
Identifying requirements for
technical debt tools

Fadziso Manwa

University of Groningen

Identifying requirements for technical debt tools

Bachelor’s Thesis

To fulfill the requirements for the degree of
Bachelor of Science in Computing Science

at the University of Groningen under the supervision of
dr. Daniel Feitosa (Computing Science, University of Groningen)

and
João Paulo Biazotto (Computing Science, University of Groningen)

Fadziso Manwa (S4213742)

July 24, 2024

Abstract

Technical debt (TD) describes the extra effort associated with software main-
tenance due to early project shortcuts. TD can be managed with the use of TD
management tools. Despite this, TD management tools lack the features and
functionalities that practitioners need. An evaluation of software engineer-
ing studies has revealed that TD and TD management are addressed on Stack
Exchange question-and-answer (Q&A) websites. Therefore, this study aims
to determine what practitioners have discussed regarding TD management
on the Stack Exchange and if these conversations reveal software require-
ments that could aid in the advancement of TD management tools. 543 TD-
related questions were retrieved and analysed for this study using a dataset
that was obtained from three Stack Exchange websites: Stack Overflow, Soft-
ware Engineering, and Project Management. 67 software requirements, three
themes for classifying the requirements, and five approaches to responding
to questions containing requirements were found as a result of the question
analysis. The results of this study demonstrate that Stack Exchange websites
can provide requirements for TD tools, which could facilitate their develop-
ment.

Contents

1 Introduction 3

2 Related Work 5
2.1 Stack Exchange . 5
2.2 TD discussions in Stack Exchange 5

3 Methodology 8
3.1 Research Questions . 8
3.2 Research Data . 8

3.2.1 Data Sources . 8
3.2.2 Data Collection & Analysis 10

4 Results 14
4.1 Results RQ1: TD Management discussions 14
4.2 Results RQ2: Requirements for TD tools 18

4.2.1 Implied Tool Requirements 19
4.2.2 Requested Tool Requirements 19
4.2.3 Existing Tool Requirements 20
4.2.4 Answers for questions with requirements 20
4.2.5 Proposed solutions for requirements 22

5 Discussion 25
5.1 Interpretation of Results . 25
5.2 Implications . 26
5.3 Threats to Validity . 27
5.4 Recommendations . 28

6 Conclusions 29

7 Acknowledgements 30

1

List of Figures

3.1 Data Collection & Analysis Overview 10
3.2 Requirements Template [21] . 13

List of Tables

4.1 TD question categories overview 15
4.2 Management categories in Implied Tool Requirements 19
4.3 Management categories in Requested Tool Requirements . . . 19
4.4 Management categories in Existing Tool Requirements 20
4.5 Table of Requested Tool Requirements 22
4.6 Table of Implied Tool Requirements 23
4.7 Table of Existing Tool Requirements 24

2

1 | Introduction

Ward Cunningham coined the term technical debt (TD) as a metaphor to de-
scribe the additional work or expense associated with software systems that
result from early software project shortcuts [8, 16]. In some cases, allowing
technical debt to accumulate can result in short-term benefits, such as re-
ducing the risk of delivering a project outside the approved time-frames and
increasing productivity [28]. However, TD that has not been addressed in the
long term will have negative results and may become apparent in the form
of quality degradation, deceleration of software processes, reduced function-
ality, and software bugs [10].

Although TD is inevitable, it can be managed to reduce the amount of prob-
lems that may arise if it were left to accumulate. TD management techniques,
which entail increasing TD awareness, detection & repayment of TD, and
the prevention of accumulation of TD, have been developed to combat the
long-term effects of TD [27]. During software development, performing these
techniques can become tedious and laborious; therefore software have been
developed to aid developers in managing TD [27]. These include tools that
provide an overview of the internal structure of the code, tools that evaluate
software and identify problems by pointing out rule violations, code clone
detectors, metric tools, quantification and visualisation tools, and refactoring
tools [27].

Even though these tools benefit and support TD management, more automa-
tion is needed regarding TD management practices. An example of a practice
with little support is the prevention of TD which entails the actions taken to
avoid undesired TD [6]. This calls for the extension of existing tools or the de-
velopment of new tools designed to assist in managing TD [6]. To offer better
solutions for automating TD management practices, it is critical to compre-
hend the requirements that practitioners have. These requirements can be
found by combing through discussions practitioners have since these could
provide more insight into software engineering topics including TD and TD
management.

A source of such discussions is the Stack Exchange network1. The software
engineering literature has revealed that the Stack Exchange question-and-
answer websites can offer practical, insightful points of view on a variety

1https://stackexchange.com/

3

https://stackexchange.com/

Chapter 1. Introduction

of software engineering topics [2, 4, 24]. Analysing these websites provides
insightful information about the issues users encounter and the unresolved
concerns surrounding a certain topic [2, 4, 24].

Although there has been research on TD discussions on the Stack Exchange [2,
23, 15, 9], very few explicitly focus on TD tools. Therefore, this study aims
to determine what practitioners have discussed regarding TD management
and TD tools on the Stack Exchange network. Specifically, we seek to estab-
lish whether these conversations reveal software requirements that could aid
in the advancement of TD tools by categorising TD-related questions and ex-
amining the categories related to TD management for software requirements.
The identification of these requirements would provide a foundation for the
development of TD tools specialized to automate technical debt management
methods.

We will examine the relevant related literature in Chapter 2. Chapter 3 de-
tails the research settings and methodological approach. Chapter 4 reveals
the results, and Chapter 5 discusses the results, limitations, and recommen-
dations. To summarize, Chapter 6 presents the conclusion, and Chapter 7
presents the acknowledgements.

4

2 | Related Work

This chapter provides a brief overview of studies that have examined ques-
tions from Stack Exchange Q&A websites to gain an understanding of vari-
ous topics in software engineering (Section 2.1) and TD concepts and man-
agement (Section 2.2

2.1 Stack Exchange

In an empirical study, Wan et al. [29] proposed to capture and compare the
popularity and impact of discussion topics in Stack Exchange communities.
Wang et al. [30] study the factors for fast answers on Stack Exchange Q&A
websites. Martins et al. [18] present an empirical study aimed at understand-
ing how test smells and test refactorings are discussed on the Stack Exchange
network. Bhatia et al. [5] present a study on the management of bugs on Stack
Exchange. Ahmadi et al. [1] targeted Stack Exchange to identify the primary
needs of software project managers. Sulír & Regeci [26] analyze the questions
and answers on Software Engineering for topics and quantities of the ques-
tions, historical trends, and authors’ sentiments. Posnett et al. [22] conducted
an empirical study on the tenure of posters and quality of answers on Stack
Exchange.

2.2 TD discussions in Stack Exchange

There has been research done specifically on discussions about TD that take
place on the Stack Exchange network. The research dives into the essence and
the possible contributions the discussions may provide for future insights
regarding TD phenomenon [15].

In an observational study on the usage of the term "technical debt" on the
Stack Exchange Network, Alfayez et al. [2] found 578 TD-related questions,
the questions could be categorised into 14 different categories such as TD
tools, TD repayment, TD representation, and TD definitions. The study iden-
tified 636 unique tags for TD-related questions, with “SonarQube” being the
most used tag, followed by “technical debt’’, “java”, “agile”, and “scrum” among
the top-10 most used tags. Furthermore, the findings showed that the most
challenging questions for users were those classified under the categories of

5

2.2. TD discussions in Stack Exchange Chapter 2. Related Work

TD consequences, TD incurring, and TD tools, and that most of the questions
found to be related to TD had to do with TD tools.

A study by Kozandis et al. [15] was conducted to understand how users re-
quested support with respect to the found TD. After reviewing and analysing
415 questions from the Stack Exchange websites, the authors found that ar-
chitecture, code, and design TD are the most referenced TD types on Stack
Overflow. Additionally, they found that all TD types reflect the common
length of Stack Overflow questions and that predictive models can accurately
detect and classify TD questions and their binary urgency, but not TD types.
Moreover, they found that most of the TD questions displayed some degree
of urgency and that 29 themes surfaced from the questions with TD repay-
ment and TD management being the most recurrent.

Other research studies delve into more specific sector-oriented questions on
TD. One such study by Santos et al. [23] compiled and analysed 79 TD dis-
cussions on Agile software development (ASD) from Stack Exchange Project
Management. They pointed out 8 types of TD in the context of ASD and
identified 51 indicators of ASD-related TD, for instance, poorly written code,
design problems, and bug occurrence. They found that the most commonly
discussed types of TD are process and people debt and that Product Owner
and Development Team are the most important roles concerning ASD-TD. In
another article, which researched the scope of TD in security questions found
on Stack Overflow, it was found that 38% of the 117 233 questions they had
extracted were security-related TD questions [9].

Studies more focused on TD management topics found in the Stack Exchange
have also been conducted to bridge the gap between refactoring as a research
topic and how it is adapted in practice. An empirical study by Peruma
et al. [20] found thatCode Optimization, Architecture and Design Patterns,
Unit Testing, Tools and IDEs, and Database are the top-five topics most as-
sociated with discussions about refactoring on Stack Overflow. From such
topics, Tools and IDEs were the most popular; however, this topic was also
realised as the most difficult with the highest number of questions without
an accepted answer or any answer at all.

A study by Gama et al. [12] investigated how developers commonly iden-
tify TD items in their projects. They found that SO professionals commonly
discuss the identification of TD, revealing 29 different low-level indicators
to recognise TD items in code, infrastructure, architecture, and tests. They
grouped low-level indicators based on their themes, producing a set of 13
high-level indicators such as the presence of bad coding and the lack of good
design practices. In addition, they classified all low- and high-level indica-
tors into three different categories (Development Issues, Infrastructure, and
Methodology) according to the type of debt each of them was intended to
identify.

These research findings present an overarching theme of the various TD is-
sues that practitioners face and how they discuss with each other when look-

6

2.2. TD discussions in Stack Exchange Chapter 2. Related Work

ing for assistance. We note that although various studies have looked into TD
in Stack Exchange discussions, few explicitly focus on TD tools even though
some studies we highlighted reveal that discussions about TD tools are com-
mon on the Stack Exchange network. Thus, this study presents a step for-
ward in addressing this shortcoming and advances the state of the art by
revealing the practitioner-specified requirements for TD tools.

7

3 | Methodology

This chapter provides insight into the framework of the study by divulging
the selected research questions, data sources, data collection procedures and
data analysis approach.

3.1 Research Questions

As stated previously, TD management practices can become laborious, there-
fore, TD tools have been developed to aid developers in managing TD [27].
Although these tools support TD management and have been shown to bring
improvements in TD management when used in training [7], more automa-
tion is needed in order to satisfy practitioners needs. The review of the lit-
erature reveals that there is little focus placed specifically on TD tool discus-
sions on the Stack Exchange. This study thus aims to find out what has been
discussed by practitioners on the Stack Exchange network about TD and if
these discussions reveal software requirements that could promote the de-
velopment of TD tools. Based on our aim, we have established the following
two research questions:

• RQ1 - What is discussed about technical debt management in the Stack
Exchange network?

• RQ2 - What requirements for TD tools are reported in the Stack Ex-
change network?

3.2 Research Data

This section of the study focuses on research data, mainly revealing data
sources, data collection, and data analysis procedures.

3.2.1 Data Sources

This study’s dataset was obtained from three Stack Exchange Q&A websites:
Project Management1 (PM), Software Engineering2 (SE), and Stack Overflow3

1https://pm.stackexchange.com/
2https://softwareengineering.stackexchange.com/
3https://stackoverflow.com/

8

https://pm.stackexchange.com/
https://softwareengineering.stackexchange.com/
https://stackoverflow.com/

3.2. Research Data Chapter 3. Methodology

(SO). These websites were chosen because they contain questions on spe-
cific programming problems, software tools commonly used by program-
mers and software development methods and practices. Questions regard-
ing TD are most likely to be found in these sections of software engineering.
Furthermore, previous research on TD discussions in the Stack Exchange, by
Alfayez et al. [2] and Kozandis et al. [15] , utilised these three Q&A websites
as data sources.

In this section, a brief background is given on the Stack Exchange network
and the three Q&A websites: PM, SE & SO. This information was extracted
from the meta description of each website.

Stack Exchange

The Stack Exchange network currently consists of 183 question-and-answer
websites in various fields, each site focusing on a specific topic 4. The web-
sites are categorized according to the following classifications: Technology,
Culture & recreation, Life & arts, Science, Professional and Business. On
each website, a user can ask a question and the question will be answered
by other users. Users, questions, and answers are also evaluated through a
reputation system5. Good answers are voted up and rise to the top. This re-
sults in the best answers appearing first so that they are always easy to find.
The individual who asked can mark one answer as "accepted". This does not
specifically indicate that it is the best answer; it may just indicate that the so-
lution worked for the individual who asked. The Stack Exchange provides a
specific question format to avoid questions that are primarily opinion-based
or that are likely to generate discussion rather than answers. Questions that
do not adhere to the format or need improvement may be closed until they
are fixed. All questions are tagged with their subject areas with each having
a limit of up to 5 tags since a question might be related to several subjects and
comments are also utilized to ask for more information or clarify a question
or answer.

Project Management

PM is a Q&A website for project managers and academics. It was established
in 2011 and the website covers several topics, including project management
frameworks, how to use tools to address problems linked to project manage-
ment and the profession or practice of project management [2].

Software Engineering

SE is a Q&A website for professionals, academics, and students working
within the systems development life cycle. It was established in 2010 and
the website is focused on topics relating to software development methods

4https://stackexchange.com/about
5Programs that let members of online communities grade one another to establish a rep-

utation for trust.

9

https://stackexchange.com/about

3.2. Research Data Chapter 3. Methodology

& practices, requirements, architecture & design, quality assurance & testing
and configuration management, build, release & deployment.

Stack Overflow

SO is a Q&A website for professional and enthusiast programmers, academics,
and students. It was established in 2008 and the website is mainly based on
questions that cover specific programming problems, software algorithms
and software tools commonly used by programmers. It is the biggest, most
well-known and most established Stack Exchange website [2].

3.2.2 Data Collection & Analysis

An illustration of the data collection and analysis stages is depicted in Fig-
ure 3.1 and explained in this section.

The data collection and analysis process is made up of five stages. In the
first stage, data is downloaded from SO, SE and PM and a set of TD ques-
tions is extracted using an automated search process. In the second stage,
the TD-related question set is refined through a manual verification process.
During the third stage, the set of TD-related questions is manually coded ac-
cording to a set of established TD question categories. The fourth stage is a
manual search for the TD tool requirements on questions from a subset of
the TD question categories. In the fifth and final stage an analysis of the re-
quirements is carried out. An in-depth description of the stages is provided
below.

Figure 3.1: Data Collection & Analysis Overview

Stage 1: Automated Search

SO, SE and PM 7z files were downloaded from the Stack Exchange Data
Dump6. The dump that was used contains data up until 2024-04-02. An
existing set of Python scripts provided by Feitosa et al [11] was used for the
automated data extraction. Their version of the scripts are supplied with

6https://archive.org/details/stackexchange

10

https://archive.org/details/stackexchange

3.2. Research Data Chapter 3. Methodology

SO files and search for a given keyword in the tags of each SO question.
Following the extraction of the questions, the scripts tie each question to its
corresponding set of answers, comments, and post history.

Before the automated search was performed, the scripts were extended to
search for a given keyword through the tags, title, and body of a question.
The scripts were also extended to look through not only SO but SE and PM
as well. The keywords used were "technical debt" and "tech debt". These
keywords were chosen because they were highlighted by Alfayez et al. [2] as
popular keywords that referenced technical debt in SO.

Stage 2: Manual Verification

The initial set of TD-related questions was manually examined to ensure the
relevancy of TD-related questions that are automatically identified. Specifi-
cally, the content of each question was manually inspected and evaluated by
looking at how the term TD was utilized in the question. If a question was
centred around TD or if TD was an important factor in the question, then
it was included in our final TD-related question dataset, otherwise, it was
excluded.

For instance, consider the following question: “In real world, business initia-
tives always take higher priority as there are associated ROIs and deliver something
tangible to the users. But there are technical initiatives and projects that need to be
done to keep up with the different versions of software, upgrading to a newer plat-
forms, architecture re-factoring etc. How can we plan, prioritize and manage such
competing initiatives? Is there a model to quantify technical debt and its impact to
the business?” In this case, the person is concerned about how to quantify TD
and its impact on the business, then this questions is relevant for our study.

In contrast, consider the next question:“I hear a lot of terms which aren’t well
known amongst programmers (or perhaps the ones I work with at work aren’t very
good apart from a few), such as "technical debt" (which I studied and even see first
hand at work). What other obscure/not-well-known terms are there? This is es-
pecially useful to know as interviewers sometimes mention complex terms and if I
don’t know what they mean, it can screw up the interview as it is in progress.” In
this question, practitioners’ main goal is discover “obscure terms” used by the
software engineering community, and TD is just mentioned as an example.

Stage 3: Manual Coding

The final TD-related question set was qualitatively analysed at this stage us-
ing open and axial coding. These coding methods are used to derive the TD
question category of each question. With open coding, the questions were
taken and broken up into labelled discrete parts according to the main TD
issue cited in the question. To exhibit the process of open coding an example
is given below.

“I recently started at a new company, with a handful of programmers. Its a medium

11

3.2. Research Data Chapter 3. Methodology

sized company, with around 70 employees, but IT only has 9-10, and there are 3
"programmers" beside myself. However, these guys have very limited experience
and are doing a lot of stuff really terribly. For example, one of our projects is a PHP
website. The majority of the code is stored in a 20,000 line PHP controller, with 6000
lines of JavaScript embedded in the PHP.

I keep making small suggestions here and there but nobody has been listening, every-
one says they are too busy to implement my suggestions. The thing is, they shouldn’t
be that busy, and wouldn’t be if things were done right. They spend most of their
time fixing things that keep breaking. If each project was built correctly, I could do it
all myself.

What approach should I take to convince these guys or the manager that things need
to change, and that changing things will save a bunch of time? Should I skip trying
to convince my coworkers and go straight to the manager, with a business-y proposal
on how the company will save a bunch of money if they start doing things correct?”

An example of open coding is taking the phrase “What approach should I take
to convince these guys or the manager that things need to change, and that changing
things will save a bunch of time?” and giving it a code that describes the main
matter of the question. In this case, the code would be Convincing manage-
ment.

Axial coding [14] was used to map each TD-related question to a category
based on one of the 13 TD question types presented by Alfayez et al. [2]. The
chosen question types are as follows: TD communication, TD consequences,
TD definitions, TD documentation, TD identification, TD incurring, TD man-
agement, TD monitoring, TD prevention, TD prioritisation, TD quantifica-
tion, TD repayment and TD tools. The main method used to achieve the
axial coding was to review each question and determine how well the code
within it matched a description of a category. The question would be added
to the appropriate category if the code corresponded to the description of
that category.

Stage 4: Manual Requirements Search

Once the initial round of manual coding was completed, a search for TD
tool software requirements was conducted. In this stage, the categories of
TD questions that fell under the TD management practices presented by
Li et al. [17] were identified. The TD management practices are identifica-
tion, quantification, documentation, communication, prioritisation, repay-
ment, monitoring, and prevention. The category TD Tools was included be-
cause our search focused on the requirements for TD tools, therefore, making
it a key category. Once the categories were isolated, the search for potential
requirements was conducted. This was done by applying codes on text that
reveal what a TD tool could do, the service or services it offers, and the lim-
itations imposed on its operation. It should be noted that some questions
may not have explicitly mentioned a TD tool but rather that the activity men-

12

3.2. Research Data Chapter 3. Methodology

tioned could be added as a potential requirement for TD tools.

In order to formulate the requirements, a requirements template, specified
by Pohl et al. [21], was used. An illustration of the template is shown in
Figure 3.2.

Figure 3.2: Requirements Template [21]

In the template, the system is a tool in which the requirement is applied.
This is followed by the legal obligation represented by the modal verbs shall,
should, will and may. These are used to make a distinction between require-
ments that are required by law, requirements that are highly recommended,
requirements for the future, and requirements that are desirable, respectively.
Next is the core of each requirement characterised by process verb. This is the
functionality that the requirement specifies. The core is followed by the object
which can be used to complete the core statement. For example, the informa-
tion about what is being printed and where it is printed completes the process
verb print. The additional details about the object refer to information about the
object that enhances the requirement.

Stage 5: Requirements Analysis

Once formulated, the requirements were analysed for recurring trends that
could provide information on how requirements could be classified. Each
question with requirements was examined further by going through the an-
swers and comments attached to it. The question was therefore coded ac-
cording to whether one of the answers or comments provided a TD tool as a
solution, a manual solution without any mention of TD tools, or no solution
at all.

13

4 | Results

The results of this exploratory study are shown in this chapter. The set of TD-
related questions that was obtained from three Stack Exchange Q&A web-
sites served as the basis for the results. The study’s research questions led
to the division of the results into two sections, namely the TD management
discussion results and the TD tool requirements results.

4.1 Results RQ1: TD Management discussions

The automated search stage resulted in the extraction of 625 TD-related ques-
tions and, at the end of the manual verification stage, 543 TD-related ques-
tions had been identified. The set of TD-related questions was classified into
the 13 categories compiled by Alfayez et al.[2]. The 13 categories and the
codes that highlight the key components of each category are described in
detail below. An overview of the categories is provided in Table 4.1.

The first category is TD communication. Questions under this category are
based on conveying information about TD and the long-term negative con-
sequences it has for all parties involved. The codes used in this category are
Convincing Management and Explaining TD. Convincing Management is re-
lated to persuading the management or a specific client to repay TD such as
“The questions then, is how to you as a developer sell to your manager that these
areas need addressed and make a business case to get the time to address them now,
rather than having to just incrementally improve here and there?”. Explaining TD
refers to explaining the effects of TD to colleagues. An example of this is “So
how can I put this across to him in a way that will sink in how important this issue
is?”. The TD communication category had a total of 37 questions. 28 coded
with Convincing Management, and 9 with Explaining TD.

The TD consequences category highlight the variety of issues that can develop
as a result of TD. The codes used for this category were Circumventing TD
and Consequences. Circumventing TD highlighted questions intent on ig-
noring TD instead of addressing it such as “there is a big technical debt card
to look into better ways, but thats for another discussion”. Phrases describing
the effects of TD and the increase in TD were coded with Consequences. An
example of this is “The result is that we deliver software that has bugs and the tech-
nical debt keeps growing. We use technology that was considered as a recent version

14

4.1. Results RQ1: TD Management discussions Chapter 4. Results

Category Codes Amount per
code Total

Communication Convincing Management
Explaining TD

28
9 37

Consequences Circumventing TD
Consequences

37
18 55

Definitions Understanding TD 21 21

Documentation
Documenting TD
Recording TD
Representing TD

25
4
1

30

Identification Identifying TD 4 4

Incurring
Hacks
Shortcuts
Adding TD

19
4
8

31

Management Managing TD 8 8

Monitoring Tracking TD
TD Organisation

5
1 6

Prevention Avoiding TD
Steps To Prevent TD

23
5 28

Prioritisation Prioritising TD 2 2

Quantification Measuring TD
Quantifying TD

2
11 13

Repayment

Paying Off TD
Refactoring
Solution Enquiry
Steps To Solve Issues
Implementing Practices

53
24
17
31
3

128

Tools
Fixing TD Tool Errors
Functionalities In Tools
Tool Recommendations

105
72
9

186

Table 4.1: TD question categories overview

15

4.1. Results RQ1: TD Management discussions Chapter 4. Results

in 2006 or so.”. The TD consequences category had a total of 55 questions. 37
coded with Circumventing TD, and 18 with Consequences.

Questions in the TD definitions category were based on understanding the TD
topics. The code used for this category was Understanding TD. An example
of a question in this category is “What is the definition of technical debt?”. The
TD definitions category had a total of 21 questions.

The questions in the TD documentation category focus primarily on how to
effectively portray and document TD. The codes used for this category were
Documenting TD, Recording TD, and Representing TD. Documenting TD
and Recording TD highlighted phrases based on keeping a log of TD such as
“Also how do you write a user story for refactoring code?”. Representing TD was
based on ways to show TD. An example of this is “How to represent technical
debt in agile development using azure devops?”. The TD documentation category
had a total of 30 questions. 25 coded with Documenting TD, 4 with Recording
TD, and 1 with Representing TD.

TD identification includes questions that are concerned about methods that
help in revealing TD. The code used for this category was Identifying TD.
An example of a question in this category is “To catch technical debt, I would
like the compiler to throw an error if one of the include paths does not exist. Is this
possible with either GCC or MSVC?”. The TD identification category had a total
of 4 questions.

The questions in the category of TD incurring are focused on finding solutions
that could lead to deliberate TD. The codes used for this category were Hacks,
Shortcuts, and Adding TD. Hacks and Shortcuts highlighted questions with
phrases asking for solutions that would solve an issue partially instead of
fully addressing it at the expense of gaining TD such as “My question is: what
quick and dirty hacks exist to get this working properly?”. Adding TD was used
on questions that described the act of actively adding TD to a project such as
“I am aware using annotation will lead to technical debt for the long run. However,
I can’t not justify the Java verbosity (although I love it at times when debugging a
bug), this code is easier to read.”. The TD incurring category had a total of 31
questions. 4 coded with Adding TD, 19 with Hacks, and 8 with Shortcuts.

Questions in the TD management category deal with the actions done in TD
management without concentrating on a particular management practice.
The code used for this category was Managing TD. An example of a question
in this category is “how do you keep the quality of your product? What practices
do you use?”. The TD management category had a total of 8 questions.

The questions in the TD monitoring category focus on the best ways to track
and maintain TD. The codes used for this category were Tracking TD and TD
Organisation. Tracking TD highlighted questions with the intent to observe
TD such as “In your practice, how do you effectively track and manage technical
debt?”. TD Organisation was based on how to arrange TD. An example of
this is “What is the recommended practice for adding and organizing technical debt

16

4.1. Results RQ1: TD Management discussions Chapter 4. Results

for a project?”. The TD communication category had a total of 6 questions. 5
coded with Tracking TD, and 1 with TD Organisation.

Questions pertaining to TD prevention focus on tactics, or approaches that
contribute to the avoidance of accumulation of TD. The codes used for this
category were Avoiding TD and Steps To Prevent TD. Avoiding TD high-
lighted phrases that expressed the desire to avoid TD such as “However I
really don’t like using static and it feels poorly implemented and a source of technical
debt. What is a more elegant way to do this?”. Steps To Prevent TD was used on
questions asking for specific methods to avoid TD such as “Which approach
above incurs less technical debt in the long term?”. The TD prevention category
had a total of 28 questions. 23 coded with Avoiding TD, and 5 with Steps To
Prevent TD.

The questions in the TD prioritisation category are about figuring out when a
certain TD item reaches its durability limit. The code used for this category
was Prioritising TD. An example of a question in this category is “How to
prioritize maintenance work and tech debt with something like User Pain?”. The
TD prioritisation category had a total of 2 questions.

The questions in the TD quantification category centre on how to measure TD.
The codes used for this category were Measuring TD and Quantifying TD.
An example of a question in this category is “How can I quantify the amount
of technical debt that exists in a project?”. The TD quantification category had a
total of 13 questions.

The questions in the TD repayment category focus on possible strategies to
repay TD. The codes used for this category were Paying Off TD, Refactoring,
Solution Enquiry, Steps To Solve Issues and Implementing Practices. Pay-
ing Off TD and Refactoring highlighted questions in which the questioner
was in the process of paying off TD such as “But it is really a nightmare to
maintain right now and I would like to create a parallel project where I could start
a fresh project, create a better structure and from there start migrating the old code
to this new environment and refactor it as I go.”. Solution Enquiry and Steps
To Solve Issues were based on questions asking for specific solutions to their
problems, such as “I need a solution or any idea for this problem and it can be
implemented in the code or in the real live to identify the humans.”. Implementing
Practices was based on asking for the best practices to follow in order to pay
off TD. An example of this is “Are there any recommended best practices?”. The
TD repayment category had a total of 128 questions. 53 coded with Paying
Off TD, 24 with Refactoring, 17 with Solution Enquiry, 31 with Steps To Solve
Issues, and 3 with Implementing Practices.

Questions under the category TD tools focus on tools that aid in managing
TD. The codes used for this category were Fixing TD Tool Errors, Function-
alities In Tools, and Tool Recommendations. Fixing TD Errors highlighted
questions that focused on resolving technical errors that occurred during tool
usage, such as “Why I get this warning? is there something misconfigured?”.
Functionalities In Tools was used on questions that were focused on navigat-

17

4.2. Results RQ2: Requirements for TD tools Chapter 4. Results

ing around features in operational tools. An example of such a question is “Is
there a way of cleaning the Sonar DB for all history?”. Tool Recommendations
was used on questions which asked about tools that could provide certain
functionalities such as “I want to determine the readability of the code that was
written by an author. Thus, I am looking for a tool compatible with Python that will
provide me with such functionality.”. The TD tools category had a total of 186
questions. 105 coded with Fixing TD Tool Errors, 72 with Functionalities In
Tools, and 9 with Tool Recommendations.

Analysing the data shows that TD tools were the topic of discussion for the
majority of the questions. The TD tools category contained 186 questions.
This accounts for 34.3% of the TD-related question set. The second most
discussed question category was about paying off of TD. There were 128
questions in the TD repayment category and they account for 23.6% of the
question set. The category with the least number of questions was the cate-
gory TD prioritisation with 2 questions, which represents 0.4% of the set of
questions.

The code that was used the most was Functionalities In Tools. This code was
used to label 72 questions. The second most used code was Paying Off TD
which was used in 53 questions. The codes with the least mentions were
Representing TD and TD Organisation. Both of these codes were used in 1
question, respectively.

It was also observed that a single question might cover certain information
that could be classified as belonging to more than one question type. As a
result, the total from the overview does not equate to the number of questions
in the question set. An example of such a question is:

“Does anyone know if there is some kind of tool to put a number on technical debt of
a code base, as a kind of code metric? If not, is anyone aware of an algorithm or set of
heuristics for it? If neither of those things exists so far, I’d be interested in ideas for
how to get started with such a thing. That is, how can I quantify the technical debt
incurred by a method, a class, a namespace, an assembly, etc.”

In the example, the first half of the question relates to looking for a TD tool,
whilst the second relates to quantifying TD.

4.2 Results RQ2: Requirements for TD tools

During the manual requirements search, 67 requirements-specific questions
were identified. With these 67 questions, 67 requirements were identified.

Three requirement themes were identified throughout the requirements anal-
ysis stage: Implied Tool Requirements, Requested Tool Requirements, and
Existing Tool Requirements. Also, further analysis was conducted to reveal
the TD management categories in each theme.

18

4.2. Results RQ2: Requirements for TD tools Chapter 4. Results

4.2.1 Implied Tool Requirements

This category details the requirements that fall under the classification in
which a TD tool is not mentioned, but the requirement is rather inferred. 20
of the requirements are classified within this theme. A question that exhibits
an implied tool requirement is “I’m looking for a way to quantify where my team
should spend it’s time addressing technical debt in our codebase. One idea for this is
to measure file churn (edits over time)” In this example, the questioner does not
mention explicitly that a tool is required, nonetheless, it is fair to claim that a
tool could measure the amount of edits over a period of time. The resulting
requirement would be The tool may measure the number of times a file is edited.

In the analysis of the Implied Tool Requirements, 6 categories of TD manage-
ment were found: quantification, monitoring, documentation, repayment,
management, and communication. An overview of the number of require-
ments in each category is shown in Table 4.2

Communication
1

Documentation
6

Management
1

Monitoring
3

Repayment
5

Quantification
8

Table 4.2: Management categories in Implied Tool Requirements

4.2.2 Requested Tool Requirements

This category includes requirements associated with questions for tools that
could potentially offer a particular feature or functionality. 9 of the require-
ments are classified in this theme. A question that exhibits a requested tool
requirement is “Does anyone know if there is some kind of tool to put a number on
technical debt of a code base, as a kind of code metric?”. The resulting requirement
would be The tool may quantify the TD of a codebase.

In the analysis of the Requested Tool Requirements, 5 TD management cate-
gories were found: quantification, communication, management, repayment
and monitoring. An overview of the number of requirements in each cate-
gory is shown in Table 4.3

Communication
1

Management
1

Monitoring
2

Repayment
3

Quantification
3

Table 4.3: Management categories in Requested Tool Requirements

19

4.2. Results RQ2: Requirements for TD tools Chapter 4. Results

4.2.3 Existing Tool Requirements

This category details the requirements related to functionalities in tools that
are operational in the software engineering field. The remaining 38 require-
ments are classified within this theme. A question that exhibits an existing
tool requirement is “Is it possible to get the technical debt per file in Sonar and
preferably export it so it is possible to put in a chart?” In this example, the ques-
tioner is looking to be able to export the TD metrics of every file scanned on
an operational TD tool called SonarQube. The resulting requirement would
therefore be SonarQube may provide the TD per file.

In the analysis of the Existing Tool Requirements, 4 TD management cat-
egories were found: monitoring, documentation, repayment, and quantifi-
cation. The total amount of requirements for all categories is less than the
number of requirements in the theme. The rest of the requirements pertain
to the features of the tool, such as widgets and dashboards, which do not
fall under a specific management category. An overview of the number of
requirements in each category is shown in Table 4.4

Documentation
2

Monitoring
1

Repayment
1

Quantification
6

Table 4.4: Management categories in Existing Tool Requirements

An examination of the three requirement themes reveals that most require-
ments were associated with existing tools. There were 38 requirements that
were placed within the Existing Tool Requirements theme which accounts
for 56.7% of the identified requirements. The theme with the least require-
ments was Requested Tool Requirements with 9 requirements, which repre-
sents 13.4% of the requirements set.

An inspection of the management categories found within the themes reveals
that there were three categories found in all three themes. These were quan-
tification, repayment, and monitoring. In all three themes, the most popular
category was quantification. In total, 17 requirements were associated with
quantification, 6 with monitoring, 9 with repayment, 8 with documentation,
2 with communication and 2 with management. The categories communica-
tion and management had the least requirements.

4.2.4 Answers for questions with requirements

For the second part of the requirement analysis, the answers and comments
to the requirement questions were analysed. It was noted that there were five
ways that a question could be answered. The ways were assigned the codes:
Answered - tool, Answered - no tool, Answered - alternative tool, Answered
within tool, and Unanswered. Examining the responses to the requirement

20

4.2. Results RQ2: Requirements for TD tools Chapter 4. Results

questions revealed that 50 were answered and 17 had no solution. The codes
of the types of responses are explained in more detail below.

The code Answered - tool describes a question in which one of the answers
provides a TD tool as a solution. The questions that were eligible for the
Answered - tool code were those with requirements under the themes Im-
plied Tool Requirements and Requested Tool Requirements. An example of
an answer within this category is “Regarding profiling tools, if you decide to go
that way you may take a look at xhprof. It has smaller size of the output files and
web interface that you could embed into your app for continuous tracking” . 14
requirement questions were answered with a TD tool suggestion.

The code Answered - no tool describes a question in which the answers pro-
vide a manual solution. The questions that were eligible for the Answered
- no tool code were those with requirements under the themes Implied Tool
Requirements and Requested Tool Requirements. An example of an answer
coded with Answered - no tool is “Firstly, you need to estimate the dev cost for
the re-factoring as you would the sales driven feature request. This may well be tricky
to get accurate if it’s a large job but, assuming you have sufficiently experienced peo-
ple in the 2 technologies, it should be doable. Secondly, you need an estimate of the
cost of not re-factoring. If you were doing the estimates for me, I’d expect some level
of metrics. For example, the difference between the average dev cost for VB code and
for C# code over a quarter. Or some such. Will obviously depend on how accurately
you track this. With these 2 numbers, you can estimate the pay back period that
the re-factoring will give you i.e. at what point will the re-factoring turn from a
net cost to a net gain”. 13 requirement questions were answered without tool
suggestions.

The code Answered - alternative tool was used to label requirement ques-
tions that were based in tools and were answered by giving an alternative
tool as a solution. The questions that were eligible for the Answered - alter-
native tool code were those with requirements under the theme Existing Tool
Requirements, since these were based on TD tools. An example of an answer
coded with Answered - alternative tool is “The Eclipse Metrics plugin may get
you close to what you’re looking for. It’ll give you a health check on your projects
by reporting on different types of complexity (coupling, cyclomatic complexity, cohe-
sion, length of methods and so on).” 1 requirement question was answered with
an alternative tool as a solution.

The code Answered within tool was used to label a requirement question
that was based on tools and was answered by giving a solution within the
confines of the tool mentioned in the question. The questions that were
eligible for the Answered within tool code were those with requirements
under the theme Existing Tool Requirements since these were based in TD
tools. An example of a response with this code is “If these are open source
libraries that you don’t want analyzed at all, you can exclude them from analy-
sis altogether using sonar.exclusions. Else, you can add an exclusion pattern to
avoid the creation of issues on those files, so that their technical debt will effec-

21

4.2. Results RQ2: Requirements for TD tools Chapter 4. Results

tively be 0, while other metrics will be computed (lines of code, duplications etc.)
- see sonar.issue.ignore.multicriteria”. 20 requirement questions were answered
with methods related to the tools mentioned in the questions.

The Unanswered code describes questions with no answer at all or ques-
tions with answers or comments that highlighted that the question had no
solution. Questions with requirements in all three themes were eligible to
be labelled by the code Unanswered. An example of a response coded with
Unanswered is “As of SonarQube 4.1 (January 2014), this is not possible yet.”. 17
requirement questions did not have a solution.

4.2.5 Proposed solutions for requirements

This section provides an overview of the requirements found in each theme
in the form of tables. The requirements are shown in the first column, and
the answers to the requirement questions are shown in the second. The re-
quirements in Existing Tool Requirements start with the name of the tool
mentioned in the question due to the requirement being specific to that tool.
The other requirement themes are related to unspecified tools so they start
with “The tool may...”. Implied Tool Requirements are found in Table 4.6, Re-
quested Tool Requirements in Table 4.5, and the Existing Tool Requirements
in Table 4.7.

Requested Tool Requirements

Requirement: The tool may Question response code

quantify TD of a code base Answered - tool

provide a metric that shows the degree of TD in an application Answered - tool

manage TD Answered - tool

remove unused files Answered - tool

manage a Business Rules repository Answered - no tool

offer static code analysis as a hosted service compatible with BitBucket and Mercurial Unanswered

provide a view of added or removed TD Answered - tool

measure code readability of a file Answered - no tool

automate the migration of a codebase Answered - tool

Table 4.5: Table of Requested Tool Requirements

An inspection of the requirements in each category revealed that the major-
ity of requirements in the theme Existing Tool Requirements are associated
with SonarQube. 29 requirements were related to SonarQube. This accounts
for 76.3% of the requirements in the Existing Tool Requirements theme and
43.2% of the overall sum of requirements. Moreover, 15 of the requirement
questions were coded with Unanswered, 1 with Answered - alternative tool,
and 20 with Answered within tool.

The requirements in Implied Tool Requirements were divided relatively evenly
between those defined with specific, distinct functionalities and those de-
fined in a general manner. An example of a specific requirement is The tool
may filter log output to show unexpected exceptions in JUnit whereas an exam-

22

4.2. Results RQ2: Requirements for TD tools Chapter 4. Results

Implied Tool Requirements

Requirement : The tool may Question response code

measure the amount of existing TD in a project Answered - no tool

track completed tasks Answered - no tool

track "who works on what" Answered - no tool

quantify the impact of TD Answered - no tool

quantify the value of refactoring Answered - no tool

measure the number of times a file is edited Answered - no tool

show the lines changed for an edited file Answered - no tool

document TD Answered - tool

provide visualizations of technical investment Answered - no tool

detect dead code Answered - tool

provide an estimate for ROI for TD repayment Answered - tool

record TD in TFS Answered - no tool

track TD Answered - tool

measure the number of classes without Javadocs Answered - tool

automatically integrate namespaces Answered - tool

measure the amount of informative comments in a file Answered - no tool

automatically generate simple input\output acceptance unit tests Answered - tool

centralize common imports in React components Answered - no tool

filter log outputs to show unexpected exceptions in JUnit Unanswered

calculate the percentage of a codebase with comments Answered - tool

Table 4.6: Table of Implied Tool Requirements

ple of a more generalised requirement is The tool may document TD. 11 of the
20 requirements in Implied Tool Requirements are related to general func-
tionalities. Furthermore, 11 of the requirement questions were coded with
Answered - no tool, 1 with Unanswered, and 8 with Answered - tool.

The requirements in the theme Requested Tool Requirements were also di-
vided relatively evenly between specific and general definitions, with 5 out
of a total of 9 requirements being defined with general functionalities. Ad-
ditionally, 6 of the requirement questions were coded with Answered tool, 1
with Unanswered, and 2 with Answered - no tool.

23

4.2. Results RQ2: Requirements for TD tools Chapter 4. Results

Existing Tool Requirements

Requirement Question response code

Jira may keep track of a technical roadmap Answered within tool

SonarQube may provide the TD per file Answered within tool

SonarQube may provide a way to define TD Answered within tool

SonarQube may automatically and dynamically calculate TD for individual programs Answered - alternative tool

SonarQube may retrieve rules by category Unanswered

SonarQube may calculate the TD of an architectural violation Answered within tool

SonarQube may display TD in months and years Unanswered

SonarQube may allow for the exclusion of files in the TD analysis Answered within tool

SonarQube may retrieve ’Issues’ by ’Characteristic’ Answered within tool

SonarQube may calculate the modularity metric from pre-existing metrics Answered within tool

SonarQube may store project measures for each file in a database Answered within tool

SonarQube may allow setting of TD for rules in which SQALE remediation function is linear Unanswered

SonarQube may provide calculations for custome web rules Answered within tool

SonarQube may facilitate for the addition of TD information for each rule Answered within tool

SonarQube may provide a setting to change the number of decimal points in TD ratio Unanswered

SonarQube may facilitate for the specification of TD for a custom FxCop rule Unanswered

SonarQube may facilitate for the customization of the project level view Unanswered

SonarQube may allow for the exportation of TD metrics for all projects Answered within tool

SonarQube may facilitate for the removal of metrics from the dashboard Unanswered

SonarQube may specify the last succesful analysisas Leak Period Answered within tool

SonarQube may allow for the exclusion of files in coverage calculation Unanswered

SonarQube may allow for configuration of time period in history diagram Unanswered

SonarQube may provide a Technical Debt Pyramid Widget Unanswered

SonarQube may automatically set issues as ’Resolve as Won’t Fix’ Unanswered

TeamCity may provide a way to fail a build if Quality Gate fails Answered within tool

Elixir Ecto may alias a column name Answered within tool

SonarQube may provide the issue tag ’Will Fix Later’ Answered within tool

SonarLint may list the issues of changed files Answered within tool

Jenkins may provide the user for each commit Unanswered

SonarQube may report changes in coverage files Unanswered

SonarQube may show code smell scores on the dashboard Answered within tool

OpenCover may convert reports into NDepend compatible formats Answered within tool

SonarApi may provide the estimated fix time for a project Answered within tool

SonarQube may allow for the backdating of issues Unanswered

SonarQube may track when a code smell was first identified Unanswered

SonarQube may allow for the exclusion of files from the issues list Answered within tool

Table 4.7: Table of Existing Tool Requirements

24

5 | Discussion

This chapter provides an interpretation of the results obtained, threats to the
validity of the study are discussed, and the chapter ends with recommenda-
tions for future research.

5.1 Interpretation of Results

The TD management discussions results suggest that TD tools are the most
discussed topic on the Stack Exchange websites we used. This is due to the
fact that the TD tools category had 186 questions, which is 34.3% of the TD-
related question set. The category with the second most questions was TD
repayment with 128 questions, which is 23.6% of the TD-related question
set. This suggests that the activity of paying off TD is a popular topic of
discussion as well.

The code that was used the most was Functionalities In Tools. This shows
that the most popular, indivisible, topic of discussion was centred around
the features and capabilities of existing, operational, TD tools. The codes that
were used least were TD Organisation and Representing TD, with each being
used once. Questions coded with TD Organisation were put into the category
TD monitoring and questions coded with Representing TD in the category
TD Documentation. Even though the categories they belong to did not have
the fewest questions, the separate activities of arranging and displaying TD
were the least discussed singular issues by the users. This is because a code
was utilised to highlight the primary TD issue or management activity in a
question and one category could have many codes. It thus becomes possible
to have a code with the least usage belonging to a category without the least
questions.

In the requirements for TD tools results, 3 themes were discovered: Im-
plied Tool Requirements, Requested Tool Requirements, and Existing Tool
Requirements. From the themes discovered, the theme Existing Tool Re-
quirements had the most requirements and the theme Requested Tool Re-
quirements had the least requirements. It may show that most users already
know about the current selection of TD tools and may be more inclined or
prefer to ask for help with issues and improvements on the tools they would
be using than to ask for alternative tools.

25

5.2. Implications Chapter 5. Discussion

Inspecting the requirements in Implied Tool Requirements revealed that ap-
proximately half were defined in a general manner. This may be due to the
nature of the theme. The requirements in this theme are inferred, there-
fore any activity that could be a functionality is recorded. This results in
the identification of general functionalities such as “documenting TD”. Ap-
proximately half of the requirements in Requested Tool Requirements were
defined with general requirements as well. This suggests that nearly half of
the users who requested tools did not have specific functionalities in mind
but were rather looking for tools that performed general activities.

The examination of the requirements in Existing Tool Requirements revealed
that the majority were related to the TD tool SonarQube. While this suggests
that SonarQube is a popular TD tool amongst practitioners on the Stack Ex-
change, the tool also demands several improvements to properly support
TDM.

From the eight management categories used to search for TD tool require-
ments, six contained requirements, mainly communication, documentation,
management, monitoring, repayment and quantification. Of the six, three
were found in all three requirement themes. These were quantification, re-
payment, and monitoring. This may suggest that the most common manage-
ment activities practitioners look for in TD tools have to do with quantifying,
paying off and monitoring TD. Quantification was the management category
with the most requirements, indicating that practitioners are still most trou-
bled by the TD management approach of quantifying TD in TD tools. Com-
munication and management had the least requirements, suggesting that few
practitioners are currently looking for TD tool features related to the convey-
ing and general management of TD.

After reviewing the answers and comments on the requirements questions,
51 of the requirements questions were answered and 17 were unanswered.
From the 51 answered questions, 37 were answered with manual solutions
which shows that a majority of users answering TD-related requirements re-
sort to manual solutions. This might suggest that there are practices and
solutions that still need to be automated. The 17 unanswered requirements
questions may also show that there are requirements that may be challenging
to fulfil or may not have solutions.

5.2 Implications

Examining the discussions surrounding TD and TD tools on Q&A websites
offers three primary benefits relevant to this exploratory study.

First, researchers and developers can use the results as a guide on areas to
focus on when researching and developing TD tools. For example, the ex-
isting tool requirements theme had the majority of requirements. This can
direct researchers to focus on existing tools and the issues and discussions
surrounding them. Developers can also focus on the extension of existing

26

5.3. Threats to Validity Chapter 5. Discussion

tools in order to meet the needs of practitioners who use these tools.

Second, researchers and developers are alerted to tool requirements that still
need to be addressed. For example, researchers could study unanswered
questions and provide solutions to such questions. Also, developers could
look into the unanswered questions to address TD tool requirements that
have not been fulfilled yet either manually or by tools. Finally, tool vendors
gain an understanding of what practitioners are requesting and focus on de-
veloping such functionalities in existing or new tools.

5.3 Threats to Validity

Construct Validity

Construct validity refers to how well a set of indicators represents an idea
that cannot be measured [25]. The manual coding stage’s classification of the
TD-related questions into question types poses a potential risk to the con-
struct validity of this study. This is because this stage may result in the cho-
sen codes and code categories being inadequate representatives of the TD
topics discussed in the questions. The TD-related question types presented
by Alfayez et al. [2] were used for manual deductive coding to minimise any
potential risks.

The automated search procedure that was used to find questions related to
TD poses a risk to the study’s construct validity due to the uncertainty of all
questions retrieved being a true representation of TD. To attenuate potential
threats related to the automated question search, not only the was the body
of the questions considered but also their titles and tags. Manual verification
of automated search results was performed to ensure that the data set was
representative of TD.

External Validity

The ability of conclusions of a study to be used in general and real world
situations is examined by its external validity [3]. The degree of identifica-
tion of questions related to TD poses a possible risk to the external validity of
the study. Our automated search yielded question results based on keyword
matches discovered within a question. But there are numerous terminolo-
gies that may be used to refer to TD and the keywords we picked were only
a small portion of the potential keywords. It’s also feasible that TD could be
described without relying on a specific list of terms. As a result, we acknowl-
edge that not all questions related to TD have been found.

Reliability

The degree to which a research approach yields consistent and steady out-
comes is known as reliability [19]. In terms of our study, this is related to the
degree to which other researchers can reproduce our findings. This study

27

5.4. Recommendations Chapter 5. Discussion

may contain bias because human judgement was used to determine a ques-
tion’s relevance to TD and to categorise it within TD-related question cate-
gories. This can compromise the reliability of the study because the reasons
to categorise a question may differ from person to person, which could lead
to different results. To ensure the replicability of our findings, we have pro-
vided all data, decisions and methods used in this study in the replication
package 1.

Data collection and analysis procedures were performed by one person. This
is a threat to the reliability of the study because the individual’s judgement
is not verified throughout the whole process, and their existing views are
reinforced and alternative ideas are not considered. Ultimately, this may re-
sult in errors, such as questions being put into incorrect categories or valid
questions being marked as irrelevant. To mitigate this threat, a supervisor
evaluated the results of each stage, provided feedback, and gave confirma-
tion to continue with the remaining stages.

5.4 Recommendations

Based on the approach that has been carried out in this study, further im-
provements can be made. To increase the scope of the retrieved TD questions,
there are three suggestions. Firstly, research on the full extent of alternative
TD terms could be implemented to widen the subset of keywords that can be
used in the automated search stage. This could be done by reviewing more
studies conducted on TD on the Stack Exchange and divulging the keywords
and phrases they encountered. Secondly, machine learning could be adopted
to address the cases in which TD may be described without any keywords be-
ing mentioned in the title, body or tag of a question. Thirdly, the data sources
for the TD-related questions could be expanded past the Stack Exchange into
more Q&A networks such as Codidact2.

To address the possible bias that might occur from one person performing
the manual verification, coding, and requirements search, two participants
in the study can be employed to execute the same procedures, compare their
results, and discuss any differences that might occur. In addition to this sug-
gestion, Cohen’s Kappa coefficient, a statistical technique that is frequently
used to gauge how well two reviewers agree [13], can be used.

Another step that could have been taken in the study is the comparison of the
resulting requirements with the activities and functionalities of operational
TD tools such as SonarQube. This could be done in future research to obtain
a more specific subset of requirements that are yet to be addressed.

1https://github.com/Fxdzie/StackExchange_Extraction
2https://codidact.com/

28

https://github.com/Fxdzie/StackExchange_Extraction
https://codidact.com/

6 | Conclusions

The current research aimed to find out what practitioners on the Stack Ex-
change network have discussed about TD and whether these discussions re-
veal software requirements that could promote the development of TD tools.

The research questions were as follows:

RQ1: “What is discussed about technical debt and technical debt management tools
on the Stack Exchange network?”

RQ2: “What requirements for TD tools are reported in the Stack Exchange net-
work?”

543 questions TD-related questions were identified and their content was
analysed. Manual coding was performed on the set of TD-related ques-
tions, and the set of questions was then divided into 13 categories of TD
questions. This was followed by a manual requirements search. The results
revealed that TD tools were the most discussed topic on SO,SE and PM. In
addition, the data analysis resulted in the identification of 65 questions with
a total of 67 requirements. Further analysis of the requirements questions
revealed three themes in which the requirements could be categorised: Im-
plied Tool Requirements, Requested Tool Requirements, and Existing Tool
Requirements.

Furthermore, it was determined that most of the identified requirements
were associated with operational TD tools, with SonarQube being the most
popular. Lastly, five ways in which the requirements questions could be an-
swered were detected, mainly: answered with a tool suggestion, answered
with a manual solution, answered with an alternative tool, answered within
a tool and unanswered.

This preliminary study provides proof that the requirements for the TD tools
can be found on Stack Exchange Q&A websites. Furthermore, the study
presents two main contributions. Firstly, this study provides a baseline for
the extension or development of TD tools as it outlines specifications and
functionalities, put forward by practitioners. Lastly, the study presents a
step forward in addressing the literature gap regarding discussions about
TD tools in the Stack Exchange network.

29

7 | Acknowledgements

I appreciate my supervisors, Daniel Feitosa and João Paulo Biazotto for shar-
ing the scripts I used to carry out the automated search. Additionally, I am
grateful to them for providing me with advice, criticism, and answers to my
inquiries during the course of the study.

30

Bibliography

[1] Alireza Ahmadi et al. “Learning Software Project Management From
Analyzing Q&A’s in the Stack Exchange”. In: IEEE Access 11 (2023),
pp. 5429–5441. DOI: 10.1109/ACCESS.2023.3235953.

[2] Reem Alfayez et al. “What is asked about technical debt (TD) on Stack
Exchange question-and-answer (Q&A) websites? An observational study”.
In: Empirical Software Engineering 28.2 (2023), p. 35. ISSN: 1573-7616.
DOI: 10.1007/s10664-022-10269-5. URL: https://doi.org/
10.1007/s10664-022-10269-5.

[3] Chittaranjan Andrade. “Internal, External, and Ecological Validity in
Research Design, Conduct, and Evaluation”. In: Indian Journal of Psy-
chological Medicine 40.5 (2018). PMID: 30275631, pp. 498–499. DOI: 10.
4103/IJPSYM.IJPSYM_334_18. eprint: https://doi.org/
10.4103/IJPSYM.IJPSYM_334_18. URL: https://doi.org/10.
4103/IJPSYM.IJPSYM_334_18.

[4] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. “What are
developers talking about? An analysis of topics and trends in Stack
Overflow”. In: Empirical Software Engineering 19.3 (2014), pp. 619–654.
ISSN: 1573-7616. DOI: 10.1007/s10664-012-9231-y. URL: https:
//doi.org/10.1007/s10664-012-9231-y.

[5] Aaditya Bhatia et al. “A Study of Bug Management Using the Stack
Exchange Question and Answering Platform”. In: IEEE Transactions on
Software Engineering 48.2 (2022), pp. 502–518. DOI: 10.1109/TSE.
2020.2994006.

[6] João Paulo Biazotto et al. “Technical debt management automation:
State of the art and future perspectives”. In: Information and Software
Technology 167 (2024), p. 107375. ISSN: 0950-5849. DOI: https://doi.
org/10.1016/j.infsof.2023.107375. URL: https://www.
sciencedirect.com/science/article/pii/S0950584923002306.

[7] Yania Crespo et al. “The role of awareness and gamification on tech-
nical debt management”. In: Information and Software Technology 150
(2022), p. 106946. ISSN: 0950-5849. DOI: https://doi.org/10.
1016/j.infsof.2022.106946. URL: https://www.sciencedirect.
com/science/article/pii/S0950584922000921.

[8] Ward Cunningham. “The WyCash portfolio management system”. In:
SIGPLAN OOPS Mess. 4.2 (1992), 29–30. ISSN: 1055-6400. DOI: 10.1145/

31

https://doi.org/10.1109/ACCESS.2023.3235953
https://doi.org/10.1007/s10664-022-10269-5
https://doi.org/10.1007/s10664-022-10269-5
https://doi.org/10.1007/s10664-022-10269-5
https://doi.org/10.4103/IJPSYM.IJPSYM_334_18
https://doi.org/10.4103/IJPSYM.IJPSYM_334_18
https://doi.org/10.4103/IJPSYM.IJPSYM_334_18
https://doi.org/10.4103/IJPSYM.IJPSYM_334_18
https://doi.org/10.4103/IJPSYM.IJPSYM_334_18
https://doi.org/10.4103/IJPSYM.IJPSYM_334_18
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1109/TSE.2020.2994006
https://doi.org/10.1109/TSE.2020.2994006
https://doi.org/https://doi.org/10.1016/j.infsof.2023.107375
https://doi.org/https://doi.org/10.1016/j.infsof.2023.107375
https://www.sciencedirect.com/science/article/pii/S0950584923002306
https://www.sciencedirect.com/science/article/pii/S0950584923002306
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106946
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106946
https://www.sciencedirect.com/science/article/pii/S0950584922000921
https://www.sciencedirect.com/science/article/pii/S0950584922000921
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715

Bibliography Bibliography

157710.157715. URL: https://doi.org/10.1145/157710.
157715.

[9] Joshua Aldrich Edbert et al. Exploring Technical Debt in Security Ques-
tions on Stack Overflow. 2023. arXiv: 2307.11387 [cs.SE].

[10] Neil Ernst, Rick Kazman, and Julien Delange. Technical Debt in Practice:
How to Find It and Fix It. The MIT Press, Aug. 2021. ISBN: 9780262366304.
DOI: 10.7551/mitpress/12440.001.0001. URL: https://doi.
org/10.7551/mitpress/12440.001.0001.

[11] Daniel Feitosa et al. “Mining for cost awareness in the infrastructure as
code artifacts of cloud-based applications: An exploratory study”. In:
Journal of Systems and Software 215 (Sept. 2024), p. 112112. ISSN: 0164-
1212. DOI: 10.1016/j.jss.2024.112112. URL: http://dx.doi.
org/10.1016/j.jss.2024.112112.

[12] Eliakim Gama et al. “Using Stack Overflow to Assess Technical Debt
Identification on Software Projects”. In: Proceedings of the XXXIV Brazil-
ian Symposium on Software Engineering. SBES ’20. Natal, Brazil: Associ-
ation for Computing Machinery, 2020, 730–739. ISBN: 9781450387538.
DOI: 10.1145/3422392.3422429. URL: https://doi.org/10.
1145/3422392.3422429.

[13] Natasa Gisev, J. Simon Bell, and Timothy F. Chen. “Interrater agree-
ment and interrater reliability: Key concepts, approaches, and appli-
cations”. In: Research in Social and Administrative Pharmacy 9.3 (2013),
pp. 330–338. ISSN: 1551-7411. DOI: https://doi.org/10.1016/j.
sapharm.2012.04.004. URL: https://www.sciencedirect.
com/science/article/pii/S1551741112000642.

[14] LaiYee H. How To Do Open, Axial, & Selective Coding in Grounded Theory.
https://delvetool.com/blog/openaxialselective. [Ac-
cessed 30-03-2024].

[15] Nicholas Kozanidis, Roberto Verdecchia, and Emitza Guzman. “Ask-
ing about Technical Debt: Characteristics and Automatic Identification
of Technical Debt Questions on Stack Overflow”. In: Proceedings of the
16th ACM / IEEE International Symposium on Empirical Software Engi-
neering and Measurement. ESEM ’22. Helsinki, Finland: Association for
Computing Machinery, 2022, 45–56. ISBN: 9781450394277. DOI: 10 .
1145/3544902.3546245. URL: https://doi.org/10.1145/
3544902.3546245.

[16] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. “Technical Debt:
From Metaphor to Theory and Practice”. In: IEEE Software 29.6 (2012),
pp. 18–21. DOI: 10.1109/MS.2012.167.

[17] Zengyang Li, Paris Avgeriou, and Peng Liang. “A systematic mapping
study on technical debt and its management”. In: Journal of Systems
and Software 101 (2015), pp. 193–220. ISSN: 0164-1212. DOI: https://
doi.org/10.1016/j.jss.2014.12.027. URL: https://www.
sciencedirect.com/science/article/pii/S0164121214002854.

[18] Luana Martins et al. “Hearing the voice of experts: Unveiling Stack Ex-
change communities’ knowledge of test smells”. In: 2023 IEEE/ACM
16th International Conference on Cooperative and Human Aspects of Soft-

32

https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715
https://arxiv.org/abs/2307.11387
https://doi.org/10.7551/mitpress/12440.001.0001
https://doi.org/10.7551/mitpress/12440.001.0001
https://doi.org/10.7551/mitpress/12440.001.0001
https://doi.org/10.1016/j.jss.2024.112112
http://dx.doi.org/10.1016/j.jss.2024.112112
http://dx.doi.org/10.1016/j.jss.2024.112112
https://doi.org/10.1145/3422392.3422429
https://doi.org/10.1145/3422392.3422429
https://doi.org/10.1145/3422392.3422429
https://doi.org/https://doi.org/10.1016/j.sapharm.2012.04.004
https://doi.org/https://doi.org/10.1016/j.sapharm.2012.04.004
https://www.sciencedirect.com/science/article/pii/S1551741112000642
https://www.sciencedirect.com/science/article/pii/S1551741112000642
https://delvetool.com/blog/openaxialselective
https://doi.org/10.1145/3544902.3546245
https://doi.org/10.1145/3544902.3546245
https://doi.org/10.1145/3544902.3546245
https://doi.org/10.1145/3544902.3546245
https://doi.org/10.1109/MS.2012.167
https://doi.org/https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/https://doi.org/10.1016/j.jss.2014.12.027
https://www.sciencedirect.com/science/article/pii/S0164121214002854
https://www.sciencedirect.com/science/article/pii/S0164121214002854

Bibliography Bibliography

ware Engineering (CHASE). 2023, pp. 80–91. DOI: 10.1109/CHASE58964.
2023.00017.

[19] Fiona Middleton. Reliability vs. Validity in Research | Difference, Types
and Examples — scribbr.com. https://www.scribbr.com/methodology/
reliability-vs-validity/. [Accessed 04-07-2024].

[20] Anthony Peruma et al. “How do i refactor this? An empirical study
on refactoring trends and topics in Stack Overflow”. In: Empirical Soft-
ware Engineering 27.1 (2021), p. 11. ISSN: 1573-7616. DOI: 10.1007/
s10664- 021- 10045- x. URL: https://doi.org/10.1007/
s10664-021-10045-x.

[21] Klaus Pohl et al. Requirements Engineering Fundamentals: A Study Guide
for the certified professional for requirements engineering exam: Foundation
level - IREB compliant. Rocky Nook, 2016.

[22] Daryl Posnett et al. “Mining Stack Exchange: Expertise Is Evident from
Initial Contributions”. In: 2012 International Conference on Social Infor-
matics. 2012, pp. 199–204. DOI: 10 . 1109 / SocialInformatics .
2012.67.

[23] Eder Pereira Santos et al. “Technical Debt on Agile Projects: Managers’
point of view at Stack Exchange”. In: Proceedings of the XXI Brazilian
Symposium on Software Quality. SBQS ’22. New York, NY, USA: As-
sociation for Computing Machinery, 2023. ISBN: 9781450399999. DOI:
10.1145/3571473.3571500. URL: https://doi.org/10.1145/
3571473.3571500.

[24] Camila Costa Silva, Matthias Galster, and Fabian Gilson. “Topic mod-
eling in software engineering research”. In: Empirical Software Engineer-
ing 26.6 (2021), p. 120. ISSN: 1573-7616. DOI: 10.1007/s10664-021-
10026- 0. URL: https://doi.org/10.1007/s10664- 021-
10026-0.

[25] Dag I. K. Sjøberg and Gunnar Rye Bergersen. “Construct Validity in
Software Engineering”. In: IEEE Transactions on Software Engineering
49.3 (2023), pp. 1374–1396. DOI: 10.1109/TSE.2022.3176725.

[26] Matúš Sulír and Marcel Regeci. “Software Engineers’ Questions and
Answers on Stack Exchange”. In: 2022 IEEE 16th International Scien-
tific Conference on Informatics (Informatics). 2022, pp. 304–310. DOI: 10.
1109/Informatics57926.2022.10083403.

[27] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. “Chap-
ter 8 - Repaying Technical Debt in Practice”. In: Refactoring for Software
Design Smells. Ed. by Girish Suryanarayana, Ganesh Samarthyam, and
Tushar Sharma. Boston: Morgan Kaufmann, 2015, pp. 203–212. ISBN:
978-0-12-801397-7. DOI: https://doi.org/10.1016/B978-0-12-
801397-7.00008-4. URL: https://www.sciencedirect.com/
science/article/pii/B9780128013977000084.

[28] Edith Tom, Aybüke Aurum, and Richard Vidgen. “An exploration of
technical debt”. In: Journal of Systems and Software 86.6 (2013), pp. 1498–
1516. ISSN: 0164-1212. DOI: https : / / doi . org / 10 . 1016 / j .
jss.2012.12.052. URL: https://www.sciencedirect.com/
science/article/pii/S0164121213000022.

33

https://doi.org/10.1109/CHASE58964.2023.00017
https://doi.org/10.1109/CHASE58964.2023.00017
https://www.scribbr.com/methodology/reliability-vs-validity/
https://www.scribbr.com/methodology/reliability-vs-validity/
https://doi.org/10.1007/s10664-021-10045-x
https://doi.org/10.1007/s10664-021-10045-x
https://doi.org/10.1007/s10664-021-10045-x
https://doi.org/10.1007/s10664-021-10045-x
https://doi.org/10.1109/SocialInformatics.2012.67
https://doi.org/10.1109/SocialInformatics.2012.67
https://doi.org/10.1145/3571473.3571500
https://doi.org/10.1145/3571473.3571500
https://doi.org/10.1145/3571473.3571500
https://doi.org/10.1007/s10664-021-10026-0
https://doi.org/10.1007/s10664-021-10026-0
https://doi.org/10.1007/s10664-021-10026-0
https://doi.org/10.1007/s10664-021-10026-0
https://doi.org/10.1109/TSE.2022.3176725
https://doi.org/10.1109/Informatics57926.2022.10083403
https://doi.org/10.1109/Informatics57926.2022.10083403
https://doi.org/https://doi.org/10.1016/B978-0-12-801397-7.00008-4
https://doi.org/https://doi.org/10.1016/B978-0-12-801397-7.00008-4
https://www.sciencedirect.com/science/article/pii/B9780128013977000084
https://www.sciencedirect.com/science/article/pii/B9780128013977000084
https://doi.org/https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/https://doi.org/10.1016/j.jss.2012.12.052
https://www.sciencedirect.com/science/article/pii/S0164121213000022
https://www.sciencedirect.com/science/article/pii/S0164121213000022

Bibliography Bibliography

[29] Zhiyuan Wan, Xin Xia, and Ahmed E. Hassan. “What Do Programmers
Discuss About Blockchain? A Case Study on the Use of Balanced LDA
and the Reference Architecture of a Domain to Capture Online Discus-
sions About Blockchain Platforms Across Stack Exchange Communi-
ties”. In: IEEE Transactions on Software Engineering 47.7 (2021), pp. 1331–
1349. DOI: 10.1109/TSE.2019.2921343.

[30] Shaowei Wang, Tse-Hsun Chen, and Ahmed E. Hassan. “Understand-
ing the Factors for Fast Answers in Technical QA Websites: An Empir-
ical Study of Four Stack Exchange Websites”. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). 2018, pp. 884–
884. DOI: 10.1145/3180155.3182521.

34

https://doi.org/10.1109/TSE.2019.2921343
https://doi.org/10.1145/3180155.3182521

	Introduction
	Related Work
	Stack Exchange
	TD discussions in Stack Exchange

	Methodology
	Research Questions
	Research Data
	Data Sources
	Data Collection & Analysis

	Results
	Results RQ1: TD Management discussions
	Results RQ2: Requirements for TD tools
	Implied Tool Requirements
	Requested Tool Requirements
	Existing Tool Requirements
	Answers for questions with requirements
	Proposed solutions for requirements

	Discussion
	Interpretation of Results
	Implications
	Threats to Validity
	Recommendations

	Conclusions
	Acknowledgements

