. and engineering
groningen

university of / faculty of science

Cost-Effective Machine Learning
Inference with AWS Lambda

Evaluating Serverless Resource Configurations

Rick Timmer

Supervisors:
V. (Vasilios) Andrikopoulos, Prof

J. (Justus) Bogner, Prof

Faculty of Science and Engineering
University of Groningen
July, 2024

Cost-Effective Machine Learning Inference with AWS Lambda
Evaluating Serverless Resource Configurations

Student:

Rick Timmer (S4567846)
r.timmer.9@student.rug.nl
ricktimmer98@gmail.com

Supervisors:

Vasilios Andrikopoulos
v.andrikopoulos@rug.nl

Justus Bogner
j.bogner@uu.nl

Department:

Faculty of Science and Engineering
University of Groningen

July, 2024

Acknowledgements:

I would like to express my sincere gratitude to my supervisors, Prof. V. (Vasilios)
Andrikopoulos and Prof. J. (Justus) Bogner, for their invaluable guidance, support, and
expertise throughout this research project. Their insights and encouragement were
instrumental in shaping this work. I am also grateful to the Faculty of Science and
Engineering at the University of Groningen for providing the resources and environment
conducive to this research.

Abstract

In cloud computing, serverless offerings like AWS Lambda offer notable benefits in scal-
ability and resource management. In theory, the flexibility and auto-scaling features of
serverless platforms align well with machine learning (ML) demands, allowing computa-
tional resources to be dynamically allocated based on the real-time requirements of ML
models. In order to optimize the efficiency and affordability of machine learning inference
tasks, it is crucial to have an understanding of the various resource configurations and
their implications. This thesis explores the performance and cost of different AWS Lambda
resource setups for running ML inference workloads. The study examines how memory
allocation and concurrency settings affect computational efficiency and costs by conduct-
ing systematic experiments with various ML algorithms—unsupervised, supervised, and
large language models. The results reveal significant differences in cost and performance
across various configurations. For instance, allocating 1024 MB of memory often provides
a good balance between cost and performance for unsupervised and supervised algorithms.
In contrast, large language models are not able to run efficiently on AWS Lambda due
to significant latency and high costs, making them unsuitable for real-time applications.
In terms of implications, this research provides insights into the trade-offs between com-
putational resources and execution costs, helping stakeholders make informed decisions
that balance efficiency and budget in a serverless environment. The findings contribute
to developing best practices for serverless ML deployments.

Contents

3

Methodology|

[3.1 Objectivel
[3.2 Experiment Variables
[3.2.1 Independent Variables|
[3.2.2 Dependent variables|

Experiments|

4.1 Experiment Design|
[4.2 Environment setup|o
[4.3 Algorithm Implementation|
4.4 Extraction and processing|

[6_Results

(5.1 Overview of Experimental Results|.
[5.2 Answering the Research Questions|.

[>.3.1 Summary|
[5.3.2 Interpretation|
[5.3.3 Implication|
[5.3.4 Threats to Validity|

6 Conclusion|
[References]

1

10
10
10
10
11
12
12

13
13
13
14
15

16
16
25
27
27
27
27
27
28

29

30

List of Figures

[2.1 Paper selection workflow.|.o 5
[4.1 An overview of the AWS infrastructure used for the experiments| 14
[5.1 Pricing on AWS Lambda per Memory Size (MB)| 17
[5.2 Number of CPUs per memory allocation.| 18
[5.3 Performance and cost of unsupervised algorithms.| 18
[>.4 Performance and cost of k-means for lowered memory and batch size 1000.| 19
[5.5 Performance and cost of pca for lowered memory and batch size 100, . . . 20
[5.6 Performance and cost of supervised algorithms.| 20
[5.7 Performance and cost of logistic-regression for lowered memory and batch |

size 1000 o e e 21
[5.8 Performance and cost of svm for lowered memory and batch size 100.| . . . 21
[5.9 Performance and cost of large language models.| 22
[5.10 Execution time of svm for different maximum concurrent instances grouped |

Dy Memory.| e e e 24
[5.11 Execution time of svm for different maximum concurrent instances grouped |

by number of instances.| 24

111

List of Tables

[2.1 Selected papers| 6
[2.2 Summary of Research Papers on Serverless Computing and Machine Learning] 8

(5.1 AWS Lambda pricing per memory allocation 46| (* Estimation)|. 17

v

Chapter 1

Introduction

Serverless computing is a paradigm offering remarkable scalability and cost-efficiency while
being fully managed [1]. In this model, developers can build and deploy applications with-
out having to manage the underlying infrastructure. Instead, cloud providers dynamically
allocate resources as needed, charging only for the actual usage, which eliminates the need
for over-provisioning and reduces operational costs. Functions as a Service (FaaS), a core
component of serverless computing, allows developers to execute code in response to events
while the cloud platform handles resource provisioning and management [1]. This makes
it ideal for applications with variable workloads.

Machine learning (ML) is a subset of artificial intelligence where algorithms are de-
signed to learn from and make predictions or decisions based on data. ML algorithms can
range from simple linear regressions to complex large-language models (LLMs). These
algorithms often require significant computational resources for training and inference,
making efficient resource management crucial. Serverless computing’s inherent ability to
dynamically allocate resources and manage workloads could prove useful for unpredictable
and bursty machine learning tasks [2]. For instance, during peak times, an ML model
might need to handle numerous requests simultaneously, a scenario where traditional
fixed-capacity infrastructure might struggle.

The focus of this project is to produce a general overview of the performance of ma-
chine learning inference on cloud computing, specifically on AWS Lambda. Different
classes of ML algorithms will be used as benchmarks to see if there are significant differ-
ences between these groups. The evaluation will consider various resource configurations,
such as memory allocation and concurrency limits, to understand their impact on both
performance and cost-efficiency. By systematically analyzing these factors, the project
aims to provide a comprehensive understanding of how different ML algorithms perform
in a serverless context.

The following research questions and objectives guide this study:

RQ1. What state-of-the-art implementations of machine learning algorithms using server-
less computing currently exist?

RQ2. How do different serverless computing resource configurations impact the perfor-
mance of machine learning inference?

RQ3. How do serverless resource configurations impact the cost of machine learning in-
ference?

CHAPTER 1. INTRODUCTION CHAPTER 1. INTRODUCTION

RQ4. What is the relation between cost and performance of the different serverless resource
configurations?

This thesis could be used by anyone interested in running machine learning tasks on
functions as a service, specifically AWS Lambda. It contains some guidelines and use-
ful information that could prove helpful when optimizing cost and response times of ML
deployments. For instance, understanding the trade-offs between different memory con-
figurations and concurrency settings can help in making informed decisions that balance
performance and cost. Additionally, the findings of this research could aid in the devel-
opment of best practices for deploying ML models in serverless environments, thereby
enhancing the scalability and efficiency of these applications.

This thesis is structured as follows: Chapter 1 introduces the concept of serverless com-
puting and Function-as-a-Service (FaaS), highlighting its relevance to machine learning.
Chapter 2 reviews the existing literature, setting the stage for the subsequent analysis.
Chapter 3 outlines the methodology, detailing the experimental setup, the selection of
machine learning algorithms, and the configurations of AWS Lambda resources used.
Chapter 4 describes the experiments were designed to evaluate the performance and cost
implications of different serverless configurations. Chapter 5 presents the results, analyz-
ing the data obtained from these experiments to understand the impact on performance
and cost, as well as discusses the results. Finally, Chapter 6 concludes the thesis by
summarizing the findings.

Chapter 2

Literature

This chapter explores how serverless computing and machine learning are coming together
to improve both performance and cost-effectiveness. It looks at important contributions
in the field and sets the stage for a detailed discussion on using AWS Lambda for machine
learning tasks.

2.1 Related Work

Serverless computing and machine learning has gained significant attention in recent years.
A comprehensive overview of this field is provided by Barrak et al. [1] in their systematic
mapping study. Their work synthesizes existing research on serverless machine learning,
highlighting key trends, challenges, and opportunities in this domain.

Several studies have explored specific aspects of serverless ML. Carreira et al. [3]
introduced Cirrus, a serverless framework for end-to-end ML workflows. Yu et al. [4]
proposed Gillis for serving large neural networks in serverless functions, while Ali et
al. [5] developed Batch, a system for ML inference serving with adaptive batching.

Cost efficiency, a crucial aspect of serverless deployments, was addressed by Sarroca
and Sanchez-Artigas [6] with their MLLESS framework. Performance benchmarking ef-
forts, such as those by Elordi et al. 7] using MLPerf, have provided insights into the
capabilities of serverless platforms for ML tasks.

Our work extends these efforts by focusing specifically on AWS Lambda and analyzing
how different resource configurations affect both the performance and cost of ML infer-
ence workloads. Unlike previous studies, which primarily address frameworks and broad
performance benchmarks, this thesis provides a detailed investigation, including a set of
automated benchmark tooling, into the trade-offs between computational efficiency and
cost across various ML algorithms, including unsupervised, supervised, and large language
models. This targeted analysis addresses a gap in the literature by offering practical in-
sights for optimizing serverless ML deployments on AWS Lambda, helping stakeholders
make informed decisions that balance efficiency and budget constraints.

2.2 Review Extension

One of the initial inspirations of this project has been the systematic mapping study
written by Barrak et al. [1] This mapping study was published in 2022, and given that

3

CHAPTER 2. LITERATURE CHAPTER 2. LITERATURE

the study provides us with the (Scopus) queries used for collecting the papers, we can
collect documents on the same topic released after the mapping study. We will then
combine these with the original references and enrich these references to find the most
relevant studies for us. An illustration of this process can be found in [Figure 2.1]

Before we can rerun the queries used in the mapping study by Barrak et al. [1]. we
have to make some minor changes. The query was executed in June 2022, so we looked
for studies published afterward. We used two queries since Scopus only allows filter-
ing after a given year, not a month. One of these gives us the complete collection after
2023, and the other is for the published studies in 2022, which were then filtered by month.

TITLE-ABS-KEY(("serverless” OR "lambda architecture” OR ”function as a service”)
AND ("machine learning” OR "deep learning”)) AND PUBYEAR > 2022

TITLE-ABS-KEY(("serverless” OR “lambda architecture” OR "function as a service”)
AND ("machine learning” OR “deep learning”)) AND PUBYEAR > 2021 AND PUB-
YEAR < 2023

After combining these sets we further extended it with studies citing the mapping
study, however, these all ended up being duplicates also found in the queries. This resulted
in an initial set of 132 new papers. Combining these with the original 53 analyzed papers
in the mapping study gives us a set of 185 papers to work with. In the case of this
project, we are specifically curious about papers that release their source code to the
public, since we want to use their implementations in our benchmarks. To sift out these
papers we start with a static keyword search for one of the following: ”source code”,
"GitHub”, or ”GitLab”. This gives us 100 papers that potentially contained open-source
implementations. This set was manually sifted through to obtain a list with actual open-
source implementations, giving us 36 papers to consider further [Table 2.1]

https://www-scopus-com.proxy-ub.rug.nl/results/results.uri?sort=plf-f&src=s&sid=019ef9259f8a6b22fc6de5f7654830c9&sot=a&sdt=a&sl=151&s=TITLE-ABS-KEY%28%28+%22serverless%22+OR+%22lambda+architecture%22+OR+%22function+as+a+service%22+%29+AND+%28+%22machine+learning%22+OR+%22deep+learning%22+%29%29+AND+PUBYEAR+%26gt%3B+2022&origin=searchadvanced&editSaveSearch=&txGid=c63aa8ae9f9a76137c0732521f705f41&sessionSearchId=019ef9259f8a6b22fc6de5f7654830c9&limit=10
https://www-scopus-com.proxy-ub.rug.nl/results/results.uri?sort=plf-f&src=s&sid=019ef9259f8a6b22fc6de5f7654830c9&sot=a&sdt=a&sl=151&s=TITLE-ABS-KEY%28%28+%22serverless%22+OR+%22lambda+architecture%22+OR+%22function+as+a+service%22+%29+AND+%28+%22machine+learning%22+OR+%22deep+learning%22+%29%29+AND+PUBYEAR+%26gt%3B+2022&origin=searchadvanced&editSaveSearch=&txGid=c63aa8ae9f9a76137c0732521f705f41&sessionSearchId=019ef9259f8a6b22fc6de5f7654830c9&limit=10
https://www-scopus-com.proxy-ub.rug.nl/results/results.uri?sort=plf-f&src=s&sid=ab6268142feba44d2c261d6394b02665&sot=a&sdt=a&sl=173&s=TITLE-ABS-KEY%28%28+%22serverless%22+OR+%22lambda+architecture%22+OR+%22function+as+a+service%22+%29+AND+%28+%22machine+learning%22+OR+%22deep+learning%22+%29%29+AND+PUBYEAR+%26gt%3B+2021+AND+PUBYEAR+%26lt%3B+2023&origin=searchadvanced&editSaveSearch=&txGid=79f052f05ae01cf6ad75390d3dd3a1b6&sessionSearchId=ab6268142feba44d2c261d6394b02665&limit=10
https://www-scopus-com.proxy-ub.rug.nl/results/results.uri?sort=plf-f&src=s&sid=ab6268142feba44d2c261d6394b02665&sot=a&sdt=a&sl=173&s=TITLE-ABS-KEY%28%28+%22serverless%22+OR+%22lambda+architecture%22+OR+%22function+as+a+service%22+%29+AND+%28+%22machine+learning%22+OR+%22deep+learning%22+%29%29+AND+PUBYEAR+%26gt%3B+2021+AND+PUBYEAR+%26lt%3B+2023&origin=searchadvanced&editSaveSearch=&txGid=79f052f05ae01cf6ad75390d3dd3a1b6&sessionSearchId=ab6268142feba44d2c261d6394b02665&limit=10
https://www-scopus-com.proxy-ub.rug.nl/results/results.uri?sort=plf-f&src=s&sid=ab6268142feba44d2c261d6394b02665&sot=a&sdt=a&sl=173&s=TITLE-ABS-KEY%28%28+%22serverless%22+OR+%22lambda+architecture%22+OR+%22function+as+a+service%22+%29+AND+%28+%22machine+learning%22+OR+%22deep+learning%22+%29%29+AND+PUBYEAR+%26gt%3B+2021+AND+PUBYEAR+%26lt%3B+2023&origin=searchadvanced&editSaveSearch=&txGid=79f052f05ae01cf6ad75390d3dd3a1b6&sessionSearchId=ab6268142feba44d2c261d6394b02665&limit=10

CHAPTER 2. LITERATURE CHAPTER 2. LITERATURE

Mapping
Study

Contains Executed

Citations

Re-Executing
Query

132 new
papers

Combine
Sets

132 new
papers

@g

Yes

185 papers

Keyword
Search

100 papers

36 papers

UaCatis et

Figure 2.1: Paper selection workflow.

CHAPTER 2. LITERATURE CHAPTER 2. LITERATURE

Table 2.1: Selected papers

Ref | Title

P1 8 Holistic cold-start management in serverless computing cloud with deep
learning for time series

P2 9 GeoPM-DMEIRL: A deep inverse reinforcement learning security tra-
jectory generation framework with serverless computing

P3* 6 MLLESS: Achieving cost efficiency in serverless machine learning train-
ing

P4 10] | Function-as-a-Service performance evaluation: A multivocal literature
review

P5 11] | Generation of a dataset for DoW attack detection in serverless archi-
tectures

P6 12] | Development and deployment of a big data pipeline for field-based high-
throughput cotton phenotyping data

pP7* 3 Cirrus: A Serverless Framework for End-To-end ML Workflows

pP8* 13] | Refactoring of Neural Network Models for Hyperparameter Optimiza-
tion in Serverless Cloud

P9 14] | Prebaking functions to warm the serverless cold start
P10 15] | FaasCache: Keeping serverless computing alive with greedy-dual
caching

P11* | |16] | Distributed double machine learning with a serverless architecture
P12 17] | OFC: An opportunistic caching system for FaaS platforms

P13* | |18] | Towards Demystifying Serverless Machine Learning Training

P14* | [19] | You Do Not Need a bigger boat: Recommendations at Reasonable Scale
in a (Mostly) serverless and open stack

P15 20 | An empirical study on challenges of application development in server-
less computing

P16* | [2 INFless: A native serverless system for low-latency, high-Throughput
inference

P17 | [21] | WISEFUSE: Workload Characterization and DAG Transformation for
Serverless Workflows

P18 22| | FuncPipe: A Pipelined Serverless Framework for Fast and Cost-Efficient
Training of Deep Learning Models

P19 23] | ElasticFlow: An Elastic Serverless Training Platform for Distributed
Deep Learning

P20 24] | FMI: Fast and Cheap Message Passing for Serverless Functions

P21 25| | OSCAR-P and aMLLibrary: Performance Profiling and Prediction of
Computing Continua Applications

P22 26] | AsyFunc: A High-Performance and Resource-Efficient Serverless Infer-
ence System via Asymmetric Functions

P23 27] | Tournament-Based Pretraining to Accelerate Federated Learning

P24 28| | Leveraging Intra-Function Parallelism in Serverless Machine Learning
P25 29| | Serverless Prediction of Peptide Properties with Recurrent Neural Net-
works

CHAPTER 2. LITERATURE CHAPTER 2. LITERATURE

P26* | [5] | Batch: Machine learning inference serving on serverless platforms with
adaptive batching
P27* | [7] | Benchmarking Deep Neural Network Inference Performance on Server-

less Environments with MLPerf

P28 | [30] | Cloud Services Enable Efficient AI-Guided Simulation Workflows across
Heterogeneous Resources

P29 | [31] | COUNSEL: Cloud Resource Configuration Management using Deep Re-
inforcement Learning

P30* | [32] | AANN: Achieving Predictable Distributed DNN Training with Serverless
Architectures

P31 | [33] | Exploring the Impact of Serverless Computing on Peer To Peer Training
Machine Learning

P32 | [34] | SCP4ssd: A Serverless Platform for Nucleotide Sequence Synthesis Dif-
ficulty Prediction Using an AutoML Model

P33* | [4] Gillis: Serving large neural networks in serverless functions with auto-
matic model partitioning

P34 35| | iPaaS: Intelligent Paging as a Service

P35 36) | Contention-aware container placement strategy for docker swarm with
machine learning based clustering algorithms

P36 | [37] | SPIRT: A Fault-Tolerant and Reliable Peer-to-Peer Serverless ML
Training Architecture

* Peer-viewed papers included in A. Barrak el al[1].

The set of papers seen in is further analysed and labeled to try and find
papers that were related to the goals of this work. First we check whether the paper
concerns machine learning on functions as a service. If it does we then extract the platform
and the machine learning stage which it concerns. We added notes to each of the papers
not concerning machine learning on functions as as service that give a general idea of
what the paper is about instead. This could perhaps be helpful for people coming across
this work that are interested in a very specific topic which could be covered by one of
these works. These labeled papers can be found in [Table 2.2|

Our initial goal is to leverage existing implementations found in the literature. How-
ever, we encountered significant challenges: many of these implementations were difficult
to work with and relied on various external frameworks to function. In some cases docu-
mentation was not optimal, or even completely missing. Moreover, the number of available
implementations is limited. These limitations made us consider a native approach. As
a result, we decided to develop our own implementations to evaluate a broader range of
machine learning algorithms directly on AWS Lambda, how this was done can be found in
Section 4.3, This decision allowed us to avoid the complications associated with external
frameworks and provided a consistent environment for our experiments.

Table 2.2: Summary of Research Papers on Serverless
Computing and Machine Learning

| ML on FaaS | Platform Stage Note

P1 | False Proposes a cold-start man-
agement policy.

P2 | True AWS Lambda Training

P3 | True IBM Functions Training

P4 | False Performance review

P5 | False Simulation of function invo-
cations

P6 | False Serverless, but not FaaS

P7 | False End-to-end framework

P8 | False Hyperparameter optimiza-
tion

P9 | False Cold-start problem

P10 | False Cold-start problem

P11 | False Double machine learning

P12 | False Caching

P13 | False FaaS vs laaS performance
review

P14 | False Template data stack

P15 | False Development challenges

P16 | True AWS Lambda Inference

P17 | False Automated execution plan-
ning

P18 | False AWS Lambda, Alibaba Functions | Training Training framework

P19 | False Training platform

P20 | False Communication in FaaS

P21 | False Auto-profiling tool

HINIVUALIT ¢ HHLdVHD

HINILVHHALIT ¢ HHLdVHD

P22 | False Shadow Functions

P23 | False Federated training frame-
work

P24 | True AWS Lambda Inference

P25 | False Serverless, but not FaaS

P26 | True AWS Lambda Inference

P27 | False Benchmarking FaaS Infer-
ence

P28 | True FuncX Training, Inference

P29 | False Deep reinforcement frame-
work

P30 | False Resource provisioning
framework

P31 | False Serverless networking

P32 | False ML Automation

P33 | False Automatic partitioning of
models

P34 | False Serverless, but not FaaS

P35 | False Containerization

P36 | False Peer-to-peer serverless con-

nections

HINIVUALIT ¢ HHLdVHD

HINILVHHALIT ¢ HHLdVHD

Chapter 3

Methodology

In this section, we cover the experiment methodology used to assess the performance of
machine learning algorithms on AWS Lambda. It is designed to give us a comprehensive
analysis of different types of algorithms, such as unsupervised algorithms, supervised
algorithms, and large language models. By focusing on detailed aspects such as execution
time, initialization time, and overall billed duration, this project aims to offer insight
into the scalability and economic viability of using AWS Lambda in machine learning
applications.

3.1 Objective

This study aimed to benchmark the cost efficiency of AWS Lambda using various machine
learning algorithms, considering execution time as a key component of the overall cost.
We do this by designing an experiment set that allows us to answer the research questions.
These experiments will allow us to benchmark both performance (RQ2) and calculate the
cost of running workloads (RQ3), which we then use to determine any relations (RQ4).

3.2 Experiment Variables

Understanding the distinction between dependent and independent variables is crucial
for designing experiments, analyzing data, and drawing conclusions in experimental re-
search. Independent variables are the factors that researchers manipulate to observe how
they affect other variables. In contrast, dependent variables are the results or responses
measured in the experiment that are presumed to be influenced by independent variables.

3.2.1 Independent Variables

Changing the memory size of functions as a service can have unforeseen consequences.
Platforms like AWS assign CPUs to the function depending on the memory size [3§].
All of these hidden variables affect the performance that we want to measure. We limit
the number of concurrent executions in our Lambda function. This strategy is primarily
to reduce the number of cold starts-instances where a new execution environment is
initialized [39], which can add latency to the initial request. We are mainly interested in
hot runs, where the function executes in an already active environment, but we will also

10

CHAPTER 3. METHODOLOGY CHAPTER 3. METHODOLOGY

experiment with cold starts to see if limiting these is more cost-effective. By default, we
use 10 for each benchmark, but the default in Lambda is to have a maximum of 1000 per
account. Another variable we want to change is the batch size. In our case, the batch size
would be the number of items processed per function per request. So when a function
is triggered with a batch size of 100, we want it to process 100 items before returning.
We need to change these variables because some of the algorithms perform too well to be
able to distinguish real performance changes between the different memory allocations.
This is something that will become apparent in the results of the experiment. Finally, as
mentioned, we want to benchmark different machine learning algorithms. The different
values that we ended up using for these variables are:

e Memory size (In MBs): 256, 512, 1024, 2048, 4096, 8192, 10240
e Max concurrent executions (In number of instances): 10, 20, 50, 1000
e Batch size (In number of items): 100, 1000

e Categories of machine learning algorithms: Unsupervised, supervised, and
LLMs

Machine learning algorithms

The algorithms tested were divided into three categories. Unsupervised algorithms, su-
pervised algorithms, and large language models. Particularly in the case of large language
models, there are some restrictions given that AWS Lambda has restricted memory and
storage.

e Large Language Models (LLMs):
- TinyLlama-1.1B-Chat-v1.0 (1.1B parameters) [40]
- TinyLLama-v0 (4.62M parameters) [41]
- bert-base-uncased (110M parameters) [42]

e Supervised Learning Algorithms: Logistic Regression, Support Vector Machine
(SVM), and Random Forest.

e Unsupervised Learning Algorithms: K-Means, Gaussian Mixture Model, and
Principal Component Analysis (PCA).

3.2.2 Dependent variables

In this experiment, we assess machine learning algorithms’ efficiency and operational cost
within a serverless architecture by measuring specific aspects of function execution. These
measures are crucial for understanding the performance and economic impact of the varied
configurations tested. The dependent variables include:

e Initialization Time: The duration it takes for the model to initialize before pro-
cessing begins. This time is significant as it impacts the latency and user experience,
but only relevant for cold starts. Initialization time will be tracked through logs gen-
erated during the execution of the functions.

11

CHAPTER 3. METHODOLOGY CHAPTER 3. METHODOLOGY

e Processing Time: The actual time spent processing the data. This metric directly
reflects the computational efficiency of the function under different memory alloca-
tions and algorithmic approaches. Processing time will also be tracked through logs
generated during the function execution.

e Billed Duration: The total time charged by the provider encompasses initializa-
tion and processing times. This is crucial for evaluating the cost-effectiveness of
different configurations. Billed duration is provided by AWS Lambda as part of the
platform’s logs.

e Total Cost: Calculated based on the billable time and the resource utilization
during the execution. This helps assess the financial implications of deploying each
configuration in a real-world scenario. Total cost is determined by multiplying the
billed duration by the cost per millisecond, as specified by AWS Lambda pricing.

These metrics will be tracked to analyze how different memory sizes, batch sizes, con-
currency levels, and types of machine learning algorithms influence performance and costs
in a cloud-based function-as-a-service platform. This analysis aims to identify the most
cost-effective and performance-optimized configurations to implement machine learning
functions on AWS Lambda.

3.3 Datasets

The experiments use two datasets, one for the large language models and one for the other
algorithms. These datasets are used to create batches for the system to process. To ensure
that enough batches of a given size can be created the dataset wraps around when it runs
out of items, ensuring that we are able to create large enough batches to put some strain
on the algorithms. Since the LLMs are pre-trained, we only use the dataset for testing
as no training was required. We use the ARC AI2 Reasoning Challenge dataset [43] to
test these algorithms, which can be used to judge the reasoning levels of different models.
In our case, we are not so interested in the level of reasoning, but the dataset provides
us with a consistent and varied number of prompts, which is enough for our benchmarks.
For the other algorithms, we use an emotion dataset used by a natural language project
for judging the sentiments of different texts [44]—this dataset we use for both training the
models and benchmarking them. The entire dataset is used for training purposes without
any additional preprocessing. For the unsupervised models, we drop the labels from the
dataset, while for the supervised models, the labels are of course used. This approach
ensures that both supervised and unsupervised models can be effectively evaluated using
the same data source.

3.4 Measurement Metrics

The primary metric for benchmarking was the billed duration, encompassing total exe-
cution time, initialization time (time required for model loading), and processing time
(duration of item processing by the model). Using the billed duration we are able to
determine the approximate runtime cost.

12

Chapter 4

Experiments

In this chapter, we cover how the experiments were executed, including how the exper-
iment was produced in a way that we consider the 3-Rs—repeatability, reproducibility,
and replicability [45]. Using a diverse suite of tools, the setup allows us to automate
most of the process and extend the experiments, allowing us to examine the behaviors
we observed with follow-up experiments further. The experimental setups are available
on GitHub which the reader is encouraged to check out. They contain documentation on
how to get started using the experiment suite.

4.1 Experiment Design

Each algorithm was subjected to 100 experimental runs on AWS Lambda, with 10 concur-
rent executions. This setup provided a mix of cold starts (10) and hot runs (90), ensuring
a comprehensive performance analysis under different invocation conditions. For a single
instance, we ran the different memory configurations with a different number of maximum
concurrent, executions to see what effect that would have on the data. Most experiments
were carried out using a batch size of 100, which was increased for cases where the number
of items was not enough to strain the algorithm enough.

4.2 Environment setup

To ensure consistency and reproducibility in our experimental environment, we utilized
Terraform by HashiCorp, an infrastructure as code (IaC) tool, for setting up and managing
the cloud resources required for our experiments. Terraform allows us to define our
infrastructure using a high-level configuration syntax, which it then uses to create, update,
and manage all underlying resources with predictable and repeatable deployment steps.
This approach guarantees that the same configurations and resources are available for
each experiment, reducing discrepancies that could arise from manual setups. In our
infrastructure as code, we define several AWS services, an overview of which can be found

in |[Figure 4.1] these being:

e AWS Elastic Container Service: Amazon’s fully managed container registration
service, which uses the AWS Fargate compute engine to provision resources for tasks

13

https://github.com/RickTimmer/ml-on-faas-benchmark

CHAPTER 4. EXPERIMENTS CHAPTER 4. EXPERIMENTS

automatically. These tasks are responsible for publishing messages on a message
queue, which are then picked up by the different Lambda instances.

¢ AWS Elastic Container Registry: Amazon’s container registration where all
the container images are stored.

e AWS Simple Storage Service: Amazon’s cloud object storage service where we
store our datasets for the experiments. these are read by the experiment task, which
then publishes the messages containing the data.

e AWS Simple Notification Service: Amazon’s managed Pub/Sub service, which
we use to trigger our AWS Lambda functions.

¢ AWS Lambda: Amazon’s FaaS compute service where code responds to events
and automatically manages the required computational resources.

¢ AWS CloudWatch: Amazon’s cloud monitoring tool where all of our logs are
collected. We can then extract them using simple queries, and by applying some
simple preprocessing, we can get our hands on a usable dataset.

€&

]
i
H 1
Amazon Simple Pull : Amazon Elastic ! AWS Lambda !
Storage Service Dataset : Container 1
(S3) Registry |
R S T R |
I : 1
o L .
Start | | Provision Push i Trigger
Experiment u Resources n | Messages : Functions
Pe® o— ‘
Amazon Elastic AWS Fargate Elastic Amazon Simple : AWS Lambda
Container Service Container Notification ~ : CloudWatch
Service Task Service

AWS Lambda

Figure 4.1: An overview of the AWS infrastructure used for the experiments

4.3 Algorithm Implementation

For the different machine learning algorithms we apply pre-built algorithms in Lambda
using Python with libraries like PyTorch and scikit-learn, which is then containerized
using Docker so it can be deployed on Lambda. The LLMs were pulled from HuggingFace
whilst the other algorithms were trained using the scikit-learn python implementations.
To make the project extendable, the algorithms were all implemented using a wrapper.
This wrapper file also contains all necessary logging for the eventual analysis of the data.
This means that to extend the project, one copies one of the existing implementations,

14

CHAPTER 4. EXPERIMENTS CHAPTER 4. EXPERIMENTS

changes around the algorithm, and that is it. All the logging is automatically handled
in the wrapper. This should allow future researches to apply the project for their own
benchmarking needs, so they can test the viability of other algorithms on AWS Lambda.
The implementation of the wrapper is relatively simple, see [Algorithm I} The user
simply passes through the event, a callback for the processing, an initializer in case of
a cold start, and the request identifier from Lambda. The wrapper then handles the
initialization when required, does some logging, and starts processing the items.

Algorithm 1 Event Handler Wrapper Function
1: function WRAP(event, callback, initializer, requestld)
2 // 1: Extract data from event.
3 // 2: Run the initializer function if the trigger was a cold start.
4: // 3: Run the callback function, which runs a machine learning algorithm.
5
6:

// 4: Return the results.
end function

4.4 Extraction and processing

After running the experiments we need to first extract the logs from AWS, and after we
have pulled them locally we need to do some preprocessing before we can start analyzing
it. For this we have a number of scripts, also available on the GitHub page linked prior.
Firstly, we use a script that calls the AWS CLI to extract all the logs relevant for that
particular experiment from Cloudwatch. This is done using a timestamp which logs the
start time of the experiment. After we have pulled the logs, we have to put them in a
format that allows us to analyze it. For this we first identify the relevant logs, and then
using regex we conditionally extract the values that we want to keep in our dataset. For
example, the billed duration of a certain call. Little preprocessing is required further, just
some grouping of the data. All these are then grouped per execution and stored in a CSV
format so we can plot figures using the data.

To analyze the performance and cost of various AWS Lambda resource configurations
for machine learning inference, we tracked key metrics such as initialization time and
processing time through AWS Lambda logs. Billed duration, which encompasses both
initialization and processing times, was also extracted from these logs. The total cost was
calculated by multiplying the billed duration by the AWS Lambda cost per millisecond.
We examined how different memory sizes, batch sizes, concurrency levels, and types of
machine learning algorithms influenced these metrics. Data visualization techniques were
employed to interpret the results. This analysis aimed to identify the most cost-effective
and performance-optimized configurations for deploying machine learning functions on
AWS Lambda. By interpreting these metrics through visual representations, we addressed
the research questions and provided insights into optimizing serverless ML deployments.

15

Chapter 5

Results

In this chapter, we analyze the results from our experimental runs, focusing on evaluating
the cost-effectiveness and performance efficiency of various configurations. We will first
present the gathered data through figures and then discuss these results in the context
of our three main research questions. The data on which these results are based can
be found on Kaggle. In this chapter we will first focus on the experimental results in
[Section 5.1}, after which we discuss their implications with regards to the research questions
in [Section 5.21

5.1 Overview of Experimental Results

This section introduces the figures and tables derived from the experiments, which will
be discussed in detail in the following sections.

Before we can plot the cost-effectiveness of our plots, we need to know the actual
costs. Amazon provides a table showing the cost per millisecond runtime per amount of
memory which can be seen in However, this table initially did not have a 256
MB memory allocation price. When we plot the price in a figure, see we can
tell that the price is linearly increased. Based on this, we estimate the missing memory
allocation, which we then use in our cost calculation in our plot. As a nice to know, we
also extracted the number of CPUs assigned to each configuration. We extracted this
information using the os.cp_count() found in Python. The result of this can be seen in
Figure 5.2

For the unsupervised algorithms, we ran Gaussian mixture, k-means, and pca every
100 times per memory allocation with a maximum number of concurrent instances of 10.
This ensured we had 10 cold runs and 90 hot runs for each experiment. The initial results
of this run can be found in [Figure 5.3, The top three plots show the average runtime for
the 90 hot runs, and at the bottom, we can see the cost per function. Each was run with
a batch size of 100 items processed at a time.

Since both the k-means and pca algorithms showed plots that seemed limited by the
current configurations, we decided to run both of these one more time with some other
parameters. The number of requests and max instances stays the same, but we reduced
the memory size and, in the case of k-means, increased the batch size to 1000 items.
These can be seen in and [5.5] After increasing the batch size and decreasing
the memory account, we can see that both the figures much more closely resemble the

16

https://www.kaggle.com/datasets/ricktimmer/ml-on-faas-dataset

CHAPTER 5. RESULTS

CHAPTER 5. RESULTS

1.50 4

e = =
~ o N
u S} u

1

Cost per Millisecond

©
%4
o

0.00 A

le—7

Price

—— costPerMs

0 2000

4000

6000 8000

Lambda Memory Size

10000

Figure 5.1: Pricing on AWS Lambda per Memory Size (MB).

Memory (MB)

Price per 1ms

128
256
512
1024
1536
2048
3072
4096
5120
6144
7168
8192
9216
10240

$0.0000000021
*$0.0000000042
$0.0000000083
$0.0000000167
$0.0000000250
$0.0000000333
$0.0000000500
$0.0000000667
$0.0000000833
$0.0000001000
$0.0000001167
$0.0000001333
$0.0000001500
$0.0000001667

Table 5.1: AWS Lambda pricing per memory allocation [46] (* Estimation)

17

CHAPTER 5. RESULTS

CHAPTER 5. RESULTS

Number of CPUs per Memory Size

Number of CPUs

256 512

Figure 5.2: Number of CPUs per memory

1024

2048 4096 6144

Memory Size (MB)

8192

10240

allocation.

gaussian-mixture k-means pca
3504 8 o 90 -
) 124 o
2 3001 ; 80
o
8 2501 104 701
= |
E, 200 1 o 60
.g o 81 [¢] o 501 o
© 1501 -
8 40 o
S 100 A 64 O o o o o
B o 8
N = Sl L RS
501 = 4l 6 o o o o e
1024 2048 4096 8192 10240 1024 2048 4096 8192 10240 1024 2048 4096 8192 10240
le-5 le—6 6 le—6
1.4 8 o o
1.01 o
o] 4 (e}
5
121 _ o 8
) 0.8 1 [} o] 8
© o 4
= (o]
8 1.0 - ©°
s} 0.6 1
*g ¢} o 3
&) i o)
208 0.41 ° o
3 2 4
g . ; =
0.6 1 o
o 0.2 1 o
. g ° i
04 L T T T T T T T T T T T T T T T
1024 2048 4096 8192 10240 1024 2048 4096 8192 10240 1024 2048 4096 8192 10240

Memory Size (MB)

Memory Size (MB)

Memory Size (MB)

Figure 5.3: Performance and cost of unsupervised algorithms.

18

k-means

onds)
—
=
o

C:
e
o N
(=] o

CHAPTER 5. RESULTS CHAPTER 5. RESULTS

—
— |

256 512 1024 2048

=]
=]

Billed Duration (millise
-
o o

W
|

le—6
1.0 A o

0.8

—

T T
1024 2048
Memory Size (MB)

Run Cost (Dollars)
o
(=2}

I
'S

Figure 5.4: Performance and cost of k-means for lowered memory and batch size 1000.

almost exponential decrease we saw in the results for the Gaussian mixture.

Similarly to the unsupervised algorithms, we have one figure containing the overall
results of the first experiment for all three algorithms; these can be seen in [Figure 5.6
These are based on 90 hot runs with a batch size of 100. Similar to some of the algorithms
we saw before, we can see that for both the logistic regression and the svm are not strained
enough to get any meaningful information out of them.

Because both logistic regression and svim were not strained enough we ran both of
these experiments again with slightly different configurations. For both, we lowered the
memory allocations, and in the case of logistic regression, we increased the batch size to
1000. These results are found in [Figures 5.7 and In both cases, we can once again
spot a somewhat exponential decrease in the processing time which we saw before at
the other algorithms. The cost per request stays almost similar, only seeing a significant
increase at the 2048 MB allocation.

19

CHAPTER 5. RESULTS CHAPTER 5. RESULTS

pca

600 -

500 A

:

Billed Duration (milliseconds)
= N w
o o o
o o o
a»

T T T T
256 512 1024 2048
le—6
[e]
4.0 A 8
- 3.5 g
o
g 3.0 4 o
3 2.5 1 E 8
© 2.0
c
=3
1.0
256 512 1024 2048

Memory Size (MB)

Figure 5.5: Performance and cost of pca for lowered memory and batch size 100.

logistic-regression random-forest svm
o] 8 o]
65]
3 16 18
c 60]
g 14 A 16
@ 551 o 14 4 o
=124 © e} ° o
£ ° 501 © 12 °
§ 10+ o 25 o
e ° o o 8 101]
3 81 g o) o 40 1 é 5 é ol o . °
° i o
¢ pmememmm = o]
= 0 P p——
41 o 41
1024 2048 4096 8192 10240 1024 2048 4096 8192 10240 1024 2048 4096 8192 10240
le—6 le—-6 le—6
1.2 74 o o
o 1.751
1.0 A 61
8 1.50 A o
wn
s - (e}
5 0.8 > ==, | 15 o
8 (e}
= 44 1. i
7 0.6 ° 00
o (e}
8 34 0.75
C
ool o + =
= o 5] 0.50 5 o
o o
02{ o mium : L 0.25- i
" 0.00
1024 2048 4096 8192 10240 1024 2048 4096 8192 10240 1024 2048 4096 8192 10240
Memory Size (MB) Memory Size (MB) Memory Size (MB)

Figure 5.6: Performance and cost of supervised algorithms.

20

CHAPTER 5. RESULTS

CHAPTER 5. RESULTS

Billed Duration (milliseconds)

Run Cost (Dollars)

.

'S

o
L

g
=}
L

I
IS
L

N
o
!

o
©
s

o
o
L

(=]
S o
L L

logistic-regression

120] é

100 A

o

—

g

256 512 1024

2048

le—6
o
o
8
o 8
; ————
2_‘;6 52{.2 10|24 20|48

Memory Size (MB)

Figure 5.7: Performance and cost of logistic-regression for lowered memory and batch size

1000.

Billed Duration (milliseconds)

svm

140 - [¢)
120 | é
100 +

80 A o

60 -

40 A

2. e —o

256 512 1024 2048
le-7
[0

81 o
774
2 o
8 61)
1;" é
o 54
o
S
Z 41

5]

256 512 1024 2048

Memory Size (MB)

Figure 5.8: Performance and cost of svm for lowered memory and batch size 100.

21

CHAPTER 5. RESULTS CHAPTER 5. RESULTS

bert-base-uncased tiny-llama tiny-llama-vO0
900
4 4
3 00000 70001 ©
R 350000
o _
§ 700 - 6000 1
9 _
£ 600 - 300000 5000 §
z i o
% 500 4 250000 4000
2 E 200000
5 400 o 3000 1
3 300+ 150000 20001
kel
@ 200 i
= 100 100000 1000
50000 ol
2048 4096 8192 10240 4096 8192 10240 2048 4096 8192 10240
le-5
61 ° 0.0007
o 0.06
5 8 0.0006 4 o
—_ o B
» 8 0.05 0.0005 A
L 44
8 0.04 1 0.0004 -]
7 31 0.031 0.0003 -
@]
c (<}
é 24 0.02 1 0.0002 -
1] 0.01 1 0.0001 A é
0.0000 A
2048 4096 8192 10240 4096 8192 10240 2048 4096 8192 10240
Memory Size (MB) Memory Size (MB) Memory Size (MB)

Figure 5.9: Performance and cost of large language models.

In the case of large language models, we only used the memory allocations that could
load in the model. This means that we only have one model for the largest of the ones
we tested. We also ran all of these tests with a batch size of only one item since one item
already takes quite a long time. The results of these tests can be found in [Figure 5.9|
Based on these results, we can find interesting findings for people trying to run LLMs
in FaaS. Something that should be noted is that for these models, the default ephemeral
storage size needs to be increased, which also comes with a hidden cost. This is something
to consider when trying to execute a similar experiment.

22

CHAPTER 5. RESULTS CHAPTER 5. RESULTS

As we already mentioned, most of the experiments were run using a maximum par-
allelization of 10 instances at a time. This was mainly done to ensure we obtained a
dataset with enough hot runs. By running the SVM algorithm with multiple memory
sizes and concurrent parallel instances, we plot the execution time of each request, which
directly translates to the cost. The results of these experiments are plotted in
and At the top of these plots, we can see how much time it takes to handle 100 hot
and cold requests. This is separated in the initialization and processing of the request.
At the bottom we find the unique instances used to handle the 100 requests.

23

Ve

256 MB

512 MB

1024 MB

2048 MB

= initialization Time

2500 { W Initialization Time

== nitialization Time

~ m=initialization Time
25000 | processing Time =Processing Time = procesaing Tme =processing Time
& 4000 2000
g
E 1500
3 3000
£
£ 2000 1000
2 1000 500
0)
10 20 50 1000 10 20 50 1000 10 20 50 1000 10 20 50 1000

100 o | 100 o | 10 100
g 80 80 80 80
) 0 60 I 60
B . . .
] —
g 4 a0 W 0
s /

oy L I 2 K

0
10 20 50 1000 10 2 50 1000 10 20 50 1000 10 20 50 1000
Maximum Concurrent Instances

Maximum Concurrent Instances

Maximum Concurrent Instances

Maximum Concurrent Instances

Figure 5.10: Execution time of svm for different maximum concurrent instances grouped by memory.

10 Maximum Instances

20 Maximum Instances

50 Maximum Instances

1000 Maximum Instances

= initialization Time

= initialization Time

= nitialization Time

= nitialization Time

H = processing Time =Processing Time. | 2500 = processing Tme | 5990 =processing Time
i 2000 4000
E
T 1500 3000
E
< 1000 2000
2 500 1000
o 0
256 s12 1024 2048 256 512 1024 2008 256 s12 1024 2048 256 512 1024 2008
100 100 100 1004 o .
g 80 80 80 80
£ o 0 60 60 —_
s .
g 0 W - W
H
20 20 20 20
256 512 1024 2048 256 s12 1024 2048 256 512 1024 2048 256 512 1024 2048

Memory Size (MB)

Memory Size (MB)

Memory Size (MB)

Memory Size (M8)

Figure 5.11: Execution time of svm for different maximum concurrent instances grouped by number of instances.

‘G HHLAVHD

SLTNSHY

‘¢ HHdLAVHD

SLTNSHY

CHAPTER 5. RESULTS CHAPTER 5. RESULTS

5.2 Answering the Research Questions

In this section we will discuss the introduced figures and reason about how they can
answer research question 2, 3, and 4. For research question 1 the reader can refer to

Clapter 2

RQ2: How do different serverless computing resource configurations impact
the performance of machine learning inference?

In evaluating the impact of serverless computing resource configurations on the perfor-
mance of machine learning inference, the experimental results demonstrate notable vari-
ations across different memory allocations. Increasing the memory allocation generally
leads to a decrease in runtime, as seen in the supervised and unsupervised algorithm ex-
periments. In quite a couple of our figures we can observe an almost exponential decrease
in billable duration for each run, this can be seen for example in
and 5.8 However, clearly there is a limit to this. At the 2048MB configuration mark
the runtimes for some of these algorithms are around the 20 milliseconds, at which point
there are little reductions to be made. When someone would run into such an observations
when running function we would advise against increasing the memory size.

For the large-language models the plotted results are very different. First of all, when
we look at we can see that the billed durations are way higher than any that
we had seen before. Especially in the cases of tiny-llama and tiny-llama-v0Q where they
are basically unusable for any use-case. For the bert-base-uncased algorithm perhaps a
use-case could be found where this performance is acceptable. We can also see that for
this algorithm the performance is still increasing even at the maximum memory amount
of 10240MB. Unfortunately no more memory can be allocated and therefore we cannot
tell if this trend would continue.

RQ3: How do serverless resource configurations impact the cost of machine
learning inference?

In terms of cost we can see that in a number of our figures the cost remain relatively
stable across the memory allocations, this is the case in for example |Figure 5.5 However,
in others we do see an increase at the higher allocations of memory, in [Figures 5.4]
and we see that when we reach the 2048MB configuration the cost per run increases
quite significantly again. Considering that we double the memory for this last step we
still can see that the cost does not scale linearly like the pricing from the platform which
we saw in [Figure 5.1], since the cost is not doubled. This could possibly be a worthwhile
tradeoff for a use-case where real-time data processing is crucial.

For the large-language models in[Figure 5.9 we see that the costs almost rise linearly for
most of them. Only in the case bert-base-uncased do we see that at the highest memory
allocation the rise in cost is not as high as the ones before. However, this could very well
also be explained by the last incremental step being not a doubling of the memory since
it is only an increase of 1.25 times the previous value. Unfortunately this is the maximum
memory allocation that the platform allows. Comparing the costs per requests for the
LLMs to the ones of the supervised and unsupervised algorithms we can see that they are
significantly higher. And taking into account that these only run for a single item, the

25

CHAPTER 5. RESULTS CHAPTER 5. RESULTS

cost per item processed is even more significant.

It also seems that the number of maximum concurrent instances can have a big impact
on the maximum cost as was seen in [Figures 5.10] and [5.11] Consider this approach
particularly when immediate item processing isn’t necessary. In scenarios with highly
variable workloads, numerous function instances may be created at one point, all with a
very costly cold-start, just to shut down again after processing a single request. Reducing
this number of concurrent instances can significantly decrease cold starts, though it means
items may experience a slight delay before processing resumes. This trade-off between
cost and processing speed should be evaluated based on specific requirements.

RQ4: What is the relation between cost and performance of the different
serverless resource configurations?

In [Figure 5.1] we've seen that the pricing for the different memory configurations scales
linearly. This means that when we double our memory, as long as the runtime reduces
by half our cost stays even. Starting off with the supervised and unsupervised algorithms
we can even see this in a couple of our figures, in for example we see that out
cost from 256MB to 1024MB stays almost even. This corresponds to the runtimes as well,
where we see a approximate halfing when we double the memory. Only when we start
increasing to the 2048MB configuration do we see that the pricing starts picking up again
due to the reduction in runtime being too little. A very similar result was seen in both
and [5.8] where they also end up performing best at the 1024MB configuration
in terms of performance and cost.

However, when we look at the [Figure 5.5| we see that the performance cost is still
pretty similar at the 2048MB configuration. This could be because the general runtime
is already way longer than the other algorithms, still taking around 100 milliseconds at
the 1024MB configuration as opposed to approximately 20ms for the k-means algorithm.
This might mean that there is more performance headroom in this particular algorithm
to make use of these computationally higher configurations. Therefore, whilst for most of
these algorithms tested the 1024MB configuration ended up being most optimal it does
not always have to be the case. Our recommendation therefore would be to start with a
configuration of 1024MB, and when it is observed that an algorithm still takes more than
100ms, one could try to increase the memory allocation to see if there is still room for
improvement.

For the large-language models in [Figure 5.9 generally both the performance and cost
is both dreadful. Since the performance onmly increased slightly we can really see the
linear increase of the memory pricing take place. However, when we look at the bert-based-
uncased results we do see that the pricing seems to stabilizes off a bit at the 10240MB
memory configuration. This perhaps indicates the tipping point at which this algorithm
starts to be able to run slightly more efficiently. Unfortunately, this is the most memory
that AWS Lambda functions can be allocated, and therefore we cannot see if further
increases have this effect as well. The different behavior observed in large language models
compared to more traditional ML algorithms underscores the complexity of deploying such
models in a serverless environment. The scaling of costs and benefits, particularly evident
in large language models, demands a more nuanced approach to resource allocation and
optimization, which is for example available on traditional hardware but is absent in these
particular serverless functions with the restrictions at hand.

26

CHAPTER 5. RESULTS CHAPTER 5. RESULTS

5.3 Discussion

5.3.1 Summary

Our analysis revealed that memory allocation significantly impacts the performance and
cost of machine learning algorithms executed in a serverless environment. As memory in-
creases, runtime generally decreases, particularly for supervised and unsupervised machine
learning models, with diminishing returns observed beyond 2048MB. However, LLMs
exhibited substantial latency and cost, which may limit their practical deployment in
serverless setups like AWS Lambda.

5.3.2 Interpretation

The observed decrease in runtime with increased memory allocation suggests that server-
less platforms can effectively accelerate certain types of machine learning inference by op-
timizing resource configurations. Yet, the performance benefit stabilizes at higher memory
levels, indicating a threshold beyond which additional resources do not translate into pro-
portional gains. LLMs’ poor performance underscores their extensive resource demands,
which exceed what current serverless infrastructures can cost-effectively provide.

5.3.3 Implication

These results are crucial for stakeholders considering serverless computing for machine
learning tasks. They highlight the importance of tailored resource allocation to balance
performance and cost. For LLMs, the findings suggest that serverless platforms might
currently be unsuitable for deployment without significant optimizations or a rethinking
of resource management policies.

5.3.4 Threats to Validity

There are a number of factors that could threaten the validity of these findings.

Firstly, these results may not be generalizable to other serverless platforms. Different
platforms could for example handle parallelism differently resulting in different perfor-
mance [47]. These types of differences between platform should be kept in mind.

Furthermore, the metrics captured may not cover all dimensions that are relevant for
a specific use case. Perhaps a more useful metric in some cases would be the time it took
for all batches to be completed from start to finish, or another use-case may have less
bursty workloads but instead a more consistent stream.

Also, worth noting is that these results were all captured inside a single region, it could
entirely be possible that the resource allocation done by the platform is entirely region
dependent. If this is the case, this would mean that the performance of some algorithms
would vary for each configuration depending on the region. On a similar note, these results
might be less relevant in due time due to the time-bound nature of the provider. Cloud
providers frequently update their services, pricing models, and underlying hardware. The
results may become less relevant over time as the platform evolves.

Finally, these results do not compare the findings to a traditional deployment on the
same cloud platform and without a direct comparison to non-serverless deployments of

27

CHAPTER 5. RESULTS CHAPTER 5. RESULTS

the same algorithms, it’s difficult to contextualize the relative benefits or drawbacks of
the serverless approach.

5.3.5 Future Works

Future research could build upon this work in a variety of ways. The enhancements and
extensions of the current study could for example involve exploring additional algorithms
or examining other aspects of the machine learning lifecycle.

Firstly, with the provided tooling, future research could focus on a more in-depth look
into the algorithms shown to be most viable. More tests could for example be run for
the Bert model to get a more complete picture of whether large language models could
be viably run on FaaS.

Secondly, a cross-platform comparison could be interesting. Expanding the study to
include other major serverless platforms like Google Cloud Functions, Azure Functions,
and IBM Cloud Functions to provide a comprehensive comparison across providers would
give an interesting overview as to what platform is most suited for running these types of
workloads.

Furthermore, automated resource configuration could be researched, Development and
evaluation if algorithms or tools that can automatically determine the optimal configura-
tion (memory, concurrency, etc.) for a given ML workload could be integrated with the
tooling to see if an optimum can be reached automatically.

Additionally, the tooling could also be expanded to test other stages in the machine
learning lifecycle. It would be interesting to see whether distributing a training workload
over several function instances would provide reasonable performance.

Lastly it would be valuable to compare the current findings, as well as new findings, to a
traditional approach on the same cloud provider. For example an approach where instead
of using serverless functions a virtual private server is being used instead. Especially when
comparing the costs of both this could prove very interesting.

28

Chapter 6

Conclusion

This thesis aimed to evaluate the feasibility of deploying various machine learning algo-
rithms on AWS Lambda, focusing on four key research questions. The findings for each
question are summarized in the following:

The review of current literature and experiments indicated there are implementation
proposals of machine learning algorithms on AWS Lambda. However, a lot of these
proposals do not provide open-source code, and the ones that do require significant effort
to get up and running with. Therefore, we opted into writing the implementations of the
functions ourselves. By combining a number of tools we were able to build a toolkit that
allows us to automatically benchmark our functions on Lambda.

Memory allocation and batch size adjustments were found to significantly influence
the performance of deployed models up until a certain point. Memory settings above
2048 MB generally provided diminishing returns in terms of computational speed, except
where specific workloads explicitly benefited from higher allocations.

The cost efficiency of machine learning inference varied significantly across different
configurations. Lower memory allocations (such as 1024 MB) were often sufficient for
maintaining a balance between performance and cost, especially for unsupervised and
supervised algorithms. Conversely, the cost associated with LLMs was much higher,
reflecting the greater resource demands.

A critical trade-off was identified between cost and performance, particularly evident
in the more demanding models. While higher memory allocations generally improved
performance, this most of the time not cost-effective. The study demonstrated that
careful optimization of memory and concurrency settings could yield substantial cost
savings while maintaining high performance.

Overall, these results show that while AWS Lambda presents as a viable option for
ML workloads, careful consideration of specific algorithm requirements and resource con-
figurations is essential to optimize both performance and cost efficiency.

29

Bibliography

[10]

[11]

Amine Barrak, Fabio Petrillo, and Fehmi Jaafar. “Serverless on Machine Learning:
A Systematic Mapping Study”. In: IEEE Access 10 (2022), pp. 99337-99352. DOI:
10.1109/ACCESS.2022.3206366.

Y. Yang et al. “INFless: A native serverless system for low-latency, high-Throughput
inference”. In: cited By 26. 2022, pp. 768-781. DOI: 10.1145/3503222.3507709.

J. Carreira et al. “Cirrus: A Serverless Framework for End-To-end ML Workflows”.
In: cited By 107. 2019, pp. 13-24. poI1: 10.1145/3357223.3362711.

M. Yu et al. “Gillis: Serving large neural networks in serverless functions with auto-
matic model partitioning”. In: vol. 2021-July. cited By 25. 2021, pp. 138-148. DOTI:
10.1109/ICDCS51616.2021.00022.

A. Ali et al. “Batch: Machine learning inference serving on serverless platforms
with adaptive batching”. In: vol. 2020-November. cited By 67. 2020. po1: 10.1109/
SC41405.2020.00073.

Pablo Gimeno Sarroca and Marc Sénchez-Artigas. “MLLESS: Achieving cost ef-
ficiency in serverless machine learning training”. In: Journal of Parallel and Dis-
tributed Computing 183 (2024). Cited by: 1. DOI: 110.1016/j . jpdc.2023.104764.

U. Elordi et al. “Benchmarking Deep Neural Network Inference Performance on
Serverless Environments with MLPerf”. In: IEEE Software 38.1 (2021). cited By 5,
pp. 81-87. DOI: 10.1109/MS.2020.3030199.

Tam n. Nguyen. “Holistic cold-start management in serverless computing cloud with
deep learning for time series”. In: Future Generation Computer Systems 153 (2024).
Cited by: 0; All Open Access, Green Open Access, 312 — 325. DOI: [10.1016/7 .
future.2023.12.011.

Yi-rui Huang et al. “GeoPM-DMEIRL: A deep inverse reinforcement learning secu-
rity trajectory generation framework with serverless computing”. In: Future Gen-
eration Computer Systems 154 (2024). Cited by: 0, 123 — 139. poI1: 10.1016/j .
future.2024.01.001.

J. Scheuner and P. Leitner. “Function-as-a-Service performance evaluation: A mul-
tivocal literature review”. In: Journal of Systems and Software 170 (2020). cited By
49. por: 10.1016/7 . jss.2020.110708.

José Manuel Ortega Candel, Francisco José Mora Gimeno, and Higinio Mora Mora.
“Generation of a dataset for DoW attack detection in serverless architectures”. In:
Data in Brief 52 (2024). Cited by: 0; All Open Access, Gold Open Access, Green
Open Access. DOI: 10.1016/j.dib.2023.109921.

30

https://doi.org/10.1109/ACCESS.2022.3206366
https://doi.org/10.1145/3503222.3507709
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1109/ICDCS51616.2021.00022
https://doi.org/10.1109/SC41405.2020.00073
https://doi.org/10.1109/SC41405.2020.00073
https://doi.org/10.1016/j.jpdc.2023.104764
https://doi.org/10.1109/MS.2020.3030199
https://doi.org/10.1016/j.future.2023.12.011
https://doi.org/10.1016/j.future.2023.12.011
https://doi.org/10.1016/j.future.2024.01.001
https://doi.org/10.1016/j.future.2024.01.001
https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1016/j.dib.2023.109921

BIBLIOGRAPHY BIBLIOGRAPHY

[12]

[22]

23]

[24]

[25]

Amanda Issac et al. “Development and deployment of a big data pipeline for field-
based high-throughput cotton phenotyping data”. In: Smart Agricultural Technology
5 (2023). Cited by: 2; All Open Access, Gold Open Access. DOI: 10.1016/j.atech.
2023.100265.

A. Kaplunovich and Y. Yesha. “Refactoring of Neural Network Models for Hyper-
parameter Optimization in Serverless Cloud”. In: cited By 1. 2020, pp. 311-314.
DOI: [10.1145/3387940.3392268.

P. Silva, D. Fireman, and T.E. Pereira. “Prebaking functions to warm the serverless
cold start”. In: cited By 45. 2020, pp. 1-13. DOI: 10.1145/3423211.3425682.

A. Fuerst and P. Sharma. “FaasCache: Keeping serverless computing alive with
greedy-dual caching”. In: cited By 73. 2021, pp. 386-400. DOT: |10.1145/3445814.
3446757.

M.S. Kurz. “Distributed double machine learning with a serverless architecture”.
In: cited By 11. 2021, pp. 27-33. DOI: 10.1145/3447545.3451181.

D. Mvondo et al. “OFC: An opportunistic caching system for FaaS platforms”. In:
cited By 41. 2021, pp. 228-244. DOL: [10. 1145/3447786 . 3456239

J. Jiang et al. “Towards Demystifying Serverless Machine Learning Training”. In:
cited By 52. 2021, pp. 857-871. DOI: [10.1145/3448016 . 3459240

J. Tagliabue. “You Do Not Need a bigger boat: Recommendations at Reasonable
Scale in a (Mostly) serverless and open stack”. In: cited By 8. 2021, pp. 598-600.
DOI: [10.1145/3460231.3474604.

J. Wen et al. “An empirical study on challenges of application development in
serverless computing”. In: cited By 26. 2021, pp. 416—428. DOI: 10.1145/3468264 .
3468558.

Ashraf Mahgoub et al. “WISEFUSE: Workload Characterization and DAG Trans-
formation for Serverless Workflows”. In: Proceedings of the ACM on Measurement
and Analysis of Computing Systems 6.2 (2022). Cited by: 14; All Open Access,
Bronze Open Access. DOI: [10.1145/3530892.

Yunzhuo Liu et al. “FuncPipe: A Pipelined Serverless Framework for Fast and Cost-
Efficient Training of Deep Learning Models”. In: Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems 6.3 (2022). Cited by: 2; All Open
Access, Green Open Access. DOI: [10.1145/3570607.

Diandian Gu et al. “ElasticFlow: An Elastic Serverless Training Platform for Dis-
tributed Deep Learning”. In: vol. 2. Cited by: 1. 2023, 266 — 280. DOI: 10. 1145/
3575693.3575721.

Marcin Copik et al. “FMI: Fast and Cheap Message Passing for Serverless Func-
tions”. In: Cited by: 3; All Open Access, Green Open Access. 2023, 373 — 385. DOI:
10.1145/3577193.3593718.

Enrico Galimberti et al. “OSCAR-P and aMLLibrary: Performance Profiling and
Prediction of Computing Continua Applications”. In: Cited by: 1; All Open Access,
Bronze Open Access. 2023, 139 — 146. DOI: [10.1145/3578245.3584941.

31

https://doi.org/10.1016/j.atech.2023.100265
https://doi.org/10.1016/j.atech.2023.100265
https://doi.org/10.1145/3387940.3392268
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3447545.3451181
https://doi.org/10.1145/3447786.3456239
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3460231.3474604
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1145/3530892
https://doi.org/10.1145/3570607
https://doi.org/10.1145/3575693.3575721
https://doi.org/10.1145/3575693.3575721
https://doi.org/10.1145/3577193.3593718
https://doi.org/10.1145/3578245.3584941

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Qiangyu Pei et al. “AsyFunc: A High-Performance and Resource-Efficient Serverless
Inference System via Asymmetric Functions”. In: Cited by: 1. 2023, 324 — 340. DOTI:
10.1145/3620678.3624664.

[27] Matt Baughman et al. “Tournament-Based Pretraining to Accelerate Federated
Learning”. In: Cited by: 0. 2023, 109 — 115. DOI: 10.1145/3624062.3626089.

[28] Ionut Predoaia and Pedro Garcia-Lopez. “Leveraging Intra-Function Parallelism
in Serverless Machine Learning”. In: Cited by: 0. 2023, 36 — 41. DOI: 10. 1145/
3631295.3631399.

[29] Mehrad Ansari and Andrew D. White. “Serverless Prediction of Peptide Properties
with Recurrent Neural Networks”. In: Journal of Chemical Information and Mod-
eling 63.8 (2023). Cited by: 6; All Open Access, Green Open Access, Hybrid Gold
Open Access, 2546 — 2553. DOI: 10.1021/acs. jcim.2c01317,

[30] Logan Ward et al. “Cloud Services Enable Efficient AI-Guided Simulation Work-
flows across Heterogeneous Resources”. In: Cited by: 0; All Open Access, Green
Open Access. 2023, 32 — 41. DOI: 10.1109/IPDPSW59300.2023.00018.

[31] Adithya Hegde, Sameer G. Kulkarni, and Abhinandan S. Prasad. “COUNSEL:
Cloud Resource Configuration Management using Deep Reinforcement Learning”.
In: Cited by: 0. 2023, 286 — 298. DOI: 10.1109/CCGrid57682.2023.00035.

[32] F.Xu et al. “AdNN: Achieving Predictable Distributed DNN Training with Server-
less Architectures”. In: IEEE Transactions on Computers 71.2 (2022). cited By 21,
pp. 450-463. por1: 10.1109/TC.2021.3054656.

[33] Amine Barrak et al. “Exploring the Impact of Serverless Computing on Peer To
Peer Training Machine Learning”. In: Cited by: 1; All Open Access, Green Open
Access. 2023, 141 — 152. DOI: |10.1109/IC2E59103.2023.00024.

[34] Jiangi Zhang et al. “SCP4ssd: A Serverless Platform for Nucleotide Sequence Syn-
thesis Difficulty Prediction Using an AutoML Model”. In: Genes 14.3 (2023). Cited
by: 0; All Open Access, Gold Open Access, Green Open Access. DOI: |10 . 3390/
genes14030605.

[35] Bokkeun Kim et al. “iPaaS: Intelligent Paging as a Service”. In: IEEE Network 37.2
(2023). Cited by: 0, 238 — 245. DOI: 10.1109/MNET. 123.2100764.

[36)] Ron C. Chiang. “Contention-aware container placement strategy for docker swarm
with machine learning based clustering algorithms”. In: Cluster Computing 26.1
(2023). Cited by: 2, 13 — 23. DOI: |10.1007/s10586-020-03210-2.

[37) Amine Barrak et al. “SPIRT: A Fault-Tolerant and Reliable Peer-to-Peer Serverless
ML Training Architecture”. In: Cited by: 0; All Open Access, Green Open Access.
2023, 650 — 661. DOI: 10.1109/QRS60937.2023.00069.

[38] AWS Lambda Operator Guide: Computing Power. Accessed: 07-18-2024. Amazon
Web Services. URL: https://docs.aws.amazon.com/lambda/latest/operatorguide/
computing-power.html|

[39] AWS Lambda Operator Guide: Execution Environments. Accessed: 07-18-2024. Ama-
zon Web Services. URL: https ://docs . aws . amazon . com/ lambda / latest /
operatorguide/execution-environments.html.

32

https://doi.org/10.1145/3620678.3624664
https://doi.org/10.1145/3624062.3626089
https://doi.org/10.1145/3631295.3631399
https://doi.org/10.1145/3631295.3631399
https://doi.org/10.1021/acs.jcim.2c01317
https://doi.org/10.1109/IPDPSW59300.2023.00018
https://doi.org/10.1109/CCGrid57682.2023.00035
https://doi.org/10.1109/TC.2021.3054656
https://doi.org/10.1109/IC2E59103.2023.00024
https://doi.org/10.3390/genes14030605
https://doi.org/10.3390/genes14030605
https://doi.org/10.1109/MNET.123.2100764
https://doi.org/10.1007/s10586-020-03210-2
https://doi.org/10.1109/QRS60937.2023.00069
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html

BIBLIOGRAPHY BIBLIOGRAPHY

[40]
[41]
[42]

[43]

Hugging Face. Tiny Llama 1.1B Chat v1.0. https://huggingface.co/TinyLlama/
TinyLlama-1.1B-Chat-v1.0. Accessed: June 2024. 2023.

Hugging Face. Tiny LLama v0. https://huggingface.co/Maykeye/TinyLLama-
vO0. Accessed: June 2024. 2023.

Google and Hugging Face. BERT-Base-Uncased. https : / / huggingface . co/
google-bert/bert-base-uncased. Accessed: June 2024. 2023.

Jerome Blanchet. ARC AI2 Reasoning Challenge. https : //www . kaggle . com/
datasets / jeromeblanchet /arc - ai2 - reasoning - challenge. Accessed: June
2024. 2019.

Jesse Charis. Emotion Dataset for NLP. https://github.com/Jcharis/end2end-
nlp-project/blob/main/notebooks/data/emotion_dataset _raw.csv. Ac-
cessed: June 2024. 2020.

ACM Policies for Artifact Review and Badging. Accessed: 07-18-2024. Association
for Computing Machinery. URL: https://www.acm.org/publications/policies/
artifact-review-badging.

AWS Lambda Pricing. https : //aws . amazon . com/ lambda /pricing/. Online;
accessed: 2024-05-31.

Daniel Barcelona-Pons and Pedro Garcia-Lépez. “Benchmarking parallelism in FaaS
platforms”. In: Future Generation Computer Systems 124 (2021), pp. 268-284. 1SSN:
0167-739X. DOI: https://doi.org/10.1016/j . future.2021.06.005. URL:
https://www.sciencedirect.com/science/article/pii/S0167739X21001990.

33

https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/Maykeye/TinyLLama-v0
https://huggingface.co/Maykeye/TinyLLama-v0
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://www.kaggle.com/datasets/jeromeblanchet/arc-ai2-reasoning-challenge
https://www.kaggle.com/datasets/jeromeblanchet/arc-ai2-reasoning-challenge
https://github.com/Jcharis/end2end-nlp-project/blob/main/notebooks/data/emotion_dataset_raw.csv
https://github.com/Jcharis/end2end-nlp-project/blob/main/notebooks/data/emotion_dataset_raw.csv
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://aws.amazon.com/lambda/pricing/
https://doi.org/https://doi.org/10.1016/j.future.2021.06.005
https://www.sciencedirect.com/science/article/pii/S0167739X21001990

	Abstract
	Introduction
	Literature
	Related Work
	Review Extension

	Methodology
	Objective
	Experiment Variables
	Independent Variables
	Dependent variables

	Datasets
	Measurement Metrics

	Experiments
	Experiment Design
	Environment setup
	Algorithm Implementation
	Extraction and processing

	Results
	Overview of Experimental Results
	Answering the Research Questions
	Discussion
	Summary
	Interpretation
	Implication
	Threats to Validity
	Future Works

	Conclusion
	References

