
Memory Consolidation by Deep-Q

Forward-Forward Learning in Games

Bachelor’s Project Thesis∗

Floris de Kam, s4748050, f.p.j.de.kam@student.rug.nl,

Supervisor: J.J.M.A. (Jordi) Timmermans

Abstract: Neural networks have been pivotal in transforming various fields through machine
learning techniques. Training of these networks relies heavily on the backpropagation algorithm,
which, despite its success, presents several limitations. These include large memory requirements
and limited biological plausibility. This thesis implements the novel Forward-Forward (FF) algo-
rithm, which locally optimizes a neural network by performing two forward passes. FF is tested
on blackjack to explore its performance in simple games. This research extends the FF algorithm
with Deep-Q Forward-Forward Learning (DQFFL), which combines FF with reinforcement learn-
ing to enable an FF neural network to learn on the fly. The results show performance for FF
comparable to traditional backpropagation while reducing memory capacity and improving bi-
ological plausibility. The performance of DQFFL evaluated on two simple game environments
indicates a promising subject for future research. This study contributes to the field of neu-
romorphic computing by presenting an alternative local learning rule for neural networks in
reinforcement learning.

1 Introduction

Deep neural networks play a crucial role as Ma-
chine Learning (ML) models that currently shape
and transform our society (LeCun et al., 2015).
Essential to this success has been the training of
these neural networks using stochastic gradient de-
scent, where the gradients are often calculated it-
eratively using BackPropagation (BP) (Rumelhart
et al., 1986). The BP algorithm is effective but has
some drawbacks.

Firstly, BP requires the storage of all activations
in memory, since they are necessary for the back-
ward pass through multiple layers. This makes BP
computationally more memory-expensive than lo-
cal learning rules.

A second limitation is that a backward pass of
the BP algorithm can only be performed when
the computation of the forward pass is completely
known and differentiable.

Lastly, BP is not considered a biologically plau-
sible model of how the brain learns (Crick, 1989;

*Code available at: github.com/Floris93100/Blackjack-
FFNN

Gardner, 1993; Stork & Hall, 1989; Lillicrap et
al., 2020). ”There is no convincing evidence that
the cortex explicitly propagates error derivatives
or stores neural activities for use in a subsequent
backward pass”(G. Hinton, 2022). The brain con-
tinually processes temporal sensory inputs and uti-
lizes a learning method that processes and learns
from this data simultaneously. The biological im-
plausibility is not a problem in itself, but nature
might provide us with insights on how to design a
more efficient algorithm.

To reduce memory capacity issues and make
learning more biologically plausible, the recently
published paper by G. Hinton (2022) introduces the
Forward-Forward (FF) algorithm. It is a training
algorithm for multi-layer perceptrons inspired by
Boltzmann machines (G. E. Hinton et al., 1986) and
noise-contrastive estimation (Gutmann & Hyväri-
nen, 2010). The forward pass in the FF algorithm
is comparable to its BP counterpart. The back-
ward pass, however, is replaced by another forward
pass. Distinctive are the objective function and in-
puts, different for the two otherwise similar forward
passes. Inputs consist of a training sample and cor-

1

responding label. The first pass contains positive
training samples and updates weights to increase
the ”goodness”. A second pass then uses generated
negative training data with false labels to decrease
goodness for these samples. The network is greedily
optimized layer by layer using gradients provided
by a local goodness function.
Forward-Forward Neural Networks (FFNN) have

comparable performance to BP networks on
the MNIST (G. Hinton, 2022) and CIFAR-10
(Krizhevsky et al., 2009) datasets. Additionally,
they offer the benefit of learning while processing
sequential data through the network. They do not
generalize as well as BP networks do, but can still
be a considerable alternative as a more biologically
plausible model or when power is limited.
Several variations and implementations of the al-

gorithm have since been proposed. FF is extended
to sentiment analysis and evaluated using varying
training parameters (Gandhi et al., 2023), com-
bined with a convolutional neural network for bet-
ter image classification (Scodellaro et al., 2023),
with recurrent neural systems to build a predic-
tive model (Ororbia & Mali, 2023) or with self-
supervised representation learning (Brenig & Tim-
ofte, 2023). The FF algorithm has been adapted
and implemented in microcontrollers (De Vita et
al., 2023). Further variations include a hybrid net-
work with local backpropagation (Giampaolo et al.,
2023) and adjusting the loss function (Lee & Song,
2023).
So far, there has been no research on the perfor-

mance of the FF algorithm in (video) games. The
ability of ML models to learn to play games has
been extensively investigated (Skinner &Walmsley,
2019). Video games provide a controlled and cost-
effective environment for training and developing
algorithms. The problem-solving capabilities useful
in games can also be applied to real-world problems
requiring similar decision-making processes.
This thesis contributes by applying and inves-

tigating the performance of the FF algorithm on
games. We first train an FFNN to play blackjack, a
simple casino card game that has an optimal strat-
egy, to try and find out whether an FFNN can learn
to play simple games given known optimal actions.
The results of training an FFNN are subsequently
compared to a BP baseline. We also introduce a
new adaptation of the FF algorithm, coined Deep-
Q Forward-Forward Learning (DQFFL). This algo-

rithm uses an FFNN as a function approximator in
reinforcement learning.

2 Theoretical Background

2.1 Environments

2.1.1 Blackjack

This thesis investigates the performance of the FF
algorithm on the simple casino card game of black-
jack, also known as 21. Blackjack was chosen as
a toy problem since it is a stochastic game with
known optimal actions. There is a statistically best
action for each combination of the player’s hand
and the dealer’s up-card. The strategy in which a
player picks the statistical best action is called the
basic or optimum strategy (Baldwin et al., 1956;
Epstein, 2012). Knowing optimal actions allows us
to initially create training data to test the effective-
ness of an FFNN on a supervised learning problem.

In blackjack, a player tries to get as close to 21
without going over it, while competing against the
dealer’s cards. Numbered cards are worth their face
value, face cards are worth 10 and an ace is either
1 or 11. The player and dealer start with two cards
each. Only their own, and one of the dealer’s cards,
called the ”up-card”, are visible to the player. A
player can keep hitting, i.e., receiving cards, until
choosing to stand. The dealer then takes cards from
the deck until their hand totals 17 or more. A player
can also choose to double down -doubling their bet
and receiving only one more card- or split if they
have a pair. In case of a split, the game continues as
if played with two regular hands. The player wins
if their total is more than the dealer’s. A player
loses if they ”bust” (their hand value is over 21) or
their hand total is lower than the dealer’s. Splitting
twice or after doubling down is not allowed. If an
agent’s action selection policy selects a disallowed
action, the agent hits. The agent always stands if
the player’s hand totals 21, also known as blackjack.

Blackjack’s discrete observation space consists of
five integer values. One observation contains the
player’s hand total, the dealer’s up card, whether
the player has a usable ace, whether doubling down
is allowed, and whether splitting is permitted. The
player’s hand total can have values ranging from 4
to 21, and the dealer’s hand ranges from 2 to 11.
The last three observations are boolean values. An

2

Table 2.1: Rewards for the Blackjack Environ-
ment

Situation Reward
Win with double down +2.0

Win game +1.0
Draw game 0
Lose game -1.0

Lose with double down -2.0
Split hands Combination

Natural blackjack +1.5

ace counts as eleven when it is ’usable’ and one
when it is not. An ace is called usable when it can
be used as one or eleven and this eleven does not
cause the player’s total to exceed 21. The game is
not deterministic and the environment is not fully
observable.

For this thesis, blackjack is implemented by
extending the Farama Gymnasium environment
(Towers et al., 2023) with the double down and
split actions. The total reward is returned at the
end of an episode (see Table 2.1). All the rewards
have been chosen according to payouts by blackjack
in real-life casinos. For example: a player doubles
their bet when winning, so the net payout (reward)
is +1.0. We differ from Sutton & Barto (2018) in
choosing natural blackjack to pay 1.5, as is common
in casinos.

2.1.2 Frozen Lake

The second environment is a reinforcement learn-
ing toy problem by Farama’s Gymnasium (Towers
et al., 2023). In the frozen lake environment, the
agent’s goal is to cross a frozen lake from start to
finish without falling into a hole in the ice. The
start is at the top left and the finish is at the bot-
tom right of a 4x4 map (see Figure 4.6). The layout
of the map is the same for every game. The discrete
observation space encompasses the one-hot encoded
location, which can be one of the sixteen places
on the map. There are four discrete actions corre-
sponding to the movements: left, down, right and
up. An agent receives a reward of +1 when reach-
ing the goal. An episode terminates if the agent falls
into a hole, reaches the goal tile, or if the episode
takes more than 100 timesteps. The environment is
deterministic and not fully observable.

Figure 2.1: The Frozen Lake Gymnasium envi-
ronment

2.2 The Forward-Forward Algo-
rithm

The Forward-Forward (FF) algorithm by G. Hin-
ton (2022) is a ”greedy multi-layer learning pro-
cedure” that can be viewed as an application of
the predictive coding brain model in machine learn-
ing. The predictive coding framework is based on
the idea that the brain constantly makes predic-
tions about sensory inputs and subsequently ad-
justs these predictions according to the difference
between expected and actual information (Rao &
Ballard, 1999; Spratling, 2017).

The concept of FF is to increase the goodness,
or, the likelihood that neural activity suggests the
input sample originates from the target training
data distribution, for real data. In contrast, it aims
to decrease the goodness for augmented negative
data. Weights are updated with gradients of a local
goodness function. Training is done layer by layer,
removing the need to propagate errors backwards.
Inputs to the network consist of a training sample
combined with the label. This label is randomly
changed to another label different from the origi-
nal to generate negative training data. This entails
that there are possibly many negative datasets for
only one positive dataset.

2.2.1 General Network Layout

The architecture of a multi-layer perceptron N
(and in this case our FFNN) consists of several lay-
ers and can be described as:

[L0, L1, ..., Ll]. (2.1)

3

Here, Lk denotes the number of neurons in the layer
with the number k. k = 0 denotes the input layer, l
is the output layer, and the rest are hidden layers.
The units of two successive layers are fully con-
nected, meaning that each neuron in one layer is
connected to every neuron in the subsequent layer.
The pre-activation value of unit zi in layer k is com-
puted with the formula

zki =

Lk−1∑
j=1

wk
ija

k−1
j + wk

i0, (2.2)

where wk
ij is the weight from neuron j to i, aj the

activation of neuron j in layer k − 1 and wk
i0 the

weight of the bias for i from bias unit 0. This value
is then passed through a nonlinear activation func-
tion λ:

aki = λ(zki), (2.3)

which gives the activation aki for neuron i in layer
k. The activation function λ is usually the same for
each neuron (except the output layer, where it is
chosen based on the specific task) and can be for
example a sigmoid, hyperbolic tangent or rectified
linear unit.

2.2.2 Goodness

A local goodness function is needed to separate
positive samples from negative samples. Hinton
chooses the summed squared activities of the neu-
rons in a layer after a Rectifier Linear Unit (ReLU)
has been applied, as the goodness function. He gives
two main reasons for selecting the summed squared
activities. The first reason is that it has a simple
derivative, making gradient calculation easier. The
second reason is that layer normalization can be
used to remove all signs of goodness. This thesis
later explains why layer normalization is necessary.
Another mentioned option for the goodness func-
tion is the negative summed squared activities. In
line with Hinton, we choose the summed squared
activities as goodness function.
Separation of real data and negative data is done

by comparing the goodness to a certain thresh-
old. The goal of learning is therefore to change the
weights of the network such that the goodness is en-
hanced above this threshold for positive data, and
decreased below this threshold for data that does
not belong to the target class.

2.2.3 Updating the Weights

All the activations in a layer can be used to calcu-
late the goodness for that specific layer given a nor-
malized input vector from the previous layer. More
explicitly, this goodness is used to precisely classify
the input vector as positive or negative data, where
the probability that this vector is labelled as being
positive is approximated by the function

gk = σ

 Lk∑
i=1

(aki)
2 − θ

 , (2.4)

where g is the goodness for layer k, aki the activity
of neuron i and θ the threshold.

This goodness function can be transformed into
an objective function for supervised learning tasks.
The loss is separately but similarly calculated for
the positive

L+
k = log

1 + exp

−
Lk∑
i=1

(aki)
2 + θ

 , (2.5)

and negative forward pass

L−
k = log

1 + exp

 Lk∑
i=1

(aki)
2 − θ

 , (2.6)

where L+
k (L−

k) is the positive (negative) pass loss,∑Lk

i=1(a
k
i)

2 the goodness and θ the threshold. In-
tuitively, positive data should produce high neural
activation, while false data should induce low ac-
tivity.

The local loss for layer k is then obtained by com-
bining loss from the positive and negative samples

Lk = L+
k + L−

k . (2.7)

The weights from layer j to i are updated by per-
forming gradient descent on L with respect to the
weights, that is

∆wk
ij = −µ

∂Lk

∂wk
ij

, (2.8)

where µ is the learning rate. It is crucial to men-
tion that the goodness calculation and gradient de-
scent are performed locally, removing the require-
ment to use the chain rule and propagating errors
backwards.

4

The FF procedure of two forward passes intro-
duces a new hyperparameter that requires tuning,
the threshold θ. Gandhi et al. (2023) analysed vari-
ations of this threshold. They found that a thresh-
old equal to 0.3-0.5 times the number of neurons
in a layer provided the best results. As elaborated
on later, we perform hyperparameter tuning of this
threshold, to discover for which value our FFNN
performs most optimally on the task. It is impor-
tant to note that this threshold causes the good-
ness of positive samples to increase continuously
towards infinity, while negative samples converge
to zero. This creates asymmetric gradients. We do
not eliminate this asymmetry as done by Lee &
Song (2023).

2.2.4 Network Architecture

Our initial network consists of one input layer with
nine units, of which five correspond to the blackjack
observation input sample and the other four to the
one hot encoded action. The network further con-
sists of four fully connected layers of 2000 neurons
each (Figure 2.2).

Figure 2.2: Forward-Forward Neural Network
Model Architecture. In this Example, the In-
put Consists of Five Integers Representing the
Blackjack Observation with Underneath Four
Nodes Representing the One-Hot Encoded La-
bel. The Numbers Above the Arrays Corre-
spond to the Number of Neurons in that Layer.

The length of the hidden activity vector is nor-
malized at each layer before being used as input.
This is an important and necessary step. If this
layer normalization (Ba et al., 2016) is omitted,
it is simple for a hidden layer to separate positive
from negative data based on the length of the ac-
tivity vector from the previous layer, and it would
not be necessary to extract new features. Normal-
ization eliminates all the information that was uti-
lized to assess the goodness in the previous layer
and ensures it uses the orientation, i.e., relative ac-
tivities, of the input vector to determine the good-
ness. Layer normalization is done by dividing the
activity of a neuron by the summed squares of all
activities:

ai,norm =
ai√∑N
i=1 a

2
i

, (2.9)

where ai is the activity of neuron i and N the total
number of neurons in that layer. This normaliza-
tion corresponds to L2-normalization. The network
uses the Rectified Linear Unit (ReLU) activation
function.

2.2.5 Training

The goal of training the network is to increase the
layer activation for real data while reducing the
layer activation for generated false data. Training
is done layer by layer, each for a specified number
of epochs.

Training is done in batches. At every epoch, a
forward pass is performed for a batch of positive
samples and the corresponding set of negative sam-
ples. The forward pass entails first normalizing the
input vector, then multiplying it by the weight ma-
trix and finally adding the bias vector. Lastly, the
ReLU activation function is applied. Thereafter the
sum of squared activations is calculated to obtain
the goodness. The goodness is used to calculate
the positive and negative loss as clarified in Sec-
tion 2.2.2. The derivative of the combined loss func-
tions with respect to the weights is used to perform
gradient descent and an optimization step. This is
repeated for every batch and epoch. After the last
epoch, a final forward pass is done with all the input
data through the layer. The layer’s output vector
resulting from this final forward pass is then used
to train the next layer. This process is repeated for
every layer.

5

2.2.6 Inference

There are two ways in which inference can be done
by an FFNN, as described by G. Hinton (2022).

The first technique is the ”accumulated good-
ness” method. After an FFNN has been trained,
a sample desired to be classified is combined with
the first label and passed as input y0. The good-
ness for every hidden layer except the first one is
then collected and summed. This is repeated with
the same sample for all possible labels. The correct
label ŷ is given by

ŷ = argmax
yj

l∑
k=2

Lk∑
i=1

(a
k,yj

i)2, (2.10)

where ak,yi is the activation of neuron i in layer k
for input yj , L

k denotes the number of neurons in
layer k, and l denotes the number of layers in the
model. This thesis uses the accumulated goodness
method by default.

For the second method, training of the FFNN
is the same but inference is done by training a
softmax linear classifier after the network has fin-
ished training. Every neuron in the hidden layers
except the first hidden layer is connected to an out-
put layer where the number of neurons equals the
number of labels y. The first hidden layer is unused
since it increases performance, according to Hinton.
This results in (L2 + ...+Ll) ∗ y trainable weights.
First, a normal forward pass is performed with the
same training observations given as input to the
FFNN, together with a neutral label appended to
the input data consisting of y nodes with a value of
1/y. Second, the activations of the hidden layers as
described above are passed as input to a softmax
linear classifier that is subsequently trained for the
same number of epochs and using the same batch
size as the FFNN. The loss is calculated using the
cross-entropy loss. Updating is done by perform-
ing a gradient descent optimization step using the
Adam algorithm with a learning rate identical to
the FFNN.

Inference is then accomplished by combining in-
put with the neutral label, collecting the hidden
layer activations, and obtaining the class for which
the softmax activation is the highest. This activa-
tion can be viewed as the probability that a sample
belongs to that class.

2.3 Reinforcement Learning

Our FFNN can be used on supervised learning
tasks, i.e., problems with labelled input/output
pairs. This is not favourable when trying to learn to
play games in real-time, which are predominantly
problems where the optimal action is unknown. To
alleviate this issue, a combination of an FFNN and
Reinforcement Learning (RL) is introduced, which
removes the need for labelled input.

RL is a machine learning paradigm in which the
goal is to have an agent learn an optimal policy for
a specific task. A policy π is learned by perform-
ing actions a in an environment that represents the
task the agent is trying to learn. The emphasis is
on striking a balance between exploration and ex-
ploitation, maximizing long-term reward even when
feedback is partial or delayed.

An RL environment is usually stated as a Markov
Decision Process (MDP) (Howard, 1960). An MDP
is a mathematical model for decision-making in
states where the transition to the next state is solely
decided by the present state, the action taken, and
occasionally certain elements of randomness. It can
be modeled as

(S,A, Pa(s, s
′), Ra(s, s

′)), (2.11)

were S is the set of states named the state space, A
the set of actions named the action space, Pa(s, s

′)
the probability that action a in state s leads to state
s′, and Ra(s, s

′) the reward immediately received
for transitioning from state s to s′.

A popular RL algorithm is Q-learning (Watkins,
1989), it is a model-free algorithm that learns the
action-value function: the value of a particular ac-
tion in any state. It makes it possible to find the
optimal action-selection policy for any finite MDP.

A problem arises when the state or action space
is considerably large, making it infeasible to calcu-
late the exact values of state-action combinations.
In the field of deep reinforcement learning, neural
networks can be used as function approximators
to estimate these state-action values, i.e., Q-values.
The goal is then to learn a set of parameters θ
such that the neural network can assign the cor-
rect goodness to a state-action pair that maximises
the expected reward, that is

Q(s, a; θ) ≈ Q∗(s, a). (2.12)

6

Here,Q(s, a; θ) gives the state-action value for state
s and action a with model parameters θ. Q∗(s, a)
is defined as

Q∗(s, a) = max
π

E

(∞∑
t=0

γtrt | s0 = s, a0 = a, π

)
,

(2.13)
where π is the policy with the maximal expecta-
tion for all possible trajectories from state s with
action a, t the timestep, γ the discount rate, and
rt the reward at time t. State-action values in the
Q-learning algorithm are adapted based on the cur-
rent belief, immediate reward, and expected future
reward. This Q-learning update rule satisfies a Bell-
man equation and iteratively adjusts the action-
value function (Dietterich, 2000). It is defined as

Q(st, at) := Q(st, at)

+ µ

(
rt + γmax

a∈A
Q(st+1, at)−Q(st, at)

)
, (2.14)

where Q(st, at) is the state-action value of action
a in state s at timestep t, µ the learning rate, rt
the received reward at t, γ the discount factor, and
st+1 the next state. γmaxa∈A Q(st+1, at) is the ex-
pected future reward when the agent chooses the
best action in the next state.

2.4 Deep-Q Forward-Forward
Learning

For an FFNN to solve RL tasks without pre-
generated labelled training data, we can com-
bine deep reinforcement learning, specifically Q-
learning, with an FFNN. The FFNN’s ability to
learn from positive as well as negative samples can
be utilized and seamlessly combined with the posi-
tive and negative rewards an RL environment pro-
vides. These (expected) rewards allow the network
to assess the goodness of possible actions in cer-
tain states. We name this value-based algorithm
Deep Q-Forward-Forward Learning (DQFFL). The
algorithm learns the value of the optimal policy
independently of the agent’s actions (off-policy)
and does not rely on a model of the environment
(model-free).
It is necessary to adapt the Q-learning update

rule for DQFFL to work. It essentially involves
changing the rule such that an FFNN can be used
as a function approximator. The key of DQFFL is

to decide the polarity of an action, i.e. whether an
action is a good (positive) or bad (negative) one.
This outcome can be used to train the FFNN. One
significant obstacle is that we cannot simply use
immediate rewards to decide whether an action is
a good one. A positive reward indicates a good ac-
tion, but this action may lead to a suboptimal out-
come later. Fortunately, we can use the network’s
expected future goodness of an action for compari-
son. The comparison used to determine the polarity
of an action takes shape as follows:

p(st, at, rt, st+1) =

{
+, if g(st, at, rt, st+1) >= 0

−, if g(st, at, rt, st+1) < 0
,

(2.15)

where

g(st, at, rt, st+1) = rt + γmax
a∈A

Q(st+1, a; θ
−)

−Q(st, at, ; θ), (2.16)

where st is the current state, at the action taken in
that state, rt the reward received for that action,
γ the discount factor, θ the FFNN model param-
eters, θ− the FFNN target model parameters, and
Q(s, a; θ) the accumulated goodness given by an
FFNN with parameters θ for state s and action a.
This function is essentially comparing the differ-

ence between the expected future goodness rt +
γmaxa∈A Q(st+1, a; θ

−) and the current goodness
Q(st, at, ; θ). if the expected goodness is higher than
the current goodness, the action is better than ex-
pected and the FFNN is ”underestimating” the
goodness. If the inverse is true, the action is worse
than expected and the network is ”overestimating”
the goodness.

A target model with a different parameter set
alleviates the moving-target problem, which occurs
when both the network’s weights are updated every
timestep, leading to oscillations. The target model’s
parameters are set to the model’s parameters every
x timesteps. This update frequency is another tun-
able hyperparameter.

2.4.1 DQFFL Training Procedure

During the exploration of the environment, an
agent collects trajectories and saves them in

7

an Experience Replay (ER) buffer. A trajectory
(st, at, rt, st+1, d) consists of the state, the chosen
action, the received reward, the next state, and
whether that state was terminal. For each update
iteration, a random set of trajectories ⟨T ⟩ is uni-
formly sampled from the ER buffer D. This al-
lows off-policy learning for the algorithm and turns
the RL problem into a supervised learning prob-
lem. This technique reduces the correlation be-
tween samples and thereby reduces the variance
of updates. Furthermore, trajectories are possibly
used in multiple weight updates, improving data
efficiency. The size of the ER buffer is another hy-
perparameter requiring careful tuning.
The TD target, i.e., how good an action is, is

calculated by summing the reward and the maxi-
mum expected goodness for the possible actions in
the next state, multiplied by the discount factor.
This TD target is equal to merely the immediate
reward when the next state is terminal since no
more rewards should be expected. As described in
section 2.4, the polarity of an action is decided by
subtracting the estimated goodness.
Finally, the FFNN is updated by generating

training data based on whether an action was posi-
tive or negative. In either scenario, positive data is
created by appending the action label to the state.
If the polarity for a sample is positive (the action
is considered good), the input for the correspond-
ing negative forward pass is created by appending
a random label that is not the ”correct” action to
the state. If the action is considered to be negative,
the same sample from the positive pass is used for
the negative pass. This cancels out the forward pass
that mistakenly learned the wrong action. In sum-
mary, the FFNN learns from both good and bad
actions (see Algorithm 2.1).

2.4.2 Action Selection

One issue still present in DQFFL is the exploration-
exploitation dilemma. An RL agent should not sim-
ply pick the action it believes is best every time,
since it may leave more optimal trajectories to the
goal undiscovered. Only exploring by choosing ran-
dom actions prevents the agent from converging to
a certain strategy. The epsilon-greedy action selec-
tion strategy is chosen to strike a balance between
exploration and exploitation.
Epsilon-greedy works by generating a random

Algorithm 2.1 DQFFL Update Iteration, Let D
be the Replay Buffer Containing Trajectory Sam-
ples T

Require: Length(D) >= batchsize
⟨T ⟩ ⇐ Sample(D)
for Ti in ⟨T ⟩ do
TDtarget ⇐ rewardi
if donei ̸= true then

TDtarget ⇐ TDtarget + γ
MaxQ(nextstatei)

end if
xpos,i ⇐ (statei, actioni)
if TDtarget >= Q(statei, actioni) then
while actioni = sample(A) do
actioni ⇐ sample(A)

end while
end if
xneg,i ⇐ (statei, actioni)

end for
Train(xpos, xneg)

number between 0 and 1. If this number is lower
than the current epsilon value ϵ, a random action a
is picked from the action space A. In the opposing
case, the current best action according to the model
is picked by doing a forward pass through the net-
work. The epsilon value decreases over time, forcing
the agent to pick more valuable actions towards the
end of training, that is

ϵ = Max

(
ϵmin, ϵ−

ϵmax

n/2
∗ episode

)
, (2.17)

where ϵ is the current epsilon value, ϵmax and ϵmin

are the start and end epsilon values respectively, n
is the total number of episodes and episode is the
current episode. The action is then decided by the
policy π for a state s at timestep t as follows:

π(st) =

argmax
a

Q(st, a; θ) with probability 1− ϵ

a ∼ U(A) with probability ϵ
,

(2.18)
where Q returns the accumulated goodness of the
FFNN with parameters θ, a is the action, and
∼ U(A) means sampled uniformly from the action
space A.

8

3 Method

3.1 Dataset

A balanced dataset, i.e., a dataset containing an
equal number of observations for each action, is
created to evaluate the performance of the FF al-
gorithm. Firstly, every combination of observations
is generated. One observation includes the player’s
hand value, dealer up-card, whether the player has
a usable ace, whether doubling down is allowed, and
whether splitting is allowed. Secondly, impossible
combinations are removed and the optimal action,
according to the basic strategy, is appended. This
resulted in 1368 unique data points. 30.000 samples
are subsequently sampled for each action, creating
a dataset with 120.000 samples. The balanced data
task tests whether an FFNN can learn all possi-
ble blackjack combinations. All possible generated
combinations are present in the final dataset.

Simulated training data is generated by letting
an agent play 75,000 episodes according to the ba-
sic strategy defined in Baldwin et al. (1956). This
created 113,009 input samples each consisting of
the observation and taken action. The correspond-
ing negative dataset, necessary for the training of
a forward-forward network, is created by substitut-
ing the action with a random incorrect action. An
equal number of positive and negative samples is
used for training.

3.2 Experiment Setup

3.2.1 Preprocessing

Training data for the balanced data task, consist-
ing of samples with the environment’s five observa-
tions and the best action, is divided using a random
train/test split of 80/20.

Positive samples are then generated by append-
ing one-hot-encoded labels of the correct action
to their corresponding observations. The negative
dataset is generated by randomly picking incorrect
actions for each observation, and appending a one-
hot-encoded label of these actions to the observa-
tion. This procedure is repeated for the simulated
dataset.

3.2.2 Backpropagation Baseline

A neural network that is trained using the classic
BackPropagation (BP) method is used to establish
a baseline such that we can compare the perfor-
mance of an FFNN to this. Hyperparameters are
hand-picked and were only minimally adjusted us-
ing trial and error. The model is trained on the
simulated data set in batches of size 64 for 100
epochs. The model’s architecture comprises five in-
put nodes, four hidden layers of 30 neurons each
and a five-node output layer. It uses the ReLU ac-
tivation function, and the cross-entropy loss is cal-
culated for the network to be optimized with the
Adam algorithm (Kingma & Ba, 2014). A learning
rate µ of 0.001 is chosen.

The BP neural network’s test loss is calculated
on the test set. It is further evaluated by predict-
ing optimal actions for the test set and calculating
the accuracy. Lastly, a BP neural network is im-
plemented into a blackjack agent which played for
75.000 episodes to asses obtained rewards on the
game.

3.2.3 Balanced Data FFNN

Our initial model for the balanced dataset task con-
sists of four fully connected layers of 2000 neurons
each (as described above and consistent with Hin-
ton’s implementation). The Adam algorithm with a
learning rate µ of 0.001 is used to optimize the net-
work. The threshold θ is arbitrarily set at 0.5 and
the batch size is 64. The network is trained without
learning rate decay on the complete training set for
240 epochs.

3.2.4 Hyperparameter Tuning for FFNN

A machine learning algorithm’s success does not
solely depend on the training of the weights of the
network, but also on hyperparameters that control
the behaviour of this training. These hyperparame-
ters are not learned during training but need to be
tuned manually (Claesen & Moor, 2015). Examples
of common hyperparameters for neural networks in-
clude the number of layers and neurons, the learn-
ing rate, and the batch size. FF includes another
hyperparameter, the threshold. This threshold de-
cides whether a data point is classified as positive
or negative, thus crucial to the algorithm’s per-
formance. Larger differences between the threshold

9

and goodness result in different losses and gradient
descends.
We use k-fold Cross-Validation (CV) to find the

optimal model hyperparameters. This method has
several advantages. Firstly, it reduces the variance
of the accuracy estimate in comparison with a sin-
gle train-test split. Additionally, it increases the
reliability of the generalisation performance indi-
cation.
A grid search is performed on the model’s hy-

perparameters. Each combination’s performance is
estimated using k-fold CV. Combinations are made
from a pre-specified range of candidates. For each
combination, the training data is divided into k
parts of approximately equal size, hence the name
k-fold. One fold is left out and designated as the
validation set. The remaining k − 1 folds are used
to train the model. Predictions are made and a val-
idation risk (the test error between the predictions
and validation set) is calculated using the valida-
tion set. This process is repeated for each fold. The
average risk of each validation set is the model’s
validation risk. The best model is the one with the
minimal validation risk and therefore, the best gen-
eralisation capability.
It is important to mention that CV in our partic-

ular experiment is not necessarily used as intended,
i.e., to prevent overfitting, but to find the combi-
nation of hyperparameters that has the potential
to reach the highest accuracy. Blackjack only fea-
tures a limited number of observable combinations
with pre-determined best actions. The goal is there-
fore to train an FFNN with the right combination
of parameters that enable the model to learn ev-
ery combination encountered by the basic strategy
agent during gameplay.
All hyperparameters manipulated with CV are

found in Table 3.1. Trial-and-error and literature
reviews of papers studying FF were initially used
to find suitable ranges for hyperparameters. The
explored values can be found in Appendix A.
This subsequently resulted in 80 different evaluated
models.
The model with 4 hidden layers of 2000 neurons

each, threshold θ = 10, learning rate µ = 0.01, a
batch size B of 64, and without learning rate decay,
had the lowest validation risk and therefore best hy-
perparameters for generalization. This model was
subsequently trained on the complete training set
for 240 epochs. Additionally, it is adapted to an

Table 3.1: Hyperparameters of the FF Algo-
rithm that are Optimized with Cross-Validation

Hyperparameter Symbol
Model Architecture N

Threshold θ
Learning Rate µ
Batch Size B
LR Decay µ(e)

FFNN agent which returns the best action for an
observation according to the accumulated goodness
method. This agent is used to evaluate blackjack
gameplay performance for 75.000 episodes.

3.2.5 FFNN with Linear Classifier

An FFNN with the synaptic weights, architecture,
and hyperparameters found with cross-validation is
used to test the linear classifier inference method.
The softmax linear classifier is trained for 240
epochs in batches of equal size to the best batch size
hyperparameter discovered in cross-validation. The
network’s weights are optimized using the Adam
optimizer with a learning rate identical to the learn-
ing rate found for the FFNN in the CV scheme.
This learning rate was chosen since the trained
FFNN appeared to perform well on this task.

3.2.6 DQFFL

A DQFFL agent is trained in two toy game re-
inforcement learning environments to test the al-
gorithm’s performance. The first is the blackjack
environment also used to generate FFNN training
data, allowing for comparison between the super-
vised and reinforcement learning methods.

An episode of the experiment starts with an ob-
servation of the environment. The subsequent ac-
tion selected by the agent’s action selection policy
is used to take a step in the discrete blackjack and
frozen lake environments. This results in a new ob-
servation, a reward and a boolean value indicating
whether the episode has terminated. This trajec-
tory T is thereafter appended to the Experience
Replay (ER) buffer. The DQFFL algorithm then
utilizes the trajectories in the ER buffer to update
the agent (see Section 2.4.1). If an episode ends, the
agent’s epsilon is updated according to the decay
rule.

10

DQFFL agents in both environments have mul-
titudinous hyperparameters requiring manual tun-
ing. DQFFL, like all deep reinforcement learning
algorithms, is highly sensitive to changes in these
hyperparameters (Eimer et al., 2023). As such, the
tuning of the hyperparameters took numerous runs
and manual adjustments.
One blackjack run provides 4000 episodes for the

DQFFL agent to learn the action-value function
and maximize reward. An FFNN with three hidden
layers of 1000 neurons each, a threshold θ of 0.5
and a learning rate µ of 0.001 is used as the agent’s
model and TD target. All hyperparameters used in
DQFFL are summarized in Appendix B.
The agent used in the frozen lake environment

utilized a three hidden-layer 100-neuron network
with θ = 0.5 and µ = 0.001, one run contained
2000 episodes. Both experiments were repeated five
times to achieve precise and reliable results.

3.2.7 Evaluation

The models are evaluated on the test sets split at
the beginning and kept apart during training to
provide the most accurate representation of gen-
eralization power. The classification capability of
the FFNN model on balanced and simulated data
(accumulated goodness method and linear classi-
fier method), the BP-trained network, and the fi-
nal DQFFL blackjack agent’s model are reported
by accuracy. The optimal actions according to the
basic strategy feature a class imbalance. Confusion
matrices are examined to better analyze and report
model performance.
Training accuracy is measured to receive insights

on model convergence compared to training dura-
tion. This is done for the last layer of each FFNN by
summing true negatives and true positives, i.e. the
number of positive samples with a goodness above
the threshold and negative samples with a goodness
below the threshold, divided by the total number
of samples.
Performance of the basic strategy, FFNN and BP

blackjack agents is measured by the average reward
over the played 75.000 episodes and compared to a
random action policy agent. DQFFL learning ca-
pability is analysed by plotting the mean and stan-
dard deviation over five runs against the episodes.
Different seeds are used for testing and training

to reduce the possibility of overfitting by manual

hyperparameter tuning of algorithms.

4 Results

4.1 FFNN

Our results show that FFNNs can accurately learn
and predict actions for the supervised learning
blackjack task. Our FFNN trained and tested on
the balanced data task achieved an accuracy of
99.97% after training for 240 epochs (see Figure
C.1a). Accuracy is calculated employing the ac-
cumulated goodness method described in Section
2.2.6. The last layer’s training accuracy shows con-
vergence after about 50 epochs (see Figure 4.1).
Note the scale on the accuracy plot, accuracy at
epoch 1 already starts at a significant level. This
can be attributed to the three layers previously
trained in this run.

Figure 4.1: Last Layer Training Accuracy of the
FFNN on the Balanced Data Task

Five-fold Cross-Validation (CV) with the param-
eter combinations disclosed in Appendix A revealed
the lowest validation risk for a network of four lay-
ers of 2000 neurons each, a threshold θ of 10 and
a learning rate µ of 0.001, with a final validation
risk of 0.00094 ± 0.00078 (SE). This hyperparame-
ter combination therefore had the best generalisa-
tion potential and achieved a test accuracy of 100%
on the complete training set. Despite the class im-
balance of the simulated dataset, results show no
difference in predictions based on class (see Figure
C.1b). The last layer’s model weights converged af-

11

Figure 4.2: Last Layer Training Accuracy of the
FFNN on the Simulated Data Task

ter approximately 70 epochs (see Figure 4.2). Re-
markable are the top ten models from CV, which all
have a threshold of either 5 or 10 and similarly low
validation risks but differ in architecture and learn-
ing rate (see Table A.2). The second and third-best
models of 500 and 100 neurons per layer have a val-
idation risk of 0.0017 ± 0.0014 (SE) and 0.0020 ±
0.00041 (SE) respectively. The tested learning rate
of 0.03 implemented by G. Hinton (2022) tends to
be too high for our models. The best-performing
small network with 30 neurons per layer, a thresh-
old of 0.5 and a 0.01 learning rate, performed rel-
atively well with a final test accuracy of 83.01%.
It, however, had insufficient capacity to correctly
predict the less frequently occurring actions 2 and
3 (see Figure C.2).
The softmax linear classifier that is subsequently

trained on all but the first hidden layer activations
of the optimal model achieved an accuracy of 100%.
It converged after only 50 epochs (see Figure 4.3).
Our backpropagation-trained multi-layer percep-

tron attained a 3.18e−4 cross-entropy test loss and
was perfectly able to predict actions based on the
test data samples, corresponding to 100% accuracy
(see Figure C.3).
Playing a perfect strategy on blackjack for

75,000 episodes yields an average reward of -
0.0069 ± 0.0041 (SE). The backpropagation net-
work achieved a reward of -0.012 ± 0.0041 (SE).
It must be mentioned that these rewards were ob-
tained on two different runs (see Figure C.4). FFNN
performed comparably, acquiring an average re-

Figure 4.3: Training Accuracy for the Softmax
Linear Classifier

Table 4.1: Mean Achieved Reward by Evaluated
Blackjack Agents Across 75,000 Episodes

Agent Average Reward (r) ± SE
Random -0.5 ± 0.005

Basic Strat. -0.007 ± 0.004
FFNN -0.01 ± 0.004

Backprop. -0.01 ± 0.004

ward of -0.013 ± 0.0041 (SE) (see Figure C.5). All
the results are visible in Table 4.1.

4.2 DQFFL

We reviewed the rewards obtained over five runs
for our DQFFL agents to see if an FFNN can
be combined with reinforcement learning to learn
to play games without pre-generated training data
or known optimal actions. The mean reward over
these five runs for 4000 episodes has been plotted in
Figure 4.4 using a rolling mean of 100 episodes. It
is visible that an agent starts at an average reward
of -0.5 and gradually moves up to an average re-
ward fluctuating around -0.1 after 2000 episodes.
Although learning is unstable, DQFFL performs
better than a random agent in the blackjack envi-
ronment (see Figure C.6). The FFNN model with
the final weights from the last run is evaluated on
the simulated data test set, achieving an accuracy
of 68.42%. A (normalized) confusion matrix reveals
the difficulties the model has with predicting the,
least occurring in the blackjack game, actions 2 and

12

Figure 4.4: Five Run Mean Reward for the
DQFFL Algorithm on Blackjack, Plotted with
a 100-episode Rolling Mean

3 (see Figure 4.5). It is, however, a snapshot of the
model at one timestep in one run and does not fully
reflect its capabilities.

More successful is the DQFFL algorithm’s per-
formance in the frozen lake environment. An aver-
age reward of 1.0 per episode, the maximum possi-
ble reward, is reached after 1000 episodes, meaning
the DQFFL agent prosperously learned the path to
the goal (see Figure 4.6).

5 Discussion

5.1 Interpretation of Results

The commencing supervised learning experiment
on our balanced blackjack basic strategy data con-
firms the memory consolidation ability of FFNNs
as initially discovered by G. Hinton (2022). The
accuracy is notable and the model learns within
a reasonable number of epochs. Cross-validation
of Forward-Forward (FF) hyperparameters reveals
that the threshold and learning rate are impor-
tant factors regarding network performance, while
model architecture, for this task at least, is of less
significance. Models with a higher threshold seemed
to perform better. The achieved accuracy on black-
jack gameplay acquired training data reveals that
our FFNN can learn and accurately classify sam-
ples even when a sizeable class imbalance is present.
These experiments achieved a satisfactory result

Figure 4.5: Normalized Confusion Matrix of
DQFFL Trained FFNN on Simulated Test Data

Figure 4.6: 50-episode Rolling Mean of the Five
Run Average Reward for DQFFL on the Frozen
Lake Environment

13

even without optimizations like learning rate de-
cay (G. Hinton, 2022) or a symmetric loss function
(Lee & Song, 2023). Therefore, the experiments on
the balanced and simulated data tasks show sup-
port for our hypothesis that an FFNN can learn to
play simple games, given known optimal actions.
The lowest validation risk on the simulated data

task was achieved by our large network of 2000 neu-
rons per layer. However, the difference with a four-
layer 100-neuron network was minimal. This shows
that even small FFNNs can have sufficient non-
linear separability. More importantly, this means
that an FFNN can be useful in environments where
memory capacity is severely limited.
Both the accumulated goodness and softmax lin-

ear classifier inference methods realize equal accu-
racy. This is contrary to earlier research that found
worse performance for the classification method.
(G. Hinton, 2022; Brenig & Timofte, 2023; Scodel-
laro et al., 2023). However, earlier trials where
the optimal model did not achieve 100% accuracy
had lower test accuracy for the linear classification
method in comparison with accumulated goodness.
It is worth mentioning that linear classifier infer-
ence is four times as fast because it only requires
one forward pass for prediction instead of one for
each of the four labels. Furthermore, while the extra
output layer that is required to construct a linear
classifier needs additional training, convergence is
reached relatively quickly.
FFNN memory consolidation ability is confirmed

by the performance of the FFNN agent on black-
jack, whose run yielded a comparable reward to
basic strategy and in line with the mathematical
expectation of the reward calculated by Baldwin et
al. (1956).
The performance of our introduced Deep-Q

Forward-Forward Learning (DQFFL) algorithm
shows promising results on the blackjack reinforce-
ment learning task. The agent achieves a better av-
erage reward than a purely random agent. Still,
performance is not comparable to gameplay ac-
cording to basic strategy and learning is unstable.
The highly fluctuating mean reward across episodes
can be partly explained by the stochastic nature of
blackjack. Even optimal actions often lead to neg-
ative rewards when for example the dealer has a
higher total or an agent receives unlucky cards.
Would this happen for a longer consecutive se-
quence, it is possible that a DQFFL agent asso-

ciated certain optimal actions with a negative re-
ward. The algorithm would then update the FFNN
with believed-to-be negative samples that were pos-
itive. A second reason for learning instability could
be the class imbalance of the basic strategy opti-
mal actions. The DQFFL algorithm was not able
to successfully predict the double-down and split
actions, even though they are necessary to obtain
the best possible expected reward (Baldwin et al.,
1956).

DQFFL’s performance in the Frozen Lake envi-
ronment is more impressive, reaching the goal each
episode after about 1000 episodes. The epsilon-
greedy strategy’s epsilon value also reaches its mini-
mum after half the total number of episodes (1000).
This means the algorithm potentially learns the
path to the goal faster. Improved hyperparameter
tuning could speed up convergence even more. The
mean that is not exactly one every episode after
half the episodes can be attributed to the fact that
there still is a small chance of performing a random
action, due to the epsilon-greedy strategy.

In summary, both the DQFFL experiments and
especially the frozen lake tests show strong sup-
port in favour of the hypothesis that an FFNN
can be used as a function approximator in rein-
forcement learning to learn to play simple games.
The DQFFL algorithm demonstrates the intrigu-
ing ability of such an agent to learn on the fly from
both positive and negative experiences.

5.2 Limitations

Training on and solving learning tasks in this paper
is limited to simple toy problems that lack complex-
ity compared to other games and are relatively eas-
ily solved by established techniques. This is demon-
strated by our backpropagation-trained network
that achieves perfect classification accuracy after
fewer epochs and uses a smaller network compared
to our FF implementation. Nevertheless, compari-
son based on network size and convergence speed
is difficult since the energy and memory needed to
train these networks differ. On top of that, the in-
tent of FF is not to replace backpropagation neural
networks but to provide an efficient alternative that
overcomes limitations like the biological implausi-
bility and memory requirements of backpropaga-
tion. This thesis shows that this is indeed possible.

Inference by accumulated goodness is a simple

14

and effective method, but it becomes computation-
ally more expensive when the number of labels in-
creases. Every extra classification label requires one
more inference calculation. A trained softmax lin-
ear classifier provides an elegant solution in this
case.
DQFFL is a new method with only a few prelim-

inary trials completed. Learning is unstable, this
is especially visible in the blackjack environment.
DQFFL also suffers from high sensitivity to hy-
perparameter changes. Extensive hyperparameter
investigation and tuning could improve the con-
vergence and stability of the agents. However, this
thesis aims to test whether an FFNN can learn to
play simple games given unknown optimal actions,
something that is demonstrated in the two rein-
forcement learning environments.

5.3 Future Research

Potential improvements to our FFNN that could
speed up convergence include differently encoding
network inputs (Jia & Chua, 1993), a different
goodness function or generating negative data la-
bels based on the network’s goodness instead of
random (G. Hinton, 2022). These were left out since
accuracy was sufficiently high and not considered to
be in the scope of this thesis.
The question remains whether FF will replace

the widely used backpropagation algorithm (Ro-
jas, 1996). Regardless, the local adaptation rule of
FF provides valuable insights and research possi-
bilities in the field of neuromorphic computing, the
field dealing with biologically plausible learning al-
gorithms (Schuman et al., 2017).
The introduction of DQFFL uncovers a wide va-

riety of potentially interesting research subjects. A
fascinating characteristic of DQFFL is its ability
to learn offline. An adaptation of DQFFL can be
investigated that directly learns from encountered
experiences and stores negative experiences for a
later offline pass. How much this process resembles
learning during sleep may provide new insights into
the human brain. Furthermore, research suggests
that people also learn from positive and negative
experiences (Cox et al., 2015; Namburi et al., 2015;
Paton et al., 2006). Whether this learning resem-
bles the process of DQFFL is worth further inves-
tigating. Lastly, like FF, DQFFL could be useful
in applications where memory or power is greatly

limited, like microcontrollers (De Vita et al., 2023)
or mortal computation (G. Hinton, 2022).

The stability of DQFFL is a main issue that re-
quires more experimentation and research to be
solved. A learning rate or weight decay scheme is
a potential solution. Another possible solution is
to update the network less frequently as the model
converges. This prevents positive actions from be-
ing classified as bad when the model goodness esti-
mation gets close to and sometimes overshoots the
immediate reward plus the expected future reward.

Many enhancements of DQFFL are possible, e.g.,
refining the function that estimates whether an ac-
tion is good or bad, or learning directly from en-
countered trajectories instead of storing them in
the experience replay buffer. In general, DQFFL
requires validation on a wide variety of tasks and
more complex (video) games to prove its practical
value in the field of machine learning and neuro-
morphic computing.

6 Conclusion

In this thesis, an FFNN was trained to predict op-
timal actions in the game of blackjack. We showed
satisfactory results on a supervised learning task
with a balanced dataset and a dataset created by
gameplay based on the optimal blackjack strategy.
Two methods of inference, namely the accumulated
goodness and linear classifier methods, were tested
and achieved high accuracy, positively answering
the research question of whether an FFNN can be
used to learn to play simple games, given known
optimal actions. The FFNN performs comparably
to our backpropagation baseline without the need
for the storage of all activations, a differentiable for-
ward pass or the biologically implausible backward
propagation of error derivatives.

This research further contributes to the field
of machine learning by introducing and testing
a novel brain-inspired algorithm, coined Deep-Q
Forward-Forward Learning (DQFFL), that com-
bines an FFNN with reinforcement learning. Al-
though there are substantial improvements possi-
ble, DQFFL shows, based on two different environ-
ments, that it is possible to use an FFNN to learn to
play simple games without known optimal actions.

15

Acknowledgements

We thank the Center for Information Technol-
ogy of the University of Groningen for their sup-
port and for providing access to the Hábrók high-
performance computing cluster.

References

Ba, J. L., Kiros, J. R., & Hinton, G. E.
(2016). Layer normalization. arXiv preprint
arXiv:1607.06450 .

Baldwin, R. R., Cantey, W. E., Maisel, H., & Mc-
Dermott, J. P. (1956). The optimum strategy
in blackjack. Journal of the American Statistical
Association, 51 (275), 429–439.

Brenig, J., & Timofte, R. (2023). A study
of forward-forward algorithm for self-supervised
learning. arXiv preprint arXiv:2309.11955 .

Claesen, M., & Moor, B. (2015). Hyperpa-
rameter search in machine learning. ArXiv ,
abs/1502.02127 .

Cox, S. M. L., Frank, M., Larcher, K., Fel-
lows, L., Clark, C., Leyton, M., & Dagher, A.
(2015). Striatal d1 and d2 signaling differen-
tially predict learning from positive and nega-
tive outcomes. NeuroImage, 109 , 95-101. doi:
10.1016/j.neuroimage.2014.12.070

Crick, F. (1989). The recent excitement about neu-
ral networks. Nature, 337 (6203), 129–132.

De Vita, F., Nawaiseh, R. M., Bruneo, D.,
Tomaselli, V., Lattuada, M., & Falchetto, M.
(2023). µ-ff: On-device forward-forward train-
ing algorithm for microcontrollers. In 2023
ieee international conference on smart comput-
ing (smartcomp) (pp. 49–56).

Dietterich, T. G. (2000). Hierarchical reinforce-
ment learning with the maxq value function de-
composition. Journal of artificial intelligence re-
search, 13 , 227–303.

Eimer, T., Lindauer, M., & Raileanu, R. (2023).
Hyperparameters in reinforcement learning and
how to tune them. , 9104-9149. doi:
10.48550/arXiv.2306.01324

Epstein, R. A. (2012). The theory of gambling and
statistical logic. Academic Press.

Gandhi, S., Gala, R., Kornberg, J., & Sridhar, A.
(2023). Extending the forward forward algo-
rithm. arXiv preprint arXiv:2307.04205 .

Gardner, D. (1993). The neurobiology of neural
networks. MIT Press.

Giampaolo, F., Izzo, S., Prezioso, E., & Piccialli,
F. (2023). Investigating random variations of
the forward-forward algorithm for training neu-
ral networks. In 2023 international joint confer-
ence on neural networks (ijcnn) (pp. 1–7).

Gutmann, M., & Hyvärinen, A. (2010). Noise-
contrastive estimation: A new estimation princi-
ple for unnormalized statistical models. In Pro-
ceedings of the thirteenth international confer-
ence on artificial intelligence and statistics (pp.
297–304).

Hinton, G. (2022). The forward-forward algorithm:
Some preliminary investigations. arXiv preprint
arXiv:2212.13345 .

Hinton, G. E., Sejnowski, T. J., et al. (1986). Learn-
ing and relearning in boltzmann machines. Par-
allel distributed processing: Explorations in the
microstructure of cognition, 1 (282-317), 2.

Howard, R. A. (1960). Dynamic programming and
markov processes.

Jia, J., & Chua, H. (1993). Neural network en-
coding approach comparison: an empirical study.
Proceedings 1993 The First New Zealand In-
ternational Two-Stream Conference on Artificial
Neural Networks and Expert Systems, 38-41. doi:
10.1109/ANNES.1993.323087

Kingma, D. P., & Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Krizhevsky, A., Hinton, G., et al. (2009). Learning
multiple layers of features from tiny images.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. nature, 521 (7553), 436–444.

16

Lee, H.-C., & Song, J. (2023). Symba: Symmetric
backpropagation-free contrastive learning with
forward-forward algorithm for optimizing conver-
gence. arXiv preprint arXiv:2303.08418 .

Lillicrap, T., Santoro, A., Marris, L., Akerman, C.,
& Hinton, G. (2020). Backpropagation and the
brain. Nature Reviews Neuroscience, 21 , 335 -
346. doi: 10.1038/s41583-020-0277-3

Namburi, P., Beyeler, A., Yorozu, S., Calhoon,
G. G., Halbert, S., Wichmann, R., . . . Tye, K.
(2015). A circuit mechanism for differentiating
positive and negative associations. Nature, 520 ,
675 - 678. doi: 10.1038/nature14366

Ororbia, A., & Mali, A. (2023). The predic-
tive forward-forward algorithm. arXiv preprint
arXiv:2301.01452 .

Paton, J. J., Belova, M. A., Morrison, S. E., & Salz-
man, C. (2006). The primate amygdala repre-
sents the positive and negative value of visual
stimuli during learning. Nature, 439 , 865-870.
doi: 10.1038/nature04490

Rao, R. P., & Ballard, D. H. (1999). Predictive
coding in the visual cortex: a functional inter-
pretation of some extra-classical receptive-field
effects. Nature neuroscience, 2 (1), 79–87.

Rojas, R. (1996). The backpropagation algorithm.
, 149-182. doi: 10.1007/978-3-642-61068-47

Rumelhart, D. E., Hinton, G. E., & Williams,
R. J. (1986). Learning representations by back-
propagating errors. nature, 323 (6088), 533–536.

Schuman, C. D., Potok, T., Patton, R., Birdwell,
J., Dean, M. E., Rose, G., & Plank, J. (2017).
A survey of neuromorphic computing and neural
networks in hardware. ArXiv , abs/1705.06963 .

Scodellaro, R., Kulkarni, A., Alves, F., & Schröter,
M. (2023). Training convolutional neural net-
works with the forward-forward algorithm. arXiv
preprint arXiv:2312.14924 .

Skinner, G., & Walmsley, T. (2019). Artificial intel-
ligence and deep learning in video games a brief
review. In 2019 ieee 4th international conference
on computer and communication systems (icccs)
(pp. 404–408).

Spratling, M. W. (2017). A review of predictive
coding algorithms. Brain and cognition, 112 , 92–
97.

Stork, D., & Hall, J. (1989). Is backpropagation
biologically plausible? International 1989 Joint
Conference on Neural Networks, 241-246 vol.2.
doi: 10.1109/IJCNN.1989.118705

Sutton, R. S., & Barto, A. G. (2018). Reinforce-
ment learning: An introduction. MIT press.

Towers, M., Terry, J. K., Kwiatkowski, A.,
Balis, J. U., Cola, G. d., Deleu, T., . . .
Younis, O. G. (2023, March). Gymna-
sium. Zenodo. Retrieved 2023-07-08, from
https://zenodo.org/record/8127025 doi:
10.5281/zenodo.8127026

Watkins, C. J. C. H. (1989). Learning from delayed
rewards.

17

A FFNN Hyperparameters

Table A.1: Evaluated Hyperparameter Values in Cross-Validation of the FFNN on the Simulated
Data Task

Hyperparameter Symbol Evaluated Values
Model Architecture N [9, 30, 30, 30, 30], [9, 100, 100, 100, 100],

[9, 500, 500, 500, 500], [9, 2000, 2000, 2000, 2000],
Threshold θ 0.1, 0.5, 1, 5, 10

Learning Rate µ 0.0001, 0.001, 0.01, 0.03
Batch Size B 64
LR decay µ(e) False

No. of Epochs E 240
No. of folds k 5

Table A.2: Top 10 Hyperparameter Configurations with Lowest Validation Risk

Model Architecture (N) Threshold (θ) Learning Rate (µ) Validation Risk
± SE

1 [9, 2000 * 4] 10 0.001 0.0009 ± 0.0008
2 [9, 500 * 4] 5 0.001 0.002 ± 0.001
3 [9, 100 * 4] 10 0.01 0.002 ± 0.0004
4 [9, 500 * 4] 10 0.001 0.002 ± 0.0008
5 [9, 2000 * 4] 5 0.001 0.003 ± 0.002
6 [9, 2000 * 4] 10 0.0001 0.004 ± 0.0008
7 [9, 500 * 4] 5 0.001 0.004 ± 0.0010
8 [9, 2000 * 4] 5 0.0001 0.005 ± 0.0005
9 [9, 500 * 4] 5 0.01 0.006 ± 0.002
10 [9, 100 * 4] 5 0.01 0.007 ± 0.002

18

B DQFFL Hyperparameters

Table B.1: Hyperparameters for the DQFFL Reinforcement Learning Agents on the two Experi-
mented Environments

Hyperparameter Symbol Blackjack Frozen Lake
FFNN Architecture N [9,1000,1000,1000] [20,100,100,100]
FFNN Threshold θ 0.5 0.1

FFNN Learning Rate µ 0.001 0.001
Episodes E 4000 2000

Epsilon Max ϵmax 1.0 0.99
Discount Factor γ 0.99 0.9

Batch Size B 32 32
TD Target Update τ 50 10

Buffer Size N 10000 1000

19

C Results

(a) Balanced Data Task (b) Simulated Data Task (FFNN After CV)

Figure C.1: Normalized Confusion Matrices for FFNN Model predictions on the Balanced and
Simulated Data Tasks

(a) Last Layer Training Accuracy (b) Model Predictions

Figure C.2: Last Layer Training Accuracy and Confusion Matrix for the Best Performing Small
Model on the Simulated Data Task

20

Figure C.3: Training Accuracy for the Back-
propagation Network on the Simulated Data
Task

Figure C.4: 1000-episode Rolling Mean Reward
for Backpropagation and Random Agents on
Blackjack

Figure C.5: 1000-episode Rolling Mean Reward
for FFNN, Basic Strategy and Random Agents
on Blackjack

Figure C.6: Five Run Mean Reward for a Ran-
dom Agent in the Blackjack Environment, Plot-
ted with a 100-episode Rolling Mean

21

