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1 Introduction
One of the first instances in which arithmetic and dynamics were related is an example pro-

duced by Lattès in 1918, shortly before his untimely death. In this example, Lattès produces a
family of rational maps on the Riemann sphere with the property that they have empty Fatou
sets. Although as Milnor points out, similar maps have been discussed before by Schröder in
1871 (see [Mil04] sec. 6). The Lattès maps are constructed by requiring commutativity with
an appropriate morphism of elliptic curves. Since then, this has inspired many generalizations
of said construction to abelian varieties of arbitrary dimension and maps between projective n-
spaces. A large part of the present text is devoted to discussing the Lattès example and related
maps as well as a generalization to surfaces given by the product of two elliptic curves.

The field has seen significant development in the 1990s following a paper by Silverman
in 1991 ([Sil91]) discussing dynamical analogues of problems in arithmetic; such as uniform
boundedness of periodic points, periodic points on sub-varieties, integral points in orbits and
more. This development has lead Silverman to write a book (2007) surveying the results of
the field ([Sil07]) which has since become an inexcusable reference for any paper on arithmetic
dynamics. Although arithmetic and dynamics by themselves are relatively old fields of research
(in particular arithmetic which may be argued to be the origin of all mathematics), the ideas
connecting the two are recent. In relating the concepts and methods we gain a new perspective
on known problems which may lead to new developments in either field with the hope of proving
difficult results. Nevertheless, the subject also provides problems which are interesting in their
own right. The aim of this text is to give an introduction to arithmetic dynamics and the Lattès
construction.

As mentioned above, the goal of Arithmetic Dynamics is to relate results and notions of
Arithmetic Geometry with those of Dynamics. This is interesting for a number of reasons:
firstly it showcases how different and seemingly distant mathematical disciplines can be related
and secondly it relates results, thus allowing for the application of methods from one discipline
to prove results in the other. This, of-course, requires a lot of care. Some of the relations are
summarised in the following (for a more detailed survey of relations see [Sil22])

Arithmetic Geometry Discrete Dynamics
Z and Q points on varieties Z and Q points in orbits of rational maps

Torsion points of abelian varieties Periodic and preperiodic points of rational maps
Orbit of α ∈ X Mordell-Weil group

We mainly focus on the second relation and explicitly compute examples of the rational maps
relating torsion points to periodic and preperiodic points.

Organization of the text: In section 2 we begin with a summary of results and definitions in
algebraic geometry, dynamical systems and arithmetic necessary for the discussion. A number
of results related to preperiodic points can be shown using arithmetical tools such as height
functions and good reduction, this is discussed in section 3. Some proofs are given, however,
those requiring more auxiliary results are referenced. In section 4 we define elliptic curves and
discuss the Lattès construction with explicit examples. In section 5 we discuss the example,
due to Lattès, giving a rational map with empty Fatou set. This is followed by a generalization
of the Lattès construction to other subgroups of the automorphisms on an elliptic curve. The
natural question that follows this discussion, is weather this can be generalized to surfaces? We
discuss this in section 6 and show how the Lattès construction can be extended to surfaces given
by two elliptic curves. The first four examples of these surfaces given by two elliptic curves listed
in section 5 of [Dup01] are computed, the last two requiring more auxiliary results.

3



2 Background
2.1 Algebraic Curves
Let k be a field and K an algebraically closed field, for convenience we assume these to be
perfect. In this text we denote the affine and projective spaces over a field k, by An

k and Pn
k

respectively (see sections 1.2 and 4.1 of [Ful08]). If the field is apparent from context we may
neglect the subscript k in notation. Elements of these spaces are called points, for example the
n-tuple (a1, . . . , an) ∈ An is an affine point and the (n + 1)-tuple (a1 : . . . : an+1) ∈ Pn is a
projective point. As we deal with algebraic curves in such spaces, we begin by introducing the
underlying definitions.

Definition 2.1. (algebraic varieties)
Let S ⊆ k[x1, . . . , xn].

1. The set of affine points that are roots of every polynomial in S,

V (S) := {p ∈ An
k | f(p) = 0 ∀f ∈ S} ⊆ An

k , (1)

is called the (affine) vanishing set of S. Such subsets of An
k are called (algebraic) affine

varieties. ([Gat21] 1.2.b)

2. If every polynomial in S is homogeneous, the set1

V (S) :=
{
p ∈ Pn−1

k | f(p) = 0 ∀f ∈ S
}
⊆ Pn−1

k , (2)

is called the projective vanishing set of S. Such subsets of Pn−1
k are called (algebraic)

projective varieties. ([Gat23] 3.8)

Since we work over fields, it follows from Hilbert’s Basis Theorem (see [Gat21] prop.1.1.5)
that V (S) = V (S0) for some finite set of polynomials S0 ( k[x1, . . . , xn]. Thus we take the
notational convention of denoting V (S) = V ({f1, . . . , fn}) by V (f1, . . . , fn).

Example 2.1. Let k be a field and consider the affine vanishing set of the polynomial f(x, y) =
x3 + 1− y2,

V (f) =
{
(x, y) ∈ A2

k | f(x, y) = 0
}
⊆ A2

k.

This gives an affine variety in A2
k.

Similarly let us consider the projective vanishing set of the homogeneous polynomial F (x, y, z) =
x3 + z3 − y2z,

V (F ) =
{
(x : y : z) ∈ P2

k | F (x, y, z) = 0
}
⊆ P2

k.

This is a projective variety in P2
k.

Note that the above polynomials are related via F (x, y, z) = z3f(x/z, y/z). This is known
as homogenization and it allows us to relate affine varieties to projective varieties. Indeed if
we substitute (x, y, 1) we recover all affine points. A variety is called irreducible if it cannot be
written as a union of proper sub-varieties2. For convenience, we restrict to irreducible varieties.
Certain projective varieties can be equipped with an operation on their points making them
into a commutative group, these are referred to as abelian varieties. The specific definition is
delicate and we refer the reader to [Mil08]. The projective curve given by V (x3 + z3 − y2z) (as
above) is an example of an abelian variety, this will be further discussed further in section 4.

1It may be worth noting that points in Pn−1
k have n-many coordinates thus matching the number of possible

variables in f .
2Proper subsets that are themselves varieties.
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Definition 2.2. (Coordinate Ring)
Take V = V (S) to be a variety (affine or projective) defined by S ⊆ k[x1, . . . , xn] and let us
denote the ideal of V by I(V ) := {f ∈ k[x1, . . . , xn] | f(α) = 0 ∀α ∈ V }. The coordinate ring of
V (S) is the ring

Γ(V ) := k[x1, . . . , xn]
/
I(V ). (3)

([Gat21] 1.15)

Example 2.2. Take the affine variety as in example 2.1, given by f(x, y) = x3 + 1− y2. Then,
by definition, the ideal of V is

I(V ) = {g ∈ k[x, y] | g(x, y) = 0 ∀(x, y) ∈ V } .

Since f ∈ k[x, y] is prime (k[x, y]/(f) is a domain), it follows that (f) = I(V ). Hence the
coordinate ring of V is

Γ(V ) = k[x, y]
/
(f).

Given a coordinate ring Γ(V ), we can look the field of fractions of this ring, namely Frac(Γ(V )).
This is the function field of V and is denoted by k(V ).

Definition 2.3. (Krull Dimension)
Given a commutative ring R, let (Yi) denote a sequence of prime ideals of R such that Yi ( Yi+1

for all indices i and let len(Yi) denote the length3 of such a sequence. Then the Krull Dimension
of R is

dim(R) := sup
(Yi)

{len(Yi)} . (4)

([Har77] pg.6)

When applied to the coordinate ring of an algebraic variety, this definition gives a general-
ization of the notion of dimension which can be extended to projective spaces.

Definition 2.4. (Dimension of Varieties)
Let V be a variety with coordinate ring Γ, then

1. if V is affine, the dimension of V is dimΓ. ([Har77] pg.6)

2. if V is projective, the dimension of V is dimΓ− 1. ([Har77] ex.2.6)

A variety of dimension 1 is referred to as a curve and a variety of dimension 2 is referred to
as a surface.

The following definition makes use of continuous maps and open sets; these notions should
be understood with respect to the Zariski topology on the underlying space or variety. That is,
the closed sets are the (sub-)varieties (see [Gat21] sec. 2). Let X be a variety over k, then we
define the local ring at a point P OP (X) :=

{
f
g ∈ k(X)|g(P ) 6= 0

}
and given an open U ⊆ X

we call the set of rational functions U 99K k as RU (X) =
⋂

P∈U OP (X).

Definition 2.5. (Morphism)
Let V1 and V2 be varieties. A morphism of varieties from V1 to V2 is a continuous mapping
φ : V1 → V2 such that for all U ⊆ V2 open we have that if f ∈ RU (V2) then f ◦φ ∈ Rφ−1(U)(V1).
Furthermore, a morphism φ is called an isomorphism if it is bijective and φ−1 is also a morphism.
([Ful08] ch.6.3)

3That is to say the number of non-zero prime ideals in the sequence.
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We also introduce the Riemann-Hurwitz formula as it is useful later on. This result requires
the notion of a genus of a curve which is beyond the scope of this text to introduce in full
generality, as such we refer the reader to [Ful08] sec 8.3 and [Har77] p.56. Nevertheless it can
be thought of as (birational) invariant which classifies curves. For smooth plane curves (those
in P2) it can be given by

g(X) =
(d− 1)(d− 2)

2
(5)

where d is the degree of the variety X ⊆ P2 ([Gat21] ex. 16.14). It is important to note that
the genus is preserved under isomorphism of varieties.

Example 2.3. Take the projective curve from example 2.1, namely the zero locus of f =
x3 + z3 − y2z. This is a projective curve of degree 3, thus applying the formula above we have
g(V (f)) = 1.

Example 2.4. Consider the curve given by the equation z = 0 in P2, this has genus 0 by
the above equation. Note that this curve is isomorphic to the projective line P1. In particular
(x : y) 7→ (x : y : 0) gives an isomorphism in the sense of definition 2.5. Thus we say that the
projective line has genus 0.

It is important to note that the genus is a non-negative integer.

Theorem 2.1. (Riemann-Hurwitz Formula)
Given two smooth4 curves X and Y of genus g(X) and g(Y ) respectively and a finite morphism
f : X → Y , then

2g(X)− 2 = deg(f)(2g(Y )− 2) +
∑
P∈X

(eP − 1), (6)

Where eP = ordP (f − f(P )) is the ramification index of f at P ∈ X.

Proof. The proof is rather involved, as such we refer the reader to [Har77] IV.2.

2.2 Dynamics
We also introduce the dynamical concepts necessary for our investigation. With the exception
of the multiplier and equicontinuity, these may be found in the introduction chapter of [Sil07].
The multiplier and equicontinuity are referenced to chapters 1.3 and 1.4 respectively.

Definition 2.6. (Dynamical System)
A (discrete) dynamical system is a pair (S, f) where S is a set and f : S → S a self map.

Dynamical systems are related to S-sequences, (xi), generated by the rule xi+1 = f(xi). The
study of these sequences and how they relate to the initial point x ∈ S is a major objective of
dynamics. To this end the following notions are useful.

Definition 2.7. (Orbit)
Given a dynamical system (S, f) and some α ∈ S, we define the orbit of α with respect to f as:

Orbf (α) := {fn(α)}n≥0 (7)

where fn := f◦n denotes the n-fold compositing of f with itself and f0 := id by convention.
This notation is used throughout the text.

Definition 2.8. (Periodic and pre-Periodic points)
Given a dynamical system (S, f) we say that a point α ∈ S is:

4see [Gat21] 10.7 and 10.11 for definitions of smoothness. For varieties given as a locust of a single polynomial
it suffices to show that all partial derivatives of that polynomial do not vanish at any point of the variety.
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1. a periodic point of f if there exists an integer n > 0 such that fn(α) = α. The set of all
periodic points is denoted by

PerS(f) := {α ∈ S | α is periodic for f} . (8)

2. a pre-periodic point of f if there exist two distinct integers n,m > 0 such that fn(α) =
fm(α). The set of all pre-periodic points is denoted by

PrePerS(f) := {α ∈ S | α is pre-periodic for f} . (9)

Remark 2.1. Equivalently, a point α ∈ S is preperiodic for f if and only if there exists a
positive integer i such that f i(α) is periodic for f if and only if Orbf (α) is finite.

It is often convenient to neglect the set S in notation since it is usually apparent from the
context. Hence we usually write Per(f) rather than PerS(f) and likewise for preperiodic points.
Given a pre-periodic point α ∈ S, the smallest integer n such that fn(α) = α is called the the
exact period of α (with respect to f).

Example 2.5. Take the system (C, f) where f(z) = z2 + 1. consider the orbit at of f at i,

Orbf (i) = {i, 0, 1, 2, 5, 26, 677, 458330, . . .} .

Note that, due to the nature of f , the imaginary unit only appears as the first value and the
remaining points are real. Also, the real points grow in magnitude, since we are squaring them
in each iteration thus i (or in general real numbers) cannot be preperiodic for this f . If we start
at ζ3 we have the finite orbit,

Orbf (ζ3) = {ζ3,−ζ3}

since −ζ3 is a fixed point of f .

Example 2.6. Take the dynamical system given by

S = C and f(z) =
z4 − 8z

4(z3 + 1)
, (10)

we can see that the roots of f are 0, 2, 2ζ3, 2ζ
2
3 , and its poles are −1,−ζ3,−ζ23 . Thus 0 is a fixed

point, or a periodic point of exact period 1; the remaining fixed points are − 3
√
4,− 3

√
4ζ3,− 3

√
4ζ23 .

The first four iterations of f are shown in the phase portraits below.
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Figure 1: f(z) Figure 2: f2(z)

Figure 3: f3(z) Figure 4: f4(z)

Observe that the poles in figure 2.6 are indeed minus the three roots of unity (the bright
singularities) and the roots are exactly 0 and twice the third roots of unity (the black spots).
Another interesting observations is that almost all singularities of f2, f3 and f4 appear to have
multiplicity 2. As one may notice, the behaviour of fn quickly increases in difficulty to analyse.

When considering dynamics of sufficiently differentiable functions of metric spaces, we can
classify the local behaviour of points around some periodic point α ∈ Per(f) by considering
(fn)′. This is motivated by the Taylor expansion of fn at the fixed point α (periodic point of
f),

fn(x) = α+ (fn)′(α)(x− α) +O((x− α)2)

where the O indicates the big O notation. In each iteration of fn, the term (fn)′(α) is multiplied
by itself thus contributing to what happens to points in the neighbourhood of α.

Definition 2.9. (multiplier)
Let α ∈ Per(f) be of exact period n and f ∈ C∞. We call the term λα(f) := (fn)′(α) the
multiplier of f at α.

If |λα(f)| < 1 then f is said to be attracting at α, if |λα(f)| = 1 it is said to be neutral and
if |λα(f)| > 1 it is called repelling.

Definition 2.10. (equicontinuity)
Given that S is a metric space, f is said to be equicontinuous at α if ∀ϵ > 0 there exists δ < 0
such that5 β ∈ Bδ(α) =⇒ fn(β) ∈ Bϵ(f

n(α)) for all n > 0.
5Here Bϵ(x) denotes an open ball around x having radius ϵ.
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The largest open set containing all points α ∈ S such that f is equicontinuous at α is called
the Fatou set of f and is denoted by F(f); it’s complements is called the Julia set of f and is
denoted by J(f).

Note that by definition F is an open set and J is a closed set with respect to the topology
on S. Moreover, if λα is attracting then α ∈ F and if λα is repelling then α ∈ J.

2.3 Arithmetic
We introduce height functions and good reduction. These arithmetic notions are surprisingly
usefully in analysing the preperiodic points arising from rational functions. These are tools
meant for analysing Q and Z points on curves. We begin with height functions which, in their
usual setting, give a measure of arithmetical complexity of rational numbers, or those in a finite
extension of Q. They are vital in the proof of the Mordell-Weil theorem for rational points on
elliptic curves. In this section we restrict to Q and Q̄ unless stated otherwise.

Definition 2.11. (heights)
Let β ∈ Q̄ be a unit and fβ its minimal polynomial in Q with leading coefficient a and degree d.
Without loss of generality assume that fβ ∈ Z[x] and is primitive. Then we define the absolute
multiplicative height function as

H(β) :=

|a|
∏

ζ∈VQ̄(fβ)

max{1, |ζ|}

 1
d

, (11)

and the absolute logarithmic6 height function as

h(β) := logH(β). (12)

For convention we also define H(0) = H(∞) := 1.

By setting ∞ = (1 : 0) ∈ P1
Q̄ as the point at infinity and taking the affine coordinate

otherwise, we consider heights of points on the projective line P1
Q̄. From the above definition,

it follows that, if β = a/b ∈ Q then H(β) = max{|a|, |b|}. Therefore, if we bound the height
by some C > 0 then there can only be finely many β ∈ Q satisfying H(β) < C or equivalently
h(β) < log(C). In this sense, height functions measure arithmetic complexity of a given number.
Taking the logarithm base 2 in the equation 12 makes h(β) the number of bits required to express
β. Many properties of the rational numbers can be generalized to finite extensions k of Q.

Definition 2.12. (number fields)
A finite extension k of Q is called a number field.

Number fields are central in the study of algebraic number theory.

Theorem 2.2. (Northcott)
Let f ∈ Q̄(x) be of degree d ≥ 1, then:

1. there exists a constant C = C(f) > 0 such that |h(f(β))− d · h(β)| ≤ C, for all β ∈ P1
Q̄.

2. for all number fields k, and for all B > 0, the set{
β ∈ P1

k | h(β) ≤ B
}

(13)

is finite.
6The base of the logarithm is inconsequential for most purposes as only the properties of the logarithm are

used. For convenience one may take it to be 2 unless stated otherwise.
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In other words, sets of bounded height have at most finitely many points in any number field
k.

Proof. We refer the reader to [Sil10] page 10.

Another useful arithmetic tool is reduction modulo p. This is often used to show that a certain
polynomial has no integer solutions. Conversely, in certain cases, if a polynomial has a solution
modulo a prime power it can be lifted via Hensel’s lemma to a p-adic solution (p-adics are not
discussed in this text). As such reduction plays an important role in arithmetic geometry; we
look at how it affects the dynamics. For ease we restrict to f ∈ Q(x) such that f = F/G with
F,G ∈ Z[x] having no common factors and F/G primitive7. Then we reduce each component
modulo a prime:

f̃ =
F̃

G̃
∈ Fp(x). (14)

Definition 2.13. f = F/G ∈ Q(x) is said to have good reduction at p if F̃ and G̃ have no
common factors in Fp(x)

There are only finitely many primes for which F and G have common factors, these are
given by the primes dividing the resultant of F and G (see 6.1 of [Sil10]). This gives us local
information about f and its preperiodic points.

Remark 2.2. Note that for any rational function f ∈ Q(x) with good reduction at p, we have
that f̃(α) = f̃(α̃), for all α ∈ P1

Q. i.e. the reduction commutes with evaluation.

3 On Heights and Good Reduction
We begin by analysing dynamics of rational maps over Q̄ through (logarithmic) height functions
and good reduction. This establishes a first connection between dynamics and arithmetic.

3.1 Pre-periodic points and Heights
The theory of heights allows us to make global statements about PrePerQ̄(f).

Notation 3.1. For ease of notation we write PrePerK(f) to also mean PrePerP1
K
(f). i.e. we

include the point at infinity in notation. Likewise for periodic points.

What follows is a direct application of Northcott’s theorem 2.2 to preperiodic points. Together
with the following corollary, this gives a dynamical parallel to the arithmetic 2.2.

Theorem 3.1. Let f ∈ Q̄(x) have degree d ≥ 2 then sup
{
h(β) | β ∈ PrePerQ̄(f))

}
< ∞.

In other words the set of all preperiodic points of f in Q̄ has bounded height.

Proof. By theorem 2.2 there exists a constant C > 0 depending on f , such that for all α ∈ P1
Q̄

,

7For a rational f = F/G with F (x) = adx
d + . . . a0 and G(x) = bdx

d + . . . + b0 we say that f is primitive if
gcd(ad, . . . , a0, bd, . . . , b0) = 1.
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h(f(α))− dh(α) ≥ −C. This is the lower bound on the absolute value. It follows that

h(fn(α)) ≥ dh(fn−1(α))− C

≥ d2h(fn−2(α)− dC − C

...

≥ dnh(α)− C
n−1∑
i=0

di

= dnh(α)− C
dn − 1

d− 1

≥ dnh(α)− C
dn

d− 1
.

Take a periodic point α of exact period n. Then fn(α) = α, applying the above inequality gives

h(α) ≥ dnh(α)− C
dn

d− 1
(15)

=⇒ h(α) ≤ Cdn

(d− 1)(dn − 1)
(16)

≤ Cd

(d− 1)2
. (17)

Where the last simplification follows from the fact that dn − 1 = (d− 1)(dn−1 + . . .+ 1). Note
that this bound is independent of the point α. Take an arbitrary β ∈ PrePerQ̄(f). This implies
that there exist an integer i ≥ 0 and a periodic point α such that f i(β) = α. Applying the first
bound we obtained to β and substituting f i(β) = α, we get

dih(β) ≤ h(α) + C
di

d− 1
(18)

and applying the second bound obtained for a periodic point α we conclude that

dih(β) ≤ Cd

(d− 1)2
+ C

di

d− 1

=⇒ h(β) ≤ C

(
d

(d− 1)2di
+

1

d− 1

)
≤ C

(
d

(d− 1)2
+

1

d− 1

)
= C

2d− 1

(d− 1)2
.

Therefore ∀β ∈ PrePerQ̄(f)

h(β) ≤ C
2d− 1

(d− 1)2
, (19)

and thus the height of pre-periodic points is bounded. The statement follows.

The result above becomes stronger when we restrict to preperiodic points in a number field
k, as then we can apply the second statement of theorem 2.2 giving us only finitely many such
points.

Corollary 3.2. Let f ∈ Q̄(x) have degree d ≥ 2 and fix a number field k/Q then f has at most
finitely many k-preperiodic points.

11



Proof. Consider the set of k-preperiodic points,

PrePerk(f) ⊆ PrePerQ̄(f) (20)

But by theorem 3.1 the second set has bounded height, thus PrePerk(f) has bounded height.
Applying the second point of theorem 2.2 implies that PrePerk(f) is finite.

As mentioned in section 2.2, we can often relate preperiodic points of rational maps to torsion
points of abelian varieties. If this is the case, then the above corollary implies there can only be
finitely many k-torsion points.
A similar result holds for higher dimensional self-morphisms of An however one must restrict to
periodic points. Namely, given f : An → An is a regular affine morphism, then Per(f) is a set of
bounded height (given a generalization of heights) and over number fields is finite ([Sil07] thm.
7.9).

3.2 Periodic points and Good Reduction
In studying the dynamics of rational maps we can also consider the related dynamics of the
same maps over finite fields and how they relate. These dynamics over finite fields are often
much easier since every point is necessarily preperiodic.

Theorem 3.3. Let f ∈ Q(x) have good reduction at p and let α ∈ PrePerQ(f), then α̃ ∈
PrePerFp(f). Furthermore if α is periodic of exact period n then α̃ is periodic of exact period
m|n.

Proof. We claim that f̃n = (f̃)n. This follows by induction; for n = 1 this is the definition, thus
assume it holds for some n then f̃n+1 = f̃(fn) = f̃(f̃n) where the last equality follows from
remark 2.2. Applying the induction hypothesis proofs the claim.
By the claim and remark 2.2, it follows that if fn(α) = fk(α) then f̃n(α̃) = f̃k(α̃) hence
α̃ ∈ PrePerFp(f̃). This also shows that if α is periodic, so must be α̃.
Let m be the exact period of α̃ and write n = mt + r for some positive integers t, r such that
0 ≤ r < m. Thus α̃ = f̃n(α̃) = f̃mt+r(α̃) = f̃ r(f̃mt(α̃)) = f̃ r(α̃). But since m is the exact
period of α̃, it is the smallest positive integer such that α̃ = f̃m(α̃) hence r = 0 and m|n.

Theorem 3.4. Let f ∈ Q(x) have degree d ≥ 2, p be a prime of good reduction for f and let
α ∈ PerQ(f) have exact period n, then n ≤ p3 − p. Moreover if p ≥ 5 then the bound can be
reduced to n ≤ p2 − 1

Proof. We refer the reader to chapter 2.6 of [Sil07].

Remark 3.1. Taking p to be the smallest prime of good reduction gives the best bound.

Example 3.1. Take again the rational map defined in example 2.6, f(z) = z4−8z
4(z3+1)

. It has good
reduction at 5, indeed

f̃ = f mod 5 =
z4 + 2z

−1(z3 + 1)
,

and z4 + 2z has no factors in common with z3 + 1 modulo 5. The bound above implies that all
periodic points of f have period n ≤ 24. Computing these points is still difficult as the rational
map f24 may have degree 424. Modulo 5 all points are preperiodic, since Z/5Z is a finite group
and for this example we can easily compute all orbits:

Orbf̃ (0̃) = {0̃}, Orbf̃ (1̃) = {1̃}, Orbf̃ (2̃) = {2̃, 0̃}, Orbf̃ (3̃) = {3̃, 1̃}, Orbf̃ (4̃) = {4̃,∞}. (21)

Where ∞ denotes the point (1 : 0) ∈ P1
F5

. Moreover, looking at the curve projectively we find
that (1 : 0) is a fixed point.
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4 Elliptic Curves
Let K be an algebraically closed field of characteristic not 2 or 3 ([ST92] sec. 1.3).
Definition 4.1. (Elliptic Curve)
An elliptic curve over K (in short Weierstraß form) is a projective curve defined by a homo-
geneous polynomial of the form x3 + axz2 + bz3 − y2z ∈ K[x, y, z], where a, b ∈ K such that
4a3 + 27b2 6= 0. The corresponding variety is denoted by E,

E := {(x : y : z) ∈ P2
K | y2z = x3 + axz2 + bz3}. (22)

In short, we write

E : y2z = x3 + axz2 + bz3.

Given that E is an elliptic curve over K and k ⊆ K a sub-field. The set of k-points on E is
denoted by E(k).

This curve has only one point with zero z-coordinate, namely (0 : 1 : 0) =: O. By considering
the line z = 0 as the line at infinity, O is the unique point at infinity. With this choice, the
corresponding affine equation is obtained by taking the substitution X := x/z and Y := y/z.
Throughout the text, we use the variables X and Y to indicate this substitution and that we
work with the affine model of E.
Example 4.1. The projective curve introduced in example 2.1 is an elliptic curve with a = 0
and b = 1. In short,

E : zy2 = x3 + z3. (23)
Its affine equation is given by Y 2 = X3 + 1, which we plot over R and show a branch over C8

below.

Figure 5: E(R) Figure 6: a branch of E(C)

The points on elliptic curves have the structure of an abelian group, as defined in section 1.4
of [ST92], with the point O as the identity element. As is common for abelian groups, the group
operation is denoted with the addition symbol +. It is worth noting that, for a curve defined
over Q, E(Q) is finitely generated. This is a major called Mordell’s theorem (see [Sil09] VIII.4).

Given that the elliptic curve is in the form of equation 22, the group inverse of a point
P = (x : y : z) is the point (x : −y : z) and is denoted by −P . With this we can define
multiplication from Z on E. Let P ∈ E and d ∈ Z, then define

[d] : E −→ E by P 7−→

{
O , d = 0

sign(d)
∑|d|

i=1 P , otherwise
8Note that figure 6 is a phase portrait of the complex function f(z) =

√
z3 + 1, and the lines protruding from

the three roots due to branch cuts.
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For convenience, we usually neglect the parentheses in notation and write d · P to mean [d](P ).
Note that this defines a scalar multiplication on E giving it a Z-module structure. Thus End(E)
always contains a sub-ring isomorphic to Z, however, there are examples in which this is not the
entire endomorphism ring of E. A specific example is treated in 4.4.2, though it should be noted
that in most cases this does not occur. The order of a point P ∈ E is defined as the minimal
integer d > 1 such that dP = O.

Notation 4.1. We refer to points, on E, of order d as d-torsion points and reserve the notation
‘of order d ’ for the order of an elements µ ∈ End(E) and the order of elements in other groups.
Moreover, when we refer to End(E) as a group, this should be understood to be the group of
endomorphisms with respect to composition.

4.1 Projection of Elliptic curves onto a Projective Line
Notation 4.2. We refer to the map [−1] as σ.

Note that σ is an involution and thus has order 2 as an element of the endomorphism group.
It has at most (in an algebraically closed fields exactly) 4 fixed points, namely O and the three
points of the form (x : 0 : z). These are precisely the 2-torsion points of E. Furthermore, σ
commutes with all endomorphisms of E since it simply gives the inverses of the elements.

Consider the subgroup 〈σ〉 = {σ, id} of Aut(E), the automorphism group of E, and the
corresponding quotient E/ 〈σ〉 9. This allows us to take the natural projection π : E → E/ 〈σ〉.

Lemma 4.1. Let E be an elliptic curve over K and 〈σ〉 ≤ Aut(E) be as above, then

E/ 〈σ〉 ∼= P1
K .

Proof. We make use of the Hurwitz formula in 2.1. Consider the map π : E → E/ 〈σ〉 as above
and note that it is a morphism of curves. Also g(E) = 1 (as in example 2.3). Since 〈σ〉 has
order 2 we have that the projection is a 2-to-1 map (except at finely many points) and thus
deg(π) = 2. Denoting R =

∑
P∈E(eP − 1) and applying the Hurwitz formula we obtain

2(1)− 2 = 2(2g(E/ 〈σ〉)− 2)− deg(R) =⇒ g(E/ 〈σ〉) = 1− R

4
. (24)

Since genera are non-negative integer quantities, we have that R ∈ {0, 4}. It also cannot be 0
since there exist ramification points, namely the four fixed points of σ mentioned above. Thus
R = 4 and substituting into 24 gives g(E/ 〈σ〉) = 0. It follows that E/ 〈σ〉 ∼= P1

K ([Poo09]
34.13).

4.2 Morphisms of Elliptic Curves and Rational Maps
In what follows, we study how maps between elliptic curves behave with respect to the projection
π onto P1

K . Under the necessary assumptions, we can find a family of maps (or morphisms) which
commute with this projection thus allowing us to directly relate many of their properties.

Proposition 4.2. Let E and E′ be elliptic curves and let φ : E → E′ be a morphism such that
φ ◦ σ = σ′ ◦ φ, where σ and σ′ are the involution on E and E′ respectively. Then there exists a
unique φ̃ such that the diagram

E E′

E/ 〈σ〉 E′/ 〈σ′〉

π

φ

π

φ̃

(25)

commutes.
9In this quotient a point P is identified with σ(P ) = −P .
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Proof. Given a point P on an elliptic curve, define the set SP := {µ(P ) | µ ∈ 〈σ〉}, respectively
for E′ by replacing σ with σ′. Let P,Q ∈ E, then SP := {P, σ(P )}, likewise for σ′. Note that
SP = SQ if and only if Q ∈ SP and otherwise SP ∩ SQ = ∅. By assumption we have that
σ′(φ(P )) = φ(σ(P )), therefore φ(SP ) = Sφ(P ). By definition of the projection π(SP ) = {π(P )}
and, since the projection π is surjective, for all α ∈ P1

K there a exists a unique set SP ⊆ E such
that π−1(α) = SP . Thus we uniquely define φ̃ by applying π ◦ φ to any representative of SP .

Corollary 4.3. Given two elliptic curves E and E′, and a morphism φ : E → E′ commuting with
σ, then there exists a unique map fφ : P1

K → P1
K such that the diagram

E E′

P1
K P1

K

π

φ

π

fφ

(26)

commutes.
Proof. By lemma 4.1, E/ 〈σ〉 ∼= P1

K . Thus any morphism E/ 〈σ〉 → E′/ 〈σ〉 descends uniquely to
a morphism P1

K → P1
K and we can extend diagram 25 to

E E′

E/ 〈σ〉 E′/ 〈σ〉

P1
K P1

K

φ

π π

∼=

!φ̃

∼=
!fφ

, (27)

which commutes in each square. It follows that fφ is the unique map making 26 commute.

Over the field of Complex numbers such maps are referred to as Lattès maps (formally
defined in [Mil04]) which are historically the first examples of rational maps with empty Fatou
set. In what follows we do not restrict to the complex numbers as the construction is still valid
over any algebraically closed field (of characteristic not 2 or 3) and the most useful dynamical
properties remain true.

4.3 The Dynamical Approach
To relate the points on an elliptic curve to dynamical notions we take E′ = E and φ : E → E a
self morphisms commuting with σ. This allows us to consider the dynamics of (E, φ) and in time
relate the torsion points on E to preperiodic points of rational maps as in the table in section 2.2.
This relation is what, in large, motivates the study of arithmetic dynamics. By commutativity
of diagram 26, we can study properties of these morphisms by studying the related maps of
projective lines.
Proposition 4.4. Given an elliptic curve E and a morphism φ : E → E commuting with σ, let
fφ : P1

K → P1
K be the unique map making diagram 26 commute with respect to φ. Then for all

n ∈ Z>0, fn
φ is the unique map making 26 commute with respect to φn.

Proof. We do induction on n. For n = 1 it follows from the assumption, let us assume that fn−1
φ

is the unique map making 26 commute with respect to φn−1. It follows that, for n, we have the
diagram

E E E

P1
K P1

K P1
K

π

φn−1

π

φ

π

fn−1
φ fφ

(28)
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where the top row is φn and the bottom row fn
φ . By assumption and hypothesis both squares

commute therefore the whole diagram commutes. Thus fn
φ makes diagram 26 commute with

respect to φn which concludes the induction.

This allows us to consider the dynamics of the related maps. Let us look at how the prepe-
riodic points of these relate to one another.

Proposition 4.5. Let E be an elliptic curve and take φ and fφ as above and let P ∈ E. Then
P is a preperiodic point of φ if an only if π(P ) is a preperiodic point of fφ.

Proof. Let P be such that φn(P ) = φm(P ) for some n,m ∈ Z≥0 distinct. By proposition 4.4 we
have that π ◦ φn(P ) = fn

φ ◦ π(P ) and π ◦ φm(P ) = fm
φ ◦ π(P ), therefore fn

φ (π(P )) = fm
φ (π(P ))

and π(P ) is a preperiodic point of f .
Conversely, let π(P ) be a preperiodic point10 of f , then fn

φ (π(P )) = fm
φ (π(P )) for some

n,m ∈ Z≥0 distinct. By the commutativity of 26, we have that π ◦ φn(P ) = π ◦ φm(P ).
With the same notation as in the proof of proposition 4.2, this gives Sφn(P ) = Sφm(P ) hence
φn(P ) ∈ Sφm(P ). This gives two possibilities; either φn(P ) = φm(P ), in which case we are done,
or φn(P ) = −φm(P ). In the second case let us assume that m < n and write n = k +m thus
φk+m(P ) = −φm(P ). Set s = 2k +m, thus

φs(P ) = φ2k+m(P )

= φk ◦ φk+m(P )

= φk(−φm(P ))

= −φk+m(P )

= φm(P )

Where we use the assumption that φ commutes with σ. Therefore P is a preperiodic point of
φ.

Remark 4.1. (exact period)
Take notation as in the proof above and consider the special case of periodic points of fφ. By
commutativity, π(P ) = fn

φ ◦ π(P ) = π ◦ φn(P ). This implies that φn(P ) ∈ SP , hence if n is the
exact period of π(P ) with respect to fφ then P has exact period n or 2n with respect to φ.

This confirms that we may look at the dynamics of (E, φ) and (P1
K , fφ) almost interchange-

ably. There is a particularly interesting family of maps φ = [d] (for d > 1) which allows us to
look at torsion points as preperiodic points. The same applies when d < −1, though including
it in the statement makes it unnecessarily convoluted. Note that [d]n(P ) = [dn](P ) = dnP . We
approach this by considering the dynamics on (E, [d]).

Corollary 4.6. Let E be an elliptic curve, then ∀d ∈ Z>1, PrePer(f[d]) = π(Tor(E)).

Proof. Fix an arbitrary d ∈ Z>1, by proposition 4.5 we have that PrePer(f[d]) = π(PrePer([d]))
since σ commutes with all endomorphisms, thus it suffices to show that PrePer([d]) = Tor(E).

Assume that P is a torsion point of E, hence there exists an integer k > 1 such that kP = O.
Consider the set of values given by iterating the map [d] on P ,

Orb[d](P ) =
{
P, dP, d2P, d3P, d4P, . . .

}
= {dnP | n ∈ Z≥0} . (29)

Since kP = O, we have that the above set is in bijection with the set

{dn mod k | n ∈ Z≥0} , (30)
10By surjectivity of π, all points of P1

K can be written as π(P ) for some P ∈ E.
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which is finite since its elements are those of a finite group. Thus the orbit is finite implying
that the point P is preperiodic for [d], hence Tor(E) ⊆ PrePer([d]).

Conversely, Let P ∈ PrePer([d]). Thus dnP = dmP for some distinct n,m ∈ Z>0, it follows
that (dn − dm)P = O. Therefore there exists an integer k|(dn − dm) such that kP = O hence
PrePer([d]) ⊆ Tor(E). Thus PrePer([d]) = Tor(E) which concludes the proof.

Remark 4.2. For a given elliptic curve, all maps of the form f[d] have the same preperiodic
points. Furthermore, the proof of the above indicates that: P is an l-torsion point and l is
coprime to d ∈ Z if and only if P is a periodic point and #Orb[d](P ) = ord(d mod l) =: N is
the exact period of P with respect to [d]. As mentioned in remark 4.1, this is either exactly or
twice the period of π(P ). Hence in this special case, the exact period of π(P ) with respect to
f[d] is either N

2 or N . In the particular case of the map [2], a point P is periodic if and only if
it is an l-torsion point and l is odd.

Example 4.2. Let P be a 9-torsion point and take the doubling map [2]. Then the Orbit of P
is

Orb[2](P ) = {P, 2P, 4P, 8P, 16P, 32P, 64P, . . .}
= {P, 2P, 4P, 8P, 7P, 5P}
= SP ∪̇S2P ∪̇S4P .

Note that [2]3(P ) = 8P = −P , thus π(P ) is a periodic point of f[2] with exact period 3. However,
the point P is a periodic point of [2] with exact period 6 = ord(2 mod 9).

4.4 The Related Rational Maps
The specific projection π : E → P1

K can be given by (x : y : z) 7→ (x : z) for z 6= 0 and
O 7→ (1 : 0). With respect to this projection we compute the following examples.

4.4.1 The doubling map

Take an elliptic curve E, in short Weierstraß form with coefficients a, b ∈ K as in definition 4.1.
As mentioned above all maps [d] have the same preperiodic points. We look at the simplest
case [2], the doubling map on E. By corollary 4.6 one can compute the torsion points of E by
computing the preperiodic points of the respective fφ map. Let us first consider points P on the
chosen affine patch of E (points of the form (X : Y : 1)). By commutativity of 26, the function
f[2] satisfies π(2P ) = f[2] ◦ π(P ) = f[2]((X : 1)). Applying the addition formulas for a points on
E ([ST92] ch.1.4) we have that

2P =P + P =
(
λ2 − 2X : λ(3X − λ2)− Y : 1

)
,

where λ =
3X2 + a

2Y
.

Therefore π(2P ) = (λ2 − 2X : 1) = f[2]((X : 1)). Computing it explicitly we get:

f[2]((X : 1)) =
(
λ2 − 2X : 1

)
=

(
(3X2 + a)2

4Y 2
− 2X : 1

)
=

(
X4 − 2aX2 − 8bX + a2

4(X3 + aX + b)
: 1

)
=
(
x4 − 2az2x2 − 8bz3x+ a2z4 : 4(zx3 + az3x+ bz4)

)
= : f[2]((x, z))
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Where in the third line we use that Y 2 = X3 + aX + b, and in the forth line we substitute
X = x

z (since by assumption z 6= 0), clear out the powers of z and multiply out into the second
coordinate. Therefore for z 6= 0 the above f[2] is a well defined map of projective lines. To
show that it is well defined everywhere it suffices to check that the image of the special point
(1 : 0) = π((0 : 1 : 0)) coincides with the above equation. Indeed it does since f[2](1 : 0) = (1 : 0),
moreover it is a fixed point of f[2] and π ◦ [2](0 : 1 : 0) = π(0 : 1 : 0) = (1 : 0) = f[2](1 : 0) =
f[2] ◦ π(0 : 1 : 0), it makes diagram 26 commute. Hence f[2] : P1

K −→ P1
K defined by

f[2]((x : z)) =
(
x4 − 2az2x2 − 8bz3x+ a2z4 : 4(zx3 + az3x+ bz4)

)
(31)

is the unique map making 26 commute. Note that its degree is 4 which is necessarily also the
degree of the multiplication map. As one may suspect this degree grows as we choose larger
d and since the preperiodic points of f[d] are the same for all d 6= 0 it may seem sufficient
to consider only this case, however, the exact period of the same point may differ and its
periodic/preperiodic nature may vary as per remark 4.2. As such, in some applications it may
be beneficial to compute such maps for higher values of [d]. If we restrict to the case K = Q̄
and look at the affine part of fφ, then corollary 2.2 allows us to conclude that it has only
finitely many k-preperiodic points for any number field k/Q. In particular there are only finely
many Q-preperiodic points which, by corollary 4.6, implies that there are at most finitely many
Q-torsion points on the elliptic curve.

Example 4.3. Consider the elliptic curve from example 2.1 given by zy2 = x3+ z3. Here a = 0
and b = 1 thus by equation 31 we have that

f[2](x, z) =
(
x4 − 8z3x : 4(zx3 + z4)

)
(32)

for this specific curve. Which, in the affine representation, is the rational map

f[2](X) =
X4 − 8X

4(X3 + 1)
. (33)

Recall that this is the rational map of example 2.6. By theorem 2.2 (Northcott) and Corollary
4.6, we have that Tor(E(k)) is finite over any number field k/Q. Furthermore the bound of
theorem 3.4, as in example 3.1, implies that the exact period of π(P ) ∈ PerQ(f[2]) is at most
24 and as discussed in remark 4.1 this implies that P has exact period at most 48. This is still
rather far from the maximal possible torsion order which is 12 by Mazur’s theorem ([Sch04]),
nevertheless it does give a bound.

4.4.2 Complex multiplication

An elliptic curve, E, is said to have complex multiplication when the endomorphism ring of E is
not isomorphic to Z ([ST92] ch.6). Since it always contains Z this means that there are other
endomorphisms. Take for example the curve

E : zy2 = x3 + xz2.

Here we have the extra endomorphism given by (x : y : z) 7→ (−x : iy : z), let it be denoted by φ.
Through the addition formulas it may be verified that his is indeed a homomorphism of groups.
We look at the corresponding map fφ making 26 commute. Similarly to the above examples we
require that fφ((X : 1)) = π ◦ φ((X : Y : 1)) = (−X : 1) = (−x : z) whenever z 6= 0. Thus we
define fφ((x : z)) := (−x : z) and note that it indeed fixes (1 : 0) and by construction makes
26 commute. This is a rather simple rational map on the affine patch, however, it doesn’t give
much information about the torsion points.
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4.4.3 Translation

Now consider the morphism φ defined by Q 7→ Q+P . In other words we translate all points by
P , note that this doesn’t fix the group identity (0 : 1 : 0) (unless P = (0 : 1 : 0) in which case φ
is the identity morphism) and therefore isn’t an endomorphism of groups. This example illus-
trates that, to have a well defined map fφ making 26 commute, it is necessary that φ commutes
with σ. If we choose P such that it is not the identity or of the form (x : 0 : z) then φ does
not commute with σ since there exist points Q such that −(Q+ P ) 6= (−Q) + P (this equality
only holds if P = −P which we have excluded). In this case we would require that our function
fφ(π(Q)) = fφ(π(−Q)) = π(Q+ P ) = π(−Q+ P ) which is absurd. Thus no such fφ can exist.

Let us consider the cases we excluded above where P is of the form (x : 0 : z). Then P = −P
and φ commutes with σ thus there exists a map fφ making 26 commute.
Take for example the curve E : y2z = x3 − xz2 and choose P = (0 : 0 : 1). Due to the addition
formulas of the elliptic curve we have that P 7→ O and O 7→ P which are the special points that
map to and fro the point at infinity and cannot be described by a rational equation on the affine
part. For the remaining points we have that

φ(X : Y : 1) =
(
λ2 −X : λ(X − (λ2 −X))− Y : 1

)
=

(
−1

X
:
Y

X2
: 1

)
=

(
−xz : yz : x2

)
This suggests that fφ((x : z)) = (−z : x). Note that this also works for π(P ) = (0 : 1) 7→ (1 :
0) = π(O) = π(φ(P )) and π(O) = (1 : 0) 7→ (0 : 1) = π(P ) = π(φ(O)). Thus this fφ is the
unique one making 26 commute with respect to φ given by addition of a point.

5 Lattès maps
Here we follow section 1.6.3 of [Sil07]. Fix K = C, the maps that arise out of commutativity of
26 with the maps [d] over C are called Lattès maps. As mentioned before, they are of historical
importance to dynamics as they present the first examples of rational maps with empty Fatou
set, which we here present. Unlike the previous examples where we make statements about E

based on the dynamical properties of fφ, in this example we use the algebraic structure of E (in
particular its group structure) to make statements about the dynamics of the related rational
map fφ.

Theorem 5.1. Let E be an elliptic curve over C, then there exists a lattice L = ω1Z+ω2Z ⊆ C
for some ωi ∈ C such that E ∼= C/L as groups. ([Sil09] sec VI.5)

Thus replacing E with C/L in diagram 26 yields the commutative diagram

C/L C/L

P1 P1

℘

[d]

℘

fφ

, (34)

where ℘ is a modified Weierstraß ℘-function ([Sil09] sec. VI.3) composed with the projection
and is a meromorphic function11. Let z ∈ C/L, by commutativity of the above we have that

f[d] ◦ ℘(z) = ℘(dz) (35)
11Holomorphic everywhere except at a set of isolated points.
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and by replacing E with C/L in proposition 4.4 we have that fn
[d] ◦ ℘(z) = ℘(dnz). Thus the

points of period m|n are exactly the fixed points of fn
[d] ◦ ℘(z). Let us consider the fixed points

of f[d]
12 in the image of ℘, which we denote by ℘(ζ). By 35 these must satisfy ℘(dζ) = ℘(ζ)

and since ℘ is an isomorphism on C/L composed with the projection, this gives that dζ = ±ζ
mod L.
By differentiating equation 35 with the chain rule, we obtain

f ′
[d](℘(z)) · ℘

′(z) = d℘′(dz). (36)

Taking ζ to be a as above, we use that dζ = ±ζ mod L thus ℘′(dζ) = ℘′(±ζ) = ±℘′(ζ) and
f ′
[d](℘(ζ)) ·℘

′(ζ) = ±d℘′(ζ). Assuming that ℘(ζ) 6= 0 or ∞ we get the condition f ′
[d](℘(ζ)) = ±d.

Thus these fixed points have multipliers λfn
[d]

= ±dn and therefore are all repelling points. We
conclude that these points are all contained in the Julia set as in definition 2.10.

Let us look at the points satisfying dz = ±z mod L in more detail, take z = aω1 + bω2. In
other words we require that daω1 + dbω2 = ±aω1 +±bω2 + kω1 + lω2 for k, l ∈ Z. Since ω1 and
ω2 are linearly independent over Z we find that a = k

d∓1 and b = l
d∓1 . We pass to a fixed d, the

set of points points such that dz = ±z mod L,

{z ∈ C/L |∃n ∈ Z≥1 | z = ±dnz mod L} =

{
k

dn ∓ 1
ω1 +

l

dn ∓ 1
ω2 mod L | l, k, n ∈ Z and n > 0

}
,

is dense in C/L. Since ℘ covers P1 thus the fixed points of f[d]n or equivalently the periodic
points of f[d] are dense in P1. However by the above argument all such points are contained in
the Julia set of f[d] and since by definition the Julia set is closed, thus the closure of all periodic
points must be contained in the Julia set. This, however, is all of P1 since those points are dense.
Hence The Julia set is the entire space P1 and the Fatou set is empty.

Example 5.1. The map in example 4.4.1 is a Lattès map. In particular every rational map on
P1 of the form

f(x : z) =
(
x4 − 2az2x2 − 8bz3x+ a2z4 : 4(zx3 + az3x+ bz4)

)
,

where a, b ∈ C satisfy 4a3 + 27b2 6= 0, has empty Fatou set.

5.1 A Generalization of Lattès maps
The construction of quotients leading to maps defined by commutativity of 26 is loosely referred
to as a Lattès construction. In what follows we consider how it may be generalized. For this
procedure let us remain with K = C. As mentioned before the Lattès maps are rational maps
making diagram 26, however it can occur that there exist other subgroups G of Aut(E) which
yield E/G ∼= P1

K . Then, replacing 〈σ〉 with G, we can obtain another map fφ making the diagram
26 commute with respect to π : E −→ E/G

∼=−→ P1
K . These are sometimes referred to as reduced

Lattès maps though we will make no such distinction ([Sil07] ch. 6.6).

Example 5.2. Consider our example E : zy2 = x3 + z3 over K and note that this curve
has complex multiplication. In what follows let us denote the third root of unity by ζ3. We
find that (ζ3x : y : z) is a point on E whenever (x : y : z) ∈ E hence [ζ3] : E → E defined by
(x : y : z) 7→ (ζ3x : y : z) is an endomorphism of E. Moreover it is a bijective endomorphism with
inverse [ζ23 ] = [ζ3] ◦ [ζ3] and hence an automorphism of order 3. Let us take G = 〈ζ3〉 ≤ Aut(E)
and the natural projection π : E → E/G. We begin by showing that the genus of E/G is 0. Note

12Since d can be chosen arbitrarily it suffices to consider only the fixed point.
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that π has degree 3, thus applying the Riemann-Hurwitz formula (analogously to lemma 4.1)
we obtain

g(E/G) = 1− R

2 deg(π)
= 1− R

6
. (37)

Since genera are non-negative integer quantities, it suffices to show that the ramification is not 0.
To this end, consider the point at infinity, O, which is fixed under the action of G and hence has
ramification index 3. This is enough to conclude that R is not 0, thus R = 1 and g(E/G) = 0.
The remaining ramification points are (0 : ±1 : 1), the fixed points under the action of G, each
having multiplicity 3 thus indeed R =

∑
(eP − 1) = 6. Moreover E/G(K) is nonempty since it

contains at least π(O), thus E/G ∼= P1
K ([Poo09] 34.13).

Together with 〈σ〉 discussed in section 4.1, this gives an example of a curve with two sub-
groups giving rise to Lattès examples. Curiously, This particular curve exhibits one more group
with this property.

Example 5.3. Take the same curve as in the above example 5.2 and consider the action of the
group G = 〈σ, ζ3〉 ≤ Aut(E) (in fact this is the entire automorphism group13 of E, see [Sil09]
thm. III.10.1). Take again the natural projection π : E → E/G, note that this time deg(π) = 6
and applying the Riemann-Hurwitz formula as in equation 37 yields

g(E/G) = 1− R

12
.

Again, the ramification cannot be 0, since the point at infinity, O, has multiplicity 6 (it is a
fixed point for both σ and [ζ3]) and π(O) ∈ E/G(K). Thus E/G ∼= P1

K ([Poo09] 34.13). For this
case, computing the ramification points explicitly yields, the point at infinity with multiplicity
6, the three fixed points of σ (excluding O) of multiplicity 2 and the two fixed points of [ζ3] of
multiplicity 3 giving precisely R = 12.

In this case, quotients by all subgroups of Aut(E) yields a valid projection although to obtain
a Lattès map fφ corresponding to a morphism φ, we must require that φ is invariant under the
action of G.

Notation 5.1. Let G ≤ Aut(E), we denote the set of points that are invariant under the action
of G by

S
G
P := {µ(P ) | µ ∈ G} . (38)

If it is apparent from the context we neglect the G in notation.

In this sense, to show that φ : E → E is invariant under the action of G, it suffices to show
that φ(S

G
P ) ⊆ S

G

φ(P ). Note that this implies equality since the two sets S
G
P and S

G
Q are either

disjoint or equal.

Lemma 5.2. Let K = C, E be an elliptic curve over K and G ≤ Aut(E) be nontrivial, then
E/G ∼= P1

K .

Proof. Take the natural projection π : E → E/G, we have that deg(π) = #G =: n. Likewise
#S

G
P = n (since SG

P = π−1(π(P ))) for all but finitely many points P ∈ E(K), in particular #S
G
O =

1 for all possible groups G (since they are group automorphisms by assumption). Applying the
Riemann-Hurwitz formula as in equation 37 we obtain

g(E/G) = 1− R

2n
,

and R 6= 0 since the ramification index of π at O is n. Furthermore π(O) ∈ E/G(K), by
proposition 34.13 of [Poo09] we conclude that E/G ∼= P1

K .
13It is also cyclic and is generated by [ζ6] = [ζ23 ] ◦ σ. To avoid confusion we keep the two generating elements σ

and ζ3.
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This allows us to generalize the Lattès construction to quotients over other subgroups.

Proposition 5.3. Let K = C, E be an elliptic curve over K and G ≤ Aut(E) be nontrivial,
π : E → P1

K a projection such that π−1(π(P )) = S
G
P for all P ∈ E and φ : E → E a morphism

such that φ(SG
P ) ⊆ S

G

φ(P ). Then there exists a unique map fφ making the diagram

E E

P1
K P1

K

π

φ

π

fφ

(39)

commute.

Proof. By assumption φ(S
G
P ) ⊆ S

G

φ(P ), and since the sets are either disjoint or equal we have
that φ(Q) ∈ S

G

φ(P ) if and only if Q ∈ S
G
P . Thus, analogously to proposition 4.2, we can define

a unique map fφ making diagram 39 commute by mapping α ∈ P1
K to the unique element in

π ◦ φ ◦ π−1(α) = π
(
S
G

φ(P )

)
(for any P ∈ π−1(α)).

Remark that the lemma is necessary for the existence of a projection with the property that
π−1(π(P )) = S

G
P . Furthermore, such Lattès examples indeed exist; the endomorphisms [d], for

d ∈ Z non-zero, commute with all possible elements in Aut(E) giving rise to a family of rational
maps f[d] for each π.

Remark 5.1. The possible automorphism groups of elliptic curves over fields of characteristic
not 2 or 3 (as can be found in [Sil09] cor. III.10.2) are exactly 〈σ〉, 〈[i]〉 and 〈[ζ6]〉 = 〈σ, [ζ3]〉.
The groups other than 〈σ〉 arise on curves with complex multiplication. Note that all the
automorphism groups contain 〈σ〉 as a subgroup. Thus the only possible subgroups giving rise
to P1 in the quotient are 〈σ〉, 〈[i]〉, 〈[ζ3]〉 and 〈[ζ6]〉.

6 The Surface Given by two Elliptic Curves and Generalized
Lattès maps

A natural way in which one may generalize Lattès maps to abelian varieties A of dimension n
is to define them as maps commuting with a morphism φ : A → A. In other words, we call a
map fφ Lattès if it makes the diagram

A A

Pn Pn

φ

π π

fφ

(40)

commute. The issue is that, in general, it is rare for the quotient A/G, where G ≤ Aut(A), to
be isomorphic to Pn ([DeM23] sec. 1.2). Nevertheless it can be done for the product of two
elliptic curves.

6.1 Two Elliptic Curves
Given two elliptic curves E1 and E2 over K, we can consider the surface given by E1 × E2 in
P2
K × P2

K . Let us restrict to the case K = C, the projection maps described in section 4.1 allow
us to define a component-wise projection from the surface E1 × E2 to the ruled surface P1 × P1.
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Proposition 6.1. Let E1 and E2 be elliptic curves over C, E1 × E2 the corresponding surface,
σi the involution on Ei as in 4.2 and π : E1 × E2 → P1 × P1 the component-wise projection. Set
G = 〈(σ1, id), (id, σ2)〉. If φ : E1×E2 → E1×E2 is a morphism such that SG

P ⊆ S
G

φ(P ), then there
exists a unique map fφ making the diagram

E1 × E2 E1 × E2

P1 × P1 P1 × P1

π

φ

π

fφ

(41)

commute.

Proof. Consider the set

S(P,Q) := {µ(P,Q) | µ ∈ G} = {(P,Q), (−P,Q), (P,−Q), (−P,−Q)}.

Note that π(S(P,Q)) = {π(P,Q)}; in other words, for all α ∈ P1 × P1, π−1(α) = S(P,Q) for some
(P,Q) ∈ E1 × E2. Again we see that two such sets, at (P1, Q1) and (P2, Q2), are either disjoint
or equal. By assumption φ(µ(P,Q)) = µ′(φ(P,Q)), therefore φ(S(P,Q)) = Sφ(P,Q). Hence we
can define a unique fφ : P1×P1 → P1×P1 by taking any representative of π−1(α) and applying
π ◦ φ.

This procedure can be extended inductively to a product of n-many elliptic curve. The aim,
however, is to generalize the example in 39 and produce a map making diagram 40 commute.
That is, to obtain a self maps of P2 commuting with the chosen morphisms of the elliptic curve
(recall that P2 6∼= P1 × P1). We will restrict to the case where E1 = E2 = E and consider the
surface E × E = E2. Our approach to the Lattès maps on this surface is to use the result in
proposition 6.1 and project further down onto P2. To that end we consider how P2 and P1 × P1

can be related.

We do this as follows, take a smooth and irreducible projective conic such as C : x2 = y2 + z2

in P2, to be consistent with the explicit map used in [Ued93] we pick this particular conic. Since
this is a plane curve, we can apply the formula in 5 to find that it has genus 0. Moreover it has
a rational point, namely (1 : 0 : 1), thus by [Poo09] 34.13 we have that C ∼= P1. If we pick a
point in the plane that is not on C, then there exist precisely two distinct tangent lines to C
intersecting at P . This can be seen as follows, take the family of lines through P , {Lt|t ∈ P1}
where t represents the slope of the line in a chosen affine patch. This family is in bijection with
P1 by Lt 7→ t. Note that in the projective plane over C every line through P intersects the conic
twice (since it has degree 2) except finitely many. Thus the morphism f : C → P1 given by
Q 7→ t where t is the slope of the line through Q ∈ C and P , is a 2-1 map. Thus we apply the
Riemann-Hurwitz formula with g(C) = g(P1) = 0 and deg(f) = 2 to find that∑

Q∈C
(eQ − 1) = 2.

and since this is a degree 2 map eQ 6= 3. This implies that there are exactly two points Q
and Q′ such that eQ = eQ′ = 2, i.e. precisely two distinct points such that the line through P
and Q (Q′ respectively) does not intersect C at any other point. It follows that these are the
tangent lines TQC and TQ′C. Since lines in the plane intersect at precisely one point we have
that TQC ∩ TQ′C = {P}.

On the other hand if the point P lies on C then there is exactly one such tangent line, the
one through P itself. This follows by an analogous argument where we again take the family of

23



lines through P and and construct the same map, this time of degree 1, and find that there are
no ramification points.

Thus we can define a map C×C → P2 by taking (Q,Q′) to the unique point in TQC ∩TQ′C
if Q 6= Q′ and to Q if Q = Q′, see the figure below14. From this description it is clear that
the map is symmetric and 2-1 except at the diagonal in C × C. Since C ∼= P1 this gives a map
P1 × P1 → P2 that it is a double cover of P2 except at the conic C.

Figure 7: Two tangents to C intersect-
ing at P .

The explicit equations of a map π : P1 × P1 → P2 as above can be given by

((u : v), (w : r)) 7−→ (uw + vr : uw − vr : ur + vw) . (42)

([Ued93] sec. 4)

With this we can construct an appropriate map π : E×E → P2 that will have similar properties
to the one dimensional Lattès map. We first construct it as a map commuting with a function
on P1 × P1. Let us denote the self-morphism acting on P1 × P1 by (P,Q) 7→ (Q,P ) as j to keep
the notation of [Ued93].

Proposition 6.2. Given that f is a self morphism of P1 × P1 commuting with j defined above
and that π : P1 × P1 → P2 is as in 42, then there exists a unique map F making the diagram

P1 × P1 P1 × P1

P2 P2

f

π π

F

(43)

commute.

Proof. The proof is very similar to that of proposition 6.1. By assumption the map π is surjective
thus for all α ∈ P2 we have a unique set S(P,Q) := {(P,Q), (Q,P )} such that π(S(P,Q)) =
{π(P,Q)} and since f commutes with j we have that f(S(P,Q)) = Sf(P,Q) which uniquely defines
an element in P2 since π(Sf(P,Q)) is a singleton set. Thus we can define F by mapping the
pre-image of each point under π with π ◦ f .

Remark 6.1. By the explicit equations in 42 and properties of morphisms, if f is a rational
map, then F must also be rational.

Combining this with the projection in 6.1 we have
14The image over R is meant as a reference. It does not fully convey the projective nature of the map nor the

fact that we work over an algebraically closed field.
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Corollary 6.3. Given that E2 is a 2-copy of an elliptic curve over C and φ : E2 → E2 a
self-morphism then there exists a unique map Fφ such that the diagram

E2 E2

P2 P2

φ

π π

Fφ

(44)

commutes.

Proof. Let E1 = E2 =: E, then by proposition 6.1 there exists a unique fφ making diagram 41
commute giving half a diagram. By proposition 6.2 there exists a unique Fφ making the diagram
43 commute with fφ, this gives the second half of the diagram concluding the proof.

Example 6.1. Consider the elliptic curve E : zy2 = x3 + xz2 as in example 4.4.2 with complex
multiplication by [i]. As discussed there, this gives a rational map fi(u : v) = (−u : v). Then
the endomorphism φ on E×E defined by φ = ([i], [i]) descends to the map fφ : P1×P1 → P1×P1

given by ((u : v), (w : r)) 7→ ((−u : v), (−w : r)), by proposition 6.1. This map further descends
to a map Fφ : P2 → P2 (by proposition 6.2) which is characterized by

Fφ(x : y : z) = π ◦ fφ((u : v), (w : r))

= π((−u : v), (−w : r))

= (uw + vr : uw − vr : −ur − wv)

= (x : y : −z)

where (x : y : z) = (uw+vr : uw−vr : ur+vw) and π is as in 42. Giving us the Lattès example
Fφ(x : y : z) = (x : y : −z) in P2.

Let us return to the projection of P1 × P1 onto P2 and discuss the necessary condition that
f commutes with j in proposition 6.2. Consider the action of j on the points of P1 × P1, by
(P,Q) 7→ (Q,P ), and note that it is an involution. Thus the group of automorphisms generated
by j, 〈j〉, has order 2. The natural projection π : P1 × P1 → P1 × P1/ 〈j〉 is therefore a 2-to-1
map except at the fixed points of j, which are the points on the diagonal of P1 × P1. This is
analogous to the projection we discussed in section 4.1; we indeed find that P1 × P1/ 〈j〉 ∼= P2

since taking the intersection point of two tangents is an isomorphism on the equivalence classes
induced by j ([Ued93] sec. 4). This approach, however, allows us to backtrack and determine a
subgroup G ≤ Aut(E2) such that E2/G ∼= P2. Since the initial projection in proposition 6.1 is
performed component-wise, the action of j on P1 × P1 can be lifted to an action of ĵ ∈ Aut(E2)
acting by (P,Q) 7→ (Q,P ), where Q,P ∈ E. Note that this is only well defined if E1 = E2 = E

in proposition 6.1.

Proposition 6.4. Given the surface E2, let σ1 = (σ, id), σ2 = (id, σ) and ĵ be as above, then
G :=

〈
σ1, σ2, ĵ

〉
≤ Aut(E2) is such that E2/G ∼= P2.

Proof. Note that
〈
ĵ
〉

is a normal subgroup of G, thus the statement follows from the fact that
E2/ 〈σ1, σ2〉 ∼= P1 × P1, and P1 × P1/ 〈j〉 ∼= P2 and j ◦ π = π ◦ ĵ, where π is the projection onto
P1 × P1.

6.2 Quotients by Different Groups
Similarly to the one dimensional case, there exist other subgroups of Aut(E × E) which yield
a projection to P2. The first four of these are direct extensions of the one dimensional case
and each one arises from the possible groups given in 5.1. The quotient corresponding to
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〈σ〉 is discussed above, as for the other groups G we can take the component wise projection
π : E × E −→ E/G × E/G

∼=−→ P1 × P1. Here the projecting will have degree (#G)2 =: n2. We
projecting further P1 ×P1 to P2 by taking the quotient of the action of 〈j〉 giving us the desired
diagram.

Lemma 6.5. Let G ≤ Aut(E), hG := {µ = (η, θ) ∈ Aut(E × E) | η, θ ∈ G} and take ĵ ∈ Aut(E×
E) to be the automorphism defined by (P,Q) 7→ (Q,P ), then for all µ ∈ hG there exists an
element τ ∈ hG such that ĵ ◦ µ = τ ◦ ĵ.

Proof. Let µ = (µ1, µ2), by assumption µ1, µ1 ∈ G. Then ĵ ◦ µ(P,Q) = ĵ(µ1(P ), µ2(Q)) =
(µ2(Q), µ1(P )). Since µ1, µ2 ∈ G we have that τ := (µ2, µ1) ∈ hG, therefore (µ2(Q), µ1(P )) =

τ(Q,P ) = τ ◦ ĵ(P,Q). We conclude that ĵ ◦ µ(P,Q) = τ ◦ ĵ(P,Q) for all (P,Q) ∈ E × E and
since µ was arbitrary this concludes the proof.

Lemma 6.6. Let G ≤ Aut(E), hG and ĵ be as above. Take j : P1 × P1 → P1 × P1 by (P̄ , Q̄) 7→
(Q̄, P̄ ) and π : E×E → P1×P1 the component wise projection with respect to G, then π◦ ĵ = j◦π.

Proof. This follows immediately by computation. Let (P,Q) ∈ E × E and (P̄ , Q̄) = π(P,Q) ∈
P1 × P1, then π ◦ ĵ(P,Q) = π(Q,P ) = (Q̄, P̄ ) = j(P̄ , Q̄) = j ◦ π(P,Q).

Given a fixed G as above, let HG :=
〈
hG ∪ {ĵ}

〉
. It follows that (E×E)/HG

∼= (P1×P1)/ 〈j〉 ∼=
P2. This gives rise to the following possible quotients

Proposition 6.7. Let E be an elliptic curve over C and let G ≤ Aut(E), then

(E × E)/HG
∼= P2. (45)

Where

1. H⟨σ⟩ is valid for all elliptic curves.

2. H⟨[i]⟩ is valid on curves with automorphism group 〈[i]〉 (j-invariant 1728).

3. H⟨[ζ3]⟩ is valid on curves with automorphism group 〈ζ6〉 (j-invariant 0).

4. H⟨[ζ6]⟩ is valid on curves with automorphism group 〈ζ6〉 (j-invariant 0).

Proof. This follows directly from the discussion above.

Note that the groups HG have 2n2 many elements (where n = #G) and thus the projections
onto P2 have degree 2n2. These are the first 4 surfaces listed in [Dup01] sec. 5.1.

Example 6.1 gives a map arising out of the quotient of E × E, where E : y2z = x3 + z3, with
H⟨σ⟩. The explicit computations for more complicated maps quickly become convoluted as their
degree increases. The doubling map itself is already challenging to write down.

7 Concluding Remarks
Above we have the first four examples listed in [Dup01], the remaining two require more results
that could not be introduced here. Let us describe one of these without giving any proofs. Recall
that E has an End(E)-module structure, thus E2 can also be seen as an End(E)-module. With
this, the endomorphisms on E2 can be represented as matrices with entries in End(E). Note that
the above groups act only by multiplication on each component and permuting the components,
thus their representations are diagonal and anti-diagonal matrices. Allowing the components
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to also act on one another we find that for all surfaces E2, there exists the additional group of
automorphisms given by

H =

〈[
−1 −1
0 1

]
,

[
0 1
1 0

]〉
such that E2/H ∼= P2. For the proof of this we refer the reader to [KTY82] section 4. For the
final example in the table given in section 5 of [Dup01], we refer the reader to [KTY82] section 2.

The specific maps arising out of commutativity with [d] ∈ End(E2) have the same dynamical
property as the Lattès maps in section 5, namely their Julia set is the entire projective plane P2

([Ued93] prop. 4.1). This is a direct extension of the Lattès example and since the projection
(with 〈σ1, σ2〉) is a cover of P2, the denseness argument still holds as in 5 and the Julia set is
indeed P2. Moreover we should note that that the map [d] : A → A (for d ∈ Z≥1) defined
by d-fold addition of a point on an abelian variety A, has as its preperiodic points the torsion
points. This suggests that if it is possible that A/G ∼= Pn, then the map commuting with [d]
may give insight into the torsion points. We saw that this is the case for A = E.

We have considered the Lattès construction mainly over C in the two dimensional case, al-
though its generalization to Q̄ is straightforward, it is not immediately clear what to do over F̄p.
In particular the automorphism groups of an elliptic curve over a finite field of characteristic 2
and 3 can have more elements then those we’ve discussed for C and it is unknown to myself if
proposition 5.3 holds for fields of characteristic 2 and 3.

Recall that in example 4.3 we found an upper bound for the odd torsion of a point on that
specific curve through reduction. It may be interesting to consider the explicit Lattès maps
commuting with [p], where p is prime, and investigate the bounds on the exact period of their
periodic points through good reduction (by 3.4). Recall that the periodic points of [p] are are
precisely the torsion points of order coprime to p (remark 4.2) thus it suffices to consider primes
and if a general statement is possible for all primes, it would give a bound on the maximal
torsion. Furthermore the periodic points of [p] coincide with the periodic points of f[p] although
their exact period can differ by a factor of two (for the projection with G = 〈σ〉).

Lattès maps on abelian varieties of dimension 2 other then E×E and dimension larger than 2
are largely undiscussed although Dupont remarks that examples exist in any dimension ([Dup01]
rmk. 5.1). The field of arithmetic dynamics is, as mentioned in the introduction, a relatively
new field and there is much which could not be said in the present text, we refer the interested
reader to [Sil07].
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