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Abstract: Recent advances in brain-
computer interfaces (BCIs) have shown
great potential in improving the lives of
people with limited capabilities such as
paraplegics or people suffering from locked-
in syndrome (LIS). This study was done to
further the development of decoding elec-
troencephalogram (EEG) data by research-
ing the difference in accuracy of a Recur-
rent Neural Network (RNN) trained on two
different datasets. One dataset consisted of
EEG data of participants imagining a num-
ber, whereas the other consisted of EEG
data of participants visually perceiving a
number. By comparing the results, I aimed
get a decisive difference that helps pave the
way for more efficient EEG decoding by cre-
ating a better understanding of it. I used
the consumer-grade MUSE 2 headband, as
it had been proven to achieve high results
with only four electrodes and could be used
at home by anyone. After training, the clas-
sifiers were evaluated using their accuracy,
but neither received an accuracy score sig-
nificantly above chance level. Therefore, the
results of this study remained inconclusive.
Further research should be done using the
EPOC headset with 15 electrodes and a
Convolutional Neural Network (CNN), as
these have been proven to achieve better
results.

1 Introduction

The field of Brain-computer Interfaces (BCIs)
has seen a lot of advancements in recent years
(Janapati et al. (2022)). These advancements
range from the decoding of brain signals into
motor movements, to the usage of BCIs in video
games (Kerous et al. (2018)).

These advancements have a broad range of im-
pact. In fields such as in the treatment of stroke
survivors, it’s not only being used as a tool for
rehabilitation, but also as a tool to completely
bypass certain damaged parts of the brain to regain
control of certain motor functions (Robinson et
al. (2021)). This technology has already shown
great possibilities in bettering the quality of life
of people with cognitive impairments, and its
development is still ongoing.
Non-invasive techniques such as electroen-
cephalograms (EEG) have become popular with
researchers in this field due to its simpleness,
mobility and temporal resolution. In recent year,
new EEG devices have come out that are not
only usable to researchers, but can also be used
at home. One such consumer-grade device is the
MUSE 2 headband. This headband is small in
size, relatively cheap and can be set up within a
matter of minutes, without having to know any
in-depth knowledge of EEG signal processing.
Further development using such devices may prove
fruitful in the future, as regular consumers could
be able to buy and use these at home. Aside from
that, they also make further development and
research more easily accessible (Krigolson et al.
(2017)). Making use of its portability and relative
ease of use, researchers can set up faster and more
efficient experiments while having to give up little
in terms of quality of data.

In order to add to this ongoing research, I de-
cided that I wanted to investigate the classification
of mental imagery using EEG data. Using EEG
data to decode brain activity has already proven to
be highly successful for Motor Imagery (MI) tasks.
In their paper, Tarahi et al. (2024) investigate the
usage of a method that employs a Convolutional
Neural Network (CNN) to declassify imagined mo-
tor movements. The results showed an average clas-
sification accuracy of 87,3% and 86,29% on the BCI
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Competition IV 2a and BCI Competition IV 2b
datasets respectively.
Both datasets make use of EEG data, however,
this data was captured using a full EEG set. This
means that the BCI competition IV 2a dataset con-
tained 22 EEG channels and three EOG channels.
Such full EEG sets are currently too expensive and
complicated to be used outside of a lab. However,
Garcia-Moreno et al. (2020) proved that high ac-
curacy in MI tasks can also be achieved using the
MUSE headband. They collected data from four
participants, after which they used a combination
of a CNN and an LSTM in order to decode their
movements based on the EEG data. Their results
captured a validation accuracy of 96.5%.
While classifiers are scoring high in accuracy for MI
tasks, they are still in their infancy when it comes
to tasks such as decoding imagined speech. A re-
cent study by Lee & Lee (2022) explored the use of
a Deep Neural Network (DNN) for classifying the
words ’in’ and ’cooperate’ from the ASU imagined
speech dataset. With an average accuracy of 71.8
± 8.6%, it achieved state-of-the-art results.
Another study that works with imagined speech
was done by Nguyen et al. (2017). This study tried
to classify between three and two imagined words.
The results reached a maximum of 70% and 95%
respectively.
While these tasks are celebrated as successful,
when contrasting them against the MI classifica-
tion tasks, it becomes clear that there’s a great
difference in capabilities. In order to further fur-
ther develop the decoding of visual imagery, more
research and understanding is necessitated.
Further research into visual imagery comes from

Alazrai et al. (2020). They conducted 4 different
experiments where participants were shown and
then had to imagine objects of four different cat-
egories: nature (fruits and animals), decimal dig-
its, the English alphabet (in capital letters), and
arrow shapes (arrows with different colors and
orientations). They used the Choi-Williams time-
frequency distribution to analyze up to 15 EEG
channels in the joint time-frequency domain. Their
method proved successful, as the average decoding
accuracies went up to 96.67% for the nature cat-
egory, 93.64% for the decimal digits, 88.95% for
the alphabet category, and 92.68% for the arrow
shapes.
They then followed this up with the same experi-

mental setup, but focused on a better approach of
decoding the visually imagined digits and letters
(Alazrai et al. (2022)). The processing of the EEG
data was experimented upon. Here, they used the
Choi-Williams time-frequency distribution again,
this time employing 16 EEG channels. The second
phase consisted of a novel deep learning (DL) ap-
proach in order to classify the data accordingly. Us-
ing this approach, they outperformed all previous
studies by achieving an average standard deviation
accuracy of 95.47 ± 2.3%.
Both studies were done using an EPOC headset
with 15 channels. However, with an eye on personal
consumer usage for future applications, it is quite
expensive. Therefore, it would be beneficial to ex-
plore imagery using a headband that’s cheaper and
easier to use, much like the MUSE 2 headband.
This was done by Mahapatra & Bhuyan (2023).
In their study, they made use of the MindBig-
Data open-access database. Using the MUSE data
of this dataset and a discrete wavelet transforma-
tion (DWT), they employed a multilayer bidirec-
tional long short-term memory (LSTM) recurrent
neural network (RNN). This resulted in an accu-
racy of 96.18%. However, this dataset consists of
one participant, whose data has been recorded for
two years. This might have resulted in the classifier
being successful for this specific person’s EEG data,
but it might be different for others. Therefore, it’s
worth finding out if this result can be reproduced
over a variety of participants.
These studies focus mainly on the visual imagery,
however, they don’t seem to explore the difference
in visual perception and visual imagery. Dijkstra
et al. (2019) explain in their paper that there is a
lot of overlap between imagery and perception in
high-level visual areas in the brain. They generate
similar neural representations for the same content
in occipital, parietal, and frontal brain areas. That
is not to say there is no difference, as they found
that early bottom-up processing that occurs in per-
ception is absent during imagery.
By exploring this difference and further the devel-
opment of BCIs, I aim to train a classifier on two
different datasets and study if a classifier is better
at classifying imagined or visually perceived digits.
In their paper, Koenig-Robert & Pearson (2021)
hypothesize that the difference between imagining
and visually perceiving boils down to imagery just
being a weaker version of perception. Therefore, I
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hypothesize that the classifier trained on the vi-
sually perceived data will outperform the classifier
that’s trained on the imagery data.

2 Method

In order to study the difference in decoding imagery
and visual stimuli, I was going to need two different
datasets. Both datasets were limited to six digits
going up from one to six. Whereas one dataset con-
tained EEG data from imagery numbers, the other
dataset contained EEG data of visually perceived
numbers. Both datasets were recorded equally over
multiple participants to prevent creating partici-
pant dependent classifiers, after which the data
was processed following the steps Mahaptra et al.
(2023) laid out.

2.1 Participants

In order to create the datasets, an experiment was
conducted using 20 people that volunteered as par-
ticipants. This group of participants consisted of 9
males and 11 females. All of the participants signed
a consent form before the start of the experiment,
explaining what the experiment entailed and that
the collected data would become anonymous. They
were also asked to fill in any neurological condition
that could influence the results, such as epilepsy,
however all participants claimed to have none.

2.2 Experiment

In order to create a dataset of imagined and vi-
sually perceived numbers, there had to be a range
of numbers that could be used. This needed to be
limited due to the current capabilities in classifi-
cation based on EEG data. The range of numbers
from one to six was chosen in order to be able to
share the collected data with colleagues that were
conducting a similar experiment with dice.
The experiment itself was conducted in a quiet
room where the participant had to sit in front of
a laptop. First, the participants had to imagine a
number within the given range for sixty consecu-
tive trials. During this imagery phase, participants
were first instructed to think of a number. They
then had to keep thinking of this number for five

seconds, during which a fixation dot was shown. Af-
ter these five seconds, they had to press the number
they had just thought of. When they had filled in
the number, they were asked to think of a new num-
ber that was different than the one before.
The second phase consisted of the numbers be-
ing shown to participants. The participants were
instructed to just focus on looking and reading
the number. All numbers were shown ten differ-
ent times in a randomized order. The numbers
were shown for five seconds per trial, followed by a
2.5 second break to establish a new baseline. The
length of the break was established after partici-
pants in the trial experiment indicated that their
concentration was being severely impacted by the
length of the second phase. An overview of both
phases can be seen in Figure 1.
After the second phase, there was a break of five
minutes. Following the break, the two phases were
repeated, this time consisting of 30 trials each, re-
sulting in 90 trials per condition in total.
In order to further minimize the effects that a lack
of concentration might cause, occasional questions
were asked. To do this, a researcher stayed in the
room. Every ten trials, the participant would be
shown a screen that told them the researcher was
going to ask them a question. Neither the questions
nor the answers were recorded, since the informa-
tion was of no importance to the study. They were
also made easy to answer, asking participants about
things such as what they had had for breakfast that
day. This was done so they wouldn’t think too long
about these questions afterwards, as this could po-
tentially influence the results.

2.3 EEG data

The EEG data was collected using an InteraXon
MUSE 2 headband at a sampling rate of 256 Hz
for 4 channels (TP9, AF7, AF8 and TP10). The
channels were located on the frontal and temporal
lobe regions, as can be seen in Figure 2. The data
was then recorded using Muselsl and Labrecorder.
When technical problems interrupted the record-
ings, a researcher would reset the headband, after
which the participant could resume where they
left off. Using the timestamps on the start of the
sessions, the labels could later be stitched together
with the correct markers. If the timestamps could
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Figure 1: The experiment design of the two different phases

not be matched, that data was then discarded.
After aligning the data and checking its usability,
a bandpass filter of 1-40 Hz was applied. The
data was then inspected by looking at the power
spectral density (PSD), in order to check for any
abnormalities. If none were detected, epochs were
created based on the event markers with a baseline
of [0, -0.2] seconds. An example of a usable PSD
is shown in Figure 3. The epochs were then saved,
together with their labels, in a csv file so that they
could be loaded into the classifier.

2.4 Classifier

After extracting all the relevant data, the epochs
were loaded into one big dataset. Then, the datasets
were checked for their lengths. Because the aim of
the study is to find out whether a classifier is better
at decoding visually perceived digits, both datasets
were cut to be the same length. In order to check if
the amount of different numbers was roughly equal,
the spread was inspected as seen in Figure 4.
Although most numbers were represented roughly
the same amount of times, the number ’6’ was
shown a bit less. Because of the relatively small
dataset, the decision was made to still use all the
available data from the imagined numbers.
In order to obtain high results, using Python 3
and Keras, the preprocessing steps laid out in the
paper by Mahapatra et al. (2023) were followed.
First, the datasets were shuffled and the labels put
in a separate dataset. Then, a DWT was applied in

order to get rid of extra noise that could influence
the results. The Daubechies-4 wavelet was used, as
according to Mahapatra et al. (2023), this has been
proven to be very effective in feature extraction for
the classification of EEG signals. After that, the
wavelet was decomposed by an order of 3 and the
universal thresholding technique was applied.The
formula for this threshold is as follows:

λ = σ
√
2ln(N) (1)

Here, σ is the average variance of the noise whereas
N is the signal length. σ can be calculated using the
following equation:

σ =
Median(|W1,K |)

0.6745
(2)

In this equation, W1,K represents all the scale 1 co-
efficients.
Using the thresholded values, small components
that were assumed to be noise were eliminated.
This resulted in signals with a slight reduction of
noise, as can be seen in Figure 5. The reconstructed
data was then normalized using z-normalization
and split into training-, validation- and test data.
Mahapatra et al. (2023) chose to create a bidi-
rectional LSTM, in order to capture the tempo-
ral values of the EEG signals while also prevent-
ing both the vanishing and exploding gradient is-
sues. They created three bidirectional layers and
one dense layer. I followed this approach, but ad-
justed the parameters to fit it more appropriately
to the data collected from my experiment. The first
bidirectional layer had 440 units, the second one
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Figure 2: a) Overview of the MUSE headband by Mansi et al. (2021).

b) The relevant electrodes measured by the headband

220 and the third one 110, with a dense layer of
ten units and a softmax activation function. Since
the dataset used for this study contained a lot less
input data, the size of the layers had to be adjusted.
The dense layer was lowered to a size of six, and the
layer size of the bidirectional LSTM layers were
decided by a hyperparameter search using keras’
Randomsearch. The first layer had a range of 200
to 500, the second layer had a range of 100 to 300,
and the third layer had a range of 50 to 150.
I implemented an Adam optimizer with a cross-
entropy loss function, and performed a hyperpa-
rameter search for the batch size and the learning
rate as well, settling for a batch size of 32 and a
learning rate of 0.002. The final hyperparameters
can be seen in Table 1.
The data was split up into training-, validation and
test data, with an 80-10-10 split respectively. The
training- and validation data were used for the hy-
perparameter search, whereas the test data was
used to evaluate the performance of the models.
After training the models, their results were evalu-
ated and compared. In order to compare the mod-
els however, there needed to be assurance that their
performance isn’t chance based. Using the theoret-
ical approach derived in the paper by Müller-Putz
et al. (2008), the model performances were assessed
for their level of chance.

Values

Classifier Visual Imagined

Bidirectional layer Number of layers 3 3
Layer 1 Layer size 300 200
Layer 1 Dropout rate 0.3 0.4
Layer 2 Layer size 100 300
Layer 2 Dropout rate 0.3 0.5
Layer 3 Layer size 70 150
Layer 3 Dropout rate 0.3 0.5

Classification
Dense layer 6
Activation Softmax

Training

Optimization Adam
Loss function Cross-entropy
Batch size 32
Learning rate 0.002

Table 1: Table specifying the hyperparametes

3 Results

Using the training and validation data in the hyper-
parameter search, the best model was chosen and
evaluated on the test data using accuracy and the
F1-score as metrics.
The model that was trained on the data of the im-
agery condition had an accuracy of 22.35 and an
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Figure 3: PSD of a session deemed good enough for usage

Figure 4: Spread of digits of visually perceived and imagined data

F1-score of 18.1%. The model that was trained on
the data of the visually perceived numbers resulted
in an accuracy of 22.35% and an F1-score of 20.0.
In order to test if the classification performance was
above chance level, I used the method as proposed
by Müller-Putz et al. (2008). They calculated the
confidence interval using chance level and argued
that if the score is above that interval, the accu-
racy can be seen as significantly above chance. This
confidence interval is calculated as seen in Equation
3:

ρ±
√

ρ(1− ρ)

n+ 4
∗ Z1−α

2
(3)

Where ρ is the standard chance level, n is the num-
ber of trials and 1 − α

2 pertains to the relevant

quantile of the standard normal distribution. In this
case, working with a chance level of 1

6 , ρ was 0.167,
n was 85, and, assuming a significance threshold
of α = 0.05, the 95% confidence interval was com-
puted.
Using these values, the theoretical limits of the con-
fidence interval were 7.8% and 24.4%. This means
that the accuracy scores of both classifiers aren’t
significantly above chance level. Since neither per-
formed significantly above chance, it didn’t make
sense to perform any further statistical test on the
results.
In order to further inspect the data, two confusion
matrices were created, as seen in Figure 6. To make
these more insightful, the accuracy and F1-scores
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Figure 5: Signal before and after DWT. The signal is shown to be slightly more smooth after the
DWT.

were calculated per class, as can be seen in Table 2.
Here, it can be seen that the accuracy in predicting
four, five or six for imagined digits was 0.0%. The
only time the classifier trained on the visually per-
ceived digits scored 0.0% was for the number four.

Visual Imagined

Class Accuracy F1-score Accuracy F1-score

1 25.0% 0.33 57.14% 0.28
2 23.53% 0.24 31.58% 0.33
3 12.50% 0.17 27.78% 0.29
4 0.0% 0.0 0.0% 0.0
5 23.08% 0.18 0.0% 0.0
6 50.0% 0.33 0.0% 0.0

Table 2: Table showing the accuracy and F1-
scores per class

4 Discussion

In this experiment, two classifiers were trained on
either EEG data of imagined digits or visually per-
ceived digits in order to find out whether they
would perform better on one of the two datasets. In
order to create the classifiers, the pipeline of Ma-
hapatra et al. (2023) was followed. With the use of
this pipeline I created a bidirectional LSTM model,
after which a hyperparameter random search was
done to get the best possible models. However, after
evaluating the test data using the theory devised
by Müller-Putz et al. (2008), both models failed

in achieving an accuracy score that’s significantly
above chance.
With this study, I aimed to further explore the dif-
ferences in imagery and perception. If there is a
better understanding on the performance of certain
classifiers on different data, future research can be-
come more focused on the limitations still present
in the field, producing better results. With the re-
sults of both classifiers, no conclusion can be drawn.
Looking at the confusion matrices in Figure 6, it
does become clear that the classifier didn’t just pick
one number in order to obtain the highest results.
For some unknown reason, the classifier that was
trained on the imagined digits never classified any
data as ”five”. This is noteworthy, as it was the
second most frequent class that was in the dataset,
as seen in Figure 4. The digits of four, five and
six weren’t correctly predicted a single time by this
classifier.
It’s further worth noting that while the classifier
trained on imagined digits seems to have predicted
the first three classes most, whereas the classifier
trained on the visually perceived data predicted
mostly five and six. There’s nothing conclusive to
get from these results, as they can’t be proved to
be above chance level.
During this study however, the paper by Mahapa-
tra et al. (2023) has gone under review, since other
researchers can’t seem to reproduce the results and
the authors have become unresponsive. This could
be one of the reasons why both classifiers haven’t
gotten any significant results above chance level.
This study had its own problems as well. The usage
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Figure 6: Confusion matrices of the predicted classes vs the true classes

of the MUSE 2 headband caused some issues. Af-
ter fixing the time dependency issues, it turned out
some timestamps made by the headband went back
in time. This problem rendered almost half of the
data useless. A bigger dataset might have helped
improve the classifiers. The headband also discon-
nected at random moments, causing some data to
be missed.
The MUSE 2 headband was chosen for its ease of
use after I was convinced of its results by the paper
of Mahapatra et al. (2023) However, looking at the
issues that were had with the device and the pa-
per being under review, future research might be
better done with another type of headset such as
Emotiv’s EPOC X headset. Although this headset
is a lot pricier and thus less available for the gen-
eral public, it has more electrodes and covers other
important areas such as the parietal cortex as well.
It is however completely wireless and easy to set
up, meaning that it could still be relevant in day-
to-day use in the future.
Alazrai et al. (2022) also used the EPOC headset,
with better results. They make use of a CNN, which
has been proven to be effective in selecting tem-
poral features. Following their pipeline using this
headset, the research question could be repeated.
Other impairments to the study came from the ex-
periment design. There’s no way to know for cer-
tain that people thought of the number they said

they thought of. It is assumed they participated in
the way that they were supposed to, but, seeing
as multiple participants later complained of bore-
dom, they might have accidentally thought of other
things.
The imagining might have also been impaired by
the fact that they had to press a number on a key-
board after five seconds. Seeing as the experiment
repeated itself constantly, participants would have
known what they were going to do next, which
means they might have been looking at the key-
board instead of just imagining the number. Future
experiments could avoid this pitfall by using an eye
tracking device and using different methods of get-
ting to know what the participants were thinking.
The second part of the experiment could use a
bit more interactivity however. Participants stated
that even with the occasional question, their minds
started to drift due to a lack of interactivity. The
goal was to let the experiment progress without
them having to perform any extra motor functions
such as pressing the space bar, as that could po-
tentially interfere with the results. However, par-
ticipants stated that tiny things like that in the
first part of the experiment helped them focus a
bit more. This is also something to keep in mind
for future research.
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5 Conclusion

In this study, I set out to find whether a clas-
sifier would be more effective on visual or imag-
ined data. Using Mahapatra’s pipeline and training
the classifiers over the EEG data of multiple par-
ticipants, the classifiers never scored significantly
above chance.
This may have been caused by a number of rea-
sons, but impaired the goal of the study heavily. As
both classifiers never performed significantly above
chance level, there’s no saying whether one could
perform better than the other.
In order to further analyze the difference in visual
and imagined classification, I’ve proposed using a
different headset and pipeline. The experiment de-
sign for this study could also use some improve-
ments, after feedback from multiple participants.
For now, the results of this study are inconclusive.
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