
Applying Graph Learning For
Technical Debt Detection

Andrei-S, tefan Istudor

University of Groningen

Applying Graph Learning For Technical Debt
Detection

Bachelor’s Thesis

To fulfill the requirements for the degree of
Bachelor of Science in Computing Science

at the University of Groningen under the supervision of
Dr. D. (Daniel) Feitosa (Computing Science, University of Groningen)

and
J. (Jesse) Maarleveld, MSc. (Computing Science, University of Groningen)

Andrei-S, tefan Istudor (S4675908)

July 21, 2024

Abstract

In the domain of software engineering, the increasing presence of Technical
Debt (TD) poses a significant challenge for the quality and long-term main-
tenance of modern software systems. Technical Debt refers to the extra cost
and effort required, due to early sub-optimal decisions in software develop-
ment. This research project seeks to apply graph learning techniques in order
to identify Technical Debt within software projects. We developed a pipeline
called ‘Debtective’ for preprocessing code samples and for model training.
This allowed us to investigate the effectiveness of different model architec-
tures in detecting Technical Debt from a chosen dataset. We selected and
transformed code samples for two SonarQube code smells into Code Prop-
erty Graphs (CPGs), and we used them in training and evaluating a series
of models that we created. The results show that some models perform bet-
ter for a code smell compared to the other, and some models perform great
generally, for both code smells. Overall, the results of our study confirm
the effectiveness of graph-based models in detecting Technical Debt (TD),
and highlight its potential for future TD detection research. Through this
proposed approach, we hope to enhance the identification of TD and offer
new methodologies for its detection, potentially benefiting both the industry
practices and the academic research in this area.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my su-
pervisors, Dr. Daniel Feitosa and Jesse Maarleveld. Without your guidance,
this research project would not have been possible.

I would like to express my heartfelt appreciation to my family: my parents,
Vasile and Lavinia, and my sister, Ana. Your unconditional support and un-
failing love have been the cornerstone of my academic journey.

To my girlfriend, Petya, your encouragement and support throughout my
degree has been essential.

Finally, I would like to thank all of my friends, who have contributed to my
journey in various ways. Your support has been greatly appreciated.

1

Contents

1 Introduction 7

2 Background 9
2.1 Technical Debt Management . 9
2.2 Graph Neural Networks . 9

2.2.1 Graph Convolutional Networks (GCNs) 10
2.2.2 Graph Attention Networks (GATs) 11
2.2.3 Graph Sample and Aggregation (GraphSAGE) 11
2.2.4 Dropout . 12
2.2.5 Rectified Linear Units (ReLU) 13

2.3 Graph Representations . 13

3 Methodology 17
3.1 Objectives & Research Questions 17
3.2 Outline . 18
3.3 Data Collection . 19
3.4 Data Analysis . 22

3.4.1 SonarQube rules . 23
3.4.2 Dataset preprocessing 26
3.4.3 Graph Representations 28
3.4.4 Model Architectures Employed 30

3.5 Instrumentation . 33
3.5.1 Repository gathering . 33
3.5.2 Rules covered by our tool 35
3.5.3 Sample transformations 37
3.5.4 Sample labelling . 40
3.5.5 Model training . 41
3.5.6 Model evaluation . 42

4 Results 44
4.1 Long Parameter List . 44

4.1.1 Training results . 44
4.1.2 Evaluation results . 48

4.2 Long Method . 52
4.2.1 Training results . 52
4.2.2 Evaluation results . 56

5 Discussion 60
5.1 Interpretation of Results . 61

2

Contents Contents

5.2 Addressing the Research Question 64
5.3 Implications to Practitioners and Researchers 65
5.4 Threats to Validity . 66

5.4.1 Reflections on Dataset 67

6 Conclusions 69
6.1 Summary of our Findings . 69
6.2 Instrumentation: ‘Debtective’ 70
6.3 Future Work . 70

A Additional Data 74
A.1 Query results in data preprocessing 74
A.2 Lists of SonarQube Rules . 79
A.3 SQL Queries used in data preprocessing 81

3

List of Figures

2.1 Example code sample [23]. 16
2.2 Code property graph for the example code sample [23]. 16

3.1 Entity Relationship Diagram of the ‘Technical Debt Dataset’. [15] 21
3.2 Description of the selected projects from the ‘Technical Debt

Dataset’. [15] . 22
3.3 Software Architecture of the Debtective Tool 34

4.1 Training results for Model 1 on the ‘Long Parameter List’ code
smell samples. 44

4.2 Training results for Model 2 on the ‘Long Parameter List’ code
smell samples. 45

4.3 Training results for Model 3 on the ‘Long Parameter List’ code
smell samples. 46

4.4 Training results for Model 4 on the ‘Long Parameter List’ code
smell samples. 47

4.5 Evaluation results for Model 1 on the ‘Long Parameter List’
code smell samples. 48

4.6 Evaluation results for Model 2 on the ‘Long Parameter List’
code smell samples. 49

4.7 Evaluation results for Model 3 on the ‘Long Parameter List’
code smell samples. 50

4.8 Evaluation results for Model 4 on the ‘Long Parameter List’
code smell samples. 51

4.9 Training results for Model 1 on the ‘Long Method’ code smell
samples. 52

4.10 Training results for Model 2 on the ‘Long Method’ code smell
samples. 53

4.11 Training results for Model 3 on the ‘Long Method’ code smell
samples. 54

4.12 Training results for Model 4 on the ‘Long Method’ code smell
samples. 55

4.13 Evaluation results for Model 1 on the ‘Long Method’ code smell
samples. 56

4.14 Evaluation results for Model 2 on the ‘Long Method’ code smell
samples. 57

4.15 Evaluation results for Model 3 on the ‘Long Method’ code smell
samples. 58

4

List of Figures List of Figures

4.16 Evaluation results for Model 4 on the ‘Long Method’ code smell
samples. 59

5

List of Tables

3.1 15 Selected Rules from the SonarQube Analysis from the Tech-
nical Debt Dataset . 24

3.2 6 Selected Rules from the SonarQube Analysis 25
3.3 Columns that contains useful information for our study from

the Technical Debt Dataset 3.1 27
3.4 Graph representations and observations 29

A.1 Top 100 most frequently encountered SonarQube rules from
the Technical Debt dataset . 74

A.2 Selected Rules from SonarQube Analysis 79

6

1 | Introduction

In the rapidly evolving field of software development, the concept of Tech-
nical Debt (TD) has emerged as a critical consideration for both developers
and researchers [12]. In software-intensive systems, Technical Debt is a col-
lection of design or implementation constructs that are expedient in the short
term, but set up a technical context that can make future changes more costly
or impossible [3]. Technical Debt presents an actual or contingent liability
whose impact is limited to internal system qualities, primarily maintainabil-
ity and evolvability [3]. As software systems become more complex, the need
for developing tools for the management of Technical Debt increased [3].

Graph Neural Networks (GNNs) have demonstrated significant success across
various domains due to their capability to model complex relational struc-
tures. As an example, they have improved tasks such as node classification,
link prediction, and community detection, showing superior performance
and scalability compared to traditional methods [10]. This success is high-
lighted in the comprehensive survey on graph representation learning, which
highlights the transformative potential of GNNs in processing and under-
standing structured data in the context of diverse applications [10].

The application of graph learning specifically for technical debt detection
is an area open to exploration. There is a series of existing studies that
have laid the groundwork by employing graph-based models for vulnera-
bility detection and defect prediction, and these demonstrated an increased
accuracy and efficiency compared to traditional methods [25, 24, 5]. For
example, the Bidirectional Graph Neural Network for Vulnerability Detec-
tion (BGNN4VD) approach uses advanced graph learning to better identify
whether a piece of code is vulnerable or non-vulnerable [5]. This suggests
that graph-based models and graph neural networks are possibly suitable
for detecting Technical Debt as well [5].

The motivation for this research project comes from the significant challenges
that the software development community is facing in identifying and man-
aging Technical Debt. As software systems grow in complexity, so does the
TD, making its detection and management increasingly difficult. This prob-
lem is not only of academic interest, but also significantly concerning for the
industry. It directly impacts the cost and effort needed for creating high-
quality long-term maintainable software projects. Hence, there is a serious

7

Chapter 1. Introduction

need for innovative approaches that can enhance the detection of technical
debt, offering better results, compared to traditional methods [25].

By exploring and applying graph learning techniques in a Technical Debt
setting, this research produced a series of advancements in the detection and
management of TD. This will not only benefit the research community by
contributing to the current level of knowledge in this area, but it will also
have a practical impact on the industry by providing tools and methodolo-
gies for more efficient Technical Debt detection. To conclude with, exploring
this path might open up interdisciplinary research opportunities at the inter-
section of the field of software engineering and machine learning.

Contributions of this research project:

• Evaluation of Graph-Based Models on TD detection:
Demonstrating the applicability and effectiveness in identifying TD for
different graph learning model architectures that we used.

• Methodological Advancements:
We built a pipeline called ‘Debtective’ for investigating the effectiveness
of graph learning in TD detection, which will contribute with method-
ological advancements in TD detection and management.

In Chapter 2 we will be looking over the background (or state of the art). In
Chapter 3 we will be discussing the methodology for this research project.
This includes the dataset selection and preprocessing, the choice of graph
representations and, lastly, the construction of the pipeline, or the tool that
was created. Next, we will be analysing the results in Chapter 4, delving
into discussion in Chapter 5, and, in the end, drawing the conclusions of this
project in Chapter 6.

8

2 | Background

2.1 Technical Debt Management

The management of Technical Debt (TD) is an area with a growing impor-
tance [12], reflecting the trade-offs between rapid deployment and long-term
maintainability of software. Developers and teams often need to deliver new
software within strict deadlines, compromising quality and maintainability
[21, 6]. With the ever increasing complexity of modern software, there is
a need for tools and methodologies for detecting and managing Technical
Debt. Too much TD causes software to become difficult to maintain, and pro-
duces future costs and complexities which affect the amount of additional ef-
fort in the maintenance process of existing software [21]. The technical qual-
ity of source code is an important determinant for software maintainability
in the long run [4].

2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are a sub-class of deep learning models,
which are specifically designed to work with graph-structured data. GNNs
are used for learning node embeddings based on neighboring information
through a combination of message passing and aggregation mechanisms.
They show significant expressive capacity in representing graph embeddings
in an inductive learning manner [10]. The development of GNNs can be
traced back to the 2000s, with some of the early models using recurrent neu-
ral network architectures, in order to learn node embeddings via recurrent
layers. These recurrent GNNs (RGNNs) use the same weights in each hidden
layer and operate recursively until they converge. This enables the model
to capture dependencies within the structure of the graph representations.
However, a limitation of RGNNs is their potential incapability of distinguish-
ing between local and global structures because of the use of identical weights
across layers [10].

The evolution of GNNs has led to the introduction of convolutional operators
with different weights in each hidden layer. This has proven more efficient
in capturing and distinguishing local and global structures [10]. This ad-
vancement led to the appearance of Convolutional Graph Neural Networks

9

2.2. Graph Neural Networks Chapter 2. Background

(CGNNs), including their various variants, such as spectral CGNNs, spatial
CGNNs, and attentive CGNNs [10]. Spectral CGNNs make use of the spec-
tral domain for convolution operations, spatial CGNNs work directly on the
graph domain, and attentive CGNNs incorporate attention mechanisms to
focus on the most relevant parts of the graph representations given [10]. De-
spite their advancements and advanced use-cases, GNNs also face a series
of limitations. One notable challenge is called the ‘over-smoothing’ prob-
lem, where the node representations become indistinguishable when multi-
ple GNN layers are stacked together [10]. Additionally, GNNs can also suffer
from noise introduced by neighbor nodes, which can degrade the quality of
the learnt embeddings [10].

A series of interesting Graph Neural Networks for the scope of this study
are Graph Convolutional Networks (GCNs) [14], Graph Attention Networks
(GATs) [22], and Graph Sample and Aggregation (GraphSAGE) [9]. We will
further discuss these three:

2.2.1 Graph Convolutional Networks (GCNs)

Graph Convolutional Networks (GCNs) [14] are a sub-type of Graph Neu-
ral Networks (GNNs), designed to perform convolution operations directly
on graph data. This allows GCNs to effectively capture and use the struc-
tural information of graph representations, making them suitable for tasks
that involve complex relational data [14], such as detecting Technical Debt
(TD) from graph representations of code samples. By applying a layer-wise
propagation rule, GCNs aggregate information from the neighbors of a node,
transforming and combining it with the node’s own features [14].

Mathematically, the layer-wise propagation rule [14] for GCNs is defined as
follows:

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W(l)) (2.1)

Here, Ã = A + I is the adjacency matrix with added self-loops, D̃ is the
degree matrix of Ã, H(l) is the input feature matrix at layer l, W(l) is the
trainable weight matrix at layer l, and σ is the activation function [14]. The
trainable parameters in GCNs are the weight matrices W(l) for each one of the
layers. The node features are updated through this convolution operation,
which aggregates and transforms the features from the neighbors [14].

The advantages of using GCNs lie in their ability to incorporate both node
features and graph structure into the learning process. This leads to better
performance on tasks such as node classification. GCNs are also less prone
to overfitting on sparse data due to the regularization effects of neighborhood
aggregation [14]. On the other hand, GCNs have several limitations, such as
sensitivity to graph connectivity and potential issues with over-smoothing,
where repeated application of graph convolutions can make node features

10

2.2. Graph Neural Networks Chapter 2. Background

indistinguishable [14]. These advantages and limitations are also relevant to
other graph-based models like GAT [22] and GraphSAGE [9].

2.2.2 Graph Attention Networks (GATs)

Graph Attention Networks (GATs) [22] use attention mechanisms to address
the limitations of previously mentioned graph convolutional methods. GATs
enhance node classification on graph-structured data by applying masked
self-attentional layers. These layers assign different importance to the neigh-
boring nodes of the node in question [22]. This is achieved through attention
coefficients that weigh the significance of each neighbor’s features, providing
a more flexible and dynamic method for feature aggregation without requir-
ing prior knowledge of the graph structure [22].

The attention mechanism in GATs [22] can be mathematically represented as:

eij = LeakyReLU(aT[Whi∥Whj]) (2.2)

αij =
exp(eij)

∑k∈Ni
exp(eik)

(2.3)

h′
i = σ

(
∑

j∈Ni

αijWhj

)
(2.4)

Here, a is a trainable weight vector, W is a trainable weight matrix, eij is the
attention score between node i and node j, αij is the normalized attention
coefficient, and σ is the activation function [22].

The main advantages of using Graph Attention Networks include the ability
to handle graphs with varying neighborhood sizes and their efficiency due to
the parallelizable nature of their attention mechanisms [22]. GATs are com-
putationally expensive to scale to large graphs while maintaining computa-
tional efficiency and may require specialized hardware for optimal perfor-
mance [22]. Despite these challenges, GATs can be effective for tasks such as
detecting technical debt in graph representations of code by focusing on the
most relevant nodes and relationships. Similar to GCNs and GraphSAGE,
these benefits and limitations are shared [22].

2.2.3 Graph Sample and Aggregation (GraphSAGE)

GraphSAGE (Graph Sample and Aggregation) [9] represents an inductive
framework designed for scalable and generalizable graph representation learn-
ing on large graphs. Unlike other methods that require the entire graphs
during training, GraphSAGE can generate embeddings for unseen nodes by
sampling and aggregating features from a node’s local neighboring nodes [9].

11

2.2. Graph Neural Networks Chapter 2. Background

This is done through different aggregating functions such as mean, LSTM,
and pooling. By learning an embedding function that can be applied to new
nodes, GraphSAGE enables efficient and scalable learning on dynamic and
large-scale graphs [9].

The aggregation function in GraphSAGE [9] can be represented as:

h(k)
v = σ

(
W(k) · AGGREGATE(k)

({
h(k−1)

u , ∀u ∈ N (v)
}))

(2.5)

Here, h(k)
v is the representation of node v at layer k, W(k) is the trainable

weight matrix at layer k, and AGGREGATE(k) is a function that aggregates
the features of the neighbors u of node v [9].

The advantages of using GraphSAGE are mainly its ability to handle large
and dynamic graphs and its flexibility in using different aggregation meth-
ods to capture various types of neighborhood information [9]. On the other
hand, one of the challenges with GraphSAGE is the potential loss of global
structural information due to its local sampling approach [9]. By analyz-
ing and aggregating local neighborhood information in code graphs, Graph-
SAGE can uncover patterns and dependencies that might indicate areas of
Technical Debt.

2.2.4 Dropout

With large neural networks, however, the obvious idea of averaging the out-
puts of many separately trained nets is prohibitively expensive. Combining
several models is most helpful when the individual models are different from
each other and in order to make neural net models different, they should ei-
ther have different architectures or be trained on different data. Training
many different architectures is hard because finding optimal hyperparame-
ters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require
large amounts of training data and there may not be enough data available
to train different networks on different subsets of the data. Even if one was
able to train many different large networks, using them all at test time is in-
feasible in applications where it is important to respond quickly [19].

Dropout is a technique that addresses both these issues. It prevents over-
fitting and provides a way of approximately combining exponentially many
different neural network architectures efficiently. The term “dropout” refers
to dropping out units (hidden and visible) in a neural network. By dropping
a unit out, we mean temporarily removing it from the network, along with
all its incoming and outgoing connections, as shown in Figure 1. The choice
of which units to drop is random. In the simplest case, each unit is retained
with a fixed probability p independent of other units, where p can be chosen
using a validation set or can simply be set at 0.5, which seems to be close to

12

2.3. Graph Representations Chapter 2. Background

optimal for a wide range of networks and tasks. For the input units, however,
the optimal probability of retention is usually closer to 1 than to 0.5 [19].

Applying dropout to a neural network amounts to sampling a “thinned” net-
work from it. The thinned network consists of all the units that survived
dropout. A neural net with n units, can be seen as a collection of 2n possi-
ble thinned neural networks. These networks all share weights so that the
total number of parameters is still O(n2), or less. For each presentation of
each training case, a new thinned network is sampled and trained. So train-
ing a neural network with dropout can be seen as training a collection of 2n
thinned networks with extensive weight sharing, where each thinned net-
work gets trained very rarely, if at all [19].

2.2.5 Rectified Linear Units (ReLU)

ReLU is an activation function which has strong biological and mathemati-
cal underpinning. In 2011, it was demonstrated to further improve training
of deep neural networks. It works by thresholding values at 0, i.e. f (x) =
max(0, x). Simply put, it outputs 0 when x < 0, and conversely, it outputs a
linear function when x ≥ 0 [1]. ReLU is conventionally used as an activation
function for neural networks, with softmax being their classification func-
tion. Then, such networks use the softmax cross-entropy function to learn
the weight parameters θ of the neural network [1].

2.3 Graph Representations

The employment of various graph representations plays a fundamental role
in the detection of Technical Debt using graph learning. Abstract Syntax
Trees (ASTs) [20], for instance, provide a tree-based representation of the syn-
tactic structure of the source code. This makes them invaluable in the anal-
ysis and identification of potential technical debt. In a similar way, Control
Flow Graphs (CFGs) [2] and Data Flow Graphs (DFGs) [11] offer insights into
the flow of control and data within software, further enriching the context
for graph-based analysis. Lastly, composite graphs, which integrate ASTs,
CFGs, and DFGs, offer a holistic view of the program’s structure, allowing
for a more comprehensive analysis. Such graph representations are crucial
for capturing the multifaceted nature of Technical Debt.

An intermediate program representation, called the program dependence
graph (PDG), makes explicit both the data and control dependencies for each
operation in a given program. Data dependencies have been used to repre-
sent only the relevant data flow relationships of a program. Control depen-
dencies are introduced to analogously represent only the essential control
flow relationships of a program. Control dependencies are derived from the
usual control flow graph [8].

13

2.3. Graph Representations Chapter 2. Background

• Abstract Syntax Trees (ASTs) [20]:

– Description: Represent the syntactic structure of source code in a
tree format, where each node denotes a construct occurring in the
source code.

– Nodes: Represent programming constructs such as expressions,
statements, and declarations.

– Edges: Represent the hierarchical syntactic relationships between
these constructs.

• Control Flow Graphs (CFGs) [2]:

– Description: They depict the order in which individual instruc-
tions or statements of a program are executed.

– Nodes: Represent basic blocks, which are code sequences with no
branches except at the entry and exit.

– Edges: Represent the flow of control between these basic blocks.

• Data Flow Graphs (DFGs) [11]:

– Description: They show the flow of data within the program, fo-
cusing on the dependencies between data-producing and data-
consuming operations.

– Nodes: Represent operations or computations in the program.

– Edges: Represent data dependencies, indicating which operation’s
output is used as input for another operation.

• Program Dependence Graphs (PDGs) [8]:

– Description: Explicitly represent both data and control dependen-
cies for each operation in a program.

– Nodes: Represent individual operations or instructions in the pro-
gram.

– Edges: Represent both data and control dependencies between op-
erations.

Control dependence refers to the execution of one instruction which depends
on the outcome of a previous control instruction, like a conditional state-
ment or a loop. This differs from control flow, which refers to the sequence
in which all instructions execute, typically shown in a Control Flow Graph
(CFG) [2]. In a similar manner, data dependence indicates that one instruc-
tion needs data produced by another instruction, whereas data flow is por-
traying how data moves and changes throughout the program, as it is de-
picted in Data Flow Graphs (DFGs) [11]. In short, control dependence fo-

14

2.3. Graph Representations Chapter 2. Background

cuses on decision points in the code, while control flow outlines their execu-
tion order. Data dependence focuses on data requirements, while data flow
follows the data movement.

One specific graph representation that we would like to focus our attention
on is Code Property Graphs (CPGs) [23]. They were first introduced by F. Ya-
maguchi et al. in 2014 [23]. CPGs are a complex representation of source code
that combines elements of three classical code analysis representations: Ab-
stract Syntax Trees (ASTs) [20], Control Flow Graphs (CFGs) [2], and Program
Dependence Graphs (PDGs) [8]. Their unified structure allows for modeling
of various patterns through graph traversals. This integrated approach en-
ables the detection of potential code smells with high accuracy. Moreover,
CPGs can be implemented using existing graph database technologies, which
allows for efficient handling and querying of large codebases [23]. This ef-
ficiency is demonstrated by the successful identification of previously un-
known vulnerabilities in complex software like the Linux kernel [23]. CPGs
also come with a series of limitations. One significant disadvantage is the
complexity of constructing and maintaining these graph representations, es-
pecially for very large and evolving codebases [23]. Another limitation is
the reliance on static code analysis, which may not capture all runtime be-
haviours and interactions. This can lead to potentially missing vulnerabili-
ties that only manifest under specific conditions [23].

Code Property Graphs allow us to use a single graph representation that cap-
tures both structure and semantics. This proves to be versatile for our project,
since we need to run multiple analysis tasks for different types of code smells.
The example of such utilisation can be seen in Figures 2.1 and 2.2, from "Mod-
eling and Discovering Vulnerabilities with Code Property Graphs", by F. Ya-
maguchi et al. [23].

15

2.3. Graph Representations Chapter 2. Background

Figure 2.1: Example code sample [23].

Figure 2.2: Code property graph for the example code sample [23].

16

3 | Methodology

3.1 Objectives & Research Questions

The goal of this project is to implement graph learning techniques from the
relevant literature, apply them in a technical debt setting, and check whether
these techniques are successful in detecting technical debt in existing tech-
nical debt datasets. Therefore, summarising our goal, the objectives were
finding a suitable dataset, preprocessing the dataset, building a pipeline, and
using the pipeline for running our analysis and extracting results. These ob-
jectives provide the backbone of our project, and in the end we were able
to analyse a series of different model architectures that were able to detect
technical debt from samples in the form of graph representations.

The key requirements include identifying and obtaining a suitable dataset,
based on a series of criteria explained in the next subsection, preprocessing
the data to ensure its usability and relevance, transforming sample code files
to graph representation, constructing an analysis pipeline, and developing a
model capable of detecting technical debt through graph representations. By
clearly defining these requirements, we ensure that our approach is system-
atic and aligns with the goal of the project.

To delve deeper into our investigation, we will pose the following research
question:

• RQ: How effective are GCN, GAT and GraphSAGE graph-based mod-
els in detecting technical debt in existing technical debt datasets?

This research question refers to the general applicability of the GCN, GAT
and GraphSAGE graph-based models in this scenario and measuring the ef-
fectiveness in detecting technical debt in some use-cases on which the train-
ing is done. It is also the common part, or the collaboration point between
this research project and my colleague’s. By addressing this research ques-
tion, the aim is to provide a comprehensive evaluation of the graph-based
models’ capabilities in a technical debt setting. Such insights are very im-
portant in developing more accurate and efficient technical debt detection
methods, which can ultimately lead to better maintenance and management
of software systems.

17

3.2. Outline Chapter 3. Methodology

3.2 Outline

In this section we will be explaining the process of making a tool capable
of detecting Technical Debt (TD) with the application of graph learning. To-
gether with my colleague, Mădălina Gavăt, we drew the study design of this
research project. There are five main points that constitute the core of our
study, which are listed here and will be discussed in depth in the next parts
of this chapter:

• Data collection
The content of the selected dataset was defining the whole process of
creating our tool and for the findings of our study.

• Dataset preprocessing
Preprocessing the chosen dataset was crucial for ‘modelling’ the data in
a meaningful and useful manner for the pipeline.

• Use of graph representations for transforming code samples.
On this point, after gathering good knowledge about the available data
and finishing the preprocessing, we employed graph representation in
order to transform the code samples.

• Graph learning models Discussing the model architectures that we chose
for this study (GCN, GAT, GraphSAGE and Hybrid GAT).

• The creation of our tool
This represents the creation of the tool that was used in finding viable
answers for the posed research question.

In the structure of the methodology chapter, these steps correspond to dif-
ferent sections. First, the dataset selection is included in the data collection
section. Next, the dataset preprocessing and the graph representations selec-
tion are correlated with the Data Analysis. Lastly, we will discuss the final
step, our pipeline, in the instrumentation section.

With these steps listed above, there were only a number of things that needed
to be set up before starting to work. These consist of the frameworks that we
planned to use, the availability of the libraries/modules/resources that we
needed, and, lastly, the ease of implementation.

Traditionally, Python1 is considered one of the best and most useful scripting
languages. The reasons why we chose this programming language is its use
within machine learning, data science, automation, but also the extensive
availability of modules and libraries that we could easily use. Some notable
use cases in our project are the necessity of training models, handling vast
amounts of data and the ease of integrating different external and self-made
components.

1Python: https://www.python.org

18

https://www.python.org

3.3. Data Collection Chapter 3. Methodology

Another important part is played by Django2, a Python framework which is
used in building reliable and easily-deployable backend web applications. In
order to run and test the pipeline that we are building and find answers to the
research questions that we posed, we need to deploy what we created. Also,
as an extra point on our list, we would like to make the tool publicly available
online, so everyone can access and use it, if the results are encouraging. More
details about the deployment can be found in the next chapter.

Lastly, it is also worth mentioning that the entirety of the implementation
took place on a personal laptop, where we also ran the small-scale testing of
the functionality of the tool being constructed. Instead, Hábrók3 (the HPC
cluster of the RUG) was used for full training and evaluation of the model,
since there was a great amount of data used. The tool for version control that
we used is GitHub, and our repository is available there.

Now that we created the general picture of the methodology, we can move
to the next parts of this chapter.

3.3 Data Collection

From the relevant literature, three articles stood out, each one containing the
dataset that was used in conducting the research. This dataset selection rep-
resents the second step of the project.

The article by T. Amanatidis et al. [21] investigated through case study fifty
open source projects in two programming languages, Java and Javascript.
The criteria for selecting these projects included popularity (with more than
3,000 stars on GitHub), active maintenance, and a range of project sizes [21].
The datasets for the Java and JavaScript projects contain technical debt data
points measured in minutes by three different tools: SonarQube, Squore, and
CAST [21]. These data points are collected for each file within those included
projects. Unfortunately, the amount of Technical Debt data in this dataset
was small, and was not enough for training our own model and achieving
meaningful results. While this study was proposing a framework for cap-
turing diversity of TD, and applying three leading available TD tools [21], it
appeared that there wasn’t enough information about the projects that might
help support our objectives.

Next, we also analysed the ‘QScored’ dataset, the work of T. Sharma et al.
[18], which incorporates a lot of useful information about code quality as-
pects for more than 86 thousand projects, containing more than 1.1 billion
lines of code. At the project level, metrics such as smell density and code du-
plication give an overview of the project’s overall health and maintainability.
These metrics help in identifying the proportion of code elements affected by
code smells and the percentage of duplicated code within the projects, which

2Django: https://www.djangoproject.com
3Hábrók: https://wiki.hpc.rug.nl/habrok/

19

https://www.djangoproject.com
https://wiki.hpc.rug.nl/habrok/

3.3. Data Collection Chapter 3. Methodology

are critical indicators of technical debt. On the other hand, an issue would
be the dataset’s bias towards larger projects, as it excludes repositories with
fewer than 1,000 lines of code [18]. This exclusion could overlook smaller, yet
significant, projects that are relevant to technical debt studies. Lastly, what
influenced our decision to not choose this dataset is the preprocessing of the
‘QScored’ dataset [18] for graph learning, due to the volume and complexity
of the data. The dataset includes detailed metrics for a large number of repos-
itories, making data handling and preprocessing computationally intensive
and time-consuming. Normalising and standardising these metrics across
different repositories and languages is another challenge, as it is essential to
ensure consistency throughout this research project. In short,the dataset does
not contain clearly identifiable TD items, but derived metrics, which makes it
difficult to work with. Additionally, repositories may have incomplete data
for certain metrics due to differences in codebase structure or limitations of
the analysis tools used [18].

Lastly, we analysed the publication of V. Lenarduzzi et al.[15]. ‘The Techni-
cal Debt Dataset’ was introduced as a meticulously curated set of measure-
ment data from 33 Java projects from the Apache Software Foundation. This
dataset includes an analysis of all commits from specified time frames us-
ing SonarQube to gather Technical Debt information and Ptidej to identify
code smells[15]. The authors apply the SZZ algorithm to determine fault-
inducing and fault-fixing commits [15]. The analysis encompasses 78,000
commits across the selected projects, uncovering 1.8 million SonarQube is-
sues, 62,000 code smells, 28,000 faults, and 57,000 refactorings [15]. What
proved to be a great advantage towards our research project was the fact
that the dataset is accessible through an SQLite database, facilitating efficient
data queries and scripting for finding information. It is worth mentioning
that this dataset is also very light, since it doesn’t include any source code,
but only information about the projects in questions. This appeared to us as a
perfect starting point for our dataset preprocessing, which is the third step of
the project, as per the plan presented in the introduction of the Methodology
chapter.

Important information can be drawn from the ‘SZZ_FAULT_INDUCING_COMMITS’
table (Figure 3.1), since it contains valuable details about the fault inducing
and fault fixing commits. This represented a solid starting point in the pre-
processing of the data (which will be discussed more in-depth in the next
section). Because the goal was to apply graph learning, having both the TD
containing sample and its solving pair, meant that we could already collect
both negative and positive samples for the training by using the information
from there. The dataset by itself only contains TD items, or positive sam-
ples for the large variety of SonarQube code smells analysed. For gathering
enough negative samples for a selected code smell, we used negative sam-
ples that we collected ourselves and positive samples from other code smells.

Also, each table contains the key ‘projectID’ (Figure 3.1), which can easily al-
low us to join data together from multiple tables, when querying. Therefore,

20

3.3. Data Collection Chapter 3. Methodology

Figure 3.1: Entity Relationship Diagram of the ‘Technical Debt Dataset’. [15]

21

3.4. Data Analysis Chapter 3. Methodology

Figure 3.2: Description of the selected projects from the ‘Technical Debt
Dataset’. [15]

this gave us the possibility of creating individual tables containing project
information, such as project name, GitHub link, fault inducing commit hash,
fault fixing commit hash, rule and component file (Figure 3.1).

If we take a look at the analysis timeframe from the ‘Technical Debt Dataset’
(Figure 3.2), we can see that this data collection contains information about
the aforementioned projects on a long interval of time. If we also take a look
at the number of commits (Figure 3.2), we can see that there is a great number
of them, and some projects even have tens of thousands of commits. This
ensures that the number of samples necessary for training is obtainable in
large numbers and we should have variety as well.

3.4 Data Analysis

In this section we will be analysing the data that we have, and we will be
discussing the selection of SonarQube rules available in the current dataset.
Afterwards, we will be delving into the queries that were performed, and,
lastly, we will be talking about the graph representations that were chosen
for this study.

22

3.4. Data Analysis Chapter 3. Methodology

3.4.1 SonarQube rules

In SonarQube, for Java projects, there is a total of 698 rules used in analysing
code smells and vulnerability problems, according to the Sonarsource web-
site4. Due to concerns about the amount of data that would be available in
the dataset for training, the first step that we took was to make a selection
of the top 100 most frequently occurring rules among the hundreds of thou-
sands of entries. This can be

SELECT
RULE,
TYPE,
COUNT(RULE) AS RULE_COUNT

FROM
SONAR_ISSUES

GROUP BY
RULE,
TYPE

ORDER BY
RULE_COUNT DESC LIMIT 100;

Listing 3.1: Top 100 SonarQube Rules: Query performed on the Technical
Debt Dataset

The results of Query 3.1 can be found in the Additional Data, at the end of
this thesis (Table: A.1). The next step, after we obtained these entries, was
to try and narrow the selection down as much as we could. In order to do
that we needed to find a suitable criteria on which we could categorise the
SonarQube rules.

This lead us to decide that we would be using ‘single-file’ or ‘file-based’ rules.
This entails that we would be selecting the SonarQube rules that would al-
low us to use a file directly as sample, instead of snippets of code from the
files or entire directories. By doing so, we could ensure a lower complexity in
the preprocessing, since the Technical Debt Dataset[15] makes references to
specific files from the repositories. Also, it is worth mentioning that it is eas-
ier to tackle ‘single-file’ SonarQube rules, since the TD that could be detected
doesn’t span multiple parts of the whole project, but it is only reduced to that
specific file containing the code in question. That’s how we reduced the list
to only 15 rules. The full table with each rule and its individual description
can be found in the Additional Data section, at the end of this thesis (Table:
A.2). In the following table you can see only the names of those 15 selected
SonarQube rules.

Rule Name Final Selection
Cyclomatic Complexity ✓
Class Data Should Be Private

4Sonarsource: https://rules.sonarsource.com/java/

23

https://rules.sonarsource.com/java/

3.4. Data Analysis Chapter 3. Methodology

Rule Name Final Selection
Duplicated Blocks ✓
Long Method ✓
Complex Class ✓
Unused Private Method
Base Class Should Not Use Derived Class Functions
Method With Boolean Parameter
Redundant Throws Declaration
Variable Declaration Distance
Modifiers Order
Switch Cases Without Break
Method Should Not Have Too Many Parameters ✓
Class Variable Visibility Check
Lazy Class ✓

Table 3.1: 15 Selected Rules from the SonarQube Analysis from the Technical
Debt Dataset

As you can notice in Table 3.1, six of the fifteen selected rules have a check-
mark in the ‘Final Selection’ column. The reasons why those were chosen can
be found in the Table 3.2, along with the possible graph representations that
could help in identifying the TD related to the rule.

Rule Name Representation Information
Cyclomatic
Complexity1

Control Flow
Graph (CFG)

High cyclomatic complexity is
indicated by numerous branch-
ing and merging points in the
CFG, making functions error-
prone and hard to maintain.
Simplification reduces technical
debt.

Duplicated
Blocks2

Subgraph Iso-
morphism

Duplicated code segments ap-
pear as isomorphic subgraphs
within a graph representation,
indicating redundant code that
increases maintenance effort
and error risk. Removing
duplicates reduces technical
debt.

24

3.4. Data Analysis Chapter 3. Methodology

Rule Name Representation Information
Long Method3 Abstract Syntax

Tree (AST)
Long methods manifest as
nodes with high complexity
and depth in the AST part of
the CPG, indicating the need
for simplification into smaller,
more manageable functions to
improve maintainability and
reduce technical debt.

Complex Class4 Class Depen-
dency Graph

Complex classes are shown by
dense connections and interac-
tions in the Class Dependency
Graph, suggesting the need
for simplification into smaller
classes to enhance maintain-
ability and scalability, reducing
technical debt.

Method Should
Not Have Too
Many Parame-
ters5

Abstract Syntax
Tree (AST)

Methods with many parameters
are identifiable by nodes with
numerous parameter nodes in
the AST part of the CPG, indi-
cating the need for refactoring
to reduce parameter counts and
improve readability, thereby re-
ducing technical debt.

Lazy Class6 Class Depen-
dency Graph

Large, monolithic classes ap-
pear as extensive nodes with
numerous edges in the Class
Dependency Graph, suggesting
decomposition into smaller, fo-
cused classes to improve main-
tainability and reduce technical
debt.

Table 3.2: 6 Selected Rules from the SonarQube Analysis

1 SonarQube: https://docs.sonarsource.com/sonarqube/latest/
user-guide/metric-definitions/#complexity
2 SonarQube: https://docs.sonarsource.com/sonarqube/latest/
user-guide/metric-definitions/#duplications
3 SonarQube: https://sonarsource.atlassian.net/browse/RSPEC-138
4 6 SonarQube: https://github.com/davidetaibi/sonarqube-anti-patterns-code-smells/
blob/master/README.md
5 SonarQube: https://rules.sonarsource.com/java/RSPEC-107/
?search=long%20parameter%20list

This is the selection of SonarQube rules that we focused on. From Table 3.2,

25

https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/#complexity
https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/#complexity
https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/#duplications
https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/#duplications
https://sonarsource.atlassian.net/browse/RSPEC-138
https://github.com/davidetaibi/sonarqube-anti-patterns-code-smells/blob/master/README.md
https://github.com/davidetaibi/sonarqube-anti-patterns-code-smells/blob/master/README.md
https://rules.sonarsource.com/java/RSPEC-107/?search=long%20parameter%20list
https://rules.sonarsource.com/java/RSPEC-107/?search=long%20parameter%20list

3.4. Data Analysis Chapter 3. Methodology

we can notice that there are already ‘leads’ on what graph representations we
could use in identifying those code smells, along with a resolution of these
issues. Graph representations will be covered more in depth in Subsection
3.4.3. It is also worth specifying that SonarQube changes the names and ids
of the some rules from version to version, so that is a reason why we could
not find information in the same place about all of the selected rules. The
links providing information differ, but they refer to great resources used in
SonarQube analysis studies or projects. It was especially difficult to align the
rules from the Technical Debt Dataset, since their names did not correspond
with the new names used in newer versions of SonarQube.

Currently, for the purpose of this study and the creation of our tool, we
decided to cover only two code smells: ‘Long parameter list’ and ‘Long
method’. The reasons behind choosing those two are that they have great
impact on software maintenance and the ‘accumulation’ of technical debt.
Long methods usually obscure the logic and flow of the program, making it
difficult for developers to understand and modify the code easily. This can
lead to increased error rates and longer debugging times, which results in es-
calating maintenance costs and efforts. Additionally, methods with long pa-
rameter lists can complicate the interface and usage of those methods, which
in turn affects the maintainability of software projects and leads to a compli-
cated maintenance process.

On the other hand, identifying lazy classes can help optimize the codebase,
the impact on immediate readability and maintainability is smaller than ad-
dressing long methods and parameter lists. Breaking down long methods
naturally simplifies complex classes, achieving similar goals indirectly. Also,
removing duplicated blocks reduces redundancy, but does not directly en-
hance the understanding of individual code pieces as effectively as focusing
on method and parameter list length. Lastly, reducing cyclomatic complexity
often overlaps with the benefits of breaking down long methods.

3.4.2 Dataset preprocessing

In the previous section we covered the selection of the final SonarQube rules,
which we based our study on. Now, we will be describing the preprocessing
of the available dataset. First, let’s narrow the entries only to the scope of the
six selected rules. We did that through the following query (Listing 3.2).

CREATE TABLE SELECTED_RULES AS
SELECT PROJECT_ID, COMPONENT, RULE
FROM SONAR_ISSUES
WHERE RULE="squid:MethodCyclomaticComplexity"

OR RULE="common-java:DuplicatedBlocks"
OR RULE="code_smells:long_method"
OR RULE="code_smells:long_parameter_list"
OR RULE="code_smells:complex_class"
OR RULE="code_smells:lazy_class"

ORDER BY RULE;

26

3.4. Data Analysis Chapter 3. Methodology

Listing 3.2: Query for creating a table containing all the data for the selected
SonarQube rules

Now, in this SELECTED_RULES table, we have all the entries from the SONAR_ISSUES
table for the six selected rules. If we analyise Figure 3.1 again, we can see
that we can join together information from multiple tables, mainly through
the key represented by the PROJECT_ID.

Thus, the new tables that we are trying to build now for each one of the
selected rules will have the structure presented in Table 3.3. We need the
GitHub link so that we can download the repository. Next, we will be using
the fault inducing and fault fixing commit hashes to obtain negative and,
respectively, positive TD samples. Lastly, we need to know which file in
question is the entry about, so we need the ‘COMPONENT’ as well. These
details should be enough for us to gather a significant amount of positive
and negative samples, that should suffice for the training of the models that
we will be using.

Column Name Table of Origin

PROJECT_ID PROJECTS
GIT_LINK PROJECTS
FAULT_INDUCING_COMMIT_HASH SZZ_FAULT_INDUCING_COMMITS
FAULT_FIXING_COMMIT_HASH SZZ_FAULT_INDUCING_COMMITS
RULE selected_rules
COMPONENT selected_rules

Table 3.3: Columns that contains useful information for our study from the
Technical Debt Dataset 3.1

Based on this table, we created queries for each one of the selected rules. The
following code snippet contains the query for the ‘long_parameter_list’ rule:

CREATE TABLE manyParameters AS
SELECT PROJECTS.PROJECT_ID, PROJECTS.GIT_LINK,

SZZ_FAULT_INDUCING_COMMITS.FAULT_INDUCING_COMMIT_HASH,
SZZ_FAULT_INDUCING_COMMITS.

FAULT_FIXING_COMMIT_HASH,
selected_rules.RULE, selected_rules.COMPONENT

FROM PROJECTS
INNER JOIN selected_rules ON PROJECTS.PROJECT_ID =

selected_rules.PROJECT_ID
INNER JOIN SZZ_FAULT_INDUCING_COMMITS ON PROJECTS.PROJECT_ID

= SZZ_FAULT_INDUCING_COMMITS.PROJECT_ID
WHERE selected_rules.RULE = "code_smells:long_parameter_list"
LIMIT 5000;

Listing 3.3: Query for the ‘long_parameter_list’ rule

27

3.4. Data Analysis Chapter 3. Methodology

We are creating new tables where we join information from the columns men-
tioned in Table 3.3, such as in the example from Listing 3.3. The full query,
also containing the splits for training, validation and testing, can be found in
the Appendix in Additional Data (Listing A.2). The results of this query can
also be found in the Appendix, in Figure A.1.

3.4.3 Graph Representations

With the dataset sample extraction complete, the next step is discussing the
graph representations that we employed. This is one of the most important
parts of this project, since it influences the transformation of the samples for
the training of the models that we will be using.

Earlier, in the SonarQube rules Section 3.4.1, we introduced for each one of
the rules the graph representations which can be used (Table 3.2). This sec-
tion delves into the choices that we made for our study. First, we will list
all of those graph representations from the table of rules with observations
(Table 3.2), and we will provide more details about their use and properties.

For the purpose of our study, we chose to use Code Property Graphs (CPGs)
and investigate how they can impact the effectiveness of the specified graph
learning models in the scope of techincal debt detection. After looking at
Table 3.4, we can see what the requirements for detecting the SonarQube
code smells are. CPGs, fortunately, have a series of features which can help
meet those requirements.

In creating our instrumentation, we decided to use Joern5. This is a very pow-
erful tool for transforming code into graph representations, including Code
Property Graphs (CPGs). It provides coverage for multiple programming
languages, amongst which the maturity level of the tool for Java projects
is one of the highest. Joern features robust parsing characteristics and has
extensive documentation about generating CPGs and querying information.
Another advantage of using joern is that it can be easily integrated in other
projects or tools.

For the ‘Long parameter list’ code smell, after performing the transforma-
tions using Joern, we had in total a number of 1619 samples (50% positive
samples, 50% negative samples). These samples are further allowed us to
split the dataset as follows: 80% (1296) samples for training, 10% (162) for
validation, and 10% (161) for testing. It’s worth mentioning that all of these
proportions maintain 50% positives and 50% negatives.

For the ‘Long method’ code smell, after the Joern transformations, we had
a total of 1108 samples, with half comprising of positive samples and the
other half of negative samples. In a similar manner as the previously men-
tioned code smell, the training-validation-testing split is still the same, with
80%-10%-10% (or 887-110-111) samples. Again, we kept the proportion of

5Joern.io: https://joern.io

28

https://joern.io

3.4. Data Analysis Chapter 3. Methodology

positives and negatives equal.

Representation Observations

Control Flow Graph (CFG)

• Represents the flow of control in a pro-
gram.

• Indicates number of linearly independent
paths.

• High complexity suggests error-prone and
hard to maintain code.

Subgraph Isomorphism in
Graph Representations

• Identifies isomorphic subgraphs within the
code.

• Useful for detecting duplicated code seg-
ments. Duplicates can also include pieces
of code which are very similar, not only
identical ones.

• Removing duplicates can reduce mainte-
nance effort and error risk.

Abstract Syntax Tree (AST)

• Represents the hierarchical structure of
source code.

• Nodes with high complexity and depth in-
dicate long methods.

• Nodes with numerous parameter nodes
suggest methods with too many parame-
ters.

Class Dependency Graph

• Shows dependencies between classes in a
program.

• Dense connections and interactions indi-
cate complex classes.

• Large nodes with numerous edges suggest
monolithic classes.

Table 3.4: Graph representations and observations

29

3.4. Data Analysis Chapter 3. Methodology

3.4.4 Model Architectures Employed

For these analysis tasks, we employed a number of eight different models
that we created. Four are explained in this study, and another number of
four are covered by my colleague in another thesis. In our research project,
we tried to cover a large variety of Graph Neural Networks (GNNs) types, in
order to check their effectiveness in technical debt detection. In this thesis, we
cover one node sampling model (GraphSAGE), a spectral convolution model
(GCN), a spatial attentional model (GAT), and a hybrid model combining
GAT and GCN, providing architecture diversity. Those are as follows:

• Model 1: GraphSAGECustom

– Uses SAGEConv layers.

– Input channels: 768.

– Hidden channels: 256.

– Output channels: 2.

– Dropout rate: 0.3.

– Architecture:

* 2 SAGEConv layers (256 hidden channels), each followed by
ReLU activation and dropout.

* Global mean pooling.

* Final fully connected layer.

The GraphSAGE model that we created employs two layers of SAGE-
Conv. We chose this architecture because SAGEConv is effective at cap-
turing complex patterns in graph data through its aggregation meth-
ods. Each layer is followed by ReLU activation and dropout, which
helps in preventing overfitting and enhances the model’s generaliza-
tion capabilities. The use of global mean pooling aggregates the node
features into a single graph-level representation before passing it to a
fully connected layer for final classification. The selection of 256 hidden
channels balances model capacity and computational efficiency, ensur-
ing sufficient complexity to learn meaningful representations without
overburdening the training process. The number of 256 was reached
after lowering the amount of hidden channels. Initially, there were too
many hidden channels, and this lead to overfitting. A dropout rate of
0.3 was chosen to prevent overfitting and maintain model performance.

• Model 2: HybridGAT

– Uses GATConv and GCNConv layers.

– Input channels: 768.

30

3.4. Data Analysis Chapter 3. Methodology

– Hidden channels: 16.

– Output channels: 2.

– Dropout rate: 0.5.

– Architecture:

* First layer: GATConv with 8 heads (16 hidden channels), fol-
lowed by ReLU activation and dropout.

* Second layer: GCNConv (16 × 8 hidden channels), followed
by ReLU activation and dropout.

* Global mean pooling.

* Final fully connected layer.

The HybridGAT model that we built combines both GATConv and GC-
NConv layers in order to use the strengths of both graph attention and
convolutional mechanisms. The first layer uses GATConv with multi-
ple heads to focus on the importance of different nodes from the CPGs,
capturing node relationships dynamically. The second layer employs
GCNConv to aggregate the node features, providing a good feature ex-
traction process. We selected 16 hidden channels to create a lightweight
and effective model, ensuring quicker training and reduced computa-
tional cost. The dropout rate of 0.5 was chosen to combat overfitting.
This can also improve generalisation on diverse graph structures within
CPGs.

• Model 3: GCN

– Uses GCNConv layers.

– Input channels: 768.

– Hidden channels: 128.

– Output channels: 2.

– Dropout rate: 0.5.

– Architecture:

* 2 GCNConv layers (128 hidden channels each), each followed
by ReLU activation and dropout.

* Global mean pooling.

* Final fully connected layer.

This GCN model is relatively simple, featuring only two GCNConv lay-
ers with ReLU activation and dropout. We chose this architecture be-

31

3.4. Data Analysis Chapter 3. Methodology

cause GCNConv layers are effective for learning from graph-structured
data, providing a balance between simplicity and performance. The
use of 128 hidden channels was selected to maintain model capacity
while ensuring computational efficiency, particularly useful for scenar-
ios where the graph structures are not overly complex. The dropout
rate of 0.5 was chosen to prevent overfitting, especially important given
the moderate hidden layer size, allowing the model to generalize well
to unseen data.

• Model 4: GAT

– Uses GATConv layers.

– Input channels: 768.

– Hidden channels: 32.

– Output channels: 2.

– Dropout rate: 0.5.

– Architecture:

* 2 GATConv layers with 8 heads, each followed by ReLU acti-
vation and dropout.

* Global mean pooling.

* Final fully connected layer.

The GAT model that we created employs two GATConv layers with
multiple heads, focusing on using the graph attention mechanism to
learn the importance of different nodes and their features. Each layer
is followed by ReLU activation and dropout, in order to enhance learn-
ing and prevent the overfitting of the data. The attention mechanism in
GAT allows the model to weigh the contributions of different nodes dif-
ferently, which can be particularly useful in graphs with varying node
importance. Global mean pooling aggregates the learnt node features
into a single vector, which is then classified by a fully connected layer.
We chose 32 hidden channels to balance the model complexity and per-
formance, ensuring it can learn effectively without becoming too com-
putationally expensive. The dropout rate of 0.5 was selected to mitigate
the risk of overfitting, crucial for maintaining the model’s ability to gen-
eralize from the training data.

The choices that we made for each model were considered based on their ef-
fectiveness and relevance to the problem of technical debt detection on graph
representations. The SAGEConv layers that we used in the GraphSAGE
model were selected for their ability to capture complex patterns through
efficient node aggregation, while the GAT and GCN layers that we used
in the other models employed the strengths of both attention and convolu-

32

3.5. Instrumentation Chapter 3. Methodology

tional mechanisms. These specific model architecture configurations, such as
the number of layers, hidden channels, and dropout rates were determined
mainly through empirical tuning. We optimised these configurations in or-
der to balance model complexity and performance, while addressing issues
such as overfitting. Initially, we started with a higher amount of layers and
hidden channels, but that lead to models being too complex.

Additionally, the batch size and learning rates have also been empirically
tuned. Generally, smaller batch sizes lead to better results and greater gen-
eralisation6, and that is the reason why we settled for a batch size of 16 for
the models that we employed (as it can be seen in Chapter 4). In terms of
learning rates, for each one of the model architectures, they were determined
through experimentation. We opted for a fixed learning rate, since it is ideal
for simple or baseline models, and works well with datasets that are not very
large7. We also considered the use of a decaying learning rate that could ad-
dress the possible fluctuations, but it required some tuning of the decaying
rate and predefining steps.

3.5 Instrumentation

For effectively running the data gathering, data preprocessing and model
training, we came to the conclusion that we needed to build a pipeline for
streamlining the process. Thus, we created the tool called ‘Debtective’. In
this section we will be focusing on the backend of the tool, which represents
the work that was done in scope of this project.

We will be going through the different groups of components that we have,
starting from the repository gathering based on the information from the
dataset. Next, we will be discussing the transformations to graph represen-
tations that were performed, and their labeling process. In the end, we will
be covering the models that we used, and how those were built, before we
jump in the final discussion about model training.

The evaluation of the training will be covered in the results category, since
those results represent the outcomes of this research project. The general
software architecture of the ‘Debtective’ tool can be found in Figure 3.3.

3.5.1 Repository gathering

The repository gathering part of our tool represents the first group of compo-
nents, which in the architecture of our tool (Figure 3.3) is called the ‘Sampler’.
Here, we get the necessary information from the ‘Technical Debt Dataset’
[15], and we are passing this to the ‘Grabber’ component. This ‘Grabber’
uses the ‘GitHub Grabber’ component that we used in order to download
the repositories and revert back and forth using commit hashes, and in the

6Medium: https://medium.com/geekculture/why-small-batch-sizes-lead-to-greater-generalization-in-deep-learning-a00a32251a4f
7Medium: https://medium.com/thedeephub/learning-rate-and-its-strategies-in-neural-network-training-270a91ea0e5c

33

https://medium.com/geekculture/why-small-batch-sizes-lead-to-greater-generalization-in-deep-learning-a00a32251a4f
https://medium.com/thedeephub/learning-rate-and-its-strategies-in-neural-network-training-270a91ea0e5c

3.5. Instrumentation Chapter 3. Methodology

Figure 3.3: Software Architecture of the Debtective Tool

34

3.5. Instrumentation Chapter 3. Methodology

end it stores the repositories in a directory. Next, our ‘Grabber’ uses the ‘File
Selector’ component to select the files that are marked in the ‘Technical Debt
Dataset’ as having SonarQube code smells for a specific given rule.

After the whole operation is done, the selected files from the fault-inducing
commits will be placed in the positive samples directory, and the ones se-
lected from the fault-fixing commits will be placed in the negative samples
directory. Before we move to the next step, we delete the repositories from
the repository directory, so that we don’t retain any redundant (non-TD con-
taining) files. For the sampling of the data, we used the fields mentioned in
Section 3.4.2, in Table 3.3.

3.5.2 Rules covered by our tool

Long Parameter List

This SonarQube code smell takes into account the number of parameters
given to a method. Generally, methods with a long parameter list are dif-
ficult to use because maintainers must figure out the role of each parameter
and keep track of their position, as stated in the SonarSource rules documen-
tation8. In our case, we have to analyse the amount of parameter nodes in
each one of our transformed samples, and allow the model to predict if a
sample has too many parameters or not.

Examples:

public void createUser(String firstName, String lastName,
String email) {
User user = new User();
user.setFirstName(firstName);
user.setLastName(lastName);
user.setEmail(email);
// Save user to database
userRepository.save(user);

}

Listing 3.4: Example of negative sample for the ‘Long parameter list’ code
smell.

public void createUser(String firstName, String lastName,
String email, String password, String address, String
phoneNumber, Date birthDate) {
User user = new User();
user.setFirstName(firstName);
user.setLastName(lastName);
user.setEmail(email);
user.setPassword(password);
user.setAddress(address);
user.setPhoneNumber(phoneNumber);

8SonarSource: https://rules.sonarsource.com/java/RSPEC-107/

35

https://rules.sonarsource.com/java/RSPEC-107/

3.5. Instrumentation Chapter 3. Methodology

user.setBirthDate(birthDate);
// Save user to database
userRepository.save(user);

}

Listing 3.5: Example of positive sample for the ‘Long parameter list’ code
smell.

Negative samples

Negative samples represent the code samples in which all methods have at
most 4 parameters (Listing 3.4).

Positive samples

Positive samples represent the code samples that have at least a method with
more than 5 parameters (Listing 3.5).

Long Method

This SonarQube code smell accounts for the size of the methods from the
provided code samples. According to SonarSource, a method that grows too
large tends to aggregate too many responsibilities9. Such methods inevitably
become harder to understand and therefore harder to maintain in the long
run10. In this case, when running the analysis we have to check the amount
of nodes in the Code Property Graphs (CPGs) of our transformed samples
for each method individually, and allow our model to predict if a method is
too long or not.

Examples:

public void processOrder(Order order) {
validateOrder(order);
double total = calculateTotal(order);
total = applyDiscounts(order, total);
finalizeOrder(order, total);

}

Listing 3.6: Example of negative TD sample for the ‘Long method’ code
smell.

public void processOrder(Order order) {
// Validate order
if (order == null || !order.isValid()) {

throw new IllegalArgumentException("Invalid order");
}

// Calculate total

9SonarSource: https://rules.sonarsource.com/java/RSPEC-138/
10SonarSource: https://rules.sonarsource.com/java/RSPEC-138/

36

https://rules.sonarsource.com/java/RSPEC-138/
https://rules.sonarsource.com/java/RSPEC-138/

3.5. Instrumentation Chapter 3. Methodology

double total = 0;
for (OrderItem item : order.getItems()) {

total += item.getPrice() * item.getQuantity();
}

/* 20 more lines of code here ... */

// Apply discounts
if (order.hasDiscount()) {

total -= order.getDiscount();
}

// Finalize order
order.setTotal(total);
order.setStatus(OrderStatus.PROCESSED);
orderRepository.save(order);

}

Listing 3.7: Example of positive TD sample for the ‘Long method’ code smell.

Negative samples

Negative samples represent the code samples in which all methods have less
than 30 lines of code (Listing 3.6).

Positive samples

Positive samples represent the code samples in which there is at least a method
that is longer than 30 lines of code (Listing 3.7).

3.5.3 Sample transformations

The next group of components that transforms the code samples into graph
representations is called the ‘Transformer’. As it can be seen in Figure 3.3,
we are using three components to perform this operation. The ‘Pure Trans-
former’ that we wrote takes all of the positive and negative samples from the
aforementioned directories, and passes the files to the ‘Joern Parser’. Lastly,
the graph representations of the code samples are exported by ‘Joern Ex-
porter’ into .dot format and saved in two separate directories, one for the
positive samples and one for the negative samples.

If we take a look into the process of transformation, we can see that Joern11

performs the following operations:

The ‘Joern Parser’12 component converts Java source code into Code Prop-
erty Graphs (CPGs) through a multi-step process. It begins with lexical and
syntax analysis in order to tokenize the code and build a Parse Tree. The

11Joern.io: https://joern.io
12Joern.io documentation: https://docs.joern.io

37

https://joern.io
https://docs.joern.io

3.5. Instrumentation Chapter 3. Methodology

Parse Tree is then then transformed into an Abstract Syntax Tree (AST). Next,
in the semantic analysis step, type resolution and symbol table construction
are performed, so that we can capture the binding and the scope of the identi-
fiers. From here, this information is used to create an intermediate represen-
tation (IR) of the code, which serves as the foundation for generating a Con-
trol Flow Graph (CFG) that maps out the possible execution paths through
the code file given.

After that, a Program Dependence Graph (PDG) is constructed by incorpo-
rating data flow information into the already-created CFG, capturing both
control and data dependencies. The ASTs, CFGs, and PDGs are then inte-
grated to form the Code Property Graph (CPG), which is a comprehensive
representation that encapsulates the syntactic structure, control flow, and
data dependencies of the given code samples.

Lastly, the in-memory CPG is serialized for storage by the ‘Joern Exporter’13,
and, in the end, it is converted to a selected format. In our study, we decided
to use the .dot format, since it offers the advantage of visualizing complex
graph structures easily through tools like Graphviz, which also aids in under-
standing and debugging the possible problems. It also provides a straight-
forward, text-based format that is easily-readable and changeable.

An example of a resulting Code Property Graph in .dot format can be seen in
Listing 3.8. It represents a negative (non-TD containing) sample transformed
from a method called ‘getCtrlKey’. This sample contains the information
necessary for later labelling and analysis in the generated nodes and edges.

13Joern.io documentation: https://docs.joern.io

38

https://docs.joern.io

3.5. Instrumentation Chapter 3. Methodology

digraph "getCtrlKey" {
"2961" [label = <(METHOD,getCtrlKey)₇₅>]
"2962" [label = <(PARAM,this)₇₅>]
"2963" [label = <(BLOCK,<empty>,<empty>)<SUB>75</

SUB>>]
"2964" [label = <(RETURN,return ctrlKey;,return ctrlKey;)<SUB

>76</SUB>>]
"2965" [label = <(<operator>.fieldAccess,this.ctrlKey)<

SUB>76</SUB>>]
"2966" [label = <(IDENTIFIER,this,return ctrlKey;)>]
"2967" [label = <(FIELD_IDENTIFIER,ctrlKey,ctrlKey)<SUB>76</

SUB>>]
"2968" [label = <(MODIFIER,PUBLIC)>]
"2970" [label = <(METHOD_RETURN,boolean)₇₅>]
"2961" -> "2962" [label = "AST: "]
"2961" -> "2963" [label = "AST: "]
"2963" -> "2964" [label = "AST: "]
"2965" -> "2964" [label = "CFG: "]
"2967" -> "2965" [label = "CFG: "]
"2961" -> "2967" [label = "CFG: "]
"2964" -> "2970" [label = "DDG: <RET>"]
"2962" -> "2970" [label = "DDG: this"]
"2961" -> "2962" [label = "DDG: "]

}

Listing 3.8: Example CPG in .dot format.

Each node in Listing 3.8 represents the different elements of the code. This
includes methods, parameters, blocks, return statements, field access, identi-
fiers, modifiers, etc. The label inside each node provides detailed information
about the element. In this example, we have

”2961”[label =< (METHOD, getCtrlKey) < SUB > 75 < /SUB >>]

, which indicates a method named getCtrlKey located at line 75. In a similar
way, nodes like

”2964”[label =< (RETURN, returnctrlKey; , returnctrlKey;) < SUB > 76 < /SUB >>]

denote return statements, while

”2965”[label =< (< operator > . f ieldAccess, this.ctrlKey) < SUB > 76 < /SUB >>]

represents field access operations in the original code sample.

The edges between nodes define relationships such as Abstract Syntax Tree
(AST), Control Flow Graph (CFG), and Data Dependence Graph (DDG). These
relationships help in understanding the structural and data dependencies
within the code. For example,

”2961”− > ”2962”[label = ”AST : ”]

shows an AST relationship, which suggests that the node "2962" is a child of
"2961" in the syntax tree.

39

3.5. Instrumentation Chapter 3. Methodology

Samples filtering

After we transformed the code samples into CPGs using Joern, we noticed
that we had an unequal number of positive and negative samples. Apart
from that, there was also the possibility of having a number of negative CPGs
among the positives.

For instance, if we work with code smells that refer to methods (as we do in
this research project), many code samples contain more than one method. A
sample is considered positive if at least one of its methods is affected by the
long method or long parameter list smells. This means that we might have
methods from positive code samples that are not containing any of these code
smells.

The solution for this was performing filtering after finishing the Joern trans-
formations. By doing so, we removed all the negative CPGs of methods from
the positive samples directory.

Lastly, we also performed balancing, so that we can ensure that the number
of positive and negative samples is equal. If the number of negative samples
is smaller than the number of positive samples after filtering, we randomly
remove positive samples until their numbers are equal. All of the previously
mentioned actions are performed by the ‘Pure Transformer’.

3.5.4 Sample labelling

The next operation performed by our ‘Debtective’ tool is the labelling of
the samples, which is done by the group of components that we called ‘La-
beller’, as seen in Figure 3.3. This group of components incorporates the ‘.dot
Reader’, the ‘Feature Extractor’, and the ‘Torch Saver’, which are created by
us. It’s important to note that for the feature extraction, we are using Code-
BERT [7], a pretrained model for programming and natural languages, and
we are using the Roberta Tokenizer [16] for tokenizing the input for Code-
BERT.

When CodeBERT is used for feature extraction from Code Property Graphs
(CPGs) of code samples, it encodes a series of important elements of the code.
Each token (such as identifiers, keywords, and operators) is represented as a
vector which captures the context of the token within the entire given code
snippet [7]. These contextual embeddings reflect the relationships between
the tokens and the structures within the given code. Additionally, CodeBERT
embeddings also include structural information from the CPGs, such as con-
trol flow and dependencies between different parts of the code, including
paths, branches, loops, and even function calls [7]. This representation al-
lows for a better understanding of the execution flow and logic in the given
sample.

The embeddings generated by CodeBERT also encode higher-level seman-
tic relationships, capturing how functions relate to each other, how variables

40

3.5. Instrumentation Chapter 3. Methodology

are used across different scopes, and the interactions between various code
sequences (control or data flow) [7]. This approach surpasses the limitations
of performing a simple one-hot encoding [17], which, despite being inter-
pretable, can lead to high dimensionality and scalability issues, while los-
ing contextual information. Unlike one-hot encoding, the embeddings from
CodeBERT are more expressive and efficient, encapsulating aspects which
are more subtle from node types and their interactions within the code, mak-
ing them highly suitable for complex tasks like code classification [7, 17].

The ‘.dot Reader’ reads the negative and positive Code Property Graph sam-
ples that were generated by the previous group of components (also called
‘Transformer’ in our software architecture), and it passes them to the ‘Fea-
ture Extractor’ component. There, the input is tokenized by the Roberta To-
kenizer [16], and it is transformed into tensors. These returned tensors are
then passed to the CodeBERT model [7], which gives us the final output, for
which, in the end, the ‘Feature Extractor’ component applies a target label of
either 1 (positive), or 0 (negative). Lastly, the ‘Torch Saver’ component saves
the positive and negative resulting tensors in separate directories, which will
be then used for the training, the validation, or the evaluation of our given
models.

It is important to note that the feature extraction happens for each one of the
nodes, and CodeBERT [7] extracts 768-dimensional features for each one of
the input nodes. This rich encapsulation helps in detecting Technical Debt by
accurately identifying complex code patterns, dependencies, and anomalies
that are indicative of SonarQube code smell presence. This is important for
effectively achieving the desired performance with the models.

3.5.5 Model training

This group of components is called the ‘Trainer’. As seen in Figure 3.3, our
‘Trainer’ comprises of the ‘Model Selector’, the actual ‘Trainer’ component
and the ‘Plotter’. This group ensures the complete training and validation of
the models that we want to use. The ‘Trainer’ group performs the following
steps:

First, based on the selected model, we create an instance of a model archi-
tecture with the given parameters for a specific run. The selector takes the
model architecture that we want to use, and instantiates it with the given
number of hidden channels. The models that can be selected need to be built
individually and can be imported in the selector component.

Next, the ‘Trainer’ component takes parameters as criterion, batch size, learn-
ing rate, patience and number of epochs. It loads the data (both negative and
positive samples) in a ‘Custom Dataset’, which is created based on the Py-
Torch Geometric Dataset 14. The ‘Trainer’ uses the Adam Optimizer [13] for

14PyTorch Geometric Datasets: https://pytorch-geometric.readthedocs.io/
en/latest/modules/datasets.html.

41

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

3.5. Instrumentation Chapter 3. Methodology

stochastic optimization of the parameters of our selected model. During the
training of the model, the ‘Trainer’ also performs validation after each epoch,
using the ‘Validator’ component.

At the end of the training, the ‘Trainer’ has already found and saved the
best model weights for three different parameters: accuracy, precision and f1-
score. During the training, we check in every epoch if the current validation
accuracy, precision or f1-score is greater than the previous maximum one,
and we save the model replace the saved model weight with that one. This
way, we can ensure that we have three different perspectives to investigate
during the evaluation. The model weights are timestamped and also contain
the SonarQube code smell in their name.

Finally, after the training is done, the results are plotted using the ‘Plotter’
component. This component uses the Matplotlib Python library 15 for plot-
ting the metrics of the training, and it creates a series of graphs. In a typical
figure created by this component, we can observe the graphs for loss, ac-
curacy, precision, recall, and the f1-score. These include both training and
validation metrics.

It is also worth mentioning that for the training, validation and testing, the
dataset is split in proportions of 80%-10%-10%. The training

3.5.6 Model evaluation

The last group of components of our ‘Debtective’ tool is the ‘Evaluator’, as
seen in Figure 3.3. It uses the same ‘Custom Dataset’, ‘Model Selector’ and
‘Plotter’ as the ‘Trainer’. In this group of components, the only difference is
made by using the ‘Evaluator’ component that we created.

The same model which was used in training is being selected for evaluation.
Based on the given parameters, we can select the best training model weights
for accuracy, precision or f1-score (as mentioned in Section 3.5.5). The metrics
for choosing the best model weights are derived from validation, which is
performed after each training step.

The ‘Evaluator’ is going to evaluate the selected model on an evaluation set,
which, as mentioned in the previous section, represents 10% of the total data.
During these steps, we will evaluate the performance of the model based on
the classification of the given samples. Since we know the true labels of the
samples, we can calculate the metrics of the model’s performance.

Next, we will use the ‘Plotter’ component to create figures with the perfor-
mance of the accuracy, precision, recall and f1-score metrics. These are placed
over a vertical chart, having values in between 0.0 and 100.0. Lastly, in the
same figure, we also include the confusion matrix, containing the predictions
and their true values.

15Matplotlib: https://matplotlib.org.

42

https://matplotlib.org

3.5. Instrumentation Chapter 3. Methodology

In the end, all results are being stored in a ‘Results Database’, or locally in
the project. This includes all the figures from training and evaluation, and
also the model weights. The results are organised per model architecture,
and contain timestamps and the name of the chosen code smell. Every figure
contains the hyperparameters and their values, so that we can make sure that
no piece of information is lost.

43

4 | Results

4.1 Long Parameter List

4.1.1 Training results

• Model 1:

Figure 4.1: Training results for Model 1 on the ‘Long Parameter List’ code
smell samples.

GraphSAGE Model

Process and Observations: The GraphSAGE model stopped after 280
epochs. We used a batch size of 16 and a learning rate of 1.15e-05.
The learning rate was selected through experimentation. The train-
ing and validation loss curves show a steady decrease, indicating good

44

4.1. Long Parameter List Chapter 4. Results

learning. Both training and validation accuracy gradually increase, ap-
proaching the 90% mark. The precision, recall, and F1-scores for both
training and validation data present consistent improvement, main-
taining high values above 85%. However, the model’s performance
shows fluctuation in validation metrics, particularly in recall, showing
that the learning rate was too high.

• Model 2:

Figure 4.2: Training results for Model 2 on the ‘Long Parameter List’ code
smell samples.

HybridGAT Model

Process and Observations: The HybridGAT models stopped after 375
epochs. We used a batch size of 16 and a learning rate of 8.15e-05. The
learning rate was selected through experimentation. The loss curves
show a decrease with spikes, while accuracy, precision, recall, and F1
scores for both training and validation data demonstrate fluctuation
while improving. The metrics have not stabilised when early stopping
was triggered. On the other hand, the validation metrics, particularly
recall, show fluctuation, indicating that there might be potential sensi-
tivity to high data variations. The complexity of this hybrid model may
also lead to increased computational costs and longer training times.

45

4.1. Long Parameter List Chapter 4. Results

• Model 3:

Figure 4.3: Training results for Model 3 on the ‘Long Parameter List’ code
smell samples.

GCN Model

Process and Observations: Our GCN model stopped after 520 epochs.
We used a batch size of 16 and a learning rate of 5.15e-05. The learning
rate was selected through experimentation. The training and validation
loss curves decline. Accuracy, precision, recall, and F1-scores for both
training and validation data show significant improvement over time,
with metrics stabilizing at high values. The GCN model demonstrates
a fairly good performance, with some alignment between training and
validation metrics, but indicating signs of overfitting. On the contrary,
there are some fluctuations in the validation precision and recall, sug-
gesting occasional difficulties in maintaining consistent performance
across different epochs.

46

4.1. Long Parameter List Chapter 4. Results

• Model 4:

Figure 4.4: Training results for Model 4 on the ‘Long Parameter List’ code
smell samples.

GAT Model

Process and Observations: The GAT (Graph Attention Network) model
stoped after 530 epochs. We used a batch size of 16 and a learning
rate of 1.15e-05. The learning rate was selected through experimenta-
tion. The loss curves show a decrease over the epochs, while accuracy,
precision, recall, and F1-scores for both training and validation data
present an upwards trend. The final metrics indicate strong perfor-
mance, with high values across all metrics. The attention mechanism in
GATs enables the model to capture more complex relationships within
the graph, resulting in high accuracy and precision. On the other hand,
the recall and F1-scores for validation data show some fluctuations, in-
dicating potential instability in consistently detecting true positives.

47

4.1. Long Parameter List Chapter 4. Results

4.1.2 Evaluation results

• Model 1:

Figure 4.5: Evaluation results for Model 1 on the ‘Long Parameter List’ code
smell samples.

The evaluation metrics for Model 1 (GraphSAGE), presents a strong
performance, with high scores in accuracy, precision, recall, and F1
score, all close to 90%. From the confusion matrix we can see that the
model accurately identifies both positive and negative instances, with
72 true negatives and 73 true positives, while having a few misclassifi-
cations too: 9 false positives and 8 false negatives.

Despite its overall high performance, the presence of 9 false positives
and 8 false negatives suggests that the model occasionally misclassifies
instances of the ‘Long Parameter List’ code smell.

48

4.1. Long Parameter List Chapter 4. Results

• Model 2:

Figure 4.6: Evaluation results for Model 2 on the ‘Long Parameter List’ code
smell samples.

The HybridGAT model (Model 2) also demonstrates strong performance,
with slightly lower accuracy, precision, recall, and F1-score. The confu-
sion matrix shows that the model has 71 true negatives and 71 true
positives, but it also produced 10 false positive and 10 false negative
results. This indicates that while the model seems to be effective, it still
has room for future improvement in reducing errors.

While the HybridGAT model maintains high precision and recall, the
equal number of false positives and false negatives suggests that the
model could benefit from further refinement, especially in treating data
variation. Reducing these errors could involve further fine-tuning the
parameters, or modifying the architecture in order to improve its pre-
dictions for the ‘Long Parameter List’ code smell.

49

4.1. Long Parameter List Chapter 4. Results

• Model 3:

Figure 4.7: Evaluation results for Model 3 on the ‘Long Parameter List’ code
smell samples.

The GCN model (Model 3) shows fairly good performance with the
evaluation metrics, reflecting good accuracy, precision, recall, and F1-
scores. The confusion matrix shows that the model has 67 true nega-
tives and 62 true positives, with 14 false positives and 19 false nega-
tives. This demonstrates the model’s ability to accurately classify most
instances, though there is still some room for reducing misclassification.

The GCN model’s results are good, yet the presence of 14 false posi-
tives and 19 false negatives indicates potential areas for improvement.
Enhancing the model’s ability to correctly identify all instances of the
‘Long Parameter List’ code smell can involve further working for ad-
justing the sensitivity, or incorporating more diverse training data.

50

4.1. Long Parameter List Chapter 4. Results

• Model 4:

Figure 4.8: Evaluation results for Model 4 on the ‘Long Parameter List’ code
smell samples.

The GAT model (Model 4) presents strong evaluation metrics with high
scores in all accuracy, precision, recall, and F1-score. The confusion
matrix shows that our model identified 74 true negatives and 75 true
positives, while also misclassifying 7 false positives and 6 false nega-
tives. This indicates that our model effectively identifies the majority
of the instances, but has more difficulty in accurately classifying some
samples.

Despite the high overall performance, the GAT model’s 7 false posi-
tives and 6 false negatives suggest that there is room for improvement.
Addressing these misclassifications could involve further refining our
model’s parameters, or incorporating additional variety in order to bet-
ter distinguish between both the positive and negative instances.

51

4.2. Long Method Chapter 4. Results

4.2 Long Method

4.2.1 Training results

• Model 1:

Figure 4.9: Training results for Model 1 on the ‘Long Method’ code smell
samples.

GraphSAGE Model

Process and Observations: The GraphSAGE model stopped after 1000
epochs. We used a batch size of 32 and a learning rate of 1.15e-06. The
learning rate was selected through experimentation. The training pro-
cess saw a consistent reduction in loss and a corresponding increase in
accuracy, precision, recall, and F1 score. The model’s performance met-
rics for both training and validation data converge towards high values

52

4.2. Long Method Chapter 4. Results

• Model 2:

Figure 4.10: Training results for Model 2 on the ‘Long Method’ code smell
samples.

HybridGAT Model

Process and Observations: The HybridGAT model stopped after 320
epochs. We used a batch size of 32 and a learning rate of 4.15e-05. The
learning rate was selected through experimentation. The loss curves
show a smooth decline, while accuracy, precision, recall, and F1 scores
for both training and validation data show strong and consistent im-
provement. The high precision and recall indicate that the model makes
reliable and accurate predictions, handling both positive and negative
samples fairly well. However, the model’s complexity lead to higher
computational costs and longer training times compared to simpler
models. Additionally, tuning such hybrid models proved to be more
challenging, requiring careful consideration of the amount of hidden
channels and the values of the hyperparameters.

53

4.2. Long Method Chapter 4. Results

• Model 3:

Figure 4.11: Training results for Model 3 on the ‘Long Method’ code smell
samples.

GCN Model

Process and Observations: The GCN (Graph Convolutional Network)
model stopped after for 410 epochs. We used a batch size of 16 and a
learning rate of 1.15e-05. The learning rate was selected through exper-
imentation. The training and validation loss curves demonstrate a con-
sistent decrease, indicating that the model is learning well. Both train-
ing and validation accuracy show a steady increase, plateauing around
the 90% mark. Precision, recall, and F1 scores for both the training and
validation data also show substantial improvement, maintaining high
values above 85%. There is a smooth decrease in the loss, and an in-
crease in the accuracy without major fluctuations. This suggests that
the learning rate and batch size were a good choice for this training
instance. On the other hand, the training process is relatively slow, re-
quiring a total of 410 epochs to be closer to converging. Additionally,
the model might not capture very complex relationships within Code
Property Graphs, because of the limitations of the basic graph convolu-
tion operation.

54

4.2. Long Method Chapter 4. Results

• Model 4:

Figure 4.12: Training results for Model 4 on the ‘Long Method’ code smell
samples.

GAT Model

Process and Observations: The GAT (Graph Attention Network) model
stopped after 235 epochs. We used a batch size of 16 and a learning
rate of 7.15e-06. The learning rate was selected through experimenta-
tion. The loss curves exhibit a steady decline, while the accuracy, pre-
cision, recall, and F1 scores for both training and validation data show
significant improvement, stabilising at high values. The initial fluctua-
tions in the precision and recall curves indicate the model’s process of
fine-tuning its parameters, in order to balance between different per-
formance metrics. The attention mechanism in GATs allows the model
to assign different weights to different nodes, capturing more complex
relationships in the Code Property Graphs. High final values of preci-
sion, recall, and F1 score indicate in this case that the model is capable
of making accurate and reliable predictions. However, the initial fluc-
tuations in precision and recall suggest instability in the early stages of
training, which proved to complicate the tuning process. Additionally,
the model’s training time is not that long, needing around 235 epochs
to achieve high performance.

55

4.2. Long Method Chapter 4. Results

4.2.2 Evaluation results

• Model 1:

Figure 4.13: Evaluation results for Model 1 on the ‘Long Method’ code smell
samples.

The evaluation metrics for the GraphSAGECustom (Model 1) display
very good scores across all key performance indicators. The accuracy,
precision, recall, and F1 score are all very high, hovering close to the
95% mark. This indicates that the model is highly effective at cor-
rectly identifying both positive and negative CPG samples of the ‘Long
Method’ code smell. The confusion matrix further reinforces our obser-
vation, showing a minimal number of misclassifications: only 6 false
negatives and 0 false positives out of a total of 111 evaluation samples.

Despite the overall strong performance, the presence of 6 false nega-
tives suggests that the model occasionally misses instances of the ‘Long
Method’ code smell. This could be an area for future improvement.
Moreover, while the precision is great, a slightly higher recall could en-
hance the model’s robustness in real-world analysis applications, where
false negatives may be more important.

56

4.2. Long Method Chapter 4. Results

• Model 2:

Figure 4.14: Evaluation results for Model 2 on the ‘Long Method’ code smell
samples.

The HybridGAT model (Model 2) also shows a strong performance,
with evaluation metrics showing high scores in accuracy, precision,
recall, and F1-score. These metrics indicate that the model is well-
calibrated and performs well in distinguishing between the presence
and absence of the ‘Long Method’ code smell. The confusion matrix
supports this case, with 55 true negatives and 48 true positives. On the
other hand, it also reveals 8 false negatives.

Although the HybridGAT model maintains high precision and recall,
the existence of 7 false negatives indicates that the model occasionally
fails to detect some of the positives. This number suggests a slight need
for improving its sensitivity towards positive cases.

57

4.2. Long Method Chapter 4. Results

• Model 3:

Figure 4.15: Evaluation results for Model 3 on the ‘Long Method’ code smell
samples.

The GCN model (Model 3) demonstrates high performance with ac-
curacy, precision, recall, and F1-score, all close to 95%. We can note
from here that the model is fairly proficient in accurately classifying
both positive and negative samples of the ‘Long Method’ code smell.
The confusion matrix shows a total of 7 false negatives and no false
positives, showing that, while the model is very good at detecting true
negatives, there is still a small margin for missing some positive cases.

This might demonstrate a weakness in fully capturing all instances of
this SonarQube code smell. In order to minimise these misses, a more
diversification of the data would lead to a better generalisation.

58

4.2. Long Method Chapter 4. Results

• Model 4:

Figure 4.16: Evaluation results for Model 4 on the ‘Long Method’ code smell
samples.

The GAT model (Model 4) shows robust evaluation metrics, with high
scores across accuracy, precision, recall, and F1-score. These metrics
indicate the model’s good capability to accurately predict the ‘Long
Method’ code smell. The confusion matrix illustrates 55 true nega-
tives and 48 true positives, with 8 false negatives and no false positives,
showing an emphasis on its precise classification of negative cases, but
slight challenges in capturing all positive instances for this SonarQube
rule.

Despite the high performance, the model’s 8 false negatives represent
an area for future improvement. In our view, this could be done through
further tuning the hyperparameters, or adding more detailed features
in order to capture a broader range of ‘Long Method’ code smell in-
stances. This can thereby enhance the model’s recall without compro-
mising its current precision.

59

5 | Discussion

In this chapter, we will delve into an in-depth analysis of the results obtained
in this research project, and presented in the previous chapter (Chapter 4).
We applied four different graph-based models on the Code Property Graphs
obtained from two SonarQube code smells types of samples: ‘Long param-
eter list’ (Section 3.5.2) and ‘Long method’ (Section 3.5.2). Our aim is now
to interpret our findings, understand their implications to practitioners and
researchers, and identify some potential threats to the validity of this study.

The different model architectures that we used bring unique strengths and
characteristics that help us formulate an answer for the first research ques-
tion. By evaluating the models’ performances we can gain insights into which
model architectures are the most effective for these two different types of
code smells, and under what conditions they perform best.

We will begin by interpreting our results and discussing the obtained per-
formance metrics in the contexts of ‘Long parameter list’ and ‘Long Method’
code smell detection (Section 5.1). Next, we will cover the implications of our
findings for software engineers and researchers, providing a series of leads
and suggestions for directions for future research (Section 5.3). Lastly, we
will examine the threats to the validity of our research study, addressing po-
tential limitations that could impact the ability to generalise and rely on these
conclusions (Section 5.4). By doing so and acknowledging these current fac-
tors, our aim is to provide a balanced and comprehensive perspective that
can provide a solid foundation for future advancements in this research area.

60

5.1. Interpretation of Results Chapter 5. Discussion

5.1 Interpretation of Results

In order to fully understand the performance of the models that we built,
we will first take a look how they performed in the detection of the two
SonarQube code smells overall. If we analyse the training metrics for ‘Long
method’, we can see that generally all models (Figures 4.9, 4.10, 4.11 and 4.12)
showed a decrease in loss with minimal gaps between the training and val-
idation loss, thus indicated a good fit. The metrics for accuracy, precision,
recall and F1-score were consistently high, and there was a close alignment
between the training and validation overall.

On the other hand, the training metrics for ‘Long parameter list’ for all mod-
els (Figures 4.1, 4.2, 4.3 and 4.4) showed a tendency for overfitting, partic-
ularly noticeable in the case of Model 2 (HybridGAT) and Model 3 (GCN)
(Figures 4.2, Figures 4.3). Those two models had more significant gaps be-
tween the training and validation metrics. Overall, we could notice that com-
pared to the ‘Long method’ training metrics, for this code smell the accuracy,
precision, recall and F1-scores were fairly high across most models, but the
validation metrics would be slightly lower.

Now, if we also analyse the evaluation metrics, we can clearly notice that
in a ‘Long method’ context, the models performed generally better than in
a ‘Long parameter list’ context. Figures 4.13, 4.14, 4.15 and 4.16 all indicate
accuracy, precision, recall and F1-score metrics in the interval 90%-95%, with
no false positives being classified and Model 1 (GraphSAGE) being on top.
However, if we take a look at figures 4.5, 4.6, 4.7 and 4.8, we can notice that
the same metrics are situated in the interval 80%-90%, with Model 4 (GAT)
performing the best.

We will now summarise the key takeaways for each model based on their
training and evaluation performances for both code smells:

• Model 1: GraphSAGE

– Long Parameter List:

* Accuracy: Very High, close to 90%.

* Precision, Recall, F1 Score: High, almost identical to accuracy.

* Confusion Matrix: Some misclassifications, indicating a good
performance.

– Long Method:

* Accuracy: Very high, close to 95%.

* Precision, Recall, F1 Score: Very high, around the 95% mark.

* Confusion Matrix: Very few misclassifications (no false posi-
tives), indicating a great performance.

61

5.1. Interpretation of Results Chapter 5. Discussion

• Model 2: HybridGAT

– Long Parameter List:

* Accuracy: Slightly lower than GraphSAGE, below 90%.

* Precision, Recall, F1 Score: Similar to accuracy.

* Confusion Matrix: More misclassifications than GraphSAGE

– Long Method:

* Accuracy: High, slightly below Model 1.

* Precision, Recall, F1 Score: Close to accuracy.

* Confusion Matrix: Fair amount of misclassifications (only one
more false negative compared to Model 1), indicating great
performance.

• Model 3: GCN

– Long Parameter List:

* Accuracy: Lowest overall, close to 80%.

* Precision, Recall, F1 Score: Also around the 80% mark.

* Confusion Matrix: Significantly increased number of misclas-
sifications, indicating overfitting. Highest amount of misclas-
sifications

– Long Method:

* Accuracy: Similar to Model 2.

* Precision, Recall, F1 Score: High, but slightly lower than Model
1.

* Confusion Matrix: Same amount of false negatives as Model
2, fair amount of misclassifications.

• Model 4: GAT

– Long Parameter List:

* Accuracy: Very similar to Model 1.

* Precision, Recall, F1 Score: Close to the value of accuracy.

* Confusion Matrix: Lowest amount of misclassifications.

– Long Method:

* Accuracy: High, similar to Models 2 and 3.

62

5.1. Interpretation of Results Chapter 5. Discussion

* Precision, Recall, F1 Score: Around the same mark as accu-
racy.

* Confusion Matrix: Still a fair amount of misclassifications,
only one more false negative compared to Models 2 and 3.

From the key takeaways and from the training and evaluation metrics from
Chapter 4, we can clearly notice that Model 1 (GraphSAGE) and Model 4
(GAT) performed better for the code smell ‘Long parameter list’, and that
the performance of all four models was very similar for ‘Long method’, with
Model 1 coming on top again. Overall, Model 1 is the only one to have the
better fit in both contexts, and it also maintained the lowest fluctuation across
the training and validation metrics.

Another observation that can be made from the results of the training and
evaluation is that Model 2 (GCN) and Model 3 (HybridGAT) are more prone
to overfitting in the context of ‘Long parameter list’, or are too complex. This
might happen due to the fact that both models are using GCN layers, which
in this case can lead to high fluctuations of the training and validation met-
rics. HybridGAT on the other hand, has a smaller gap between the training
and validation metrics, since it also encompases a GAT layer.

One important aspect that might influence the models to perform better in
the ‘Long method’ context might be the difference in size in CPGs created
from the negative and positive code samples. If we are looking for ‘Long
parameter list’ in a sample, we analyse the number of parameter nodes in
the Code Property Graph of a method. If the number of parameter nodes is
above a given threshold (more than four parameters), then a sample is con-
sidered positive, or otherwise negative. In this context, we can encounter
CPGs of samples that have similar sizes, but a different number of parame-
ters (one being negative, the other positive).

On the other hand, in the context of ‘Long method’, we are interested in
analysing the number of statements (and their nodes) in the Code Property
Graph of a method. If the number of statements is greater than a given
threshold, than we encountered a long method, otherwise it is a negative
sample of code. Generally, in this case, positive samples have CPGs with
larger sizes compared to negative samples.

Lastly, as it can be seen from the evaluation metrics, the task might have
been slightly too easy for the models. The metrics are very high, supporting
this claim. In our view, this might be a consequence of the simple nature of
the selected code smells. Both ‘Long parameter list’ and ‘Long method’ are
structural SonarQube code smells, referring to the number of statements or
the number of parameters in a method.

63

5.2. Addressing the Research Question Chapter 5. Discussion

5.2 Addressing the Research Question

Research Question: How effective are GCN, GAT and Graph-
SAGE graph-based models in detecting technical debt in ex-
isting technical debt datasets?

Our proposed methodology involved applying four different graph-based
model architectures that we built on the ‘Technical Debt Dataset’ [15], and
transforming code samples for the selected code smells into Code Property
Graphs (CPGs). The results that we achieved demonstrated that models like
GraphSAGE and GAT are highly effective in detecting both selected code
smells. These model architectures achieved high accuracy, precision, recall,
and F1-scores for both ’Long Parameter List’ and ’Long Method’, and, in
this context, they were proven to be effective tools for technical debt de-
tection. Of course, this question still remains open, since there are a lot of
other different types of SonarQube code smells and model architectures that
we haven’t tried, but this provides solid grounds for future research in this
area. Through our experimentation, we managed to confirm the potential
that graph learning has in technical debt detection.

• Models’ Performances - Key Takeaways:

– GraphSAGE (Model 1) and GAT (Model 4) were the top per-
forming models, showing strong generalisation abilities and an
increased accuracy in detecting both types of code smells. These
models demonstrated robustness against overfitting and provided
reliable detection metrics. Excellent performance

– HybridGAT (Model 2) and GCN (Model 3) showed a lower ef-
fectiveness, but were more prone to overfitting, especially for the
’Long Parameter List’ SonarQube code smell.

– Overall Performance: Despite the variation in individual model
performance, the overall effectiveness of the four graph-based mod-
els in detecting technical debt was affirmed.

– Difficulty of the Task: Especially for rules like ‘Long method’ or
‘Long parameter list’, the task is not that difficult for the model ar-
chitectures employed. Both SonarQube code smells are structural
in nature, and refer to the number of statements and the number
of parameter nodes.

– Possible Problem #1: There might still be some data leakage for
the SonarQube code smell ‘Long parameter list’, which might have
impacted the training and performance of the models.

– Possible Problem #2: The (big) fluctuations in training metrics
might have been caused by the increased complexity of the models
employed, as opposed to a learning rate issue.

64

5.3. Implications to Practitioners and Researchers Chapter 5. Discussion

5.3 Implications to Practitioners and Researchers

The aim of this research project was to investigate the effectiveness of four
graph-based models in detecting technical debt, and how Code Property
Graphs (CPGs) impact their effectiveness. Based on the results that we achieved,
we can clearly see that there is a lot of potential in this area. This is fur-
ther supported by the significant results obtained by applying graph learning
for vulnerability detection, as stated in the background chapter (Chapter 2),
since technical debt and vulnerabilities are similar in nature (in graph learn-
ing).

For practitioners, being able to detect technical debt effectively results in re-
ductions in additional costs, effort and time for software maintenance and
evolution. Through our approach using Code Property Graphs, we aimed at
finding a singular graph representation that could be used in multiple anal-
ysis tasks. This could potentially reduce the complexity of tools that extract
multiple different graph representations from the given code samples.

Also, the ‘Debtective’ tool that we created (see Section 3.5), can be a good
starting point for other tools that aim to centralise the preprocessing, training
and evaluation processes in a single place. Through our methodology, we
tried to simplify the process of using multiple model architectures with a
graph representation that encapsulates all information needed for various
analysis tasks.

For researchers, the implications of our proposed methodology and the re-
sults that we achieved are that there is a lot of potential in this research area.
We only managed to cover a limited amount of code samples and model
architectures, but there are many possibilities and questions open. This re-
search project offers a perspective that the four selected graph-based models
are effective in identifying the complex relations within code samples, and
this might provide a starting point for creating a multi-smell detection model.
The CPGs played a significant role in our study, but if those could be ‘paired’
with a model that is successful in identifying more code smells simultane-
ously (both semantic and structural), this would lead to great advancements
in the area of technical debt detection. Researchers can explore multi-task
learning approaches and other advanced techniques, in order to create mod-
els that are capable of handling the complexity of real-world codebases and
their large sizes.

65

5.4. Threats to Validity Chapter 5. Discussion

5.4 Threats to Validity

This research project covers only a limited number of code smells, which
are currently defined by SonarQube. The scope of our analysis and model
training is limited to only a small amount of selected code smells (two in
the context of this thesis), which may not be representative for the full spec-
trum of code smells that could help identify technical debt. This limitation
means that the models’ applicability and effectiveness might be constrained
when encountering other types of code smells not included in our study. As
a consequence, the findings and model performance might be specific only
to the chosen smells, and additional research is needed in order to explore
and fully validate the selected models’ capabilities across a broader range of
code smells.

Furthermore, the analysis was performed exclusively on Java code samples.
Java has well-developed coding standards, patterns, and practices, which
might not be as mature or well-documented in other programming languages.
As a result, the findings and performance of the models trained for our study
might not generalize well to other languages with different coding conven-
tions and practices (SonarQube rules might also differ). As an example, lan-
guages like Python, JavaScript, or Haskell have their own unique idioms and
style guides, which could affect how code smells are detected and addressed.
The specificity of Java’s coding context could mean that the models may not
capture the nuances present in other programming languages, thereby limit-
ing our ability to generalise our results.

Another important point is that the models in this study were trained to de-
tect individual code smells. Developing a model capable of identifying mul-
tiple code smells in a single analysis is a more complex task that requires
more complicated approach. The complexity of such models is significantly
higher, and the development process was beyond the scope of this project.
A multi-code smell detection model, for example, would need to account for
the interactions and dependencies between more code smells (which can be
different in nature: semantic or structural). This could definitely lead to a
more complicated training and evaluation process.

Lastly, the training data used in this study was limited to the files of projects
from the dataset. A larger and more diverse approach might improve the
model’s performance and ability to generalise. A smaller or project-based
approach on code smells can introduce biases or fail to capture the full vari-
ability of code smells in real-world software projects, thus affecting the mod-
els’ abilities to generalise to unseen examples. Including samples with higher
varieties for each code smell in the future might lead to better performances
and generalisation.

66

5.4. Threats to Validity Chapter 5. Discussion

5.4.1 Reflections on Dataset

The dataset that we used for this study was the ‘Technical Debt Dataset’ [15],
which included metrics data from 33 Java projects within the Apache Soft-
ware Foundation. This dataset was chosen for its comprehensive analysis
of commits, SonarQube to gather technical debt information. The structured
format of the dataset, accessible through an SQLite database, greatly facili-
tated data queries and scripting necessary for our analysis.

A very important aspect of the dataset was its detailed information on fault-
inducing and fault-fixing commits, which was instrumental in distinguish-
ing positive and negative samples for training our models. The ability to
join data from multiple tables using the projectID key allowed us to create
detailed project-specific information tables. Despite these advantages, the
preprocessing phase was challenging due to the dataset’s size and complex-
ity. Another important point is that even some code samples are negative
samples for a code smell, they might be positive samples for another code
smell that is not investigated by the model. There was no guarantee that the
negative samples were negative entirely, in the context of our dataset.

The variation of the samples for the SonarQube code smells that we analysed
was good. The number of contributors in each one of the projects analyised
in the ‘Technical Debt Dataset’ was high, and the timeframe was spanning
almost a decade. This ensured that we had multiple coding styles in this
project, which was a positive aspect for the variety of the data.

On the other hand, there were a few instances where pairs of fault-inducing
and fault-fixing commit files were not useful. For example, in the fault-
inducing commit there was a file containing a code smell, but the problem
was fixed in the fault-fixing commit by removing that specific file, instead of
fixing the code. This lead to a difference in numbers between the positive
and negative samples, requiring us to repair the balance after filtering, later
in the preprocessing.

One important consideration for our study was the collection of negative
the samples for our analysis tasks. The negative samples collected for train-
ing, validation and testing were taken mainly from the fault-fixing commits.
Since the code smells that we investigated are structural code smells, refer-
ring to the number of parameters and the number of statements in methods,
this shouldn’t produce any bias in the training of the models that we used.
Additionally, the only bias that might exist is in the fact that for training,
validation and testing we used positive and negative samples from the same
project for each analysis task.

Training our models on this dataset, which is based on SonarQube code
smells, brings both advantages and limitations. While this provides a struc-
tured manner of identifying technical debt, it trained the models to detect
what basically SonarQube could do already. This means that the effective-
ness of our model architectures that we used is tightly coupled with the ef-

67

5.4. Threats to Validity Chapter 5. Discussion

fectiveness of SonarQube’s detection capabilities. Consequently, our models
might encounter some of the limitations of SonarQube, potentially missing
other types of code smells or technical debt that SonarQube currently does
not cover. In the end, using SonarQube as a basis allowed us to ensure that
our findings are aligned with a widely-accepted standard in the industry,
and follow the detection of a well-established tool, both in academia and in
industry.

Overall, the ‘Technical Debt Dataset’ was a very useful collection of data.
Despite this series of negative points, it proved important for obtaining the
findings of our project. It also impacted our ‘Debtective’ tool’s architecture,
and provided us with a good starting point for this research project.

68

6 | Conclusions

The aim of our research project was to investigate the effectiveness of graph-
based models in detecting technical debt. We focused specifically on a limited
set of SonarQube code smells, out of which two were presented in this the-
sis: ’Long Parameter List’ (Section 3.5.2) and ’Long Method’ (Section 3.5.2).
Through building the necessary instrumentation (Section 3.5) and running
our analysis tasks (Chapter 4), we have made a series of findings.

6.1 Summary of our Findings

The study demonstrated that graph learning models, particularly Graph-
SAGE and GAT, are highly effective in detecting some specific types of tech-
nical debt, such as ’Long Parameter List’ and ’Long Method’ code smells. The
models showed very high performance metrics, indicating their robustness
in identifying these issues within software projects. On the other hand, these
very high metrics might be a consequence of tasks that were too easy for the
models that we employed.

The results indicated that GraphSAGE and GAT outperformed other model
architectures generally, achieving higher precision, recall, and F1-scores. This
highlights the suitability of these models. for technical debt detection tasks,
and their capability to provide valuable insights into the quality of the code in
structural contexts. The consistent performance across different test scenar-
ios shows the reliability and adaptability of the models for other SonarQube
code smells.

In addition to the performance of the models, the study also highlighted the
importance of preprocessing and data handling, which influences the per-
formance of the selected graph-learning models. The use of Code Property
Graphs (CPGs) was crucial in capturing the necessary code attributes for ef-
fective model training. By using CPGs, we managed to transform the sam-
ples for universal analysis tasks. The CPGs of the given code samples contain
information that can be used not only in analysing structural code smells (as
we do in this study), but also in the analysis of more complex, semantic code
smells.

69

6.2. Instrumentation: ‘Debtective’ Chapter 6. Conclusions

6.2 Instrumentation: ‘Debtective’

To streamline the process of data gathering, preprocessing, and model train-
ing and evaluation, we developed the tool called ’Debtective’. With our tool
we aimed at automatising the conversion of code samples into graph repre-
sentations, applying the necessary preprocessing tasks, and training the vari-
ous graph-based models that we built on these samples. ’Debtective’ proved
to be an effective asset in this research, significantly reducing our manual ef-
fort, and ensuring that we have a consistent and systematic approach for our
models’ evaluations. By integrating multiple model architectures within a
single analysis pipeline, ‘Debtective’ provides a scalable starting point which
can be used for future, more complex technical debt detection studies and
tools.

6.3 Future Work

Building on the findings of our research project, there are a few elements
which can provide initial directions for future research in this area:

• Multi-Smell Detection: Developing models capable of detecting mul-
tiple code smells simultaneously would address a larger range of tech-
nical debt issues, providing more support for software maintenance.
On the other hand, this is a process that has an increased complexity.

• Cross-Language Applicability: Extending the application of these mod-
els to other programming languages could lead to the development
of more versatile and widely applicable technical debt detection tools.
Similar instrumentation can be also developed from scaling the ‘Deb-
tective’ tool that we created.

• Integration with existing CI/CD Pipelines: Incorporating these mod-
els into continuous integration/continuous deployment (CI/CD) pipelines
that could enable the detection of technical debt in real-time. This is also
a complex process, and such tools provide challenges especially when
we are discussing about the necessary resources.

This research project provided results which emphasise the potential of the
four selected graph-based models in advancing the detection and manage-
ment of technical debt. By addressing the limitations that we identified, and
exploring the some of the future directions, both the academic community
and the software industry can benefit from more effective and efficient tech-
nical debt management practices and tools. The findings from this project
can provide the groundwork for ongoing improvements in this area, creat-
ing opportunities for more sustainable and maintainable software practices.

70

Bibliography

[1] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU)”.
In: CoRR abs/1803.08375 (2018). arXiv: 1803.08375. URL: http://
arxiv.org/abs/1803.08375.

[2] Frances E. Allen. “Control flow analysis”. In: Proceedings of a Sympo-
sium on Compiler Optimization. Urbana-Champaign, Illinois: Associa-
tion for Computing Machinery, 1970, 1–19. ISBN: 9781450373869. DOI:
10.1145/800028.808479. URL: https://doi.org/10.1145/
800028.808479.

[3] P. Avgeriou et al. “Technical Debt Management: The Road Ahead for
Successful Software Delivery”. In: 2023 IEEE/ACM International Confer-
ence on Software Engineering: Future of Software Engineering (ICSE-FoSE).
Los Alamitos, CA, USA: IEEE Computer Society, 2023, pp. 15–30. DOI:
10.1109/ICSE-FoSE59343.2023.00007. URL: https://doi.
ieeecomputersociety.org/10.1109/ICSE-FoSE59343.2023.
00007.

[4] Robert Baggen et al. “Standardized code quality benchmarking for im-
proving software maintainability”. In: Software Quality Journal 20.2 (June
2012), pp. 287–307. ISSN: 1573-1367. DOI: 10.1007/s11219-011-
9144-9. URL: https://doi.org/10.1007/s11219-011-9144-
9.

[5] Sicong Cao et al. “BGNN4VD: Constructing Bidirectional Graph Neural-
Network for Vulnerability Detection”. In: Information and Software Tech-
nology 136 (2021), p. 106576. ISSN: 0950-5849. DOI: https://dx.doi.
org/10.1016/j.infsof.2021.106576. URL: https://www.
sciencedirect.com/science/article/pii/S0950584921000586.

[6] José M. Conejero et al. “Early evaluation of technical debt impact on
maintainability”. In: Journal of Systems and Software 142 (2018), pp. 92–
114. ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.
2018.04.035. URL: https://www.sciencedirect.com/science/
article/pii/S0164121218300736.

[7] Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for Program-
ming and Natural Languages”. In: Findings of the Association for Com-
putational Linguistics: EMNLP 2020. Ed. by Trevor Cohn, Yulan He, and
Yang Liu. Online: Association for Computational Linguistics, Nov. 2020,
pp. 1536–1547. DOI: 10.18653/v1/2020.findings-emnlp.139.

71

https://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1109/ICSE-FoSE59343.2023.00007
https://doi.ieeecomputersociety.org/10.1109/ICSE-FoSE59343.2023.00007
https://doi.ieeecomputersociety.org/10.1109/ICSE-FoSE59343.2023.00007
https://doi.ieeecomputersociety.org/10.1109/ICSE-FoSE59343.2023.00007
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/https://dx.doi.org/10.1016/j.infsof.2021.106576
https://doi.org/https://dx.doi.org/10.1016/j.infsof.2021.106576
https://www.sciencedirect.com/science/article/pii/S0950584921000586
https://www.sciencedirect.com/science/article/pii/S0950584921000586
https://doi.org/https://doi.org/10.1016/j.jss.2018.04.035
https://doi.org/https://doi.org/10.1016/j.jss.2018.04.035
https://www.sciencedirect.com/science/article/pii/S0164121218300736
https://www.sciencedirect.com/science/article/pii/S0164121218300736
https://doi.org/10.18653/v1/2020.findings-emnlp.139

Bibliography Bibliography

URL: https://aclanthology.org/2020.findings-emnlp.
139.

[8] Jeanne Ferrante, Karl Ottenstein, and Joe Warren. “The Program De-
pendence Graph and Its Use in Optimization.” In: ACM Transactions
on Programming Languages and Systems 9 (July 1987), pp. 319–349. DOI:
10.1145/24039.24041.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representa-
tion Learning on Large Graphs”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.,
2017. URL: https://proceedings.neurips.cc/paper_files/
paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.
pdf.

[10] Van Thuy Hoang et al. “Graph Representation Learning and Its Appli-
cations: A Survey”. In: Sensors 23.8 (2023). ISSN: 1424-8220. URL: https:
//www.mdpi.com/1424-8220/23/8/4168.

[11] Kavi, Buckles, and Bhat. “A Formal Definition of Data Flow Graph
Models”. In: IEEE Transactions on Computers C-35.11 (1986), pp. 940–
948. DOI: 10.1109/TC.1986.1676696.

[12] Shi Ke et al. “MPT-embedding: An unsupervised representation learn-
ing of code for software defect prediction”. In: Journal of Software: Evo-
lution and Process 33 (Dec. 2020). DOI: 10.1002/smr.2330.

[13] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: CoRR abs/1412.6980 (2014). URL: https://api.
semanticscholar.org/CorpusID:6628106.

[14] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG]. URL:
https://arxiv.org/abs/1609.02907.

[15] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. “The Tech-
nical Debt Dataset”. In: Proceedings of the Fifteenth International Con-
ference on Predictive Models and Data Analytics in Software Engineering.
PROMISE’19. Association for Computing Machinery. New York, NY,
USA, 2019, pp. 2–11. DOI: http://dx.doi.org/10.1145/3345629.
3345630.

[16] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. 2019. arXiv: 1907.11692 [cs.CL]. URL: https://arxiv.
org/abs/1907.11692.

[17] Jamell Samuels. One-Hot Encoding and Two-Hot Encoding: An Introduc-
tion. Jan. 2024. DOI: 10.13140/RG.2.2.21459.76327.

[18] Tushar Sharma and Marouane Kessentini. “QScored: A Large Dataset
of Code Smells and Quality Metrics”. In: 2021 IEEE/ACM 18th Interna-
tional Conference on Mining Software Repositories (MSR). 2021, pp. 590–
594. DOI: http://dx.doi.org/10.1109/MSR52588.2021.
00080.

[19] Nitish Srivastava et al. “Dropout: a simple way to prevent neural net-
works from overfitting”. In: J. Mach. Learn. Res. 15.1 (2014), 1929–1958.
ISSN: 1532-4435.

72

https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://doi.org/10.1145/24039.24041
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://www.mdpi.com/1424-8220/23/8/4168
https://www.mdpi.com/1424-8220/23/8/4168
https://doi.org/10.1109/TC.1986.1676696
https://doi.org/10.1002/smr.2330
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/http://dx.doi.org/10.1145/3345629.3345630
https://doi.org/http://dx.doi.org/10.1145/3345629.3345630
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.13140/RG.2.2.21459.76327
https://doi.org/http://dx.doi.org/10.1109/MSR52588.2021.00080
https://doi.org/http://dx.doi.org/10.1109/MSR52588.2021.00080

Bibliography Bibliography

[20] Weisong Sun et al. Abstract Syntax Tree for Programming Language Under-
standing and Representation: How Far Are We? 2023. arXiv: 2312.00413
[cs.SE]. URL: https://arxiv.org/abs/2312.00413.

[21] A. Moschou A. Chatzigeorgiou T. Amanatidis N. Mittas, A. Ampat-
zoglou, and L. Angelis. “Evaluating the agreement among technical
debt measurement tools: building an empirical benchmark of technical
debt liabilities”. In: Empirical Software Engineering 25.5 (2020), pp. 4161–
4205. DOI: http://dx.doi.org/10.1007/s10664-020-09869-
w.

[22] Petar Veličković et al. Graph Attention Networks. 2018. arXiv: 1710.
10903 [stat.ML]. URL: https://arxiv.org/abs/1710.10903.

[23] Fabian Yamaguchi et al. “Modeling and Discovering Vulnerabilities
with Code Property Graphs”. In: 2014 IEEE Symposium on Security and
Privacy. 2014, pp. 590–604. DOI: 10.1109/SP.2014.44.

[24] Yaqin Zhou et al. “Devign: Effective Vulnerability Identification by Learn-
ing Comprehensive Program Semantics via Graph Neural Networks”.
In: Advances in Neural Information Processing Systems. Ed. by H. Wallach
et al. Vol. 32. Curran Associates, Inc., 2019. URL: https://proceedings.
neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-
Paper.pdf.

[25] Luka Šikić et al. “Graph Neural Network for Source Code Defect Pre-
diction”. In: IEEE Access 10 (2022), pp. 10402–10415. DOI: http://dx.
doi.org/10.1109/ACCESS.2022.3144598.

73

https://arxiv.org/abs/2312.00413
https://arxiv.org/abs/2312.00413
https://arxiv.org/abs/2312.00413
https://doi.org/http://dx.doi.org/10.1007/s10664-020-09869-w
https://doi.org/http://dx.doi.org/10.1007/s10664-020-09869-w
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://doi.org/10.1109/SP.2014.44
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://doi.org/http://dx.doi.org/10.1109/ACCESS.2022.3144598
https://doi.org/http://dx.doi.org/10.1109/ACCESS.2022.3144598

A | Additional Data

A.1 Query results in data preprocessing

Table A.1: Top 100 most frequently encountered SonarQube rules from the
Technical Debt dataset

RULE TYPE RULE_COUNT

squid:S134 CODE_SMELL 62796
squid:S1192 CODE_SMELL 58247
xml:NewlineCheck CODE_SMELL 41470
code_smells:long_method CODE_SMELL 41062
squid:S00117 CODE_SMELL 38715
common-java:DuplicatedBlocks CODE_SMELL 37219
squid:UselessImportCheck CODE_SMELL 35855
squid:S1166 CODE_SMELL 35064
squid:S00112 CODE_SMELL 31526
squid:S1213 CODE_SMELL 30548
squid:S1135 CODE_SMELL 29190
squid:MethodCyclomaticComplexity CODE_SMELL 27565
xml:IndentCheck CODE_SMELL 26106
squid:S00122 CODE_SMELL 25796
squid:CommentedOutCodeLine CODE_SMELL 22781
code_smells:complex_class CODE_SMELL 20959
squid:S00116 CODE_SMELL 20927
squid:S1066 CODE_SMELL 17852
squid:S1244 BUG 17608
squid:S1132 CODE_SMELL 17336
squid:ModifiersOrderCheck CODE_SMELL 17003
squid:S106 CODE_SMELL 14979
squid:RedundantThrowsDeclarationCheck CODE_SMELL 13944
squid:S1151 CODE_SMELL 13500
code_smells:long_parameter_list CODE_SMELL 13368
squid:S1149 CODE_SMELL 11357
squid:S1186 CODE_SMELL 11336
squid:S1226 CODE_SMELL 11213

74

A.1. Query results in data preprocessing Appendix A. Additional Data

RULE TYPE RULE_COUNT

squid:ClassVariableVisibilityCheck VULNERABILITY 10733
squid:S00105 CODE_SMELL 10144
squid:S1199 CODE_SMELL 9873
squid:S1125 CODE_SMELL 8935
squid:S1481 CODE_SMELL 8605
squid:S1197 CODE_SMELL 8230
squid:S00100 CODE_SMELL 6606
squid:S1068 CODE_SMELL 6359
squid:S1172 CODE_SMELL 6154
code_smells:lazy_class CODE_SMELL 5781
squid:S00115 CODE_SMELL 5324
squid:S1312 CODE_SMELL 5253
Web:S1827 CODE_SMELL 5228
squid:HiddenFieldCheck CODE_SMELL 5120
css:one-declaration-per-line CODE_SMELL 5107
squid:S1161 CODE_SMELL 5104
squid:S1133 CODE_SMELL 5097
squid:S00108 CODE_SMELL 4930
squid:S1181 CODE_SMELL 4908
squid:S1067 CODE_SMELL 4861
squid:S00101 CODE_SMELL 4549
squid:S1313 VULNERABILITY 4328
squid:S1148 VULNERABILITY 4260
squid:S1488 CODE_SMELL 4249
squid:MissingDeprecatedCheck CODE_SMELL 4233
squid:S1193 CODE_SMELL 4179
squid:S1168 CODE_SMELL 4162
squid:S1126 CODE_SMELL 4012
squid:S1301 CODE_SMELL 3958
squid:S1118 CODE_SMELL 3911
squid:S1155 CODE_SMELL 3848
squid:S1444 VULNERABILITY 3777
squid:S1145 BUG 3407
javascript:Semicolon CODE_SMELL 3192
squid:S1319 CODE_SMELL 2795
code_smells:class_data_private CODE_SMELL 2495
squid:EmptyStatementUsageCheck CODE_SMELL 2473
code_smells:antisingleton CODE_SMELL 2371
squid:S1160 CODE_SMELL 2327
squid:SwitchLastCaseIsDefaultCheck CODE_SMELL 2271
squid:S1141 CODE_SMELL 2195
squid:UnusedPrivateMethod CODE_SMELL 2195
javascript:TrailingWhitespace CODE_SMELL 2133
squid:S00107 CODE_SMELL 2115
squid:S2250 CODE_SMELL 2094

75

A.1. Query results in data preprocessing Appendix A. Additional Data

RULE TYPE RULE_COUNT

squid:S1905 CODE_SMELL 2081
squid:S135 CODE_SMELL 2016
css:experimental-property-usage CODE_SMELL 1888
squid:S1134 CODE_SMELL 1796
css:selector-naming-convention CODE_SMELL 1738
Web:UnsupportedTagsInHtml5Check BUG 1716
squid:S1452 CODE_SMELL 1691
squid:S2131 CODE_SMELL 1662
squid:S1188 CODE_SMELL 1633
squid:S1596 CODE_SMELL 1630
squid:S2130 CODE_SMELL 1611
squid:S1170 CODE_SMELL 1599
squid:AssignmentInSubExpressionCheck CODE_SMELL 1458
css:leading-zeros CODE_SMELL 1353
squid:S2386 VULNERABILITY 1321
xml:IllegalTabCheck CODE_SMELL 1279
squid:S1948 BUG 1250
squid:S1598 CODE_SMELL 1238
javascript:EqEqEq CODE_SMELL 1212
squid:S1214 CODE_SMELL 1191
squid:S128 CODE_SMELL 1184
squid:ForLoopCounterChangedCheck CODE_SMELL 1164
squid:S2157 BUG 1044
squid:S1185 CODE_SMELL 991
squid:LabelsShouldNotBeUsedCheck CODE_SMELL 954
css:semicolon-declaration CODE_SMELL 934
Web:BoldAndItalicTagsCheck BUG 929

76

A.1. Query results in data preprocessing Appendix A. Additional Data

PROJECT_ID,GIT_LINK,FAULT_INDUCING_COMMIT_HASH,
FAULT_FIXING_COMMIT_HASH,RULE,COMPONENT

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/AbstractSVGFilterPrimitiveElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/AbstractSVGGradientElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/CSSUtilities.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/ConcreteGVTBuilder.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/PaintServer.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/RepaintManager.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGAbstractFilterPrimitiveElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGAltGlyphElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGCircleElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:

77

A.1. Query results in data preprocessing Appendix A. Additional Data

long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGEllipseElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeColorMatrixElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeComponentTransferElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeCompositeElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeConvolveMatrixElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeDiffuseLightingElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeDisplacementMapElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeFloodElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeGaussianBlurElementBridge.java

org.apache:batik,https://github.com/apache/batik,
badaead1c2b9f35970146994a936a0920f3ab2d6,231
c435ba7354d99ab41a02e9a421a6dcb41a409,code_smells:
long_parameter_list,org.apache:batik:sources/org/apache/
batik/bridge/SVGFeImageElementBridge.java

Listing A.1: SQL Results for Query 3.3

78

A.2. Lists of SonarQube Rules Appendix A. Additional Data

A.2 Lists of SonarQube Rules

Table A.2: Selected Rules from SonarQube Analysis
Rule Name Description
Cyclomatic Complexity
(MethodCyclomaticCom-
plexity)

This metric measures the complexity of functions by
counting the number of linearly independent paths
through a program’s source code. In graph
representations like Control Flow Graphs (CFGs), a
high cyclomatic complexity indicates multiple paths
and decision points, suggesting areas that may be
error-prone or difficult to maintain. It helps in
identifying functions that need simplification or
refactoring to reduce technical debt.

Class Data Should Be
Private
(class_data_private)

Enforcing data encapsulation is crucial in
object-oriented programming to prevent external
classes from depending on internal implementation
details. In an Abstract Syntax Tree (AST), private
class data ensures that class interfaces are used
correctly, reducing the risk of bugs and making the
codebase easier to refactor, thus reducing technical
debt.

Duplicated Blocks
(DuplicatedBlocks)

This rule identifies blocks of code that are identical or
very similar across the codebase. Detectable through
graph representations as subgraphs that are
isomorphic, indicating redundant code that increases
maintenance effort and potential for bugs,
contributing significantly to technical debt.

Long Method
(long_method)

Long methods often try to do too much, making them
difficult to understand, test, and maintain. In an AST,
these methods manifest as nodes with high
complexity and depth, indicating potential
refactoring candidates to break down into simpler,
more manageable functions, thus reducing technical
debt.

Complex Class
(complex_class)

A class deemed too complex may have multiple
responsibilities or excessive functionality, which
complicates the maintenance and scalability of
software. Graph analyses like Class Dependency
Graphs can highlight complex classes by showing
dense connections and interactions with other
classes, pinpointing areas where simplification can
reduce technical debt.

79

A.2. Lists of SonarQube Rules Appendix A. Additional Data

Rule Name Description
Unused Private Method
(UnusedPrivateMethod)

Private methods that are not called reflect dead code
that unnecessarily complicates the codebase. In Call
Graphs, these methods appear as isolated nodes,
which can be candidates for removal to simplify the
code structure and decrease technical debt.

Base Class Should Not
Use Derived Class
Functions (S2157)

This rule highlights a reversal in the intended
direction of dependency in inheritance hierarchies.
Such design flaws can be visualised in a Class
Inheritance Graph, where base classes should not
have direct dependencies on derived classes.
Correcting this reduces complexity and potential
errors, thereby cutting down on technical debt.

Method With Boolean
Parameter (S1126)

Boolean parameters in methods often suggest that the
method performs different functions based on the
boolean value, which can lead to complex and
confusing code. Such methods, when represented in
a CFG, show branching based on boolean values,
indicating a need for method separation to improve
modularity and reduce technical debt.

Redundant Throws
Declaration (Redundant-
ThrowsDeclarationCheck)

This rule identifies exceptions in the method
signature that are never thrown, which can mislead
developers and contribute to unnecessary code
complexity. In CFGs, this can be identified by tracing
exception handling paths, simplifying these paths
can help in reducing technical debt.

Variable Declaration
Distance (S1481)

Variables should be declared close to where they are
used to improve code readability and maintainability.
In ASTs or CFGs, long distances between declaration
and usage points can indicate scattered logic,
suggesting a restructuring to reduce technical debt.

Modifiers Order
(ModifiersOrderCheck)

Standardizing the order of modifiers enhances code
readability and reduces the chance of errors. This can
be enforced in ASTs, where nodes representing
declarations will follow a consistent pattern, aiding in
quicker understanding and maintenance of the code,
thus reducing technical debt.

Switch Cases Without
Break (S128)

Omitting breaks in switch cases can lead to
unintentional fall-through, which might introduce
bugs. In CFGs, this rule helps ensure each case is
properly separated, preventing such errors and
reducing technical debt.

80

A.3. SQL Queries used in data preprocessing Appendix A. Additional Data

Rule Name Description
Method Should Not Have
Too Many Parameters
(long_parameter_list)

Methods with a long list of parameters are
challenging to understand and use, suggesting poor
method design. Such methods can be visualised in
ASTs or Call Graphs with complex nodes, indicating
the need for refactoring into simpler, more coherent
methods, thus reducing technical debt.

Class Variable Visibility
Check (ClassVariableVisi-
bilityCheck)

Proper visibility of class variables ensures that
encapsulation is maintained, which is crucial for the
robustness and flexibility of OOP code. ASTs can
reveal inappropriate access levels, guiding
refactoring efforts to encapsulate class data properly,
reducing technical debt.

Lazy Class (lazy_class) Classes that are overly large tend to have multiple
responsibilities, making them hard to maintain and
understand. Graph representations can show these as
large nodes with excessive edges, indicating a need
for decomposition into smaller, more focused classes,
reducing technical debt.

A.3 SQL Queries used in data preprocessing
CREATE TABLE manyParameters AS
SELECT PROJECTS.PROJECT_ID, PROJECTS.GIT_LINK,

SZZ_FAULT_INDUCING_COMMITS.FAULT_INDUCING_COMMIT_HASH,
SZZ_FAULT_INDUCING_COMMITS.

FAULT_FIXING_COMMIT_HASH,
selected_rules.RULE, selected_rules.COMPONENT

FROM PROJECTS
INNER JOIN selected_rules ON PROJECTS.PROJECT_ID =

selected_rules.PROJECT_ID
INNER JOIN SZZ_FAULT_INDUCING_COMMITS ON PROJECTS.PROJECT_ID

= SZZ_FAULT_INDUCING_COMMITS.PROJECT_ID
WHERE selected_rules.RULE = ’code_smells:long_parameter_list’
LIMIT 5000;

-- Total Rules
CREATE TABLE manyParametersTotal AS
WITH DistinctFaultInducingCommits AS (

SELECT *,
ROW_NUMBER() OVER (PARTITION BY

FAULT_INDUCING_COMMIT_HASH ORDER BY (SELECT
NULL)) AS rn

FROM manyParameters
)
SELECT *
FROM DistinctFaultInducingCommits
WHERE rn = 1;

81

A.3. SQL Queries used in data preprocessing Appendix A. Additional Data

select count(*) from manyParametersTotal; -- 1423

-- Training Rules 80%
-- Create ‘manyParametersTraining‘ table with the first 1140

entries from ‘manyParametersTotal‘
CREATE TABLE manyParametersTraining AS
SELECT *
FROM manyParametersTotal
LIMIT 1140;

-- Optionally, count the number of rows in ‘
manyParametersTraining‘

SELECT COUNT(*) FROM manyParametersTraining; -- Should be
1140

-- Validation Rules 10%
-- Create ‘manyParametersValidation‘ table with 141 elements

not in ‘manyParametersTraining‘
CREATE TABLE manyParametersValidation AS
SELECT *
FROM manyParametersTotal
EXCEPT
SELECT *
FROM manyParametersTraining
LIMIT 141;

-- Optionally, count the number of rows in ‘
manyParametersValidation‘

SELECT COUNT(*) FROM manyParametersValidation; -- Should be
141

-- Evaluation Rules 10%
-- Create ‘manyParametersEvaluation‘ table with entries not

in ‘manyParametersTraining‘ or ‘manyParametersValidation‘
CREATE TABLE IF NOT EXISTS manyParametersEvaluation AS
SELECT t.*
FROM manyParametersTotal t
LEFT JOIN manyParametersTraining tr ON t.

FAULT_INDUCING_COMMIT_HASH = tr.FAULT_INDUCING_COMMIT_HASH
LEFT JOIN manyParametersValidation v ON t.

FAULT_INDUCING_COMMIT_HASH = v.FAULT_INDUCING_COMMIT_HASH
WHERE tr.FAULT_INDUCING_COMMIT_HASH IS NULL
AND v.FAULT_INDUCING_COMMIT_HASH IS NULL;

-- count the number of rows in ‘manyParametersEvaluation‘
SELECT COUNT(*) FROM manyParametersEvaluation; -- 142

Listing A.2: Full query for obtaining a training, validation and evaluation set,
with comments included

82

	Introduction
	Background
	Technical Debt Management
	Graph Neural Networks
	Graph Convolutional Networks (GCNs)
	Graph Attention Networks (GATs)
	Graph Sample and Aggregation (GraphSAGE)
	Dropout
	Rectified Linear Units (ReLU)

	Graph Representations

	Methodology
	Objectives & Research Questions
	Outline
	Data Collection
	Data Analysis
	SonarQube rules
	Dataset preprocessing
	Graph Representations
	Model Architectures Employed

	Instrumentation
	Repository gathering
	Rules covered by our tool
	Sample transformations
	Sample labelling
	Model training
	Model evaluation

	Results
	Long Parameter List
	Training results
	Evaluation results

	Long Method
	Training results
	Evaluation results

	Discussion
	Interpretation of Results
	Addressing the Research Question
	Implications to Practitioners and Researchers
	Threats to Validity
	Reflections on Dataset

	Conclusions
	Summary of our Findings
	Instrumentation: `Debtective'
	Future Work

	Additional Data
	Query results in data preprocessing
	Lists of SonarQube Rules
	SQL Queries used in data preprocessing

