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Abstract—In an era marked by escalating climate change
impacts, this study addresses and evaluates a novel tool
designed to estimate and forecast the carbon emissions of
server-based computational tasks. By leveraging real-time and
historical data on Carbon Intensity (CI), and integrating it
with Power Usage Effectiveness (PUE) and server hardware
configurations, the tool provides a platform to assess and manage
the environmental impact of data center operations. The system
utilizes regional energy mix data across several countries to
render detailed insights into the temporal and spatial variability
of emissions. Our results demonstrate the significant role of
regional energy sourcing and CI in shaping the carbon footprint
of computational tasks. This study underscores the potential of
targeted, data-driven strategies to reduce the carbon emissions
of the ICT sector and highlights the importance of temporal
and geographic factors in environmental impact mitigation.

Index Terms—Carbon Intensity, Power Usage Effectiveness,
Data Centers, Environmental Impact, Carbon Emissions Fore-
casting

I. INTRODUCTION & MOTIVATION

Amidst the backdrop of an ever-evolving climate, where
temperatures fluctuate and weather patterns shift unpre-
dictably, the natural balance of our environment faces un-
precedented challenges. Human activities, from deforestation
to industrialization and the burning of fossil fuels, have sig-
nificantly altered the natural landscape, disrupting ecosystems,
threatening biodiversity, and damaging the world economy
[1]. These transformations underscore the relationship between
climate change and environmental degradation, highlighting
the urgent need for comprehensive solutions to mitigate the
impacts on our planet’s fragile ecosystems.

Since the Industrial Revolution, the widespread use of coal
and fossil fuels marked a pivotal moment in human history.
Yet, as we have now transitioned to the Fourth Industrial
Revolution [2], coal and fossil fuels are not the only resources
whose use would result in increased greenhouse gases (GHG)
and as a result, global warming. An often underestimated
human activity regarding its environmental impact pertains to
computing tasks and the operation of data centers. Considering
the advancements made in Information and Communication
Technology (ICT) in the last 20 years, the increase in consumer
devices, networking technologies, and data centers has led to
a substantial environmental footprint, contributing up to 3.9%
of global emissions [3] [4].

Examples of computational advancements very well include
the adoption of cryptocurrencies but also the use of Large
Language Models (LLMs). Regardless of the benefits such
advancements bring to society, their environmental impact
should be highlighted. When it comes to cryptocurrencies like
Bitcoin, mining farms have been a major contributor to carbon
emissions. With an estimated energy usage of 173.42 TWh
between 2020-2021, evaluating to 85.89 Mt of CO2, this value
is almost equivalent to burning 84 billion pounds of coal [5].
This makes Bitcoin’s environmental footprint exceed that of
most nations [6]. Similarly to cryptocurrencies, LLMs also
have their share of emissions, with models such as those of

“OpenAI’s GPT-3 and Meta’s OPT were estimated to emit
more than 500 and 75 metric tons of carbon dioxide” [7].

In today’s age, a significant portion of software applications
and data processing tasks are hosted on servers, a practice that
contributes to increased carbon emissions. Recognizing the
challenges inherent in influencing embodied emissions—those
tied to the lifecycle of hardware production, transportation,
and disposal [3]—our focus shifts towards the operational
emissions that users can more directly impact. Operational
emissions stem from the energy consumption of hardware
during computational tasks [3]. To effectively address the
urgent concern of reducing these carbon emissions, we propose
the development of a tool that provides essential insights into
the environmental footprint of such activities.

In this work, we propose a tool that quantifies and forecasts
the environmental impact of computational tasks hosted on
servers. This tool not only evaluates operational emissions
but also showcases the influence of location and time on
these emissions, thereby enabling strategic decision-making
for scheduling computational activities. By integrating metrics
such as Carbon Intensity (CI) and Power Usage Effectiveness
(PUE), the tool estimates the operational emissions based on
both the hardware configuration of the server and the CI
specific to its geographic location at any point in time, even for
future timeframes. Our solution incorporates data on energy
mix across multiple regions—including the Netherlands, Ger-
many, Finland, Sweden, Spain, and Poland. This geographic
diversity allows us to assess the environmental impact of server
operations under varying conditions and different climates.
The ultimate goal is to enable the strategic planning of compu-
tational activities so as to align them with periods of reduced
carbon intensities. Through this tool, we aim to catalyze a shift
in user behavior and encourage workload shifting as a strategy
for reducing carbon emissions from digital activities.

This approach allows users to understand and manage the
carbon footprint of their computing tasks, allowing them
to align their operational activities with periods of lower
carbon intensity. The paper begins with Section II, which
provides a background on the theories and literature concerned
in dealing with the environmental impact of computational
tasks. Section III details the methodology used to develop the
estimation tool and the forecasting model. Section IV presents
the results obtained from both the estimation tool and the
forecasting model, assessing their accuracy and applicability
in real-world scenarios. Then, Section V, outlines future work
and improvements to enhance the tool’s functionality and
accuracy, providing a roadmap for subsequent research efforts
in this area. Lastly, Section VI, summarizes our findings and
concludes the paper.

II. BACKGROUND

Before beginning our analysis, it is essential to establish
an understanding of the theories relevant to our research and
review the existing state of the art. This section first introduces
concepts including the structure of electricity grids, the various
sources of electricity, and emission factors—all of which



Source Coal Oil Natural Gas Nuclear Solar Wind Hydro Other Biomass Geothermal
Direct Emission Factor 760 406 370 0 0 0 0 575 0 0

TABLE I: Direct Emission Factors (g/kWh) for Various Energy Sources [8].

contribute to the carbon intensity of electricity. We explore
how carbon intensity is calculated and why it varies across
different regions and times, reflecting the dynamic nature of
energy production and consumption. With this background,
we then discuss past literature on carbon emission estimation
tools and forecasting models developed for such use.

A. Electricity Generation Dynamics

The most important variable of our research is Carbon Inten-
sity. Carbon Intensity (CI) is a dynamic measure representing
the amount of carbon emitted per unit of electricity generated
(g/kWh), varying significantly with location and time. This
variability arises from the nature of electricity production and
the energy sources utilized across different regions. Because
vast amounts of energy cannot be efficiently stored, electricity
must be generated as it is consumed. This mandate makes it
necessary for the power grid, which consists of the phases
of generation, transmission, and distribution to be built with
the ability to dynamically adapt to changes in demand [9].
Such flexibility is essential, as it allows the grid to adjust
to daily and seasonal energy use changes. Considering that
regions can generate electricity via sources of the following
groups: coal, oil, natural gas, nuclear, solar, wind, hydro,
biomass, geothermal, and others, the strategic use of these
sources is affected by their availability and the specific energy
demands at any given time [10]. This diversity allows the grid
to leverage different technologies and resources to meet the
energy demands efficiently [9].

The mix of these sources and the efficiency of the grid play
pivotal roles in shaping the carbon intensity of the energy
supplied. As we consider the environmental implications of
different energy mixes, it becomes essential to explore the
categorization of emissions associated with electricity gener-
ation.

B. Emission Scopes & Carbon Emission Factors

According to the Greenhouse Gas Protocol [11], carbon
emissions are split into three distinct scopes:

• Scope 1: Includes direct emissions from owned or con-
trolled sources. Emissions of this scope are assumed to
be sufficiently small and as a result, they can be safely
ignored for our analysis.

• Scope 2: Captures indirect emissions from the generation
of purchased electricity. So any emissions caused by the
production of energy which is purchased and used by
a company, fall under Scope 2. This is the focus of
our study, particularly relevant for servers where electric-
ity consumption significantly impacts operational carbon
footprints.

• Scope 3: Encompasses all other indirect emissions in a
company’s value chain, which, while valuable, the scope

they capture is too broad for our analysis on electricity
use in servers.

Focusing on Scope 2 emissions allows us to utilize specific
emission factors (EF, g/kWh) for each source (E), that quantify
the carbon emitted per unit of energy generated by a source.
EFs, can vary per region and even by power plant [12].
Therefore the calculation of such values may be tedious and
difficult to take place accurately. For that reason, defined
default emission factors are employed, offering us reasonable
estimates [8]. In certain applications like the one presented in
this paper, operational (or direct) emission factors are used,
which account solely for Scope 2 emissions. The emission
factors for direct emissions, as seen in Table I, are crucial
for calculating the overall carbon intensity of a region at a
particular time.

C. Calculation of Carbon Intensity

Utilizing the emission factors alongside data on the electric-
ity generated by each source allows us to compute the carbon
intensity of the electricity produced.

The formula for carbon intensity is given by :

Carbon Intensity =

∑
(Ei × EFi)∑

Ei
(1)

where Ei represents the electricity generated by source i in
megawatts (MW), and EFi is the carbon emission factor for
that source in grams per kilowatt-hour (g/kWh) [12].

Carbon intensity essentially encapsulates the environmental
impact of the energy sources used to generate electricity or
power. The formula takes into consideration the composition
of the energy mix in a given region. Regions relying more
on renewable energy sources will demonstrate a lower carbon
intensity compared to those dependent on fossil fuels. This
aspect of the calculation highlights how the choice and avail-
ability of energy sources affect the overall carbon emissions.

Knowing how carbon intensity varies over time and space
improves our ability to assess environmental effects and serves
as the foundation for energy management strategy decisions.
This insight is crucial for infrastructure such as servers, where
managing energy consumption to minimize carbon emissions
can significantly alter their footprint.

D. Impact and Strategies for Emission Reduction

Time and location have been researched to have a substantial
effect on the carbon emissions related to electricity produc-
tion [13]. To deal with the varying emission levels, theoretical
and practical implementations related to transferring work-
loads of servers to different locations have been researched.

The body of theoretical work seeks to achieve this reduction
through the use of Markov decision processes with different
loads [14], and linear time-invariant control load systems [15].



Other research has proposed the physical management of data
centers and servers to also reduce embodied emissions of such
locations, highlighting the need for sustainable use of hardware
and software of data centers [16].

Building on these theoretical insights, a practical strategy
that has emerged focuses on scheduling computational tasks
to coincide with periods of lower carbon intensity within the
power grid [17]. This strategy aims to align computing tasks
with moments when the power grid is greener. The decision-
making process for delaying these tasks considers factors,
such as environmental and performance costs. The solution
influences how job schedulers decide to prioritize tasks, guid-
ing them on when to line up jobs in a way that supports
emission reduction efforts. In other words, it optimizes the
server’s job scheduler in deciding when and what workloads
to queue, as a result delaying jobs’ execution [17]. Other
methods such as geo-distributed load balancing and data center
right-sizing have also been examined [18]. However, these
practical strategies are not much of use to us, as they examine
sustainable infrastructure practices that could be implemented
when building a data center.

E. Energy Consumption and Carbon Emission Estimation
Tools

Shifting our focus to methods closely related to our study’s
goals, it’s essential to know how we can accurately estimate
the operational emissions from computational tasks. This helps
assess the direct environmental impact of our computational
activities that run on servers but also assists us in implement-
ing effective energy management strategies. However, direct
measurements of emissions from specific computational tasks
on various hardware configurations are typically unavailable
as raw data. Most of the available data are related to the
emissions the server or the data center emits as a whole. The
measurements we seek would require access to real-time data
on energy use that is often not available or is impractical
to collect across the diverse range of hardware setups and
operational environments. Due to these limitations and the
specificity of each computational task, we try to estimate
these emissions. Related to computing such emissions in
different settings, one of the most established carbon emission
estimators is the GreenAlgorithms tool [19].

Green Algorithms provides a systematic approach to calcu-
lating the carbon emissions associated with computing pro-
cesses, adaptable for both personal computers and servers.
When running computations on a personal computer, users
must manually input variables such as the core usage factor
(uc) and Power Usage Effectiveness (PUE) [19]. In contrast,
computations on servers utilize predefined core usage factors
and regional PUE values [19]. To perform the estimation, the
tool uses a detailed model that incorporates several compo-
nents of a computing system’s energy consumption:

1. Computing Cores Power Draw (pc): For the power draw
of the computing cores (pc), the Thermal Design Power (in
watts) of the CPU/GPU is used. The TDP is a value provided
in the hardware specifications by the manufacturer and indi-

cates the maximum amount of power used by the CPU/GPU
when operating at its maximum load [20]. Even though this
is not the exact amount of energy that the CPU/GPU will use
during the computation of the desired task, it has been shown
that it is a good estimate of the energy being used [19].

2. Memory Power Draw (pm): It was decided to neglect
the power draw of the motherboard and the storage as they
found it to be minimal. Thus the power draw used is only that
of the memory (pm). The power draw of the main memory has
been estimated to be 0.3725 watts per gigabyte and as a result,
this constant is used throughout the estimations [19] [21].

3. Data Center Efficiency (PUE): The PUE is a metric that
indicates how efficiently a data center uses its power; it is the
ratio of the total power used by a data center facility to the
power delivered to the computing equipment [22]. A PUE of
1.0 would indicate perfect efficiency, where all power is used
directly for computing tasks, while a higher PUE indicates
inefficiencies such as power loss in cooling systems, lighting,
and other non-computing infrastructure [22]. When calculating
the energy consumption of an algorithm, the PUE is multiplied
by the energy consumption of the computing resources (cores,
memory, etc.) to account for the additional power needed to
operate the data center infrastructure. This ensures that the
total energy consumption of the algorithm reflects not only
the direct energy consumption of the computing resources but
also the additional power required to maintain the data center
environment.

Other variables used for the calculations include the number
of cores used by an individual’s CPU (nc) and the amount of
memory the user’s system uses (nm). Additionally, the other
variable in the equation is the core usage factor (uc). This
is a metric used to measure the efficiency or utilization of a
computer processor’s cores in a multi-core system. It quantifies
the extent to which the CPU cores are actively processing tasks
at a given time. This value is bounded between 0 and 1, and
to avoid unnecessary assumptions it is asked to be inputted
by the user of the estimator [19]. Calculating the total energy
consumed involves combining these elements to reflect the
comprehensive energy demand of a computing task:

Total Core Power (W) = nc × uc × pc(W)× PUE

Total Memory Power (W) = nm × Pm(W)× PUE

Total Power (W) = Total Core Power+Total Memory Power

Energy Needed (kWh) = Total Power× Runtime× 0.001

Now to estimate the carbon emissions associated with
energy consumption, the energy needed is multiplied by the
carbon intensity, measured in grams of CO2.

Carbon Emissions (g CO2) = Energy Needed× CI

By multiplying the energy needed by the carbon intensity,
we effectively scale the carbon intensity value to match the
amount of energy consumed. This multiplication yields the



total amount of carbon dioxide equivalent emissions associated
with the energy consumption.

Despite its utility, the tool relies on average global values for
power usage effectiveness (PUE) and carbon intensity, which
can oversimplify the variability in energy mix and efficiency
across different regions [19]. However, the methodologies
and findings of Green Algorithms are fundamental to the
development of our tool, serving as the base upon which we
will build and make specific adjustments.

Another tool that serves a similar purpose is CloudCar-
bonFootprint [23]. The CloudCarbonFootprint tool focuses on
cloud provider usage data, converting it into energy usage,
and then applying the PUE of the data centers and the carbon
intensity of the power source region [23]. This tool builds upon
the “Cloud Jewels” methodology by Etsy, which estimates
the energy impact of cloud computing based on virtual CPU
usage, memory requests, data storage, and network traffic [24].
Due to its reliance on cloud-specific data and its emphasis on
cloud environments, this tool falls outside of the scope of our
research and therefore will not be used for our development.

F. Predictive Modeling and Tools for Carbon Emission Esti-
mation

Turning now to the tools that enable us to provide estimates
of future carbon emissions, we delve into approaches for
forecasting carbon intensity data across different regions. We
choose to forecast carbon intensity rather than carbon emis-
sions directly, as we are estimating the emissions ourselves.
Therefore, we do not wish to make our estimations the
historical values which we will be feeding the model with.

Recent research employs deep learning for predictive mod-
eling in environmental contexts. Gated Recurrent Unit (GRU)
networks, suitable for handling time series data effectively,
have shown promise in forecasting carbon emissions by learn-
ing from historical patterns [25]. This suggests the potential
applicability of such networks to carbon intensity forecasting.
This is complemented by the exploration of Fuzzy ARTMAP
neural networks in energy time-series data. The use of such
networks for forecasting has been deemed to be successful,
benefiting from both unsupervised and supervised learning
mechanisms to adapt to new patterns without discarding old
information [26].

Yet, one tool that can achieve our desired goal, is a pre-
trained model known as CarbonCast which offers an innova-
tive solution by providing 96-hour (four days) forecasts. In the
CarbonCast framework, the forecasting process is structured
into two distinct tiers, each leveraging different architectures
to predict grid carbon intensity accurately over an extended
period. The first tier of CarbonCast employs Artificial Neural
Networks (ANNs), one for each electricity-generating source
within a region, to forecast the hourly electricity production
for the next 96 hours. These ANNs use historical electricity
production data to capture trends and patterns specific to
each energy source, such as solar, wind, or fossil fuels.
Additionally, this tier incorporates 96-hour weather forecasts,
which are crucial for predicting fluctuations in renewable

energy production. For instance, the expected solar or wind
output can vary significantly based on weather conditions, and
integrating these forecasts helps in adjusting the predictions to
reflect these variabilities more accurately [12].

The second tier of CarbonCast utilizes a CNN-LSTM ar-
chitecture to now generate carbon intensity forecasts. This
tier takes the individual source production forecasts generated
by the first tier and combines them with both the 96-hour
weather forecasts and historical carbon intensity data. The
CNN component of the architecture helps in extracting high-
level features from the time-series data, capturing short-term
temporal dynamics effectively. Following this, the LSTM lay-
ers process these features to understand and predict the long-
term temporal patterns in the data. This combined approach
enables the model to produce a 96-hour forecast of carbon
intensity for the electricity grid, taking into account both the
predicted electricity production and historical trends [12].

By leveraging these two tiers, CarbonCast can provide accu-
rate forecasts of carbon intensity, aiding us in making informed
decisions about energy use, scheduling, and carbon footprint
management across various sectors. When compared with the
other state-of-the-art approaches in their paper, CarbonCast
was able to achieve an average decrease of 14.38% in the Mean
Absolute Percentage Error (MAPE), with an average MAPE
of 9.96% across all of their test regions [12]. Regardless of its
performance, it is important to note that integrating the model
into our analysis may require significant efforts in terms of
retraining and adapting the model to accommodate specific
data inputs and operational contexts unique to our study.

As we aim to inform individuals and corporations about
the most carbon-efficient times and locations for running
computational tasks, the methodologies and models discussed
in this section, especially Green Algorithms and CarbonCast,
provide us with the means for developing our solution. We will
utilize the methodologies of these tools to start developing
our own by adapting and integrating their findings into our
proposed solution.

III. METHODOLOGY

Building on the theories and empirical grounds discussed
earlier, our methodology focuses on the implementation of
the tool which leverages both real-time and forecasted data to
mitigate the carbon footprint of computing tasks. As we delve
into the methodology, we aim to answer several questions that
link directly to the environmental impacts of computing. These
questions guide our developmental strategy and will help us
in structuring our approach to reducing carbon emissions:

• What is the effect of Carbon Intensity on the Carbon
Footprint of Computing and how can we visualize it?

• According to what indicators should we schedule our
computational tasks to align with low carbon emission
periods?

• How can we perform such analysis for future timeframes?
To address these, we have developed an approach that

encompasses the following strategies:



Firstly, we have developed a Carbon Emission Estimation
Dashboard tool that integrates real-time energy mix data,
server hardware specifications, and real-time and forecasted
carbon intensity data. This integration allows for a best-effort
estimation of the carbon footprint for various computing tasks
based on picked configurations and settings. Additionally, the
dashboard includes visualizations to enhance data accessibility
and comprehension. These visualizations will display the
carbon footprint in relation to the time of day, hardware con-
figurations, and geographic locations, helping users to make
decisions based on clear insights. Lastly, we have utilized
the CarbonCast forecasting model within the tool. This model
generated forecasted carbon intensity data, allowing users to
view and schedule their computational tasks during periods
of expected low carbon intensity. The following sections will
explore the technical architecture of the tool in detail, the data
processing and cleaning performed, as well the specific models
and algorithms used.

A. Carbon Footprint Estimator Tool Design

The Carbon Footprint Estimator Tool developed as a web
application, has been designed to inform users about the en-
vironmental impact of computing tasks. This section explains
the architecture and workflow of the application.

1) Overview: In the developed Carbon Footprint Estimator
tool, users are greeted with a dashboard designed to simulate
the environmental impact of computing operations. The inter-
face allows users to tailor hardware configurations, adjusting
parameters such as the processor model and the load level.
While these parameters are different than the ones used by
Green Algorithms, [19] we have modified the way we calculate
carbon emissions as we will see later in this section so as to
target only server CPUs. Adding on, users can set the time
and duration for which they intend their computation to run
for.

Fig. 1: User interface of the Carbon Footprint Estimator
showing real-time calculation of carbon emissions for different
processors and locations.

Upon configuring the desired system specifications and
runtime, the tool generates the estimated carbon emissions of

a task running with the selected parameters for our six differ-
ent regions (Netherlands, Germany, Finland, Sweden, Spain,
Poland). Alongside the estimations, hourly carbon emission
data of the specification are generated (Figure 2). The graph
provides a granular view of the carbon emissions generated by
the computational task of Figure 1 for each hour of operation.
This real-time emission tracking is essential for understanding
the environmental impact of computational activities at dif-
ferent times of the day. The hourly data aggregation reveals
patterns that may correspond with the varying carbon intensity
of the power grid throughout the day. For instance, emissions
may spike during peak hours when fossil fuel-based power
plants are often utilized to meet the increased energy demand,
while they may reduce during off-peak hours when the demand
is lower, and renewable energy sources can suffice the energy
needs.

Fig. 2: Hourly Emissions Produced by Computational Task.

The other set of graphs provided by the tool extrapolate
these insights further by projecting what the carbon emissions
would have been had the computational task been run at any
given hour in the past 24 hours, or on the same hour across the
previous 30 days, or during the previous year (Figure 3). This
historical analysis allows users to distinguish temporal patterns
and identify the most carbon-efficient times for running their
computational tasks.

As mentioned in the previous sections, the tool addition-
ally offers forecasting capabilities which will be showcased
separately in this section later on. We now elaborate on the
architecture and design of the system that has led us to this
developed tool.

2) System Architecture & Design: The presented architec-
ture and design of the web application represent a developed
system of components; not a pipeline. This means that data
need to be manually added to the database rather than being
fetched and cleaned dynamically every day.

At a high level, the system operates through a simplified
flow of user interactions, data processing, and result dissemi-
nation, as depicted in Figure 4. Users interact with a frontend
interface, where they can input or modify parameters. This
input is then processed through a series of layers including the



Fig. 3: Carbon Emissions of the Hardware Specification across
different Time Ranges.

Business Logic Layer, and the Data Access Layer, ultimately
interacting with the database for retrieval or storage of data.

Digging deeper into the architecture of the system, the web
application has been designed using a three-layered archi-
tecture. In doing so, we create a modular and maintainable
system as we separate the user interface, application logic, and
database management into distinct layers [27]. The application
consists of three layers: a Presentation Layer, a Business
Logic Layer comprising an API and the Backend, and a Data

Fig. 4: Data Flow Diagram of Carbon Footprint Estimator.

Access Layer. The detailed system architecture, utilizing the
three-layered structure, is illustrated in Figure 5. This diagram
provides a visual breakdown of the different layers and their
interconnections within the system.

The first layer, known as the Presentation Layer, encom-
passes the user interface of the system. The system’s fron-
tend is constructed with the Next.js framework, which offers
powerful tools for building efficient and interactive web user
interfaces. Next.js, built on top of React.js, gave us the ability
to create dynamic and responsive web interfaces, ensuring an
enhanced user experience.

Next.js capitalizes heavily on server-side rendering (SSR) to
increase the websites’ performance. Leveraging SSR ensures
that the initial page load is efficient, providing a swift user
experience as the data is already fetched before the page has
been rendered. As a result, the user can begin using the page’s
functionality instantly, as there is no waiting time. Other than
being responsible for generating a dynamic UI for the user, in
this tier, user inputs are sent through API calls to the business
logic.

Fig. 5: High-Level Architecture of Carbon Footprint Estimator.



Here, the Business Logic Layer combines the API and
the Backend. It forms the core of the system’s interaction
handling and business logic processing. The API, crafted using
Node.js, manages the routing of requests to the appropriate
controllers within the Backend. The Backend itself contains
the application’s business rules and logic, managing calls to the
appropriate repositories that perform direct interactions with
the data layer.

The third layer of our system is the Data Access Layer,
which uses MongoDB. MongoDB is a flexible NoSQL
database, used to manage data storage and retrieval. This layer
handles all database interactions, performing CRUD operations
as required by the application logic. The separation of the
database management into its own layer allows for better data
integrity and scalability.

This three-layered architecture not only supports the cur-
rent functionalities of the carbon footprint estimator but also
lays a solid foundation for future enhancements. Through
this architectural approach, the tool efficiently processes user
inputs, computes carbon footprints, and delivers insightful
visualizations and forecasts, ensuring high performance and
user responsiveness. With the architecture of the web appli-
cation outlined, the next step is to examine the data used and
the cleaning processes applied to ensure the tool functions
effectively.

B. Data Cleaning

The data we are working with consists of hourly carbon
intensity data of the following regions: Netherlands, Germany,
Finland, Sweden, Spain, and Poland. However, as carbon
intensity data are not easily accessible directly, we will be
calculating them using the theory that was outlined in Sec-
tion II-C. For this reason, we sought to collect the amount
of electricity generated from every source our regions use,
and after that utilize their corresponding emission factors to
calculate the carbon intensity of a region at a particular time.

The data cleaning process involved collecting and process-
ing granular electricity generation data from the European
Network of Transmission System Operators for Electricity
(ENTSO-E) Transparency Platform [28], which serves as a
source of power generation data across Europe. ENTSO-E
provides access to real-time and historical data concerning
electricity production and consumption across member coun-
tries.

The raw data from ENTSO-E includes yearly electricity
generation data categorized by production types, such as
biomass, various forms of fossil fuels, nuclear, and renewable
sources such as solar and wind. Now, depending on the
regional reporting standards, data are recorded at 15-minute,
30-minute, or even hourly intervals, indicating how much
energy has been generated within this interval. During our
data cleaning, we began by importing multiple datasets for
the selected regions, covering different years. Once imported,
each file was read into a DataFrame, where we stripped any
unnecessary quotes from column headers and data. In this way,
we ensured that there was consistency across all data points.

Then for each region, we addressed all the entries marked as
‘n/a’ (not available) or ‘n/e’ (not expected), which are common
placeholders in the data. ‘n/a’ values are converted to NaN to
indicate missing data, while ‘n/e’ are treated differently, by
being set to zero, reflecting the expected absence of generation
from those sources at certain times.

After the initial cleaning, we standardized the data by merg-
ing similar energy sources under some predefined categories.
More specifically, ENTSO-E collects generation data for each
region for the following sources of energy:

• Biomass
• Fossil Brown coal/Lignite
• Fossil Coal-derived gas
• Fossil Gas
• Fossil Hard coal
• Fossil Oil
• Fossil Oil shale
• Fossil Peat
• Geothermal
• Hydro Pumped Storage
• Hydro Run-of-river and poundage
• Hydro Water Reservoir
• Marine
• Nuclear
• Other
• Other renewable
• Solar
• Waste
• Wind Offshore
• Wind Onshore
We now aggregated the data into broader categories using

a predefined mapping as shown below:
• Biomass encompasses direct entries from Biomass.
• Coal is made up of the aggregation of the Brown

coal/Lignite, Hard coal, Peat, and Coal-derived gas
columns.

• Natural Gas is captured under a single category, simpli-
fying all entries from Fossil Gas.

• Geothermal gets mapped to itself.
• Hydro is made up of the energy source data of Pumped

Storage, Run-of-river and poundage, and Water Reservoir.
• Nuclear energy, is tracked as it is.
• Oil includes both standard Oil and Oil shale.
• Solar energy, is distinctly categorized.
• Wind encompasses both Offshore and Onshore.
• Unknown or unspecified energy sources include Marine,

Waste, and Other non-renewable sources that do not fit
into the other categories.

This standardization is crucial as it directly ties into how
we apply carbon emission factors later in our analysis. This
categorization simplifies the application of specific carbon
emission factors, which vary across different energy types.

After forming a new DataFrame with just these new cate-
gories, we proceeded with resampling the data to an hourly
format, regardless of the original granularity. During this



resampling, we aggregated the data using a summing method
for each hour. It is important to note that our aggregation
method specifically excludes NaN values from the calcu-
lations. If an hour’s data consists entirely of NaN values,
indicating a complete lack of reported data for that period,
the aggregated output for that hour is set to zero, reflecting an
absence of energy generation. The final step of our cleaning
involved calculating the hourly carbon intensity value. Each
category like ‘biomass’, ‘coal’, and others, is associated with
the emission factors of Table I that reflect the typical emissions
produced per unit of electricity generated by that source. By
consolidating the data in this manner, we were able to use
Formula 1 and as a result, calculate the data we desired per
hour and location.

C. Estimation of Carbon Emissions

As discussed in Section II-E, by having the carbon intensity
of a region at a particular time, we can estimate the carbon
emissions of a computational task, given we know how much
energy that task requires to run. To do that, we used the
foundations established by Green Algorithm’s methodology,
however, tailoring them to our needs, as we are solely dealing
with server operations. In order to figure out how much energy
a computational task ran on server components generated,
rather than using variables such as the power draw of memory
and processor, core utilization factor, and the number of cores,
we transitioned into using the metrics and valuations provided
by the SPEC Power benchmark.

1) SPEC Power Benchmark: The SPEC Power Benchmark,
developed by the Standard Performance Evaluation Corpo-
ration (SPEC), is a benchmark which evaluates the power
and performance of servers. It provides a measure of energy
efficiency and assesses how much work a server can perform
in relation to its power consumption. More specifically, the
SPECpower ssj2008 benchmark, which is what we will be
using for this project, simulates typical server-side operations
using different workloads. By doing so, it measures the power
consumption at various load levels which can range from
idle to 100%. In this study, we utilize the results from
SPECpower ssj2008 to determine the energy consumption of
our computational tasks based on the energy required to run
these tasks on server components [29].

In our dashboard, users can select from several server CPUs
and specify the desired load level to estimate the energy con-
sumption. For instance, let’s consider the SPECpower ssj2008
results for the ASUSTeK Computer Inc. RS720-E9-RS8,
which has an Intel Xeon Platinum 8280L CPU. When put
under testing, the CPU demonstrated different power consump-
tion values at various load levels, as illustrated in the provided
benchmark results of Figure 6. Users can select the load level,
such as 50%, which corresponds to an average active power
of 187 watts. This value represents the energy needed by the
system at the specified load level. By using this information,
the dashboard retrieves the total energy consumption and
subsequently estimates the carbon emissions based on regional
carbon intensity data.

Fig. 6: SPECpower ssj2008 Benchmark Results Summary for
ASUSTeK Computer Inc. RS720-E9-RS8.

2) Calculating Server Emissions: Having said all this and
building on the work of Green Algorithms, we estimate the
carbon emission of a computational task run on a server for a
single instance as follows:

Total Power = Power at Load× PUE× 0.001 (2)

Here, Power at Load is measured in watts (W), representing
the power usage at a given load level. This variable is mul-
tiplied then by the PUE, to account for the additional power
needed to operate the data center infrastructure as explained
in Section II. Lastly, the multiplication by 0.001 converts the
power from watts to kilowatts (kW), aligning the units for the
next step in the calculation. Thus, now that we multiply the
Total Power with the Carbon Intensity which is expressed in
grams per kilowatt-hour (g/kWh) the resulting emissions are
calculated in grams of CO2:

Carbon Emissions = Total Power× Carbon Intensity (3)

After calculating the energy needed and its associated car-
bon emissions for a single instance of computational activity,
we estimate this process for the entire duration of the task’s
runtime. For instance, if a computational task is scheduled
to run for 12 hours, we repeat the multiplication of energy
consumption with the carbon intensity for each hour within
that duration. The user selects the start date and time for
executing the algorithm, and from that point onward, the
algorithm continues for the specified runtime. For example,
if the algorithm starts execution in Finland on a specific date
at 10:00 AM and runs for 12 hours, we obtain the carbon



Algorithm 1 Calculate Total Carbon Emissions for Computational Task

Require: processorName ▷ Name of the processor used for the task
Require: loadLevel ▷ Operational load level of the processor
Require: PUE ▷ Power Usage Effectiveness of the data center
Require: time ▷ Start time of the computational task
Require: runtime ▷ Duration of the task in hours

processorDetails ← getProcessorDetails(processorName) ▷ Retrieve details of the specified processor
powerAtLoad ← getPowerUsageForLoad(processorDetails.specpower ssj2008.load power, loadLevel) ▷ Determine power
usage at given load
totalCorePower ← PUE × powerAtLoad ▷ Calculate total power accounting for data center inefficiency
energyNeeded ← totalCorePower × runtime / 1000 ▷ Convert power to energy consumed over runtime, from watts to
kilowatts
carbonIntensityData ← findCarbonIntensityData(time, time + runtime) ▷ Retrieve carbon intensity data for the duration of
the task
emissionsList ← [] ▷ Initialize list to store emissions per hour
for each ci in carbonIntensityData do

hourlyEmissions ← energyNeeded × ci.carbonIntensity / 1000 ▷ Calculate emissions for each hour based on carbon
intensity

Append hourlyEmissions to emissionsList
end for
totalEmissions ← sum(emissionsList) ▷ Sum all hourly emissions

return totalEmissions ▷ Return the total emissions for the computational task

intensity values for each hour in Finland during that period.
We then multiply the energy consumption for each hour by the
respective carbon intensity value and add everything together,
giving us the total emissions across all hours. Something to
note here is that Total Power is assumed constant throughout
the duration the algorithm runs. This assumption was neces-
sary due to limitations in data availability and the difficulties
that arose with capturing dynamic changes in power supplied
to server CPUs at an hourly granularity. We can now repeat
the same process for multiple countries, by utilizing that
country’s carbon intensity data which are different at different
points of the day. This iterative process, further described in
Algorithm 1, enables us to accurately capture the temporal
and spatial variations in carbon emissions and provides a
comprehensive assessment of the environmental impact of the
computational task.

This calculation enables us to quantify the environmental
impact of computational tasks and contributes to efforts to
mitigate climate change. By gaining insights into the carbon
footprint of computing activities, individuals and organizations
can make informed decisions to reduce their environmental
impact and shift their behaviors by scheduling their tasks
during non-intensive intervals.

D. Running and Validating the CarbonCast Forecasting
Model

So far we have discussed about estimating carbon emissions
for past time frames as our data do not span future times.
However, it is important to be able to generate carbon emission
estimates also in the future, to further give users the ability
to strategically decide in what region and time they wish to
deploy their tasks on the server.

In our project, the implementation of the CarbonCast fore-
casting model was central to predicting carbon intensity.
The process was divided into three distinct phases: obtaining
weather data, processing this data, and running the forecasting
model itself.

Before delving into the steps we used for integrating the
model, it is important to mention that our forecasts are limited
only to Germany. This stems from the need to fetch new
weather data. The original model was developed and trained
with weather data from 2019 to 2021. Thus as we wished to
generate forecasts for 2024, we had to acquire more recent
data to retrain the model and achieve more accurate results.
Retrieving data of such high volume (hourly data from 2020
to 2023) proved more challenging and time-consuming than
anticipated. Consequently, dealing with this issue for all of our
regions would have been impractical within our project’s time-
frame. Therefore, we focused exclusively on Germany, where
we could manage the data acquisition and processing within
the available period. The same approach though followed can
be applied to any country as long as the required data have
been acquired.

1) Weather Data Acquisition and Processing: The first step
in generating the 96-hour carbon intensity forecasts revolved
around retrieving the weather forecasting data. The weather
data that we sought are 96-hour forecasts of variables such
as wind speed, temperature, dewpoint, downward short-wave
radiation flux, and precipitation. We collected the data via
the GFS weather forecast archive [30]. After registration and
configuring the archives’ configuration files, we were able to
fetch data tailored to our regional and temporal specifications
in grib2 format. Due to this format, we faced significant



Fig. 7: Distribution Plots of Total Carbon Emissions of Computational Task across Regions.

difficulties parsing the data. In order to parse grib2 files, the
wgrib2 library was required. Downloading the wgrib2 library
proved to be a cumbersome task. As we were developing our
system using the latest MacBook model that runs on the M1
processor, it was evident that the library was not yet configured
to be used in such developing environments. Key challenges
included managing dependencies via Homebrew. This involved
locating the correct directory paths for Homebrew installations
on Apple Silicon, which differ from the paths used on Intel
Macs. Furthermore, having the correct version of GCC proved
to be crucial, as the default GCC compiler version installed by
Homebrew was not compatible with wgrib2. This necessitated
the manual installation of a specific, compatible version of
the GCC compiler to avoid compilation errors. Additionally,
the cmake configuration for wgrib2 was modified to download
third-party libraries necessary for its compilation, rather than
merely attempting to import them. This step was crucial
because direct imports were failing due to compatibility issues
with the libraries on the new Silicon architecture.

2) Configuration and Model Execution: Once the necessary
data was integrated with our existing datasets, changes were
made to the configuration settings of the model to align the
data correctly for reading. These changes ensured that the data
inputs were properly accessed by the different tiers and in the
format expected. After that, we ran the model’s first tier to
predict source production. Following the first tier’s successful
completion, we went on to the second tier, which made use of
the first tier’s data to forecast carbon intensity over 96 hours.
At this point it was decided to retrain the model using our
latest data. This ensured to us that more accurate data were
generated as we will also see in Section IV.

A note to be made is that the data that the model forecasts
are test data. This means that it generates data up until the
timeframes of the inputted data so they can be then compared

against the actual values. In its current iteration, the model
generates such data to replicate the results of the researcher’s
paper. For that reason, we created an additional script, which
by utilizing the architecture and the model of CarbonCast,
generated 96-hour carbon intensities without a dependency on
the inputted timeframes. In this way, we were able to acquire
forecasts that exceeded the periods outlined in our datasets.

Throughout this process, we worked closely with the
model’s developers to make sure that any differences in
the predictions were caused by the model’s implementation
rather than mistakes in our application. This was crucial to
verifying the changes we made in the configuration files and
guaranteeing that the predictions were as accurate as the model
could produce.

IV. ANALYSIS

Now that we have introduced the tool and presented its
functionality, we will analyze the results that the user of the
dashboard can record. The randomly selected computational
task that we will explore will run for 12 hours, with a
configuration that utilizes the server CPU, Intel Xeon Platinum
8280L, a PUE of 1.1, and a load of 80% being supplied to it.

A. Influence of Energy Mix and Time on Carbon Emissions

The graphs above (Figure 7) have been generated by mod-
eling the use of the described computational task that begins
execution at each hour of the day for 12 hours. The data span
from April 2023 to April 2024, where the same configuration
was used for all six countries in question. Through these
carbon emissions histograms, we will examine the geograph-
ical disparities in carbon intensity across these locations and
discuss the energy mixes and operational efficiencies in each
region.



Country Date Footprint at 14:00 PM Carbon Intensity at 14:00 PM Footprint at 02:00 AM Carbon Intensity at 02:00 AM
Finland 5-6th, Mar 0.43 115.29 0.45 120.07

Germany 5-6th, Mar 1.30 347.58 1.62 432.52
Netherlands 5-6th, Mar 1.65 440.55 1.60 428.67

Poland 5-6th, Mar 2.15 574.30 2.37 633.11
Spain 5-6th, Mar 0.14 37.34 0.32 85.22

Sweden 5-6th, Mar 0.11 30.73 0.11 30.07
Finland 7-8th, Mar 0.48 129.51 0.50 132.98

Germany 7-8th, Mar 0.92 246.53 0.98 261.33
Netherlands 7-8th, Mar 1.69 453.14 1.18 315.41

Poland 7-8th, Mar 1.60 428.09 2.41 644.06
Spain 7-8th, Mar 0.11 30.65 0.17 45.07

Sweden 7-8th, Mar 0.14 36.78 0.11 29.94

TABLE II: Carbon Emissions and Intensity Across Different Times, Days and Locations. The emissions are given in kg CO2

and the carbon intensity in gCO2/kWh.

Beginning our analysis, we can immediately observe a
pattern that ties the type of energy sources used to the envi-
ronmental impact of running computational tasks on servers.
For instance, Sweden and Finland demonstrate lower carbon
emissions for the whole task, with more of them being clus-
tered below 1.5 kg CO2 and 2.5 kg CO2 per computational
task respectively. Specifically, the 75th percentile for Sweden
is 1.51 kg CO2, indicating that 75% of the emission values are
below this level. Similarly, for Finland, the 75th percentile is
3.39 kg CO2, suggesting a slightly higher emission range but
still demonstrating that the majority of emissions are lower,
with a significant number falling below 2.5 kg CO2. This
indicates a predominantly clean energy mix, reflecting a high
utilization of renewable energy sources. This can be further
verified by observing each country’s percentage use of renew-
able and non-renewable sources (refer to Appendix Figure 10).
Finland’s significant use of nuclear power (45.3%) along with
its large use of renewable sources like wind (19.6%) and hydro
(19.1%) results in a cleaner energy mix. Likewise, Sweden’s
mix, with a large emphasis on hydro (42.4%), nuclear (30.8%),
and supplemented by wind (21.8%), showcases a similar trend
of minimal carbon footprints. The direct relationships which
exist between energy production to carbon intensity and as
a result carbon emissions, portray how the clean energy mix
employed by these countries significantly lowers the carbon
intensity of computational tasks executed within their borders
and therefore the associated emissions.

In contrast, Germany’s mixed energy portfolio featuring
significant amounts of coal (24.3%), natural gas (12%), and
renewable sources such as wind (33.2%) and solar (12.7%),
experiences moderate emission levels for the computational
task. Germany’s histogram (Figure 7(b)) shows a wider dis-
tribution of CO2 emissions, with peaks between 12.5 to 17.5
kg CO2 per task. The relatively high utilization of natural gas
and renewables helps mitigate some of the emissions mostly
associated with coal energy production. Similar to Germany, is
the Netherlands. The Netherlands utilizes natural gas (28.5%)
and generates most of its electricity from sources outside the
ones defined in this paper. Those attribute to 37.8% of the
country’s energy generation, causing a skewed distribution.
In the Netherlands, emission levels for computational tasks

predominantly range between the 25th percentile of 16.58 kg
CO2 and the 75th percentile of 21.31 kg CO2 with a median
of 19.34 kg CO2. This indicates a narrower, yet higher range
of emissions compared to Germany. Such an argument can not
be made for Poland though. Poland’s energy profile is heavily
dominated by coal, accounting for 62.3% of its energy pro-
duction. This dependence on coal translates to higher emission
levels, with computational tasks resulting in more substantial
carbon footprints. The histogram (Figure 7(d)) depicts the
highest emission range out of all the other countries, with
computational tasks often causing emissions in the range of
20 to 30 kg CO2, as shown by the 75th percentile reaching
up to 28.08 kg CO2.

Lastly, Spain employs a diverse mix of renewable and non-
renewable energy sources, leading to moderate emission levels.
In Spain, the fluctuations in solar and wind energy production
suggest further stabilization in the energy grid to consistently
reduce emissions. These differences in energy mixes are what
cause carbon intensity to differ so much per region (refer to
Appendix Figure 12).

Energy mixes tend to not change too much on a year-to-
year basis unless significant environmental events or changes
in energy policy occur. Therefore, the observed trends between
April 2023 and April 2024 likely reflect the current trend
and differences between these regions. However, observations
are not static and can be influenced by changes in energy
policies, technological advancements in renewable energy,
or fluctuations in weather conditions that affect renewable
energy production. For example, an unusually sunny or windy
year could temporarily increase the output of solar and wind
installations, leading to lower carbon emissions than what is
typically expected. On the other hand, a particularly calm or
cloudy season could increase the dependency of nations on
fossil fuels, thus increasing the carbon intensity.

This can be further analyzed by looking at the values of
Table II. From the values, we can observe the direct rela-
tionship between carbon intensity and carbon emissions. This
relationship is evident in the changes observed in CI values
from midday to early morning between the six countries. For
example, in Poland, the carbon emissions at 14:00 PM on
March 7th were 1.60 kg CO2, which increased to 2.41 kg



CO2 by 02:00 AM the following morning. This increase aligns
with a higher CI during the nighttime affected by the changed
energy mix of the country at that time. Conversely, when there
is a drop in CI values, such as in the case of the Netherlands
from 453.14 gCO2/kWh to 315.41 gCO2/kWh between
March 7th-8th 2024, carbon emissions also experience a 30%
decrease; as much as CI decreased.

Similarly, the variations between different days also reveal
how time affects carbon emissions. In Spain, the CI at 14:00
PM on March 5th was 37.34 gCO2/kWh, contributing to
emissions of 0.14 kg CO2, whereas on March 7th at the
same time, the CI decreased to 30.65 gCO2/kWh, and the
emissions dropped slightly to 0.11 kg CO2. These fluctuations
highlight how dynamic changes in the energy mix, influenced
by factors such as weather or operational adjustments in the
power grid, directly affect the CI and subsequently the carbon
emissions. The data in Table II and Table III, showing the
minimum and maximum emissions of the whole computational
task, not only reinforces the understanding of how location
influences carbon emissions through different energy mixes but
also shows the critical impact of temporal factors. Observing
CI and emissions at different times of the day provides clear
evidence that timing computational tasks to coincide with
periods of lower CI can effectively reduce the carbon footprint
of these operations (Figure 8b).

Country Mean Median Q1 Q3 Min Max
Germany 12.31 11.79 8.80 15.38 4.37 24.75
Netherlands 18.99 19.34 16.58 21.31 11.74 27.63
Poland 25.14 25.45 22.49 28.08 13.42 33.50
Spain 4.75 4.43 3.21 6.07 1.67 11.57
Sweden 1.16 1.11 0.80 1.51 0.34 2.53
Finland 2.50 2.11 1.00 3.39 0.47 8.43

TABLE III: Statistical Summary of Carbon Emissions for
Computational Tasks across Various Countries (April 2023 -
April 2024). The emissions are given in kg CO2.

1) Statistical Analysis of Regional Carbon Intensity Dif-
ferences: In order to quantify these differences, we seek to
explore if there are significant differences between the carbon
intensities recorded in each region. To do that, we wish to
see if there exists a statistical significance between the carbon
intensities recorded in each of the six countries. The simplest
way to do such a test is via an ANOVA (Analysis of Variance)
test, a statistical test used to analyze the difference between
the means of more than two groups. To continue with this
though, we must ensure our data meet the assumptions laid
out for performing an analysis of variance.

For us to proceed with this test, the carbon intensity of
each country must be normally distributed, and there must be
homogeneity of variance. The assumption regarding the inde-
pendence of groups is already satisfied, as we are comparing
values from different countries. Therefore, we must ensure the
other two assumptions are fulfilled before continuing. Starting
with the homogeneity of variance, we see immediately how
the assumption is violated in Table IV. None of the variances
between the six countries are equal or close to each other.

Country Mean Median Variance Skewness
Germany 250.63 240.45 11376.23 0.36
Netherlands 389.21 394.08 5014.08 -0.16
Poland 515.43 530.20 10038.74 -0.45
Spain 96.73 83.52 2121.85 0.72
Sweden 23.81 22.94 88.78 0.31
Finland 51.72 41.60 1339.43 1.11

TABLE IV: Statistical Summary of Carbon Intensity Across
Different Countries from April 2023 to April 2024.

When it comes now to the normality of the data, the
mean, the median, and the skewness can all tell us something
regarding the distribution of our values. When the data is
perfectly normal, the mean and the median are identical. In
our case, the values deviate from one another by at most 15
gCO2/kWh. This is further depicted by the skewness of our
data, where none of the values are close to 0. Due to this,
there is strong evidence that the data are skewed and thus non-
normal. To verify this before continuing with a non-parametric
test, we have graphed Q-Q plots for all of the countries
(refer to Appendix Figure 11) and have conducted a Shapiro-
Wilk test. In all the Q-Q plots, the data points significantly
deviate from the red line (which represents a perfect normal
distribution), especially in the tails. This suggests that the
carbon intensity data for these countries do not follow a normal
distribution. Moreover, all p-values of the Shapiro-Wilk test
are smaller than 0.05.

Country W statistic p-value
Sweden 0.96782 4.49× 10−14

Netherlands 0.98794 2.53× 10−7

Finland 0.88775 2.57× 10−26

Spain 0.93609 2.74× 10−20

Germany 0.96336 3.73× 10−15

Poland 0.97276 9.47× 10−13

TABLE V: Results of the Shapiro-Wilk tests for normality of
carbon intensity data.

Thus, the null hypothesis (H0) of the test, stating that the
data come from a normal distribution is rejected. Having
reached this conclusion, we look at non-parametric tests to
perform our statistical significance analysis. A test for which
our data meets the assumptions placed is the Kruskal–Wallis
test. Kruskal–Wallis is used to compare two or more groups,
but now we compare the medians rather than the means. In
other words, it tests whether the mean ranks are the same
across the countries. Based on this, our hypothesis is as
follows:

• H0: The carbon intensity medians are equal across all
countries.

• H1: The carbon intensity medians are not equal across
all countries.

After performing the test, we find a p-value of 2.2×10−16,
which is smaller than the theoretical accepted value of 0.05.
As a result, we reject our null hypothesis and thus the carbon
intensity medians were shown to not be equal. The below box
plots further showcase this point (Figure 8a).



(a) Boxplot of Carbon Intensity by Country. This plot shows the
distribution of carbon intensity (gCO2/kWh) for different
countries from April 2023 to April 2024.

(b) Boxplot of Carbon Emissions of the Complete Task by Country.
This plot shows the distribution of carbon emissions (kg CO2) for
different countries from April 2023 to April 2024.

Fig. 8: Comparison of Carbon Intensity and Footprint by Country.

We observe that the box plots for Germany, the Netherlands,
and Poland do not overlap, indicating a clear difference
in carbon intensity between these countries. Although there
is a slight overlap between the box plots of Finland and
Spain, as well as between Finland and Sweden, the medians
of these groups do not lie within the overlapping regions.
Consequently, this still suggests that there is a significant
difference in carbon intensity among these regions.

In this way, we conclude that there is a significant difference
between these countries when it comes to their carbon intensity
values and as a result, the energy mixes that they are utilizing.
Such a result further quantifies what has been established
through observation in this section, that location and time have
significant effects on the estimation of carbon emissions in all
sectors even in computing.

2) Relationship between Carbon Intensity & Carbon Emis-
sions: In developing our tool, to estimate the carbon emissions
we used the simple Formula 3. An assumption we had made
regarding the formula was that Total Power remains constant
throughout the duration that the algorithm runs. This simpli-
fication implies a direct linear relationship between carbon
emissions and carbon intensity, as carbon intensity is the only
variable affecting emissions during the computation interval.
Due to this, the model itself is not accurate and does not
account for real-world complexities where power usage can
vary. However, as the analysis so far has shown, through the
model, the influence of varying electricity sources on carbon
intensity can be observed. Using our analysis but also the
established literature, it can be deduced how reduced emissions

in computing tasks are linked to low carbon intensity periods;
meaning periods where the energy mix is cleaner. Thus,
while our model simplifies the relationship, it highlights the
linkage between energy sourcing, carbon intensity, and resul-
tant emissions, showcasing the importance of energy source
management in environmental impact strategies (Figure 8).

B. Analysis of Forecasting Model Performance

We now transition to the analysis related to the results
retrieved using the CarbonCast forecasting model. This section
evaluates the model’s performance before and after training
and analyzes the discrepancies between forecasted and actual
carbon intensities.

To begin with, by using the model we were able to generate
test forecasting data ranging from the 23rd of November, 2023
until the 28th of May, 2024. The data include for every day,
96-hour carbon intensity forecasts. This data was generated
with the pre-trained model and then once again with the newly
retrained model. The improvement in model performance after
training is evident when comparing the Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE)
values across four consecutive days. RMSE measures the error
of a model in predicting quantitative data. It is calculated as
the square root of the average of squared differences between
predicted and actual observations. On the other hand, MAPE
measures the accuracy of a model as a percentage. Initially,
the model exhibited an overall RMSE of 118.31 and a MAPE
of 56.78%, values indicating large variance and error in the
predictions compared to the actual data.



Day RMSE MAPE
Day 1 94.43 42.92%
Day 2 120.99 58.22%
Day 3 128.04 62.53%
Day 4 129.78 63.44%

Overall 118.31 56.78%

TABLE VI: Performance of the Forecasting Model Before
Training.

However, after retraining the model with the up-to-date data,
these metrics improved significantly, with the overall RMSE
reducing to 82.64 and the MAPE to 32.86%.

Day RMSE MAPE
Day 1 70.75 25.41%
Day 2 86.79 34.34%
Day 3 86.46 35.89%
Day 4 86.55 35.80%

Overall 82.64 32.86%

TABLE VII: Performance of the Forecasting Model After
Training.

Thus, as we were certain that the retraining improved the
predictions, we continued by utilizing the 96-hour forecasts
that we generated with our script. These can be seen being
plotted against the actual values of these days for Germany in
Figure 9. By observing the graph, it is clear that the model
does a very good job of capturing hourly and daily trends
with high accuracy. Any fluctuations in the intensity values
of these four days have been captured correctly, despite some
overshooting or undershooting that may take place from time
to time. Such small inaccuracies are expected, as it would be
impossible for the model to capture effectively any unforeseen
spikes in energy demand or sudden changes in renewable
output. As a result, by utilizing such efficient forecasts of
carbon intensity, we can perform estimations for the carbon
emissions of computational tasks also in future timeframes. In
this way, users can be given the ability to strategically deploy
their computational tasks at locations where the emission
output will be minimized.

Fig. 9: Comparison of Forecasted vs. Actual Carbon Intensity.

V. DISCUSSION AND FUTURE WORK

The analysis conducted in Section IV demonstrated that
carbon intensity directly affects the carbon footprint of com-
putational tasks. More specifically, a higher carbon intensity,
caused by a larger use of fossil fuels in a region’s energy mix,
results to the increased emissions of computational operations.
Conversely, lower carbon intensity, reflective of a cleaner
energy mix, reduces these emissions. By integrating real-
time and forecasted carbon intensity data into our tool, we
provided users with the ability to visualize such effects that
their computing activities may have. The visualizations not
only portray the variance in emissions due to different energy
mixes but also showcase the reduction that can take place when
computational tasks are scheduled during periods of lower
carbon intensity.

The ability to schedule computational tasks during periods
of low carbon intensity is critical for reducing carbon emis-
sions. Our findings suggest that scheduling these tasks should
occur when the energy mix is at its cleanest, meaning when
carbon intensity levels are lowest. An alternative is to schedule
these tasks in regions where the energy mix is predominantly
composed of renewable sources (e.g. Finland and Spain).

To schedule tasks in alignment with periods of low carbon
intensity, however, it is necessary to know what the intensity
levels are beforehand. This necessity brings forecasting into
a pivotal role. Our integration of the CarbonCast forecast-
ing model enables the prediction of carbon intensity up to
four days in advance, providing a crucial planning tool for
users. By forecasting future carbon intensity, the tool allows
users to be informed regarding where and when they should
deploy/schedule their computational tasks maximizing their
alignment with environmental and operational efficiency goals.

The development of our dashboard has provided valuable
insights into carbon emissions from computational tasks across
different geographic locations. However, the current architec-
ture of our system as individual components rather than a
pipeline hampers the usability of the system in real-time sce-
narios. Therefore, a major step that has to take place for future
iterations, is the transformation of the current system into a
deployable pipeline. This would involve setting up a scheduled
polling mechanism that retrieves new data every 24 hours
and generates updated forecasts. Implementing this pipeline
would ensure that our dashboard can be used dynamically and
can provide real-time insights and forecasts, allowing users to
make timely and informed decisions about their computational
tasks and energy usage strategies.

Now, when it comes to estimating the emissions, one of the
main assumptions in our current model is the non-variability
of the Total Power variable during computational tasks. This
assumption overlooks the effects of power dynamics in com-
putational systems. For instance, we can observe this even
through the SPEC Benchmark which indicates that increasing
the load on systems can lead to states of power inefficiency.
Thus, considering the already known effects that exist if we
change the load, it is unrealistic to assume power remains



constant across large timeframes even if it deviates by small
factors. To address this, in the future, we should consider
a function where Total Power changes across time. This
would allow for a non-linear model of the form y = a × b,
where both a (Total Power) and b (Carbon Intensity) are
continuous variables. Such an approach would enable a deeper
analysis of the interdependencies between carbon intensity,
computational energy use, and carbon emissions. By capturing
such variability in power usage, we would be able to estimate
emissions more accurately.

In conclusion, while our current system serves as a tool for
understanding and managing carbon emissions, the outlined
future work is vital for ensuring our solution is precise and
practical. In the future, we aim to deploy and modify its
architecture so it follows that of a pipeline solution. This
will allow for more dynamic and responsive carbon footprint
management by our users. Additionally, we plan to expand
upon the current functionality, by including features that allow
for a dynamic change in the task’s computational load during
runtime, thus increasing the tool’s accuracy and applicability.

VI. CONCLUSION

In this thesis, we introduced a tool designed to estimate
the carbon emissions of computational tasks on servers. Our
Carbon Footprint Estimator integrates real-time data on energy
mix and server hardware configurations along with models
like CarbonCast to estimate and forecast carbon emissions. We
demonstrated the ability of our tool to provide insights into the
environmental impact of computational activities, highlighting
the significance of timing and geographical location on carbon
emissions.

Our findings reveal that scheduling computational tasks
during periods of lower carbon intensity can reduce the carbon
footprint of server operations. Specifically, our results indicate
that by leveraging low-carbon intensity periods, the tool can
help in planning and executing computing tasks more sus-
tainably. The use of detailed real-time and forecasted carbon
intensity data enables users to make informed decisions about
when and where to run their computational tasks to minimize
environmental impact.

Ultimately, the significance of the Carbon Footprint Esti-
mator tool transcends its immediate functionality. It catalyzes
change, by promoting awareness and driving the tech industry
towards a more sustainable and environmentally-friendly fu-
ture. Sustainability must be at the core of our digital evolution,
ensuring that as we progress technologically, we also protect
the health of our planet.
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VII. APPENDIX

(a) Germany (b) Spain

(c) Finland (d) Netherlands

(e) Poland (f) Sweden

Fig. 10: Percentage of All Energy Sources in Various Countries.



(a) Finland (b) Germany

(c) Netherlands (d) Poland

(e) Spain (f) Sweden

Fig. 11: Q-Q Plots for assessing normality in various countries.



Fig. 12: Average Daily Carbon Intensity of Various Countries from May 2023 to April 2024. This graph illustrates the
fluctuations in carbon intensity across different countries. Noticeable deviations can be observed with countries like Poland and
Germany exhibiting higher peaks compared to others. Poland, largely dependent on coal, shows the highest carbon intensity,
particularly during the colder months, indicating higher coal usage for heating and energy. Germany, with a mixed energy
profile, experiences fluctuations that correspond with changes in renewable energy output and coal use. In contrast, Sweden
and Finland show significantly lower intensities, highlighting their effective use of renewable resources like hydro and nuclear
power. The seasonal variations in carbon intensity reflect changes in energy demand and production efficiency, impacting the
carbon footprint associated with electricity consumption.
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