
Testing the performance of Asynchronous

Advantage Actor Critic within environments

featuring 2D and 3D graphics

Bachelor’s Project Thesis

Vlad Muscoi, s4718267, v.n.muscoi@student.rug.nl,

Supervisors: J.D. Cardenas Cartagena, M.Sc.

Abstract: In this paper, we will use the popular games Super Mario Bros and Minecraft to
test the performance of Asynchronous Advantage Actor-Critic (A3C), an algorithm that uses
parallel agents to gather additional samples at the same time, within 2D and 3D environments
respectively. Although high variance has been observed during training, the model when run
within the Mario environment was able to converge to a policy capable of completing its task
of finishing the level. Minecraft provided insight into the sample inefficiency of the algorithm,
showing much slower learning for a much wider state space. The algorithm was not able to
converge to a policy that would solve the task within the Minecraft environment. The code used
within this project can be found on github:https://github.com/vluvl/A3C with Mario and

Minecraft

1 Introduction

One of the challenges of applying reinforcement
learning agents to real-world problems is the high
dimensionality of state and action spaces required
to define such tasks. To overcome this, we can use
computer simulations to model the tasks and envi-
ronments that we want the agents to learn. This has
several advantages, such as speeding up the learn-
ing process and allowing us to monitor and evaluate
the agent’s performance more easily. A rich source
of simulated environments that are designed for
training agents to achieve a goal are video games,
where humans are the agents that have to learn to
master the game mechanics (Goecks et al., 2021).

Video games are a popular tool for Reinforce-
ment Learning experiment due to their inherit na-
ture. Video games offer rich and complex inter-
actions between agents and their environments.
These interactions involve decision-making, percep-
tion, and strategic planning. Researchers can study
how agents learn to navigate these intricate scenar-
ios. Additionally, the environments are under the
full control of the user, allowing researches to ma-
nipulate game parameters, create specific scenarios
or observe agent behaviour without any real world

risk. Video games span various genres, from classic
arcade games to first-person shooters and real-time
strategy games. Each genre presents unique chal-
lenges, such as exploration, resource management,
and adversarial interactions. Researchers can ex-
plore different aspects of reinforcement learning in
these diverse contexts. Despite these advantages,
challenges remain. Researchers grapple with issues
like exploration-exploitation trade-offs, sample ef-
ficiency, generalization, multi-agent learning, and
handling imperfect information. Addressing these
challenges drives ongoing research in the field such
as development of Deep Reinforcement Learning
approaches (Shao et al., 2019).

Bridging the gap between the theoretical ad-
vantages of reinforcement learning in video games
and the practical applications of these concepts,
the Asynchronous Advantage Actor-Critic (A3C)
emerges as a potent solution. This technique lever-
ages the controlled, risk-free environments provided
by video games to address some of the most press-
ing challenges in the field. A3C is a model-free Re-
inforcement learning technique that employs multi-
ple parallel agents to explore the environment and
learn from their experience (Mnih et al., 2016). This
method consists of two main components: The Ac-

1

https://github.com/vluvl/A3C_with_Mario_and_Minecraft
https://github.com/vluvl/A3C_with_Mario_and_Minecraft

tor and the Critic. The Actor is responsible for
choosing actions to be performed by the agent,
while the Critic evaluates the actions chosen by the
Actor and provides feedback to the Actor. The algo-
rithm has two main components: the global model
and the worker models. The global model is cre-
ated in the main function of the algorithm while
the worker models are created in different threads
spawned by the main function. The global model
does not act in an environment itself, but it is used
as a ”bank” of information that worker agents can
updated and get updates from. In A3C, the paral-
lel actor-critic agents are trained asynchronously:
once one of the multiple agents finishes an episode,
it updates the global model and then updates itself
with the up to date global model parameters.
Two games were selected to use as the environ-

ments within which the performance of A3C has
been tasted: Super Mario Bros and Minecraft.
Mario is a popular choice among reinforcement

learning researchers, and has the advantage of be-
ing lightweight and allowing parallel execution of
multiple instances to collect more samples. In a re-
port done by Liao et al. (2012), the authors explore
the application of the Q-Learning algorithm to de-
sign an automatic agent capable of playing Mario.
The main challenge lies in handling the complex
game environment while ensuring real-time respon-
siveness. The A3C algorithm could be a significant
upgrade from Q-Learning in the scenario of play-
ing Mario, due to its ability to handle temporal dif-
ferences more effectively. A3C operates by running
multiple instances of the environment in parallel,
which aligns well with the lightweight and paral-
lelizable nature of the Mario game environment.
This parallelism allows for a more diverse range
of experiences to be collected, leading to a more
robust policy.
Minecraft is a more complex and modern game,

with a 3 dimensional environment, unlike Mario
which is 2D. The agent also has a first person per-
spective, while in Mario the agent is visible from the
3rd person view. Minecraft is more often used in re-
searching sample efficient deep reinforcement learn-
ing algorithms due to its high dimensional complex-
ity.
Due to the higher complexity of Minecraft over

Mario, much more advanced tools have been de-
veloped to enable using the game as an environ-
ment for reinforcement learning. Microsoft took the

initiative and developed project Malmo (Johnson
et al., 2016) which provides basic machine learn-
ing functionality. It offers a simple environment
within which toy tasks can be defined that are of-
ten restricted to 2D movement, discrete positions,
or artificially confined maps unrepresentative of the
intrinsic complexity that human players typically
face. The MineRL framework uses Malmo as its
base to expand its functionality and provide more
control over the environment and the agent.

The main focus of the MineRL competition is
to explore sample efficient methods for training
reinforcement learning agents (Guss et al., 2019).
This project uses the MineRL framework. Within
this competition, several notable algorithms have
been developed such as the one developed by Ami-
ranashvili et al. (2020) which utilized expert gen-
erated behaviour to teach itself by example how to
complete a task. This algorithm achieved second
place in the 2019 edition of the MineRL competi-
tion. A step up in the imitation learning branch
of models used within the MineRL competition,
achieving first place the next competition itera-
tion, is the Sample-efficient Hierarchical AI (SEI-
HAI) (Mao et al., 2021) which fully capitalizes on
the strengths of human demonstrations and the in-
herent structure of the task while employing a hi-
erarchical approach to break down the task into
several sequentially dependent sub-tasks. For each
sub-task, it trains a suitable agent using a combina-
tion of reinforcement learning and imitation learn-
ing.

This paper delves into the comparative analysis
of the Asynchronous Advantage Actor-Critic algo-
rithm’s performance in two distinct gaming envi-
ronments: the classic 2D platformer Mario and the
expansive 3D sandbox game Minecraft. By evalu-
ating A3C in these contrasting contexts, the study
aims to shed light on the algorithm’s adaptabil-
ity and efficiency across different dimensions and
complexities of gaming spaces. Minecraft presents
a significantly more intricate and extensive array
of potential states for the agent, providing a rigor-
ous test for A3C’s state management capabilities.
The game’s open-ended environment and the sheer
number of possible interactions offer a challenging
arena to assess the scalability and robustness of the
algorithm.

Conversely, Mario, with its more predictable and
confined set of states, serves as an ideal base-

2

line to gauge the fundamental efficiency of A3C.
The controlled and less complex nature of Mario’s
world allows for a clearer evaluation of the algo-
rithm’s performance without the confounding vari-
ables present in a more complex environment like
Minecraft. This stark contrast between the two
games will enable a thorough investigation into
how A3C handles the transition from a simple to a
complex state space, and whether its performance
scales proportionally with the increased complex-
ity.

Furthermore, the paper will explore the impact
of scaling up the number of worker agents respon-
sible for collecting experience samples. This aspect
is crucial as it could reveal insights into the par-
allelization capabilities of A3C and how it affects
learning efficiency and convergence rates. The hy-
pothesis is that an increase in worker agents may
lead to faster accumulation of diverse experiences,
potentially accelerating the learning process and
improving the overall performance of the algorithm.

2 Theoretical Framework

2.1 Asynchronous Advantage Actor-
Critic

The Asynchronous Advantage Actor-Critic algo-
rithm (A3C) is a policy gradient algorithm that
maintains a policy π(at|st; θ) (the ”actor”) and
an estimate value function V (st|θv) (the ”critic”)
where π is the policy, at and st are the action
and state at time t and θ and θv are the param-
eters of the policy and of the value function respec-
tively. The policy and value functions are updated
after every tmax actions or when a terminal state is
reached.

A soft-max function is constructed using the
output of the Actor layer. This soft-max function
provides a probabilistic decision-making process,
where the probability of selecting an action is pro-
portional to the exponential of its value. This allows
for a balance between choosing the action with the
highest expected utility (exploitation) and trying
out less certain actions (exploration).

The estimate of the advantage function is given

by:

δ =

k−1∑
i=0

γirt+i + γkV (st+k; θv)− V (st; θv) (2.1)

where δ is the advantage function, k can vary from
state to state and is upper-bounded by tmax, r is
the reward at time-step t+1, γ ∈ (0, 1) is the learn-
ing rate, V (st, θv) is the value-function at state t of
the critic. The advantage function is used to gauge
how much better an action is compared to an av-
erage action by computing the difference between
the expected cumulative reward and the value of
the current state. It is used to perform the updates
of the policy and value-function.

The pseudo-code from Mnih et al. (2016) has
been provided in Algorithm 2.1. In the original pa-
per, entropy is used to enhance the exploration pe-
riod, but following empirical results detailed in the
appendix A, the step where entropy is added to θ′

is removed from the algorithm used in this paper
to improve training stability.

2.2 Algorithm overview

In the following section the algorithm and its par-
allelization will be explained in detail.

The A3C algorithm is made of two components:
the global model and worker models. The global
model is the main function that spawns multi-
ple worker models on different threads so that the
workers can learn in parallel. An environment is
created for the global model, but it is not used
to execute actions and gather samples. That en-
vironment is used to extract state and action sizes
to initialize the neural network dimensions of both
global and worker models. The global model is then
set to share its memory so that other models can
update it. Lastly, the global model creates an ar-
ray of processes with a pointer to itself and starts
them on different threads. The different processes
execute the local models which are initiated much
like the global model, but with the main difference
that they do not give access to their internal pa-
rameters.

The pseudo-code provided in Algorithm 2.1 de-
tails the functionality of a worker agent. It assumes
the availability of the global shared parameters of
the global model and a global counter. It also as-
sumes that the agent has thread specific parameters

3

Algorithm 2.1 Modified Asynchronous Advan-
tage Actor-Critic - pseudo-code for each actor-
learner thread. (Mnih et al., 2016)

//Assume global shared parameter vectors θ and
θv and global shared counter T = 0
//Assume thread-specific parameter vectors θ′

and θ′v
Initialize thread step counter t← 1
repeat
Reset gradient: dθ ← 0 and dθv ← 0
Synchronize thread-specific parameters: θ′ = θ
and θ′v = θv
tstart = t
Get state st
repeat
Perform at according to policy π(at|st; θ′)
Receive reward rt and new state st+1

t = t+ 1
T = T + 1

until terminal st or t− tstart == tmax

R

{
0 for terminal st
V (st, θv‘) for non-terminal st

for i ∈ t− 1, ..., tstart do
R← ri + γR
Accumulate gradient wrt. θ′ : dθ +
▽θ′ logπ(ai|si; θ′) ∗ (R− V (si; θ

′
v))

Accumulate gradient wrt. θ′v : dθv + ∂(R −
V (si; θ

′
v))

2/2
end for
Perform asynchronous update of θ using dθ
and of θv using dθv

until T > Tmax

for the Critic (θ′v) and the Actor (θ′) that are part
of the local model. For every start of an episode,
the algorithm will reset the parameters of the local
model and then update its parameters with those
of the global model. It will then get the first state
st and start iterating through actions at chosen by
the policy π(at|st; θ′). For each action taken, it will
observe the new state st+1 and receive a reward rt.
Once the step counter marks the end of the episode
or a terminal state has been reached, the first term
used in the calculation of the advantage function
sum R is being determined depending on if the last
state was a terminal state or not. If the last state
was not a terminal state, the first term will be the
value-function for the given state, otherwise it will
be 0. The algorithm will then go through each iter-
ation starting from the last towards the first of that
episode. During this, the advantage function term
R is being calculated by adding the current reward
ri to the previousR value influenced by the learning
rate γ. The gradients for the Actor and the Critic
parameters are being computed and accumulated
using their respective functions. For the Actor, to
the accumulation gradient dθ is added the gradi-
ent of the logarithm of the policy π(at|st; θ′) and
multiplied by difference of the advantage function
term R and the value-function of the current itera-
tion V (si; θ

′
v). For the Critic, to the accumulation

gradient dθv is added half of the squared difference
of the advantage function term R and the value-
function of the current iteration V (si; θ

′
v) divided

by θ′v. Once the gradients have been calculated, the
parameters will be sent to the global model to be
updated.

2.3 Environment Frameworks

2.3.1 Mario

Mario has a well-known python package that in-
tegrates the NES game into a gym environment
(Kauten, 2018). These environments are made such
that only reward-able game-play frames are sent
to the agent: cut-scenes, loading screens or other
non game-play frames are not available. The frame-
work offers different levels of image simplifications
to help reduce the visual clutter of the game.

4

(a) Normal Mario (b) Simplified
background

Figure 2.1: A comparison between normal Mario
gameplay and a simplified version

For this paper, the first layer of simplifications
has been applied, where the images have been
down-sampled and the backgrounds of the levels
have been drastically simplified. An example has
been provided in Figure 2.1
The reward function assumes the objective of the

game is to move as far right as possible (increase
the agent’s x value), as fast as possible, without dy-
ing. This is done using three variables: V +C +D.
V is the difference in the value of the x coordinate
of the agent between states: V = x′ − x where x
and x′ are the x coordinates old and new state re-
spectively. The x coordinate is increasing towards
the right of the screen, thus moving to the right
translates to a positive V. C is the difference in the
game clock between states: C = c− c′ where c and
c′ are the clock values before and after the state
respectively. The variable C can be regarded as a
penalty because it rewards the agent with a nega-
tive amount the more time it spends in an episode.
Lastly, D is the death penalty that is earned when
the agent dies in a state. The rewards obtained per
state can be much higher or much lower than aver-
age, so they are clipped into the rage (-15,15).
The ”SIMPLE MOVEMENT” action scheme

was used, which provides seven combinations of
controller input that represent the actions that the
agent can take. The actions are tailored to facil-
itate movement towards the right while allowing
the agent to experiment with other less ideal ac-
tions such as jumping in place or going to the left.
The combinations of inputs are:

• NOOP (no operation, the agent does nothing)

• Right

• Right + A (jump)

• Right + B (accelerate)

• Right + A + B

• A

• Left

2.3.2 Minecraft

Minecraft has been adapted to be used as an envi-
ronment for gym via the MineRL framework (Guss
et al., 2019). MineRL uses project Malmö as a
base, developing upon it to offer a more sophis-
ticated framework. Project Malmö is an AI ex-
perimentation platform designed to support funda-
mental research in artificial intelligence (Johnson
et al., 2016) utilizing toy tasks, often restricted to
two-dimensional movement or artificially confined
maps. MineRL aims to take project Malmö and its
mission a step forward by enabling a wider range
of experiments to be done within Minecraft by re-
moving all of the restrictions imposed by Malmö to
allow the environment to feature the full domain
encountered by humans while playing the game.

MineRL version 1.0 uses Minecraft 1.16 and
offers a selection of predefined tasks such
as ”MINERL OBTAIN DIAMOND SHOVEL V0”
which tasks an agent with learning to acquire the
required items to craft the diamond shovel. The re-
ward functions for these tasks are unique. For the
before-mentioned task, the reward is distributed
when the agent acquires one of each items in a pre-
defined track of items that are needed to progress.
For example, the agent first needs to get a block of
wood, process that block into wooden planks, and
then use the planks to craft a crafting bench which
can be used to craft a wooden pickaxe with more
wooden planks and sticks. Each of the items men-
tioned before has a reward attached to it for when
it is first acquired. The reward function is not only
limited to item acquisition, other tasks such as ex-
ploration or building can be programmed to give
reward to the agent.

The framework has a complex set of 24 distinct
actions that are made available to the agent such as
movement in four directions, jumping, changing the
pitch and yaw of the camera, opening the player in-
ventory, using an item and interacting with a block.
As mentioned before, MineRL aims to mimic the

5

human experience of the game. As such, the major-
ity of human actions have been represented in the
action space. For the tests performed in this paper,
the action space has been limited to 8 actions. The
actions are:

• NOOP

• Attacking

• Moving forward

• Jump while moving forward

• Move camera up

• Move camera down

• Move camera to the left

• Move camera to the right

It also offers extra information that is available
to the player such as current health and inven-
tory. The task descriptions within the framework
are python scripts that create specific ”environ-
ment specifications” that dictate how the game is
created, how the agent view is rendered and how
rewards are distributed. For this experiment, a cus-
tom specification has been created that will be de-
tailed in section 3.2.

3 Methods

3.1 Mario

Mario is a well-known 2d platformer video game
often used for testing and training reinforcement
learning agents due to its light yet complex game-
play from an RL standpoint. The game works as fol-
lows: the player needs to traverse a two-dimensional
scrolling level while avoiding enemies and obstacles
that can harm the player and send it back to the
start. The goal of the game is to reach the flag sit-
uated at the end of the level while avoiding danger.
For the scope of this project, Mario has been used

to develop and test implementations of A3C to have
a stable and operational algorithm that could be
scaled up to a more difficult task. The final itera-
tion of the algorithm is a modified version of the
one developed by uvipen (2021) on their GitHub
repository that uses the Mnih et al. (2016) paper
as a base. The algorithm as implemented by uvipen

Figure 3.1: Summary image of what the agent
is encouraged and discouraged to do in Mario.

creates a configurable number of parallel processes
that run the training algorithm and a test process
that is meant to show the progress of those parallel
processes. Uvipen designed his algorithm with sim-
plicity in mind, making simplifications to, accord-
ing to him, unimportant parts such as image pre-
processing and weight initialization while strictly
following Mnih et al. (2016) paper. In terms of im-
age pre-processing, the input image is resized to a
resolution of 84 by 84 and converted to grayscale.

The state and action spaces for Mario are simple.
After the pre-processing mentioned before, frames
are represented by an 84 by 84 pixels, grayscale
image depicting the current rendered frame of the
game. The custom frameskip function is declared
to concatenate together 4 frames which will repre-
sent the states. The actions that can be taken by
the agent are limited to the SIMPLE MOVEMENT
configuration defined by default within the Mario
gym environment.

The reward for the Mario environment, accord-
ing to the official documentation, is distributed in
terms of three separate variables: the difference be-
tween the position of the agent between states, the
difference in the game clock between frames and
the death of the agent. A custom reward function
has been added to reward the agent if the flag has
been reached within a run and to penalize if not.

6

3.2 MineRL

The code had to be adapted to work with the Min-
eRL framework. Utilizing slightly altered versions
of the wrapper functions developed to make Min-
eRL usable with Stable Baselines (Raffin et al.,
2021) and other small modifications to the code,
compatibility between the A3C algorithm and Min-
eRL was established. Minecraft is far more complex
compared to Mario:

• The world is rendered in three-dimensional
space, allowing for much more freedom in
movement.

• The perspective is a lot more limiting in terms
of information gathering, being in first person,
the agent will not be aware of something unless
it is in its field of view.

• The goal of the game is also conceptually dif-
ferent compared to the objective of Mario, in
that there is no set objective in Minecraft.

• Being a survival sandbox game, the main un-
derlying goal is that the player can survive, but
they can do so as they will.

Due to the freedom of choice that the game of-
fers, a simple task has been devised for this exper-
iment: chopping and collection wood. The en-
vironment used in this experiment is derived from
the MineRLObtainDiamondShovel-v0 environment
in which the agent has to collect items in a sequen-
tial order to obtain the Diamond Shovel item start-
ing from nothing. The goal and methods of this en-
vironment have been simplified greatly: the agent
does not have an end goal of collecting one specific
item, but the objective is to collect as much as pos-
sible of one item (any wood block). The player is
spawned on a randomly generated world with a di-
amond axe in its inventory. The goal of the player
is to collect as much wood as possible by finding
a tree, walking up to it, chopping a block of wood
and then collecting it from the ground by walking
over or near it. The diamond axe has been provided
to aid the agent in chopping the trees faster.
To further limit the randomness of the environ-

ment, the base code of MineRL was altered to al-
low for a constant seed to be set. Previously, a seed
could be provided only for the random seed gener-
ator, which would result in a ”random” generated

Figure 3.2: 4 step cycle of what an agent would
need to do to gather wood in Minecraft.

world each time the agent would need to reset the
environment. The passage of in-game time was also
an issue because at night the agent cannot see its
surroundings that well unless it is near a source of
light and also hostile creatures can spawn, which
can kill the agent and cause it to lose its diamond
axe. To prevent this and also to allow the agent
to better learn from its starting environment, af-
ter a set number of iterations, the world will be
re-generated, allowing for past interactions to be
reverted and for the day to start anew. However,
there are other methods in which the agent can
get stuck or die such as drowning, taking fatal fall
damage or getting stuck in a hole. These events are
unaccounted for because the agent can easily avoid
or escape such situations.

Regarding the state and action spaces of Min-
eRL, the states are being generated similarly to
Mario: four concatenated 84 by 84 grayscale images
of rendered game-play. The action space is much
larger compared to Mario, but, using the wrappers
provided in the Stable Baselines tutorial, actions
have been limited to a set of eight actions.

In Minecraft, to break a block, the player needs
to continually ”attack” that block. This adds an
additional layer of complexity that can be avoided
by telling our agent to continually attack while per-
forming any other action regardless of what block is
being hit. This however creates the risk that when
the agent is continually looking down, a hole can

7

be made that traps the agent. To avoid this, a
limit of 45 degrees has been added to the nega-
tive pitch movement of the camera. This ensures
that the agent can harvest blocks that are slightly
lower than its eye level without digging a hole while
allowing it to look up and harvest higher blocks of
wood.
As mentioned before, the reward is earned ac-

cording to the amount of wood the agent has col-
lected during an episode. A secondary, smaller re-
ward, can be acquired if the agent picks up sticks
which can be obtained by breaking leaf blocks that
grow around trees. This smaller reward has been
added to encourage the agent to remain close to
trees while looking for wood knowing that, to har-
vest higher blocks of wood, some leaf blocks should
be destroyed beforehand.

3.3 General Model structure

After the input image stack produced by the envi-
ronment is preprocessed, it is fed into a four layer
convolution neural network (CNN) that ends with a
Long Short-Term Memory (LSTM) layer that con-
nects to the Linear Actor and Critic layers. The
optimizer used is Adam.
Parallelization is done by creating a global model

in the main function of the algorithm while the
actual training will be done by worker processes.
Multiple threads will be launched with a reference
to this global model. The worker threads will cre-
ate local models that take part in the learning
process, while the global model will receive asyn-
chronous updates from each thread whenever an
episode of a worker agent is over. At the same
time, the worker agents will update themselves with
the global model’s parameters whenever they finish
their episode, after which a brand new episode will
start.

3.4 Computational Resources

The training of the A3C models on Mario and
Minecraft has been done with the help of the
Hábrók high-performance computing cluster of the
University of Groningen. Both environments were
executed on the GPU clusters. Three experiments
were conducted within the Mario environment
which had access to 6 CPU cores with 2GB of mem-
ory for each core. The experiments used 4 and 12

worker agents. Two experiments have been done
within the Minecraft environment which had ac-
cess to 8 CPU cores with 10GB of memory for each
core. The algorithm in this case used 4 and 6 worker
agents.

4 Results

4.1 Mario

In the scheduled time, the Mario model with 12
worker agents trained for close to 40 000 episodes
and had 33 032 trainable parameters per agent. The
LSTM layer has not been accounted for when sum-
ming the number of parameters, check appendix
C for more information. The graph in Figure 4.1
shows the rolling mean reward earned by a worker
agent over its training period with a window size of
20 elements (Check appendix B for more informa-
tion on rolling algorithms). From the graph, it can
be observed that, from around episode 5 000, the
agent had hit a plateau earning between 450 and
600 mean reward per episode. From graph 4.1 we
can also see that the rewards earned by the agent
suffered from high standard deviation during train-
ing.

Taking a closer look at the initial training period,
we can see a certain stepping stone that the agent
had to achieve to progress further into the level and
earn higher rewards. Figure 4.3 depicts the first 11
thousand training episodes of the 12 and 6 worker
agents models respectively. The section of the level
where the agents get stuck temporarily is a hole in
the ground that Mario can fall into if the player
jumps too soon. We can observe where the models
had to adapt to that gameplay charge around the
2 000 episode mark for the 12 agent model and
around the 4 500 episode for 6 agent model. Once
the agent learned how to pass that obstacle, the
model was able to reach the plateau by completing
the level multiple times.

Another metric that was being tracked through-
out the experiments in the Mario environment was
the amount of level clears the agent was able to
achieve up to an episode. A level clear was counted
when the agent reached the end flag. Because Mario
was tested with three different numbers of work-
ing agents, we can compare the speed at which the
agents within the different experiments began com-

8

pleting the level more often than losing it. From
figure 4.2 we can observe that a higher number of
agents has a positive impact on the time it took
for a model to reliably complete the level. For 4
agents, the model was able to complete the level
more often after about 5 000 episodes while the
model with 6 agents was able to start clearing the
level from episode 4 000. As expected, the model
with 12 agents was able to clear the level more of-
ten much sooner than the other two models at just
after 2 000 episodes were over.

Figure 4.1: Mario with 12 agents: Graph of the
reward per episode earned by the agent and the
standard deviation. Rolling window size of 20.

Figure 4.2: Mario with 12, 6 and 4 worker
agents: Graph of the amount of completed runs
up to an episode for the first 11 thousand
episodes.

4.2 Minecraft

In the scheduled time, the models with 4 and 6
worker agents trained for over 4 000 episodes in

Figure 4.3: Mario with 6 and 12 agents: Graph
of mean reward over the first 11 thousand
episodes.

the Minecraft environment, the model having 33
545 trainable parameters per agent. The Minecraft
models have slightly more parameters compared
to Mario due to there being one additional action
available to the Minecraft agent. The graph in Fig-
ure 4.4 show the rolling window mean, with a win-
dow of 50 elements, of the rewards earned by the
models over their training period.

From the graph, it can be observed that the agent
has not reached a ceiling like in the Mario envi-
ronment, thus learning could have been continued.
Looking closer at the 4.4 graph, we can see that the
model with 4 working agents was able to acquire an
average reward of 30, which translates to an aver-
age of three wood blocks per episode and the model
with 6 working agents was able to acquire an av-
erage reward of 45, which translates to an average
of four and a half wood blocks per episode towards
the end of their training period.

Similarly to the Mario environment, the effect
of high variance during training persisted in the
Minecraft experiments. Figure 4.5 shows the stan-
dard deviation of the 6 agent model during its train-
ing period. We can observe that the deviation am-
plifies as the reward increases.

5 Conclusions and Discussion

5.1 A3C

The algorithm performed as expected in our ex-
periments, being capable of learning tasks such as
finishing a level in a video game in a relatively fast

9

Figure 4.4: Minecraft with 4 and 6 agents:
Graph of the reward per episode earned by the
agent in 4500 episodes. Rolling window of 50.

Figure 4.5: Minecraft with 6 agents: Graph of
the reward per episode earned by the agent
in 4500 episodes and the standard deviation.
Rolling window of 50.

time. For example, during the training within the
Mario environment, the agent was able to begin
consistently finishing the level after about 2 000
episodes as shown in Figure 4.2.

One of the main issues with the current imple-
mentation is the high variance of the model during
training. We can observe this in Figure 4.1 where
the area around the line, which denotes the stan-
dard deviation of a window, covers a large sur-
face of the graph. This means that the algorithm
achieved vastly different reward amounts in each
episode. The cause of this variance during training
was due to the exploration/exploitation strategy in
play. Even if the agent has found a suitable pol-
icy, it still attempts to look for something better.
These attempts caused some episodes to end early
and award a much lower end reward. Unfortunately,

due to time constraints, an evaluation algorithm
that tested the policy without exploration in mind
could not be developed, thus the performance of
the models was not tested after training.

The deviation in the Minecraft experiment de-
picted in Figure 4.5 can be explained as the agent
having less chances of cutting a block of wood than
actually choosing a suitable action. This is caused
by the design choice of starting a new episode from
the last state of the previous episode, thus nearby
trees could have been cut already. This explains the
cone shape that the standard deviation area has
created around the mean reward line. At the be-
ginning of the training period, the agent collected
less wood, so it was closer to a total reward of 0
per episode. Due to this, episodes where the agent
was not near wood are similar to episodes where
the agent was near wood during the initial stages
of training. As the agent got more sophisticated,
the reward per episode while the agent was near
wood increased, but the reward when the agent has
no wood to collect was as low as before, causing
a higher gap in rewards between episodes. Also,
the agent was still learning and it had not hit a
plateau like in the Mario experiments, so wrong
actions were still being made in order to gather in-
formation.

All worker agents employed the same explo-
ration/exploitation procedure: sampling from a
softmax distribution. For environments with very
large state spaces, this was not a big issue as small
differences in actions would lead the agents in very
different states, but for environments with smaller
state spaces such as Mario, worker agents tended
to do the same actions. This can be improved by
having different exploration policies for each worker
agent to remove possible correlations in later iter-
ations of the environment.

5.2 The impact of more Worker
Agents

Through this project, multiple experiments with
different amounts of worker agents were conducted.
One of the main advantages of A3C is its paral-
lelization, thus testing the influence of increasing
the number of parallel working agents has on the
task being learned is of interest.

For the Mario experiments, the algorithm that
ran the model kept track of whenever an agent fin-

10

ished a level. Each agent had a counter of level
completions that would increment by one when-
ever that agent finished a level. As a reminder,
finishing a level consisted of the player touching
the flag at the end of the level. In figure 4.2 the
level completion counter for each time-step is plot-
ted. It is immediately clear that models with fewer
agents, such as the one with 4 agents depicted as
the continuous blue line, began completing the level
much later than the models employing more worker
agents, such as the model with 12 worker agents
represented by the red dotted line.
Another impact of having more agents can be

seen in figure 4.3 where the 12 agent model was
able to get over an obstacle that would require the
agent to learn a slightly different strategy faster
than the 6 agent model.
The same trend can be observed in figure 4.4:

after about 1 500 episodes the model with 6
worker agents began earning more mean reward per
episode compared to the model with 4 agents.
The main downside of multiple worker agents is

the higher resource consumption caused by running
more neural networks and especially more environ-
ments. In the case of Minecraft, the environments
are very heavy because, not only it needs to render
a 3d environment, but the game is also written us-
ing the Java programming language which is noto-
rious for its memory consumption. A new working
agent running the Minecraft environment would re-
quire, on average, 7 GB more ram. Thus much more
advanced parallelization techniques should be used,
such as running the worker agents on different ma-
chines or GPUs. For lighter environments such as
Mario, resource consumption is not as bad, thus al-
lowing models to utilize more resources to gather
additional samples in order to train faster.

5.3 State Dimensionality difference

Mario and Minecraft are fundamentally different
games, featuring a distinct set of actions and states
from each other. Mario is a two dimensional game
where the player can be seen from a third per-
son perspective and only the first level has been
used while training. Minecraft is a three dimen-
sional game where the player is able to look around
its environment from a first person perspective and
even if the same world is generated each time, tiny
movements in the camera or the player can yield a

totally different state. From this comparison alone
it should be clear that the state dimensionality of
Minecraft is vastly greater than that of Mario. The
action space sizes of both Mario and Minecraft have
been modified to be similar to allow a comparison
to be made between the state spaces.

Looking back at figures 4.1 and 4.5 we can ob-
serve a striking difference between the two experi-
ments. The Mario model was able to find a policy
that allowed it to complete the level and earn maxi-
mum reward relatively soon in its training period. If
we think in the context of what frames of the game
will be used as states for training, we can better un-
derstand the size of the state space. The episodes
after the favorable policy has been found are filled
with different attempts at exploring other solutions
which is the cause of the high variance that can be
observed from the standard deviation depicted in
figure 4.1. Minecraft on the other hand has not hit
a plateau during its learning period. The graph in
figure 4.4 depicts the experiments in the Minecraft
environment with 6 and 4 working agents.

As mentioned before, Mario is a 2 dimensional
game with the main playable character visible at
all times on the screen. The background of the level
is the same, objects are placed in the same places
and enemies move the same way in each episode,
thus even if the agent does different movements, as
long as it arrives in a similar position across dif-
ferent episodes, the states will be very similar or
even the same. Minecraft on the other hand is a 3
dimensional game, allowing the player to move on
both horizontally and vertically within the environ-
ment world. The camera perspective of the player is
first person meaning that whatever the player can
see in its field of view will consist a state for the
agent. Due to this increased movement freedom,
the agent can end up seeing vastly different states
even after similar movements. Minecraft also has
dynamic elements that cannot be controlled with a
seed such as weather and other non-playable char-
acter spawns such as animals. The agent will end
up needing to learn how to recognize objects within
its vision, such as wooden blocks, rather than rec-
ognizing in which part of the level it is situated, for
example before a hole.

The state inefficiency, combined with the heavy
environment, made learning the environment in
Minecraft difficult for A3C, but not impossible.
Given enough samples, the model should be able

11

to be trained to complete the task of the environ-
ment.

5.4 MineRL

Minecraft is a vast and complex game that offers
a unique experience for each player. The player is
able to freely choose their actions and objectives.
In Reinforcement Learning terms, this freedom is
currently problematic since it implies a high state-
action space dimensionality. As we have seen from
the results discussed earlier, even after a lot of re-
strictions have been set in place, such as camera
movement restrictions and re-generations of the en-
vironment, learning was still very slow, mainly due
to the state inefficiency of the algorithm. The Min-
eRL competition, which the MineRL framework
and dataset have been made for, aims to research
sample efficient methods for Reinforcement Learn-
ing. The main focus of exploration is research into
imitation learning, as participants in the compe-
tition would have access to a subset of the large
dataset provided by MineRL which contains hu-
man game-play recordings. Imitation learning is a
combination between classic reinforcement learning
and learning from expert behavior. The models are
tasked with exploring the expert provided samples
and test out policies within an environment.

5.5 Future work

As we have discussed in the methods section, we
had to impose a relatively high amount of restric-
tions on the agent in order to avoid long training
times. Details such as camera angle and the abil-
ity to destroy blocks have been simplified to aid
the agent in its learning phase. Some of these re-
strictions constitute skills within themselves, such
as breaking a block. In order to break a block, a
player would need to continuously look at a spe-
cific block while holding down the harvest/attack
button. If the player lifts that button, the block will
regenerate and will need to start breaking it from
full. An agent that would be able to get over this
stepping stone and execute a more complex task
afterward quickly would be an interesting research
direction.

As we have mentioned before in subsection 5.4,
MineRL is made to be used as a testing playground

for researchers looking into sample efficient rein-
forcement learning methods in a competition style
format. Sample efficiency is indeed an important
aspect of reinforcement learning that should be in-
vestigated further.

Lastly, Minecraft has a hierarchical progression
system: you need better tools to obtain better craft-
ing ingredients for even better tools. Wood block
is only but the first step in this progression ladder.
Having an agent that can accomplish multiple steps
is an interesting idea.

References

Amiranashvili, A., Dorka, N., Burgard, W., Koltun,
V., & Brox, T. (2020, July). Scaling Imita-
tion Learning in Minecraft. arXiv. Retrieved
2023-12-21, from http://arxiv.org/abs/2007

.02701 (arXiv:2007.02701 [cs, stat])

Goecks, V. G., Waytowich, N., Asher, D. E., Park,
S. J., Mittrick, M., Richardson, J., . . . Kott,
A. (2021, October). On games and simula-
tors as a platform for development of artificial
intelligence for command and control. arXiv.
Retrieved 2024-05-30, from http://arxiv.org/

abs/2110.11305 (arXiv:2110.11305 [cs])

Guss, W. H., Houghton, B., Topin, N., Wang,
P., Codel, C., Veloso, M., & Salakhutdinov, R.
(2019, July). MineRL: A Large-Scale Dataset
of Minecraft Demonstrations. arXiv. Retrieved
2023-12-21, from http://arxiv.org/abs/1907

.13440 (arXiv:1907.13440 [cs, stat])

Johnson, M., Hofmann, K., Hutton, T., Bignell,
D., & Hofmann, K. (2016, July). The malmo
platform for artificial intelligence experimen-
tation. In 25th international joint conference
on artificial intelligence (ijcai-16). AAAI -
Association for the Advancement of Artifi-
cial Intelligence. Retrieved from https://

www.microsoft.com/en-us/research/

publication/malmo-platform-artificial

-intelligence-experimentation/

Kauten, C. (2018). Super Mario Bros for OpenAI
Gym. GitHub. Retrieved from https://github

.com/Kautenja/gym-super-mario-bros

12

http://arxiv.org/abs/2007.02701
http://arxiv.org/abs/2007.02701
http://arxiv.org/abs/2110.11305
http://arxiv.org/abs/2110.11305
http://arxiv.org/abs/1907.13440
http://arxiv.org/abs/1907.13440
https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/
https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/
https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/
https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros

Liao, Y., Yi, K., & Yang, Z. (2012, December).
CS229 Final Report Reinforcement Learning to
Play Mario.

Mao, H., Wang, C., Hao, X., Mao, Y., Lu, Y., Wu,
C., . . . Tang, P. (2021, November). SEIHAI:
A Sample-efficient Hierarchical AI for the Min-
eRL Competition. arXiv. Retrieved 2023-12-
21, from http://arxiv.org/abs/2111.08857

(arXiv:2111.08857 [cs, eess])

Mnih, V., Badia, A. P., Mirza, M., Graves, A.,
Lillicrap, T. P., Harley, T., . . . Kavukcuoglu,
K. (2016, June). Asynchronous Methods for
Deep Reinforcement Learning. arXiv. Retrieved
2023-12-21, from http://arxiv.org/abs/1602

.01783 (arXiv:1602.01783 [cs])

Raffin, A., Hill, A., Gleave, A., Kanervisto, A.,
Ernestus, M., & Dormann, N. (2021). Stable-
baselines3: Reliable reinforcement learning im-
plementations. Journal of Machine Learning Re-
search, 22 (268), 1-8. Retrieved from http://

jmlr.org/papers/v22/20-1364.html

Shao, K., Tang, Z., Zhu, Y., Li, N., & Zhao, D.
(2019, December). A Survey of Deep Reinforce-
ment Learning in Video Games. arXiv. Retrieved
2024-05-24, from http://arxiv.org/abs/1912

.10944 (arXiv:1912.10944 [cs])

uvipen. (2021, January). Super-mario-bros-A3C-
pytorch. Retrieved from https://github.com/

uvipen/Super-mario-bros-A3C-pytorch

13

http://arxiv.org/abs/2111.08857
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/1912.10944
http://arxiv.org/abs/1912.10944
https://github.com/uvipen/Super-mario-bros-A3C-pytorch
https://github.com/uvipen/Super-mario-bros-A3C-pytorch

A Removal of entropy

The decision to remove the entropy from the loss
function was made due to the strange empirical re-
sults gathered while testing the algorithm in the
Mario environment. In Mnih et al. (2016) paper, it
is mentioned that adding the entropy of the policy
to the objective function can improve exploration
and discourage sub optimal convergence, but for
the algorithm used in this paper, the entropy is not
used due to the model converging to a very unde-
sirable set of action that would persist throughout
the training process, effectively stopping any fur-
ther exploration of the action space.

After the removal of the entropy, the agent was
able to continue learning and reach a good policy.

Figure A.1: Graph showing the difference be-
tween the algorithm with (Red) and without
(Blue) adding the entropy to the objective func-
tion.

B Rolling Algorithm

The data collected from the experiments has been
processed using the rolling algorithm from the pan-
das python package. Within this appendix, the al-
gorithm and other terms related to it will be ex-
plained. The pandas dataframe.rolling() function
provides the feature of rolling window calculations.
A window is a chosen subset of the whole data that
we can use in other calculations or processes. A win-
dow has a fixed size and it ”rolls” over the whole
data set computing a chosen function for that win-
dow. Algorithm B.1 is a basic example of how the
rolling window algorithm works.

The algorithm consists of a dataFrame hash-map
containing sequential data. This data is the used
with the .rolling() function and the .max() func-
tion to find the maximum number withing the given
window size and store that number into a sepa-
rate hash-map. We can see that the first 2 elements

Algorithm B.1 Rolling window calculations

import pandas as pd

create a DataFrame
dataFrame = pd.DataFrame(’value’: [1, 2, 3, 4,
5, 6, 7, 8, 9])

use rolling() to calculate the rolling maximum

window size = 3
rolling max = dataFrame[’value’].rolling(window size).max()

display the rolling max
print(rolling max)

”’
Output

0 NaN
1 NaN
2 3.0
3 4.0
4 5.0
5 6.0
6 7.0
7 8.0
8 9.0
Name: value, dtype: float64
”’

have been ignored because the window starts cal-
culating the maximum only starts calculating once
it has three elements available. It iterates through
the dataFrame and looks at the last window size el-
ements, applying the .max() function only on those
three.

C Parameter counting

To find the number of trainable parameters, the
summary() function from the torchsummary pack-
age. Torch-summary provides information comple-
mentary to what is provided by print(model) in
PyTorch, similar to Tensorflow’s model.summary()
API to view the visualization of the model, which
is helpful while debugging a network.

The function does not count parameters of hid-

14

den layers. The models used within this paper had
an LSTM layer with hidden parameters, thus the
number of training parameters reported within the
results section (33 032 for Mario and 33 545 for
Minecraft) are only the visible parameters.

15

	Introduction
	Theoretical Framework
	Asynchronous Advantage Actor-Critic
	Algorithm overview
	Environment Frameworks
	Mario
	Minecraft

	Methods
	Mario
	MineRL
	General Model structure
	Computational Resources

	Results
	Mario
	Minecraft

	Conclusions and Discussion
	A3C
	The impact of more Worker Agents
	State Dimensionality difference
	MineRL
	Future work

	Removal of entropy
	Rolling Algorithm
	Parameter counting

