration measure d4p. Every internal line
replaces two external particles by connecting two vertices and decreases the mass dimension
by two because propagators scale with p−2.

We combine this with
LΓ = IΓ − VΓ + 1,

where VΓ is the amount of vertices in the diagram. (At tree level, every vertex is connected
by exactly one internal line; hence, adding more internal lines adds loops.) Then we arrive
at

DΓ − 2 =
∑
V

(DV − 2) + 2LΓ,

NΓ − 2 =
∑
V

(NV − 2)− 2LΓ.

This shows that in the case of scalar theories, the theory is single-ρ at tree-level if and
only if its vertices are also single-ρ. This means that if there exists a ρ such that for all V ,
ρV = ρ, then and only then it holds that ρ = ρΓ for any Γ. If the ratio between DV − 2 and
NV − 2 is constant, then so will the ratio between DΓ − 2 and NΓ − 2 be.

65



For the general case, we can define a vector for each vertex

~vV =

(
DV − 2
NV − 2

)
,

which we can then represent in a 2-dimensional diagram. The slope of this vector is identical
to ρV . Then in the same diagram, using vector addition, we can represent each Feynman
diagram using the vector ∑

V

~vV +

(
2LΓ

−2LΓ

)
,

the slope of which equals the power counting parameter of the diagram, compare figure
5.1(a).

In the case of a multi-ρ theory, it is possible to define the minimal ρ and maximal ρ of a
theory

ρmin ≡ min
Γ
ρΓ, ρmax ≡ max

Γ
ρΓ.

Those diagrams with ρmax or ρmin lie on the upper or lower red line in figure 5.1(b) respec-
tively.

To get a diagram with maximal or minimal ρ, one needs to construct said diagram only
using vertices that have the greatest and smallest ρV respectively. Diagrams that lie within
the gray area of figure 5.1(b) potentially contain vertices with mixed ρV . For those diagrams
with ρmin or ρmax, then, one can separate out those vertices and, by extension, those terms in
the Lagrangian responsible for those those diagrams. By doing so, one acquires two separate
theories, so-called ‘subtheories’ of our multi-ρ theory, given by

Lmin =
∑

V,ρV =ρmin

gVLV , Lmax =
∑

V,ρV =ρmax

gVLV .

It is said that an multi-ρ theory ‘interpolates’ between its subtheories.
We deduce that the diagrams that lie on the red lines separately sum up to form ampli-

tudes of these two subtheories. In general, we can define A(ρ)
n to be the sum of all diagrams

with ρΓ = ρ. Typically, these are only proper amplitudes if ρ = ρmin or ρmax. We have

An =
∑
ρ

A(ρ)
n .

It is not uncommon for these different contributions to have distinct soft limits. We can
define σ(ρ) as the softness of contribution A

(ρ)
n . Then σ(ρmax) and σ(ρmin) are the soft degrees

of the two subtheories. We can also define σmax and σmin as the maximal and minimal σ(ρ)

respectively. We typically have that σmax = σ(ρmax) and σmin = σ(ρmin), so we will not make
this distinction below and opt for simpler notation.

We will now use what we have seen here to increase our understanding of soft recursion.

5.5 Recursion Condition with Power Counting Parameter
We are now in a position to derive a condition for recursion which does not depend on the
individual amplitude under consideration, but on conditions dependent on the theory as a
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whole, replacing m < nσ. This will allow us to quickly gauge whether a scalar EFT admits
recursion or not.

We start by assuming that the mass dimension of the worst behaving diagram dictates
the scaling of the shifted amplitude at large z. That is, if Ân(z) ∼ zm as z → ∞, then we
assume that m = maxΓDΓ. This is plausible, because the mass dimension gives the total
power of momenta present in the diagram, which all scale with z. This assumption is, of
course, only valid if there are no cancellations that occur inside the amplitude, eliminating
some z-dependence. This is not always the case. The arguments used in chapter 4 were
used to show that such cancellation does occur for Yang-Mills and GR. Nevertheless, it only
matters for our argument if this cancellation occurs in propagator denominators, since any
other cancellation results in improved scaling behaviour. This does not happen for generic
{ai} as shown by Cheung et al. [20].

Then in the case of a single-ρ theory with power counting parameter ρ, we get

m < nσ ⇔ ρ− 1 =
m− n

n− 2
<
nσ − n

n− 2
= (σ − 1)

1

1− 2/n
.

Since 1/(1 − 2/n) > 1 for n ≥ 3 (which holds for any amplitude we might consider), the
above condition is implied by

ρ ≤ σ, (5.6)

if (ρ, σ) 6= (1, 1). This is the condition for recursion we were looking for, first found in [20].

Equation (5.6) turns out to be the defining condition for so-called ‘exceptional’ scalar
field theories. The term ‘exceptional’ is justified by the fact that this condition implies a
higher soft limit than what you would expect based on the power counting parameter.

As we saw before, a higher power counting parameter of a theory is directly related to
the strength of the momentum dependence of the amplitudes of that theory. If we have
a higher power counting parameter, we can expect the amplitude to scale with momentum
more strongly. It turns out that any theory with a specific ρ has σ ≥ ρ−1. Hence, by adding
more momenta to the vertices, one is guaranteed to get a soft limit eventually. Theories that
saturate this inequality are called trivial. It turns out that it is never possible for σ to exceed
ρ by more than one.

In order to have a σ better than the lower bound and thus satisfy (5.6), some non-
trivial cancellation needs to occur between diagrams, only possible in certain ‘exceptional
circumstances’. That is, when the theory satisfies some kind of symmetry.

It is then not very surprising that this condition is special enough to fix the higher-point
amplitudes in terms of the lower-point amplitudes through recursion. It turns out that some
combinations of (ρ, σ) are sufficient to bootstrap the lower point amplitudes of some excep-
tional scalar field theories [31] for which all higher point amplitudes are subsequently fixed.
Notably, DBI and the special galileon are unique for their values of (ρ, σ). Furthermore, a
complete classifcation of all exceptional scalar field theories exists in terms of four parame-
ters, of which σ and ρ are two [32]. A table listing the exceptional scalar EFTs mentioned
in this thesis is given in table 5.1.

67



ρ\σ 1 2 3 ∞
0 NLSM Not Possible Not Possible Free
1 Multiple Theories DBI Not Possible
2 Trivial Galileon Special Galileon

Table 5.1: Some exceptional scalar field theories organized according to the power counting
parameter (ρ) and soft degree (σ) [31, 32].

If we want to derive the equivalent condition for a multi-ρ theory, we simply compare
the ‘worst’ power counting parameter contribution to the ‘worst’ soft degree of the overall
amplitude

ρmax ≤ σmin.

The overall amplitude scales with pσmin as p → 0, since the contribution to the amplitude
scaling in this way is the slowest to diminish. Hence, σmin = σ, effectively. The contribution
with ρmax increases the fastest in the limit z → ∞, hence this is the part that needs to
be suppressed by the denominator of equation (5.2). Recall that in any case, we still need
n > d+1 in order to perform the desired shift. Hence, this recursion method will only start
working from 6-point onward in a 4D context.

In the case of a multi-ρ theory, there is a modification we can make to the function
f of the contour integral to derive a new recursion condition which holds in slightly more
situations than ρmax ≤ σmin. This will also be relevant for discussing the theories in Li et al.
We will discuss this in the next section.

5.6 Split Graded Soft Recursion
Here, we will discuss the interesting case if a multi-ρ theory fails to satisfy ρmax ≤ σmin. In
this case, there is a certain edge case in which it is still possible to perform recursion. This
will, however, require a different f(z) and recursion formula, alternative to eqs. (5.2) and
(5.3). In short, the method we will present here will be to split the amplitude into parts
with different mass dimensions A(ρ) which behave differently in the high z limit. We will
then recursively construct these various parts independently and recombine them to form
a complete amplitude. We will derive the recursion formula presented by Kampf et al. in [30].

The interesting case appears when a multi-ρ theory is not constructible in the way pre-
sented above, but whose maximal-ρ subtheory, Lmax, is constructible in its own right. If the
rest of the theory is well-behaved enough, this can be sufficient for recursion.

Consider the following situation, where we have an independently constructible maximal-ρ
subtheory with amplitude A(ρmax)

n contributing to the overall amplitude An. Given that this
subtheory is constructible in accordance with the description above, we have

ρmax ≤ σmax.

Naturally, this means that A(ρmax)
n ∼ pσmax for small p and that

Â
(ρmax)
n (z)∏n

i=1(1− zai)σmax
→ 0
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as z → ∞ as per the discussion above.
We can then construct

f(z) =
Ân(z)− Â

(ρmax)
n (z)∏n

i=1(1− zai)σmin
+

Â
(ρmax)
n (z)∏n

i=1(1− zai)σmax
. (5.7)

This is possibly a good alternative to equation (5.2), because it can potentially satisfy the
conditions outlined in section 5.2. Clearly, putting z = 0 recoversAn. The numerators consist
solely of terms which constitute amplitudes in their own right, thus we can be guaranteed
that its residues consist of subamplitudes. (This would not be the case if we singled out
contributions to the amplitude A(ρ) with ρ different from ρmax or ρmin.) Furthermore, because
of the assumed constructibility of Lmax, we can be sure that the second term vanishes in the
large z limit. The only question that remains is what requirements suffice to make the first
term vanish as well.

Since Ân(z) =
∑

ρ Â
(ρ)
n (z), we can see that the numerator of the first in equation (5.7)

term equals the full amplitude, stripped of its highest ρ contribution. The next highest ρ
contribution will thus be the worst behaving part of the numerator of the first term in the
high z limit. Let us call this ρmax−1. Then, clearly, one needs

ρmax−1 ≤ σmin

to guarantee the vanishing of the first term.
The reason why we cannot divide by anything with a greater z-dependence than (1 −

zai)
σmin is because the numerator as a whole will have a softness of σmin. Hence, by dividing

by any factor more favorable at large z will inevitably introduce additional poles into f(z)
not situated at points where the amplitude factorizes.

We can thus summarize this recursion method as follows. Given that we are attempting
to derive an n-point amplitude with n > d + 1, we perform the same shift as before: pi →
pi(1− zai). Consequently, if

ρmax ≤ σmax, ρmax−1 ≤ σmin,

then f(z) in equation (5.7) provides a useful function for recursion.3
Now, in a calculation similar to the one at page 60, one can calculate the residues of f(z) in
equation (5.7). This results in a recursion formula

An =
∑
{I}

1

P 2
I (1− z+I /z

−
I )

[
ÂL(z

+
I )ÂR(z

+
I )− Â

(ρmax)
L (z+I )Â

(ρmax)
R (z+I )∏n

i=1

(
1− aiz

+
I

)σmin

+
Â

(ρmax)
L (z+I )Â

(ρmax)
R (z+I )∏n

i=1

(
1− aiz

+
I

)σmax

]
+ (z+I ↔ z−I ),

(5.8)

in analogy with equation (5.3). Here, Â(ρmax)
L,R are amplitudes of the maximal-ρ subtheory.

Thus, one needs to find these amplitudes independently, working with this subtheory and
3Note that the condition mentioned here differs from the one cited by Kampf et al. [30]. The condition

here is the most general out of the two.

69



the theory as a whole independently. In order to apply recursion for multiple iterations, one
will have to use the previously discussed soft recursion method to derive the higher point
amplitudes of this subtheory, which will then have to fed into this recursion formula.

Kampf et al. use this recursion method on a theory called extended DBI, with Lmin being
NLSM and Lmax DBI [30]. For this combined theory, (ρmax, σmin) = (1, 1), thus disallowing
the more basic recursion method above. Obviously, this recursion method is less convenient
than this formerly discussed soft recursion method. Hence, whenever ρmax ≤ σmin and
(ρmax, σmin) 6= (1, 1), that recursion method is to be preferred.

5.7 DBI-Lovelock and Gauged NLSM
We are now finally in a position to talk about the two theories derived by Li, Roest and Ter
Veldhuis [9], which was our main objective from the start. We are specifically interested in
answering the question whether these two theories are on-shell constructible in light of the
different theoretical frameworks we have been able to observe in the previous sections.

In [9], the authors bootstrap two different variable-ρ theories on the basis of BCJ com-
patibility. As mentioned in the introduction, there exist several theories that admit the
so-called BCJ double copy, where one can mix and match different ‘BCJ numerators’ to re-
work scattering amplitudes of one theory into scattering amplitudes of another, cf. equations
(1.2) and (1.3).

These BCJ numerators satisfy specific transformational properties under exchange of
particle label. As such, depending on particle multiplicities, these numerators transform ac-
cording to specific representations of the permutation group Sn. The authors of [9] then use
representation theory to find all possible combinations of mandelstam variables that satisfy
the transformational properties of BCJ numerators. These will exhaust the list of possible
kinematic BCJ numerators for scalar field theories, since for scalars, only mandelstams ap-
pear in the numerators. These numerators are subsequently used to construct amplitudes
of several scalar theories, which are further refined by imposing specific soft limits on these
theories.

It will be our goal to perform an analysis regarding whether the two theories derived in
the theory are on-shell constructible or not.

The two theories presented in the paper are called Gauged NLSM and DBI-Lovelock.
The former is a single-copy theory, meaning that its amplitudes are constructed using a
color and kinematic factor akin to Yang-Mills in equation (1.2). This theory features pions
coupled to gluons, with NLSM for its Lmax together with subleading terms.

The latter, DBI-Lovelock, is a theory solely consisting of scalar fields. It is a double copy
of a gauged and ungauged NLSM, i.e. it has a kinematic numerator from both theories. This
theory interpolates between DBI and the special galileon, satisfying (ρmin, σmin) = (1, 2) and
(ρmax, σmax) = (2, 3) respectively.

We will now attempt to analyze for both of these theories their potential for on-shell
constructibility.

For DBI-Lovelock, it is easiest to evaluate its prospects for recursion. This theory clearly
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satisfies
ρmax ≤ σmin,

meaning that recursion formula (5.3) works for this theory. The four-point seed amplitude
should be sufficient to construct the entire theory.

For Gauged NLSM, however, the result is less obvious. Unfortunately, due to lack of time,
it is not possible anymore to do a very thorough, let alone conclusive analysis. Nevertheless,
there are some ideas to be shared, which could be used in the future when looking at this
theory.

The Gauged NLSM interpolates between a (ρmax, σmax) = (0, 1) Lmax and σmin = 0 Lmin
for which ρmin is difficult to identify according to the prescription established in section 5.4.
This is because the gauged NLSM features gluon exchange, whereas section 5.4 was only
valid for scalar fields.

Nevertheless, it may very well be possible to apply the same derivative counting method
to this theory as it is for scalar fields, because for gluons the momentum dependence can
be eliminated from propagators by picking the right Lorenz gauge. This would indicate
that also for NLSM amplitudes, momentum dependence only comes from derivatives. This
would mean that when looking at pure pion (scalar) scattering, the momentum dependence
of the relevant amplitude could be determined by treating gluons effectively as if they were
scalars, i.e. looking at the amount of derivatives acting on the gluons alone to determine
z-dependence. In this case,

ρmax ≤ σmin,

would indeed be satisfied. This would mean that recursion according to (5.3) would indeed
work. This is all somewhat hypothetical, since without any concrete calculations, it is
difficult to say if some aspect is being overlooked.

In this scenario, there are some oddities to take into account. First off, because σ =
σmin = 0, the denominator in equation (5.3) would be reduced to 1, thus making it so that
one would not gain any improved z-dependence due to the soft-limits. This is not necessarily
a problem. If the analysis above is correct, it would mean that the complete pion scattering
amplitude An should vanish for high z on its own after an all-line shift of the type we have
been considering, i.e. equation (5.1).

Secondly, when practically calculating an amplitude using (5.3) for the Gauged NLSM,
one has to take into account that since these amplitudes feature gluon exchange, there will
also be gluon factorization channels that will contribute residues. This means that in order
to calculate an all-pion scattering amplitude using recursion, one would also need to know
lower-point 1-gluon (n−1)-pion amplitudes, unless there is a good reason to argue that these
contributions vanish. If these gluon-pion scattering amplitudes do not vanish, one would also
need to know a large amount of gluon-pion scattering amplitudes. If one want to derive these
through recursion, one would need even amplitudes with even more gluons. This would be
true for any recursion method for the gauged NLSM.

If one could show that there is a vanishing boundary term for scattering amplitudes
with both external scalars and gluons (or that these amplitudes vanish), then that would
be sufficient in our scenario to prove that recursion works. This is because then lower-point
amplitude entering into the calculation of some higher-point scattering amplitude can be
derived recursively itself except for the very initial seed amplitudes. In this sense, it can
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be shown that recursion already works to fix the higher-point scattering amplitudes without
even having to calculate them. Nevertheless, if one would actually want to calculate all tree-
level pion scattering amplitudes, one would still be burdened with increased computational
complexity if these mixed amplitudes do not vanish.

If the z-dependence of gauged NLSM amplitudes are worse than assumed above, there
still exist some avenues to probe before giving up on recursion entirely. Following Kampf et
al. [30], one can find alternative f(z) in the contour integral to find new recursion formulas,
specifically by breaking up the amplitude in different parts with different soft limits and
z-dependence.

One could try to see if the amplitude, with the pure pion section split off, has markedly
better z-dependence than the amplitude as a whole. That is, if

Ân(z)− Â(ρmax)
n (z) → 0,

as z → ∞, then

f(z) =
[
Ân(z)− Â(ρmax)

n (z)
]
+

Â
(ρmax)
n (z)∏n

i=1(1− zai)
, (5.9)

would be a good integrand for the contour integral with vanishing boundary term. Note that
this is nothing other than (5.7) filled in.4

Unfortunately, it will still require significant effort to determine for each of these suggested
methods whether they would bear fruit. This is something that must be left for a future
project.

4Alternatively, one could even apply different shifts to different parts of f(z). One could, for instance,
apply a BCFW shift to the Ân(z) − Â

(ρmax)
n (z) part of (5.9), while applying the soft all-line shift to the

second term. Or one could even cut up the amplitude further, also subtracting the ρmin contribution from
the complete amplitude, f(z) =

[
Ân(z)− Â

(ρmax)
n (z)− Â

(ρmin)
n (z)

]
+

Â(ρmax)
n (z)∏n

i=1(1−zai)
+Â

(ρmin)
n (z). Here, one could

again choose to apply a different shift for each term in f(z). But there is currently no good reason to assume
that these methods would be effective.
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6 Conclusion
In this thesis, we set out to explore the application of recursion relations to derive higher-
point tree-level scattering amplitudes from lower-point interactions in several different field
theories. We were specifically interested in applying the theoretical apparatus of various
external sources to the study of scalar effective field theories.

We started off by discussing the spinor helicity formalism, which was applied several times
in chapter 4. We then moved on to discuss on-shell tree-level recursion in a rather general
fashion. We subsequently dedicated a chapter to BCFW recursion, culminating in a proof
of the Parke-Taylor formula for Yang-Mills. Finally, we spent significant time discussing
scalar effective field theories, concluding the thesis with a discussion of the two interpolating
theories found in Li et al. [9].

Our research question was whether recursion relations can be used to derive the higher
multiplicity amplitudes of the gauged NLSM and DBI-Lovelock theories, derived in [9], from
lower-point amplitudes.

For DBI-Lovelock, we were able to answer this question relatively easily, where the theory
plainly satisfies the constructibility condition, equation (5.6), meaning that recursion formula
(5.3) can indeed be applied to generate all higher-point tree-level scattering amplitudes of
this theory. Unfortunately, due to time constraints, we were unable to provide an example
calculation for this theory. However, an example calculation of a different theory using the
same recursion formula was shown on page 60.

For the gauged NLSM, we were not able to give an unequivocal result. This theory proves
much more difficult, as in addition to pure scalar interactions, this theory also admits gluon
exchange, making it difficult to apply the previously treated frameworks by Cheung et al.
[20] and Kampf et al. [30]. Nevertheless, we have alluded to the possibility that the original
framework of Cheung et al. might still be applicable to this theory, given some caveats.
This, however, is very speculative and can hardly be called a result.

Here, several paths are suggested for future research. In order to determine whether
the gauged NLSM is on-shell constructible, several suggestions have already been made in
section 5.7. One can perform a Feynman-diagrammatic analysis for this theory, akin to what
we have seen several times in chapter 4, in an attempt to resolve the z-dependence of the
theory under several different shifts. Furthermore, one could attempt to perform an example
calculation, using various recursion methods, in an attempt to derive some already known
amplitude to check if an effective recursion method can be found. We suggest the same be
done for DBI-Lovelock.

This research has been an initial step in understanding the whether the theories featured
in Li et al., and specifically the gauged NLSM, are on-shell constructible or not. This thesis
has clarified and elaborated upon several different results within the area of on-shell recursion
relations, thereby making these results more accessible. In this way, it has become easier in
a potential future project to devote more concentrated attention to (the) individual theories
under consideration.
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A Proving BCFW Recursion for Gravity
In this appendix, we will show that BCFW recursion also holds for (perturbative) graviton
amplitudes following a similar line of reasoning to that of Yang-Mills amplitudes. That
is, we will also appeal to the lightcone gauge and use Lorentz symmetry to analyze the
z-dependence of our one lightcone gauge resistent diagram.

However, contrasted with the gluon case, the increased complexity of the graviton La-
grangian results in a need for more involved argumentation. It is then useful to recapitulate
some basic concepts within GR that will feature in the subsequent argumentation. This is
how we will start this subsection.

A.1 Focused Recapitulation of GR
This section will contain a summary of various relevant concepts within in GR. For a more
in-depth look, one can consult Carroll [33].

In general relativity, spacetime is a four-dimensional smooth manifold M with a smooth
Lorentzian metric g, defining an inner product on each tangent space of the manifold. That
is, at each point p ∈M , the metric is a map

g : Tp × Tp → R,

such that
V ·W ≡ g(V,W ) = gµνV

µV ν ,

where gµν are the metric’s components. That is, at each point p, there exists a tangent space,
containing vectors which can be thought of as being tangent to the manifold at point p.

Furthermore, the manifold is endowed with a torsion-free, metric compatible connection,
Γν
µλ. The connection is defined such that for vectors,

∇µ = ∂µ + Γν
µλ

is a proper covariant derivative, meaning that components ∇µV
ν = ∂µV

ν+Γν
µλV

λ transform
as tensor components upon coordinate transformation,

∇µV
ν → ∇µ′V ν′ =

∂xµ

∂xµ′

∂xν
′

∂xν
∇µV

ν .

When applied to a tensor with multiple indices, the connection must be used multiple times

∇µT
ρσ

ν = ∂µT
ρσ

ν − Γλ
µνT

ρσ
λ + Γρ

µλT
λσ

ν + Γσ
µλT

ρλ
ν ,

with the sign dependent on whether the connection is contracted with a lower or upper index.
General Relativity requires that the connection be symmetric in its lower indices, Γν

[µ,λ] = 0

(torsion-free), and be defined such that ∇ρ gµν = 0 (metric compatible). These conditions
uniquely fix the connection in terms of the metric, such that in any coordinate system

Γσ
µν =

1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) .
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A connection satisfying these properties is called a Christoffel connection with coefficients
called Christoffel symbols.

Given a connection, it is then possible to construct the Riemann tensor, whose compo-
nents are given by

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ,

expressing the curvature of the manifold at any specific point. Specifically,

δV ρ = Rρ
σµνV

σAµBν

expresses how much the ρth component of V changes when it is parallel transported in an
infinitesimal loop, first along A, then along B, then backwards along A and finally backwards
along B. The Riemann tensor vanishes inside any flat region of the manifold.

Subsequently, the dynamics of spacetime in vacuum are governed by the Einstein-Hilbert
action,

SH =

∫
d4x

√
−gR. (A.1)

Here, g is the determinant of the metric tensor and R is the so-called Ricci scalar, given by
R = gµνRµν , Rµν = Rρ

µρν . Rµν is called the Ricci tensor and Rρ
µσν is our familiar Riemann

tensor. The square root of the determinant of the metric tensor functions as an inverse
Jacobian under coordinate transformations, allowing for an expression of SH independent
from choice of coordinates.

It is very easy to couple matter, governed by its own Lagrangian LM , to gravity. This is
done in the following way:

SM =

∫
d4x

√
−gLM .

One can then recover the complete Einstein equation from the action

S = SH + SM ,

through application of the Euler-Lagrange equations. As we are interested in amplitudes
containing gravitons alone, we will solely focus on equation A.1.

In addition to the points above, we will also make use of vielbeine. Since the tangent
space at a particular spacetime point p, TpM , is a vector space, one can make various choices
with regards to the basis in which one would like to express vectors. Vectors (or tensors) in
the tangent space are often expressed in terms of the coordinate basis, where basis vector êµ
points in the direction of increasing coordinate xµ. The Greek index indicates that we are
working with a coordinate basis, the hat that the basis vectors are normalized.

When one takes the inner product between coordinate basis unit vectors, one recovers
the local metric components in terms of the coordinate basis:

〈êµ, êν〉 = gµν .

However, it is also possible to introduce a basis transformation at each separate spacetime
point such that these new basis vectors recover the Minkowski metric. That is, at point p,

êµ → e(p)µaêµ ≡ êa,
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where êµ, êa ∈ TpM , such that
〈êa, êb〉 = ηab.

One can orthonormalize the coordinate basis like this at each spacetime point separately,
creating a basis for the entire tangent bundle of the manifold. The set of new orthonormal
basis vectors is called a vielbein or tetrad. Oftentimes these terms are also used to refer
to the basis transformation itself e(p)µa and its inverse e(p) a

µ . We will drop the explicit
mention of individual spacetime point dependence and simply write eµa and e a

µ . A tensor
whose components are expressed with respect to a vielbein are labeled with Latin indices,
while those components carrying Greek indices indicate one is working with a coordinate
basis.

One thing to consider when working with vielbeine is the fact that covariant derivatives
acting on components expressed in a viebein require a different type of connection than
hitherto seen,

∇µX
a = ∂µX

a + ω a
µ b
Xb.

This is the so-called spin connection, ω a
µ b

. One can derive how the spin connection depends
on the Christoffel connection by applying the covariant derivative to an arbitrary vector field
X and later expressing the resulting tensor both in the coordinate basis and with respect to
the vielbein and equating the two.

(∇µX
ν)êµ ⊗ êν = ∇X = (∇µX

a)êµ ⊗ êb.

One finds that
ω a
µ b

= e a
ν eλbΓ

ν
µλ − eλb∂µe

a
λ .

This neatly results in
∇µe

a
ν = 0.

Interestingly, vielbeine themselves are subject to a type of gauge freedom. Since Lorentz
transformations preserve the Minkowiski metric, one can simply perform a Lorentz trans-
formation on the vielbein basis vectors to acquire a different vielbein, also reproducing the
Minkowski metric.

e a
µ → e b

µ Λa
b,

where Λ can depend on spacetime point. This results in the following transformation of the
spin connection:

ω a
µ b → Λa

a′Λ
b
b′ω

a′

µ b′ − Λc
b∂µΛ

a
c.

This sums up what we need to know in order to understand the argument that follows.

A.2 The Argument
As before, we are interested in the z-dependence of the shifted tree-level amplitude M̂n, this
only containing external gravitons. The argument will proceed along the same lines as be-
fore. We will once again consider the background field method, treating the shifted particles
as high energy particles in a soft background. We will also apply the lightcone gauge to
eliminate the z-dependence of the vast majority of diagrams contributing to M̂n. We will
then deduce the overall z-dependence by scrutinizing the diagrams that are resistant to the
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lightcone gauge.

We start with action
S =

∫
d4x

√
−gR,

which we perturb by introducing the shift gµν → gµν + hµν , resulting in [23, 34]

S =

∫
d4x

√
−g
[
1

4
gµν ∇µh

β
α ∇νh

α
β − 1

8
gµν ∇µh

α
α ∇νh

β
β − hαβhµνR

βµαν

]
.

Here we have kept only the terms that are quadratic in hµν . Note that we are not introducing
hµν as a perturbation away from a specific metric. Rather, hµν represents the shifted particle
in an arbitrary background, since we want to keep our treatment as general as possible.

As a trick, we now introduce a scalar field φ to our current theory in an additional term.
We introduce this φ only for the purposes of performing a field redefinition and casting our
Lagrangian in an agreeable form. We acquire

S =

∫
d4x

√
−g
[
1

4
gµµ ∇µh

β
α ∇νh

α
β − 1

8
gµν ∇µh

α
α ∇νh

β
β − hαβhµνR

βµαν +
1

2
gµν∂µφ∂νφ

]
.

We now perform the field redefinition

hµν → hµν + gµν

√
2

D − 2
φ, φ→ 1

2
gµνhµν +

√
D − 2

2
φ,

giving

L =
√
−g
[
1

4
gµνgαρgβσ∇µhαβ∇νhρσ −

1

2
hαβhµνR

βµαν +
1

2
gµν∂µφ∂νφ

]
.

Here, D is the amount of spacetime dimensions, which in our treatment equals 4.
Now that we have performed the field redefinition, we can cast off the last dilaton term,

since it does not play a role at tree-level pure graviton scattering. We rewrite the tensors
using vielbein e a

µ ,

L =
√
−g
[
1

4
gµνgαρgβσ∇µ

(
e a
α e ã

β haã
)
∇ν

(
e b
ρ e

b̃
σ hbb̃

)
− 1

2
e a
α e ã

β e b
µ e

b̃
ν haãhbb̃e

β
ce

µ
de

α
c̃e

ν
d̃
Rcdc̃d̃

]
,

=
√
−g
[
1

4
gµνηabηãb̃∇µhaã∇νhbb̃ −

1

2
haãhbb̃R

abãb̃

]
.

Here, we used the product rule in conjunction with the fact that ∇µe
a

ν = 0. Furthermore,
we used that gµνe a

µ e b
ν = ηab and eµbe a

µ = δab . The tildes on the indices are used to elucidate
the fact that the left and right indices on haã don’t mix: right indices are only contracted
with right indices etc. This will be a fact useful to us soon.

It is now our task to write out the Lagrangian using ∇µhaã = ∂µhaã −ω r
µ ahrã −ω r̃

µ ãhar̃.
This will allow us to make those vertices manifest scaling with z or z2 (those containing
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derivatives) and those that scale with z0. We get

L =
1

4
gµνηabηãb̃

(
∂µhaã∂νhbb̃ − 2ω r

µ ahrã∂νhbb̃ − 2ω r̃
µ ãhar̃∂νhbb̃

)
+

1

2
hrãhar̃R

raãr̃ +
1

4
gµν
[
ω ra
µ ω r̃ã

ν hrãhar̃ + ηãb̃ω ra
µ ω s

ν ahrãhsb̃ + ηabω r̃ã
µ ω s̃

ν ãhar̃hbb̃

]
.

(A.2)

The first term provides vertices scaling with z2, the next two terms with z and the entire
last line gives terms with no z-dependence.

We can once again eliminate the z-dependence of all vertices except for the vertex ap-
pearing in the familiar diagram A.3 below. The method for and problems with picking the
lightcone gauge here are nearly identical to those discussed for spin-1 bosons in section 4.2.1,
slightly modified for the graviton discussion.

First of all, interestingly enough, we can pick the lightcone gauge for the spin connection
using a local Lorentz transformation

qµω ab
µ = 0.

For the actual gravitons, within the de Donder gauge, we have the remaining freedom to
perform a gauge transformation of the form

hµν → hµν + ∂µξν + ∂νξµ,

for any arbitrary vector field ξ. If we thus wish to impose the lightcone gauge, we must pick
ξ such that in momentum space

∀k : qµ
(
ε′±
)µν

(k) = qµε
µν
± (k) + qµk

µξ̃ν(k) + kνqµξ̃
µ(k) = 0.

For some of these k, however, q · k vanishes, eliminating the second term in the expression.
As discussed previously, these k lie on the lightcone emanating from q in the space of all
possible four-momenta. (Compare figure 4.1.) For these particular k, the condition above
reduces to

qµε
µν(k) = qµε

µ
±(k)ε

ν
±(k) = −kνqµξ̃µ(k).

Here we used that the graviton polarization tensor can be written as the tensor product of
two polarization vectors, εµν± = εµ±ε

ν
±. Since qµξ̃µ(k) and qµεµ±(k) are scalars, the only possible

way to satisfy the condition above is if εν± is proportional to kν . However, this analysis is
specific to those k, for which k · q = 0, implying that also q · ε±(k) = 0, in turn requiring
that qµεµν± (k) vanish. We can thus see that for k such that k · q = 0, it is only possible
to pick the lightcone gauge if εµν± (k) was in the lightcone gauge to begin with! That is not
particularly useful. We are left with the conclusion that we can only pick the lightcone gauge
for gravitons off of the lightcone emanating from q, identically to the situation with vector
bosons.

We once again fail to eliminate the z-dependence in those vertices where shifted mo-
menta couple to graviton lines carrying momenta orthogonal to q. As discussed previously,
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this is only relevant for those diagrams where this condition does not depend on external
particle momenta. Hence, indeed, in practice this means that we get z-dependence only from
diagrams of type 4.12, which is displayed in figure A.3 for gravitons. It is now our task to
determine the z-dependence of diagrams of this type in light of the Lagrangian in equation
A.2.

−(pi + pj)

h h

g

g

g

g

g

pi pj

(A.3)

In this diagram, the only z-dependent vertex is the one connected to the shifted particles.
Reading off from the first three terms in the Lagrangian in equation A.2, the z-dependent

contribution to the amplitude can be written as

M̂aãbb̃ = cz2ηabηãb̃ + z
(
ηabÃãb̃ + ηãb̃Aab

)
+O

(
z0
)
. (A.4)

Here, the amplitude is still uncontracted with the external, shifted particles. We will perform
this contraction at the end of this argument, just as in the gluon case.

We can see from the Lagrangian that the z2 term must be proportional to two factors of
η. The z terms come from the next two terms in the Lagrangian, proportional to a factor η
and a spin connection with raised indices ω ab

µ , resulting in a similar factor η and a tensor
Aab. Metric compatibility, however, is equivalent to the anti-symmetry of ω ab

µ in its vielbein
indices. (This can be verified by setting ∇µg

ρσ to zero and rewriting the expression with
respect to a vielbein.) Hence, the tensors Aab and Ããb̃ are anti-symmetric.

Let us now consider the O(z0) contributions. We know that all order z0 contribution
must come from the same diagram (A.3), because all other diagrams will at the very least
contain one shifted propagator, scaling ∝ 1/z, with all vertex z-dependence eliminated due
to the lightcone gauge. Hence, we simply continue reading off from the Lagrangian. We get

Maãbb̃
O(z0) = Aabãb̃ + ηabB̃ãb̃ +Babηãb̃.

The first term comes from the first two terms in the second line of the Lagrangian in equation
A.2. The tensor Aabãb̃ is anti-symmetric in its first two (a, b) and last two indices (ã, b̃),
inheriting the symmetry properties of the Riemann curvature tensor Rabãb̃. Furthermore,
the second term in the second line of the Lagrangian has the same symmetry properties, as
it contains two spin connections with raised indices, which are separately anti-symmetric.
Hence, both contributions of these terms can be unified in a single tensor, Aabãb̃.

The last two terms in the Lagrnagian are proportional to the Minkowski metric, resulting
in the last to terms in the expression above. There are no clear symmetry properties of the
tensors Bab and B̃ãb̃.
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εi\εj − +
− 1/z 1/z
+ z3 1/z

Table A.1: The z-dependence of pure Yang-Mills amplitudes depending on shifted particle
amplitude.

We get the full z-dependence of the uncontracted amplitude

M̂aãbb̃ = cz2ηabηãb̃ + z
(
ηabÃãb̃ + ηãb̃Aab

)
+ Aabãb̃ + ηabB̃ãb̃ +Babηãb̃ +O(1/z). (A.5)

Once more, to get the z-dependence of the full amplitude, we contract with the polariza-
tion tensors of the external, shifted particles. We use the Ward identity for gravitons, which
is

pµA
µν = 0,

if εµν(p)Aµν is the complete amplitude. Similarly, it will hold that

p̂iaM
aãbb̃ε̂±

jbb̃
= 0,

where we are using the shifted quantities. Just as with gluons (eq. 4.13), we get

qaM̂
aãbb̃ε̂jbb̃ = −1

z
piaM̂

aãbb̃ε̂jbb̃, qaM̂
aãbb̃ε̂ibb̃ = +

1

z
pjaM̂

aãbb̃ε̂ibb̃. (A.6)

Adapting the identities for shifted polarization vectors to gravitons (eq. 4.3), we have

ε̂−iaã(z) =ε̂
+
jaã(z) ∝ qaqã,

ε̂+iaã(z) ∝ (qa − zpja)(qã − zpjã), ε̂−jaã(z) ∝ (qa + zpia)(qã + zpiã).
(A.7)

Combining A.5 and A.7, we can infer, for instance,

M−− = ε−iaãM
aãbb̃ε−

jbb̃
,

= qaqãqbqb̃M
aãbb̃,

∝ 1/z.

We see that M−− scales as 1/z in the limit of z → ∞, since every term in equation A.5,
containing a factor of η, gets cancelled because q2 = 0.

Also utilizing equation A.6 and using the orthogonality of q with pi and pj, one can derive
the full table of z-dependence, in table A.1.
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Explanations of Latin Quotes

The quote on page 3 has–of course–been taken out of context. In the relevant passage of
De Inventione, a handbook for orators, Cicero describes features of a person that are to be
considered ‘useful yet honorable’. One of these features he calls ‘amplitude’ (‘amplitudo’ in
Latin) which in its foremost sense means ‘size’ or ‘magnitude’. For the purposes of his work,
Cicero defines amplitude as a great abundance of power, majesty and resources of some sort.
This is what the quote thus originally means, however, out of context, the translation given
is also completely valid.

The quote on page 26 occurs in a collection of poems called Epistulae Heroidum (“Letters
by (the) Heroines”) by Roman poet Ovid. This particular poem (Heroides 6) presents itself
as a letter from Hypsipyle to Jason, both mythological figures. The quote “Dent modo fata
recursus.” should properly be translated as “May the fates just give a way back.” “Recursus”
literally means “a running back” and here figuratively stands for an escape from the current
situation to a former one. Of course, our word “recursion” is etymologically closely related
to “recursus” and this connection also makes sense in terms of meaning. Recursion is after
all a running back to the start of some procedure in order to perform the procedure once more.

The quote on page 54 is contained within a collection of letters written by famous philoso-
pher Seneca nearing the end of his lifetime. According to the standards of our modern cul-
ture, the true context of this quote can be considered rather dark. I feel that explaining the
context does not fit the tone of the rest of the thesis.
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