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Abstract: Brain-Computer Interface (BCI) research has seen advancements in recent years with
regard to early classification and confidence. This project explores a confidence-based early clas-
sification method to improve the earliness and performance of Motor Imagery (MI) BCI. A
dynamic early classification model was implemented using a stopping criterion based on predic-
tion confidence to determine the optimal timing for classification decisions. This was compared to
a static classification model by providing the optimal early stopping times found by the dynamic
model. The models were tested on the BCI Competition IV dataset 2a (Brunner et al., 2008),
using Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) as classifiers.
The models were evaluated on Accuracy, Cohen’s Kappa, and Information Transfer Rate (ITR).
Results showed increased or maintained performance for the confidence-based early classification
models as compared to the static model.

1 Introduction

Brain-Computer Interface (BCI) systems are a
growing and advancing technology, aiming to con-
nect and create collaboration between the brain
and computer. Interest in this technology stems
from the hope that it could help individuals suffer-
ing from severe motor disabilities, affecting move-
ment and communication. Many of these systems
have been developed with vastly differing perfor-
mances, architectures, and goals. This research
presents a method that accounts for earliness, ac-
curacy, and confidence.

1.1 Motor Imagery BCI

BCI systems allow individuals with neuromuscular
impairments the ability to interact with the world
by translating neurophysiological signals into con-
trol commands, bypassing the neuromuscular path-
way (Wolpaw et al., 2000). The steps involved in
such a system consist of the collection of brain data,
followed by a set of preprocessing, feature extrac-
tion, and classification methods as can be seen in
Figure 1.1.
By recording and translating a user’s brain activ-

ity, such as with an electroencephalogram (EEG),

the user can control neuroprosthetics. A Motor Im-
agery (MI) BCI relies on the similarity in the acti-
vation of the primary sensory-motor areas, between
imagined motor movement and actual movement.
Furthermore, the neuronal activity during MI re-
sults in the amplitude suppression or enhancement
of the mu (7–13 Hz) and beta (13–30 Hz) fre-
quencies known as event-related desynchronization
(ERD) and event-related synchronization (ERS) re-
spectively (Pfurtscheller & Neuper, 2001). The MI
BCI then aims to translate these changes into dis-
cernible features and classify the movements into
the intended user control commands. EEG data
therefore allow for non-invasive analysis of the mo-
tor imagination of a user, allowing MI BCI to be
used.

1.2 Confident systems

MI BCI systems rely on machine learning to in-
terpret the motor intentions due to its role in au-
tomatically analyzing, modifying, and classifying
EEG signals (Craik et al., 2019). However, despite
its potential, the widespread adoption of machine
learning models in clinical settings has been hin-
dered due to skepticism surrounding their black-
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Figure 1.1: Schematic of a general MI BCI sys-
tem.

box nature and the challenges posed by e.g. EEG
noise sensitivity. This could lead to unpredictable
and potentially harmful outcomes when predic-
tions are made without any insight into how they
were obtained or due to the uncertainty present in
those predictions (de Jong et al., 2023). As machine
learning models are being widely used for decision-
making and inference, there is a need to evaluate
their confidence before they are deployed. In this re-
gard, there has been little but growing research into
understanding when a classifier’s prediction should
and should not be trusted (Jiang et al., 2018).
There is, therefore, a need for confident and

uncertainty-aware systems that are capable of with-
holding classification when they are unsure. Quan-
tifying the uncertainty of the model prediction
could help prevent harmful and unintended actions
or commands from being executed by the BCI. This
would enhance reliability and improve user trust
and efficacy of BCI applications (de Jong et al.,
2023).

1.3 Early classification

Real-time classification is crucial in BCI systems,
as BCIs are largely aimed at mobility assistance or
neurorehabilitation (Xu et al., 2014). To provide ef-
fective rehabilitation and assistance, classifications
must be made with little delay. Therefore, in addi-
tion to a need for uncertainty-aware systems, one
also needs classifications to have low latency.
It is important to distinguish between a dynamic

and static model, as they are of focus in this re-
search. When only considering earliness, a dynamic
model is defined as an early classification method
that is able to classify time-series data as early as
possible (Akasiadis et al., 2022). This means that a
dynamic model can classify without requiring the

full time-series observations. It should find the ear-
liest time points for which a reliable prediction can
be made. A dynamic model should also maximize
the tradeoff between accuracy and earliness. This
model can further be combined with confidence-
based classification.

A static model, however, is not an early classifi-
cation model. It is unable to classify early, and can
only classify either given the fully-observed time se-
ries or at pre-defined time points. While both mod-
els can classify early, the main distinction is that
the dynamic model can perform early classification
without predefined stopping times, meaning it can
find the optimal early prediction times dynamically.

Early classification in general time-series data
has been reviewed by A. Gupta et al. (2020). They
describe models based on conditional probabilities
to optimize the trade-off between earliness and reli-
ability. They mention several early time-series clas-
sification models that implement reliability thresh-
olds and stopping rules based on those thresholds,
such as in M. R. Gupta et al. (2012).

Dynamic stopping methods, with respect to BCI,
have been mostly researched in other BCI systems
such as event-related potential (ERP) based or vi-
sual evoked potential (VEP) BCI. One such ex-
ample is a VEP BCI system that works using a
stopping criterion that is considered iteratively at
each epoch (Spüler, 2017). Furthermore, Schreuder
et al. (2013) evaluated several early stopping meth-
ods in ERP based BCI that had positive results.
Among these, there is a method by Jin et al. (2011),
in which a parameter Jmin is used. The param-
eter set a minimum number of consecutive itera-
tions which had to result in the same class predic-
tion. This paper considers a similar early classifi-
cation method, which is discussed further in Sec-
tion 2. Another early classification method relying
on a number of consecutive and similar predictions
is the TEASER model described in Akasiadis et
al. (2022). Renardi (2024) implemented confidence-
based dynamic early stopping in the context of
the P300 speller and found positive results with
regard to both time and accuracy compared to
non-dynamic early stopping models. However, dy-
namic stopping in MI, particularly when incor-
porating uncertainty quantification through confi-
dence threshold-based dynamic stopping, remains
relatively unexplored.
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1.4 Project aim

There is, therefore, a need to consider the efficacy of
confidence-based early classification in the context
of MI BCI. This research aims to compare a dynam-
ically classifying model, with a statically classifying
model. The dynamic model uses uncertainty quan-
tification to compare the classifier’s prediction con-
fidence to a confidence threshold for dynamic early
stopping and utilizing similar methods such as in
Jin et al. (2011) and Akasiadis et al. (2022). This
research explores whether the described method
maintains accuracy while improving time efficiency
for MI BCI users. The project, therefore, aims to
answer the following: Can a confidence-based dy-
namic classifying model classify as accurately as a
static model for MI, given the same time windows?
As early stopping methods allow the BCI to

adapt to the current state of the user, it allows
the BCI to reduce the time it needs for a selec-
tion. Similarly, as they also allow the BCI to adapt
to changes in the data, there is an increase in the
robustness of the system (Schreuder et al., 2013).
There have also been several early stopping meth-
ods that showed positive results in other BCI sys-
tems. It can, therefore, be assumed that such re-
sults could transfer to MI BCI. The expectation
is that a dynamically classifying model will main-
tain classification accuracy comparable to that of
a static model when evaluated over identical time
windows.
In the following sections, the general methods

used in the BCI model and the confidence-based
early classification method are described in Section
2. Section 2 also includes the evaluation procedure
and a description of the performance metrics. That
is followed by the results and their analysis in Sec-
tion 3. Finally, the findings are reflected on and
recommendations for future research are made in
Section 4.

2 Methodology

2.1 Dataset

The BCI Competition IV data set 2a from Brunner
et al. (2008) contains EEG data from 9 healthy sub-
jects who were asked to perform four different MI
tasks. Based on a given cue, the subjects performed
the associated imagined movement of either the left

Figure 2.1: Timing of a trial. Adapted from
Brunner et al. (2008).

Figure 2.2: Electrode placement. Left: electrode
montage corresponding to the international 10-
20 system. Right: electrode montage of the three
monopolar EOG channels for artifact detection
(Brunner et al., 2008).

hand (class 1), right hand (class 2), both feet (class
3), or tongue (class 4). They were recorded over
2 sessions. There were 6 runs in each session sep-
arated by short breaks. Every run had 48 trials,
where each of the four classes had 12 trials, and
therefore, 288 trials in each session. The subjects
sat in comfortable chairs, with a computer screen
in front of them.

As seen in Figure 2.1, at the start of each trial
(t = 0s) a fixation cross appeared on a black screen
with a short auditory warning tone. At t = 2s, a
cue appeared on the screen in the form of an arrow,
the direction of which (left, right, down, up) corre-
sponded to one of the four classes (left hand, right
hand, feet, or tongue). The subjects then performed
the given task until t = 6s, after which there was a
short break.

This paradigm was recorded using 22 Ag/AgCl
electrodes, with a 3.5 cm distance between each
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electrode, shown in Figure 2.2. The EOG channels
were omitted from the provided dataset and were
not to be used for classification. The EEG signals
were then sampled at 250 Hz and bandpass-filtered
between 0.5 Hz and 100 Hz (Brunner et al., 2008).
This dataset was obtained from Mother of All BCI
Benchmarks (MOABB, v1.0.0) (Aristimunha et al.,
2023).
Due to the two-session setup, the evaluation will

consider the first session for training and the sec-
ond session for testing in a session-to-session man-
ner. This approach is a closer reflection of a practi-
cal BCI scenario where data is gathered during an
initial session on which the model is trained and
calibrated, and the system is expected to perform
on subsequent data. Furthermore, during training,
the entire trial is used, and during inference, the
model evaluates window-wise.

2.2 Data preprocessing

2.2.1 Bandpass filtering

EEG signals suffer from artifacts and low signal-
to-noise ratio (SNR), making the separation be-
tween the desired signal and the undesired back-
ground noise difficult (Wolpaw et al., 2002). MI
BCIs also use multichannel EEG recordings to find
MI patterns. Therefore, one needs to preprocess the
recordings by removing undesired signals that are
unrelated to MI to enhance SNR. This can be done
by applying a band-pass filter within the desired
frequency bands of mu (7-13 Hz) and beta (13-30
Hz) due to those bands being the ones related to
motor imagination (Pfurtscheller & Neuper, 2001).

2.2.2 Window segmentation

After bandpass filtering, the data was segmented
into either sliding or expanding windows. Hwang
et al. (2023) showed that using sliding window seg-
mentation increased performance, and helped to ex-
tract more discriminable features. In the case of
this research, segmenting the data into windows is
also desired in order to introduce early classifica-
tion. This is so that the model can classify as soon
as the early stopping criterion has been reached,
without seeing the full-length data. An additional
comparison in this paper is the between sliding and
expanding windows, which will be discussed in Sec-
tion 3.

Figure 2.3: Sliding and expanding window seg-
mentation. Adapted from: Hwang et al. (2023).

2.3 Feature extraction

Furthermore, due to the high dimensionality of the
EEG data caused by the number of electrodes,
feature extraction is employed as a form of di-
mensionality reduction. An effective feature ex-
traction method in providing distinguishable fea-
tures for MI BCIs is the Common Spatial Pattern
(CSP) method (Vavoulis et al., 2023). CSP has also
been used by many winners of BCI competitions
(Tangermann et al., 2012). By utilizing feature ex-
traction methods one can reduce the feature space,
and increase the model’s ability to discriminate the
MI patterns. The goal of the CSP algorithm is to
learn the optimal spatial filters that can transform
the EEG data to maximize the variance of one class,
while simultaneously minimizing the variance of the
other classes based on band-power features (Pad-
field et al., 2019).

The problem in this research is solving a multi-
class classification task while CSP was designed and
generally utilized for two-class BCIs. The imple-
mentation of multiclass CSP that is used is one
described in Grosse-Wentrup & Buss (2008). They
describe a version of multiclass CSP that performs
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better than extended two-class CSP methods. As a
combined feature extraction and feature selection
process, they describe a method that uses Joint Ap-
proximate Diagonalization (JAD) to find the set
of potential spatial filters, as well as use the mu-
tual information between the class labels and the
extracted components to choose the most optimal
filters.

2.4 Classification

There are two main groups of machine learning al-
gorithms: supervised, which relies on known out-
puts or labels, and unsupervised, which builds pat-
terns without instructions. While both supervised
and unsupervised methods have been deployed and
assessed for EEG classification, supervised methods
have had a higher accuracy on average (Hosseini
et al., 2021). Furthermore, there were no substan-
tial differences between traditional machine learn-
ing algorithms such as Linear Discriminant Anal-
ysis (LDA) and Support Vector Machines (SVM),
and deep-learning methods in terms of classification
accuracy for MI (Vavoulis et al., 2023). Therefore,
classic machine learning classifiers remain effective
for MI EEG data classification and will be used in
this paper. Additionally, this paper compares the
performance of LDA and SVM classifiers, which is
discussed further in section 3.

2.4.1 Linear discriminant analysis

The Linear Discriminant Analysis classifier aims to
find the axes that maximize the separation between
multiple classes through the projection of the pro-
vided data onto a lower dimensional space (Thar-
wat et al., 2017). Firstly, the model needs to cal-
culate the separability between classes, called the
between-class variance. Secondly, the model is to
calculate the distance between the mean and sam-
ples of each class, which is called the within-class
variance. Lastly, the model constructs the lower
dimensional space, seen in Figure 2.4, that maxi-
mizes the between-class variance and minimizes the
within-class variance.
In this project, learned CSP spatial filters are

used to transform the MI EEG data features, which
are then used as input for the LDA classifier to
train against the known target values. The classi-
fier can then predict the class labels for new unseen

Figure 2.4: Example illustration: LDA projec-
tion (Li & Wang, 2014).

data points. The trained classifier can also provide
class probabilities for new data points. To deter-
mine these probabilities, the LDA model first cal-
culates a set of scores for each class, given the input
data and the trained model. These scores are then
converted into probability estimates for each class
using the softmax function, which normalizes the
scores to ensure that they sum to one across all
classes. Each probability then represents the likeli-
hood of the input data point belonging to a partic-
ular class (Pedregosa et al., 2011).

2.4.2 Support vector machines

Support Vector Machines map the data points into
a higher dimensional space where a hyperplane is
used to separate the classes with a maximum dis-
tance in between (Garg & Mago, 2021).

The plane w ∗ x − b = 0, as seen in Figure 2.5,
separates the data points into two classes. The goal
of the model is maximizing the margin, to increase
the separability, while incurring a penalty through
misclassification or when a data point is within the
margin boundary. This implements the soft maxi-
mum margin formulation, as problems usually are
not perfectly separable. A slack variable is included
to allow data points to be a certain distance away
from their respective margin boundary. A small
enough slack is essentially the hard maximum mar-
gin formulation. SVM can be extended to a multi-
class solver by using one-vs-one (or one-vs-rest),
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Figure 2.5: Example illustration: SVM hyper-
plane and margins (Garg & Mago, 2021).

resulting in one classifier for each pair of classes (or
one for each class)(Pedregosa et al., 2011).
Similar to the LDA, the SVM classifier is pro-

vided with the transformed MI data to train on to
find the optimal separating hyperplane and mar-
gins, which can then be used to classify and create
probability predictions for new data points. Once
the SVM classifier is trained, it calculates deci-
sion function scores for each class based on a data
point’s distance from the hyperplane. To estimate
probabilities, SVMs employ Platt scaling, where a
logistic regression model is fit to the decision func-
tion scores. The probability estimates indicate the
likelihood of a data point belonging to each class
based on its distance to the hyperplane (Chang &
Lin, 2011; Wu et al., 2003).

2.5 Confidence-based dynamic clas-
sification

Definitions:

Window
A segmented section of time xt of a trial. Denoted

as:

x = [x1, x2, ..., xt] (2.1)

for time window t ∈ {1, 2, ..., T}.
Probability estimate
The probability output of the classification

model at time window t for class c is denoted as:

ptc = pθ(y = c|xt) (2.2)

where θ is the trained model parameters, and
y the predicted class label. The probability vector
output of the classification model at time window
t for all the classes is therefore:

p⃗t := [pt1 , pt2 , ..., ptC ] (2.3)

p⃗t is a probability vector containing each esti-
mated probability for class c ∈ {1, 2, ..., C}.

Dynamic model

Given the class probabilities from the classification
model at a specific time window, we can estimate
the uncertainty of the model prediction by using
predictive entropy. Predictive entropy, given class
probability estimates, measures the total amount
of uncertainty over all the classes. Given the class
probability estimate vector p⃗t and pc being the
probability for class c, the function is denoted as:

Hpred(p⃗t) = −
∑
C

ptc log ptc (2.4)

This allows one to capture the uncertainty of the
model that arises due to a data point’s distance to
a decision boundary. The uncertainty can then be
turned into confidence through:

Confidence(p⃗t) = 1−Hpred(p⃗t) (2.5)

After measuring the confidence of the model’s
predicted probability estimates for a window, it is
compared to the confidence threshold hyperparam-
eter τ . The following indicator function is used for
this comparison:

I(Confidence(p⃗t)) =

{
1 if Confidence(p⃗t) > τ

0 otherwise

(2.6)
As previously mentioned, Jin et al. (2011) utilizes

a parameter Jmin that sets the minimum number
of consecutive iterations with the same prediction.
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Figure 2.6: Overview of the processing of the MI EEG data.

Algorithm 2.1 Dynamic early classification

x⇐ set of time windows in trial
Patience ⇐ number of times confidence should surpass the
threshold in a row
sum⇐ 0
maxC ⇐ None
currentMaxC ⇐ None
for xt ∈ x do

p⃗t ← predicted class probability vector given xt

currentMaxC ← max probability class in p⃗t

if I(Confidence(p⃗t)) == 1 then
if maxC == None OR maxC ̸= currentMaxC then

maxC ← currentMaxC
sum← 1

else
sum← sum + 1

end if
end if
if sum == Patience then

return maxC
end if

end for

Similarly, the proposed dynamic model utilizes an
optimized parameter Patience, that sets the num-
ber of consecutive windows in which the model has
had a confidence above a given threshold. The dy-
namic model predicts the highest probability class
c as soon as the number of times the confidence
of the model’s predicted probability estimates is
above the confidence threshold in a row is equal
to the optimal Patience value. The pseudocode in
algorithm 2.1 shows how this early dynamic classi-
fication is implemented.

2.6 Metrics

To evaluate the dynamic and static models, Accu-
racy, Cohen’s Kappa, and Infomation Transfer Rate
(ITR) are considered.

Averaged accuracy measures the mean ratio of
correct predictions over the total number of predic-

tions of the classes as seen in Equation 2.7 (Salaud-
din Khan et al., 2023):

Averaged accuracy =

∑C
i=1

tpi+tni

tpi+fpi+tni+fni

C
(2.7)

where:

• tp - true positive

• tn - true negative

• fp - false positive

• fn - false negative

• C is the number of classes

As the dataset is balanced, accuracy provides a
useful and interpretable metric for model perfor-
mance.

Cohen’s Kappa is a measure for the level of agree-
ment between two annotators on a classification
task, it is used here to measure the agreement be-
tween the true label and predicted labels of the
model.

k =
(p0 − pe)

(1− pe)
(2.8)

p0 is the relative observed agreement among
raters, and pe the expected agreement when both
annotators assign labels randomly (Pedregosa et
al., 2011; Landis & Koch, 1977). It is commonly
used in the comparison of models in BCI research
(Tangermann et al., 2012).

Information Transfer Rate (ITR) is the most
commonly applied metric to assess the overall per-
formance of BCIs (Yuan et al., 2013). It is partic-
ularly useful to assess BCI performance as it takes

7



into account both classifier accuracy P and earli-
ness in terms of prediction time T . It measures the
amount of information communicated per unit of
time (Wolpaw et al., 2002).
ITR is computed as the product of two compo-

nents: B, the information transfer rate in bits per
trial, and Q which scales B to bits per minute and
allows ITR to also consider time. B is defined by:

B = log2 N +P log2 P + (1−P ) log2
1− P

N − 1
(2.9)

where N is the number of classes. Q adjusts B
to bits per minute based on prediction time T :

Q =
60

T
(2.10)

ITR is, therefore, given by:

ITR(
Bit

Min
) = B ∗Q (2.11)

ITR allows one to find the optimal Patience
value by balancing between earliness and accuracy.
It is also, therefore, a comprehensive measure of
BCI system performance, as BCIs need to achieve
high accuracy while also delivering timely predic-
tions.

2.7 Hyperparameter tuning

A random search with 60 iterations and uniform
distribution was conducted on the training data us-
ing the static model. All windows were utilized to
optimize window size, CSP, and classifier hyperpa-
rameters, with a focus on maximizing accuracy.
Additionally, a Patience value was determined

through another random search of 60 iterations, but
using the dynamic model and optimizing for Infor-
mation Transfer Rate (ITR). This search, there-
fore, did not use all windows, as earliness was also
taken into consideration. Only considering accu-
racy would likely mean that the optimal Patience
would be at a vastly later point. Finding an op-
timal balance between the two is therefore impor-
tant. 10-fold cross-validation was also applied to
both searches.

2.7.1 Window parameters

As seen in the window segmentation illustration in
Figure 2.3, the sliding window had two tuned pa-
rameters. The first was the length of the window

of size Ls and step size ∆ts in samples across the
trial, separating the trial into equal-length windows
where each window had ∆ts samples between the
start of one window and the start of the next win-
dow. The sliding window parameters Ls and ∆ts
had both a possible size between 0.1 and 1 seconds.

The expanding window had tuned parameters
initial window length of size Le, and an expansion
rate of size ∆te, separating the trial into iteratively
longer windows. The expanding window parameter
Le had a possible value between 0.1 and 1 seconds,
and an expansion rate ∆te between 0.1 and 0.5 sec-
onds.

2.7.2 CSP and model parameters

The number of CSP filers which denoted the num-
ber of spatial filters to be used by the method to
maximize the difference in variance was also tuned.
The set possible values were either 4 or 8, with
one or two filters for each class in the dataset. Any
more resulted in the unwanted fitting of electrodes
placed above the occipital lobe which is responsible
for visual processing and not MI.

The LDA and SVM models also had several pa-
rameters tuned to improve accuracy. See Table 2.1
for the tuned model parameters and their respec-
tive possible values.

The dynamic model had an additional tuned pa-
rameter Patience which had the possible values of
the number of windows that the trial is split into,
given the optimal window parameters.

2.8 Dynamic and static model eval-
uation

As specified in 1.4 and in 1.3, the aim of this
research was to evaluate the difference in perfor-
mance between a static and a dynamically classi-
fying model. The dynamic model is the model that
includes the defined dynamic stopping function de-
scribed in Section 2.5, and can find the average pre-
diction time it took to classify early for a given con-
dition. The static model is then the model without
this early stopping method. As such, it is not able to
find prediction times and needs specific time points
to predict.

To evaluate the dynamic model, the confidence
thresholds were set to a range of values between
0 and 1, specifically: [0.001, 0.01, 0.1, 0.2, 0.3, 0.4,
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Table 2.1: Tuned parameters and their values for the models.

Model Parameter description Values explored

LDA Algorithm Solver [’svd’, ’lsqr’, ’eigen’]
Tolerance Level [1.0e-2 to 1.0e-15]
Number of Components [None, 1, 2, 3]
Regularization [None, ’auto’, 0.0 to 1.0]

SVM Regularization Strength [0.1, 1, 10, 100, 1000]
Kernel Type [’linear’, ’rbf’, ’poly’, ’sigmoid’]
Kernel Flexibility [1, 0.1, 0.01, 0.001, 0.0001]
Polynomial Degree [2, 3, 4, 5]

0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999]. The changing be-
havior of the dynamic early classification can then
be seen when the strictness of the required con-
fidence is varied. Given the optimal Patience, for
each threshold, average prediction time, average ac-
curacy, average kappa, and average ITR are cal-
culated across all subjects and all of the subjects’
trials.

To then evaluate the static model similarly, it is
provided with the average prediction times found
by the dynamic model for each confidence thresh-
old. Average accuracy, average kappa, and average
ITR are also calculated for the static model at those
prediction times. The performances for both the
static and dynamic models are plotted together to
see to which extent having a confidence-based early
classification model maintains performance while
simultaneously classifying early. This would show
how the performance of the models differ.

3 Results

The dynamic and static models are compared on
Accuracy, Kappa, and ITR. The performance of
SVM and LDA, as well as, the two different window
segmentation methods are also compared. Table 3.1
shows the performance of all the models on accu-
racy, kappa, and ITR. Finally, the plots below show
the performance of the dynamic and static mod-
els. For the dynamic model, each point represents
a confidence threshold, where it generates an av-
erage prediction time and performance across sub-
jects, where each subject’s performance was the av-
erage across the test trials. These prediction times
were then given to the static model to also assess
performance. The error bars in the plots indicate
the standard error of the mean (SEM), where the

difference in the means can be seen.

3.1 Accuracy and Kappa

Table 3.1 shows that the performance is improved
by the use of the dynamic model, irrespective of the
classifier. This is reflected in Figures 3.1 and 3.2
for accuracy, and in Figures 3.3 and 3.4 in terms
of kappa. Both the LDA sliding and SVM sliding
models maintain or improve with the confidence-
based dynamic classification method.

Smaller thresholds, while providing earlier pre-
diction times, have less performance difference be-
tween the dynamic and static models. However, as
the thresholds increase, so does the difference in
performance with the dynamic model performing
better. When the confidence threshold increases, so
does the model’s ability to leverage the confidence
threshold and make more reliable predictions. For
the sliding models there also seems to be a reduced
accuracy for later time points. This is likely due
to the proximity to the offset, as the participants
could be fatigued or end their motor imagination
early as the subjects may be expecting the offset to
be approaching. The performance difference could
likely be affected by this as well.

The expanding window models, however, see less
difference between the dynamic and static models,
as seen in Figures 3.5 and 3.6 for accuracy and Fig-
ures 3.7 and 3.8 for kappa. This results in equal and
maintained performance between the static and dy-
namic models.

Additionally, the expanding models have a higher
average accuracy than the sliding models. Their
accuracy and prediction time also seem to be lin-
early related as the threshold increases. This is be-
cause the models were trained on the entire trial.
As the threshold increases, so does the number of
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Table 3.1: Model performances on Accuracy, kappa, and ITR

Sliding window Expanding window

LDA SVM LDA SVM

Metric Dynamic Static Dynamic Static Dynamic Static Dynamic Static

Accuracy (%) 56.4 54.7 52.9 51.5 58.0 58.0 57.5 57.5
Kappa 0.42 0.40 0.37 0.35 0.44 0.44 0.43 0.43

ITR (bits per min) 9.27 8.48 7.56 7.11 7.41 7.42 7.09 7.10

Figure 3.1: Accuracy over prediction time for
LDA sliding window models: Dynamic versus
Static. Blue line: Dynamic model. Green line:
Static model. Each point is a confidence thresh-
old, lower threshold values generate earlier pre-
diction times, and larger threshold values gener-
ate later prediction times. Error bars: standard
error of the mean. Dashed lines: start and end
of trial. Bottom red line: chance level accuracy

windows visited to reach Patience. As the number
of windows visited increases so does its similarity
to the training data, which explains this relation.
This could also explain the minimal performance
difference. The increasing window size means more
data and more alignment with the training data.
This could reduce the advantage of the early clas-
sification for the dynamic model.

The best performance, in terms of accuracy and
kappa, is shown for sliding window models at
thresholds or time points in the middle range. For
expanding window models, the best performance is
seen at thresholds closer to 1 or at the end of the
full trial time.

For all models, there is a relatively large gap

Figure 3.2: Accuracy over prediction time for
SVM sliding window models: Dynamic versus
Static. Similar to Figure 3.1 but for SVM.

Figure 3.3: Kappa over prediction time for LDA
sliding window models: Dynamic versus Static.
Similar to Figure 3.1 but using kappa.

between when the cue is given at the onset and
the first average prediction time, even with very
low threshold values. This has two likely reasons.
Firstly, in the earliest time points the model is gen-
erally unable to accurately classify the MI. This
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Figure 3.4: Kappa over prediction time for SVM
sliding window models: Dynamic versus Static.
Similar to Figure 3.1 but for SVM and using
kappa.

Figure 3.5: Accuracy over prediction time for
LDA expanding window models: Dynamic ver-
sus Static. Similar to Figure 3.1 but using ex-
panding windows.

could be due to the time taken after a cue by the
subject to process and initiate the MI. This could
also be compounded by the time it takes to initiate
MI to where there is reliable ERD/ERS. Secondly,
the models need to wait for a certain amount of
time for which the model’s confidence should be
above the threshold, i.e. Patience, and optimal pa-
tience is likely more than one window.

Overall, the accuracy for all models hovers be-
tween 50% and 60%, which is considerably above
the chance level, indicating that the models are cap-
turing relevant patterns in the EEG data and can
classify correctly. The general performance of kappa
falls within the range of fair to moderate agreement
which signifies that the models are reasonably reli-
able in their predictions (Landis & Koch, 1977).

Figure 3.6: Accuracy over prediction time for
SVM expanding window models: Dynamic ver-
sus Static. Similar to Figure 3.1 but using ex-
panding windows and SVM.

Figure 3.7: Kappa over prediction time for
LDA expanding window models: Dynamic ver-
sus Static. Similar to Figure 3.1 but using ex-
panding windows and kappa.

3.2 Information transfer rate

The ITR plots in Figures 3.9 to 3.12 show sim-
ilar results to the previous figures, keeping the
same performance differences, and gaps, as dis-
cussed above. The dynamic models have better per-
formance, across the thresholds for the sliding mod-
els and the performance difference between expand-
ing models is minimal. The difference between the
static and dynamic models are the same as in the
accuracy and kappa plots, as ITR takes into ac-
count accuracy as well. The ITR plots also show
that an increase in time is a decrease in ITR with
all the ITR plots decreasing over time. ITR, there-
fore, seems to favor earliness. The optimal ITR, un-
like for accuracy and kappa, is at the earliest time
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Figure 3.8: Kappa over prediction time for
SVM expanding window models: Dynamic ver-
sus Static. Similar to Figure 3.2 but using ex-
panding windows, SVM, and kappa.

points for all models. At these time points, static
and dynamic models have little difference in perfor-
mance. While accuracy may improve at later time
points such as for the expanding window models,
earliness is of more importance for the ITR as seen
in Figures 3.11 and 3.12.

Looking at Table 3.1, while accuracy is higher
for the expanding models, the sliding models have
higher ITR. This likely means that they can clas-
sify earlier than the expanding models while still
maintaining relatively similar accuracy. The slid-
ing dynamic stopping models also have higher ITR
than the sliding static models, making sliding dy-
namic models the better models overall.

Figure 3.9: ITR over prediction time for LDA
sliding window models: Dynamic versus Static.
Similar to Figure 3.1 but using ITR.

Figure 3.10: ITR over prediction time for SVM
sliding window models: Dynamic versus Static.
Similar to Figure 3.1 but using SVM and ITR.

Figure 3.11: ITR over prediction time for LDA
expanding window models: Dynamic versus
Static. Similar to Figure 3.1 but using expand-
ing windows and ITR.

Figure 3.12: ITR over prediction time for SVM
expanding window models: Dynamic versus
Static. Similar to Figure 3.1 but using expand-
ing windows, SVM, and ITR.
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4 Discussion

This research explored whether a confidence-based
early classifying model would maintain or improve
performance when compared to a static model
given the same time windows. The expectation was
that this would indeed be the case, due to previous
methods in other types of BCI applications seeing
improved performance (Jin et al., 2011; Renardi,
2024; Schreuder et al., 2013; Spüler, 2017).
The results confirmed that a confidence-based

early classification model was able to maintain and
even improve classification accuracy, kappa, and
ITR. Notably, sliding windows showed a larger per-
formance difference between the dynamic and static
models, whereas expanding windows exhibited lit-
tle to no difference. This trend was consistent for
both SVM and LDA classification models. ITR fa-
vored sliding dynamic models, which also showed
large performance differences between the dynamic
and the static models.

4.1 Limitations and future work

While the findings confirmed the expectations,
there are several limitations to this research. This
method was solely evaluated on the BCI Competi-
tion IV data set 2a from Brunner et al. (2008). It
is, therefore, important to verify these findings on
additional MI datasets. This method was also only
evaluated on synchronous data, raising the question
of generalization to real-world usage. It is, there-
fore, needed to assess whether the application of
asynchronous data, without cues, affects the model
performance and whether the current findings hold.
Additionally, while effective, this research used

predictive entropy, which is a relatively simple un-
certainty quantification method. The LDA model,
additionally, used softmax for its probability esti-
mation. Softmax outputs are known for being over-
confident, making them imperfect for accurate un-
certainty estimation (Pearce et al., 2021). A first
improvement could be to implement probability
calibration, where the models predicted probabili-
ties are adjusted to better reflect true probabilities.
While this may have been implicitly done for the
SVM, as it internally uses Platt scaling (Chang &
Lin, 2011), it was not verified whether the predicted
probability estimates of the models match the true
probability of the target classes.

The models themselves are also unable to cap-
ture epistemic uncertainty. Epistemic uncertainty
arises from a lack of knowledge and can be observed
when the model is applied to data that is different
from the training data (Hüllermeier & Waegeman,
2021). The model may be overconfident and less
reliable when encountering new data without the
ability to capture this type of uncertainty. Address-
ing these limitations by incorporating an uncer-
tainty quantification method capable of capturing
epistemic uncertainty and calibrating the probabil-
ity estimated to represent true probability, could
increase the performance difference between the dy-
namic and static models. The ensemble method dis-
cussed by de Jong et al. (2023) could serve this task.

Another potential limitation is the optimal ITR
being at the earliest time points at which point
the dynamic and sliding models had little differ-
ence in performance. It could be argued that one
could choose to find this optimal time and provide
this to the static model for inference for new sub-
jects. While true that the static model may seem
like an alternative to the dynamic model, it is un-
able to balance earliness and accuracy. Rest peri-
ods between trials, while not used in this research,
could serve to highlight the strengths of the dy-
namic model. Assume an infinite rest period prior
to a trial during which the model is evaluated on
ITR, when the trial begins, the dynamic model
should still be able to classify as soon as patience is
reached during the trial. The ITR analysis for the
static model would then not be possible or at least
be very limited and brittle.

The expanding window models as seen in Section
3, had interesting results. As previously mentioned,
due to the training data being on the whole trial,
as the windows get longer, so does their closeness
to the training data, increasing accuracy. The ex-
tent to which this is desirable is questionable. How-
ever, the performance with thresholds in the middle
range did provide better accuracy than for the slid-
ing window models, even while including data from
the beginning of the trial. The assumption would
be that including time points from this early period
in the trial where classification is difficult would af-
fect the performance for larger windows negatively.
As seen in the accuracy and kappa plots for the ex-
panding window models, this is not the case. The
performance difference is, however, still affected by
this.
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As BCIs have inter-subject variability, the CSP,
model (including patience), and window hyperpa-
rameters, should all be optimized for each subject
separately. This was not done in this research. Im-
plementing subject-specific optimizations could im-
prove performance for the subjects. It would also
show whether per-subject confidence-based early
MI classification is more effective. This would in-
crease the practical application of this system, and
further show the improved abilities of dynamic MI
BCI.
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