
Catching Cost Issues in
Infrastructure as Code Artifacts

using Linters

Koen Bolhuis

University of Groningen

Catching Cost Issues in Infrastructure as Code Artifacts using
Linters

Master’s Thesis

To fulfill the requirements for the degree of
Master of Science in Computing Science

at the University of Groningen under the supervision of
Prof. dr. V. (Vasilios) Andrikopoulos (Bernoulli Institute, University of Groningen)

and
dr. D. (Daniel) Feitosa (Bernoulli Institute, University of Groningen)

Koen Bolhuis (S3167895)

August 1st, 2024

Abstract

Cost concerns have historically been a driving factor in cloud adoption. As the com-
plexity of cloud-based software systems grows, and with it the need to manage increas-
ingly intricate infrastructures, Infrastructure as Code (IaC) approaches have become
indispensable tools. However, few studies have examined the cost implications of IaC
usage for cloud software. In this research, we use an existing dataset that analyzed
cost-related commits on IaC artifacts from open-source repositories. We apply thematic
analysis to the commits’ contents to identify recurring effective and ineffective practices
and we compile a catalog of cost management patterns and antipatterns. This catalog
can serve as a foundation for improving cost-efficiency, but to foster adoption it would
be beneficial to incorporate the patterns and antipatterns directly into the development
toolchain. Since static analysis tools such as linters are widely used to improve non-
functional properties and catch issues in IaC scripts, and because existing tools both
in literature and industry focus on security and code quality concerns as opposed to
cost management, we implement selected (anti)patterns as rules in two popular linters,
Checkov and TFLint, to aid developers in cost-effective IaC development.

iii

Acknowledgements

My sincere thanks go out to everyone who has helped bring this thesis to life. First of all,
I want to extend my gratitude to Vasilios Andrikopoulos and Daniel Feitosa, for their
fantastic guidance and collaboration, and for the opportunity to work on this project.
To my family, for their unconditional love and support. To my friends, for the days
of “working” together in the study landscape, and the necessary distractions from the
thesis. Thanks as well to the other students doing their projects under the cloud cost
awareness umbrella, who made this endeavour feel much less like a solo journey.

Without all of you, this thesis would not have been possible—so thank you.

iv

Contents

List of Figures vii

List of Tables viii

List of Listings ix

1 Introduction 1
1.1 Research Objective . 2
1.2 Contributions . 2
1.3 Outline . 3

2 Background & Related Work 4
2.1 Code Smell Detection . 4
2.2 Linters . 6
2.3 Infrastructure as Code . 7
2.4 IaC Smells . 9
2.5 Static Analysis of IaC . 10

3 Study Design 14
3.1 Data Collection . 15
3.2 Updating the Original Dataset . 15
3.3 Pattern Extraction . 16
3.4 Implementation . 16
3.5 Evaluation . 17
3.6 Requirements . 17

3.6.1 Functional Requirements . 18
3.6.2 Non-functional Requirements . 19

4 Pattern Extraction 20
4.1 Patterns and Antipatterns . 21
4.2 (Co-)occurrences . 27

5 Implementation 29
5.1 Tool Selection . 29
5.2 Mapping Patterns to Rules . 31

5.2.1 Budget . 32
5.2.2 Object storage lifecycle rules . 32

v

Contents

5.2.3 Old generation . 32
5.2.4 AWS - Expensive DynamoDB . 33

5.3 Rule Implementation . 33
5.3.1 Checkov . 33
5.3.2 TFLint . 35

5.4 Usage . 36

6 Evaluation 38
6.1 Relevance . 38

6.1.1 Setup and Results . 38
6.1.2 False Positives . 40
6.1.3 Latest Commits . 41

6.2 Performance . 42
6.3 Comparison Between Checkov and TFLint 43

7 Discussion 45
7.1 Pattern Extraction . 45
7.2 Implementation . 45
7.3 Evaluation . 46
7.4 Threats to Validity . 47

8 Conclusion 48
8.1 Future Work . 48

References 50

A List of (Anti)pattern Occurrences 58

B TFLint Inspection Process 65

C Distribution of Cloud Providers 66

D Example Scans 67

vi

List of Figures

2.1 Example linter warning from ESLint in Visual Studio Code 6

3.1 Overview of the steps (rectangles) and outputs (parallelograms) of our
study design . 14

4.1 Histogram of the top 10 codes before defining the patterns and antipatterns 20
4.2 (Co-)occurrences of (anti)patterns within commits 28
4.3 (Co-)occurrences of (anti)patterns within repositories 28

6.1 Average inspection duration for Checkov and TFLint 42
6.2 Comparison of inspection duration for Checkov and TFLint 43
6.3 Relation between the number of lines of IaC code and inspection duration 43

B.1 Sequence diagram of TFLint’s inspection process 65

C.1 Distribution of cloud provider codes . 66

D.1 Example Checkov scan for Old generation 67
D.2 Example TFLint scan for AWS - Expensive DynamoDB 68

vii

List of Tables

2.1 Tools for static analysis of IaC . 12

4.1 Selected occurrences of (anti)patterns . 21

5.1 Tool exclusion process . 30
5.2 (Anti)patterns implemented as linter rules 33

6.1 Precision and recall of Checkov and TFLint (“before” state) 39
6.2 Precision and recall of Checkov and TFLint (“before” and “after” states) . 39
6.3 Occurrences of patterns in (active) repositories’ latest commits 42
6.4 Fulfillment of requirements . 44

viii

List of Listings

2.1 Terraform configuration that provisions a compute instance on Amazon
Web Services . 8

5.1 Checkov check written in Python . 34
5.2 Checkov check written in YAML . 35
5.3 TFLint rule . 36
6.1 Incorrect false positive for Object storage lifecycle rules 40
6.2 Incorrect false positive for Old generation . 41
6.3 Incorrect false positive for AWS - Expensive DynamoDB 41
D.1 Example Terraform file for the Old generation antipattern 67
D.2 Example Terraform file for the AWS - Expensive DynamoDB antipattern . . 68

ix

1 Introduction

Since its introduction, cloud computing has become a wildly popular way to implement
computational infrastructures. The flexibility offered by cloud technologies, among
other factors, has driven their widespread adoption by organizations, but one key driver
stands out in particular: the potential of cost reduction. By removing the need for up-
front capital expenses in favor of utilities-like, pay-as-you-go pricing [3, 61], and by
benefitting from the economies of scale achieved by cloud service providers, businesses
and individuals alike are able to deploy larger and more complex infrastructures at
manageable prices.

However, this increasing infrastructural complexity needs to be managed somehow.
Manual configuration and deployment is labor-intensive and susceptible to errors [91],
a challenge which is only exacerbated by the growing demand for multi-region, multi-
cloud deployments, and so a need for automation arises [10, 29]. Infrastructure as Code
(IaC) solutions, particularly infrastructure orchestrators such as Terraform and Amazon
Web Services (AWS) CloudFormation, have emerged to address this need by adding a
layer of abstraction over cloud providers’ management APIs [29] and by enabling de-
velopers to provision their infrastructures through reusable artifacts that are treated like
any other type of source code [8].

Previous research by Feitosa et al. [33] has already uncovered evidence of cost-related
decision making in the version control systems of IaC-based open-source software and
provided evidence for developers’ awareness of cost at the level of Infrastructure as
Code. Nevertheless, little other IaC research has touched on these cost concerns, in-
stead focusing on security and quality aspects of IaC scripts and tooling to support IaC
practices [42, 76, 83].

This thesis aims to address this gap in two steps. First, we build upon an existing set
of commits that resulted from Feitosa et al.’s work [34] by means of repository mining
and thematic analysis. We carefully analyze how developers address existing cost is-
sues in the IaC artifacts involved in these commits to extract effective and ineffective
cost management practices, and we present these practices in the form of a collection
of patterns and antipatterns. Patterns are a concept originally introduced in the context
of object-oriented design [40] which present reusable solutions to common software de-
velopment problems. Similarly, antipatterns represent recurring pitfalls that can serve
to educate developers of issues that need to be avoided [17].

Secondly, we transform selected patterns and antipatterns into detection rules, simi-
lar to previous work [81, 86]. We then transfer these rules to a type of automated static

1

Chapter 1. Introduction 1.1. Research Objective

analysis tools called linter to facilitate a “left shift” of cost management within the devel-
opment process of systems that deploy Infrastructure as Code. Linters tend to employ
relatively simple rules to detect problems and defects like code smells [97], but they are
also suitable to catch the cost issues that are the focus of this work. They integrate with
development workflows by pointing out the exact location of issues, for example inside
an integrated development environment (IDE). Currently, no existing IaC linters detect
cost issues; thus, we extend two popular linters for code and security smells.

1.1 Research Objective

In short, our objective is to help developers better manage the cost of their Infrastruc-
ture as Code-enabled systems. To achieve this goal, we aim to implement a linter that
automatically detects common cost issues. We define the following research questions
to guide this process:

RQ1 What recurring patterns can we find in code changes that address cost issues in
the IaC artifacts of cloud software?

RQ2 How can these patterns be implemented in a linter?

RQ3 How well does the resulting linter perform at detecting cost issues?

Through RQ1, we aim to extract general patterns from a set of code changes where the
message attached to each commit has previously been determined to be related to cost.
In this way, we want to find out how practitioners are addressing cost concerns in their
Terraform codebases. With RQ2, we build on the aforementioned patterns by trans-
forming them into rules that can be implemented in a code linter, in order to automate
the detection of instances of these patterns. Finally, through RQ3, we determine how
well the implementation performs at detecting cost issues, as a proxy for how useful the
linter may be for developers of IaC-based cloud software.

1.2 Contributions

The main contributions of this work can be summarized as follows:

1. A labeled dataset of commits and the cost-changing actions occurring in their diffs;

2. A catalog of cost management patterns and antipatterns for IaC;

3. An implementation of selected (anti)patterns as Checkov 1 checks and a TFLint 2

ruleset.

Supplementary code and data for this thesis are available in a separate package [12].

Furthermore, as a side artifact of our literature search we provide an overview of static
analysis tools for IaC from literature and industry. In addition, through the evaluation
of our implementation we find several unaddressed cost issues in open-source reposi-
tories, which may provide opportunities for future investigation.

1https://checkov.io
2https://github.com/terraform-linters/tflint

2

https://checkov.io
https://github.com/terraform-linters/tflint

Chapter 1. Introduction 1.3. Outline

1.3 Outline

The rest of this thesis is organized as follows. Chapter 2 introduces the necessary back-
ground and surveys literature related to IaC, linters, code smells and the combination
thereof. Chapter 3 specifies requirements for the linter and our approach towards im-
plementing it. Next, Chapter 4 consists of a thematic analysis of IaC code changes to
extract recurring cost patterns and antipatterns. These are then used in Chapter 5 to
implement linter rules to detect cost issues in IaC files, followed by an evaluation in
Chapter 6. Finally, we discuss our findings in Chapter 7 and conclude the thesis in
Chapter 8.

3

2 Background & Related Work

In this chapter, we look at a number of broad topics, the intersection of which forms the
basis of our work: code smell detection, linters and Infrastructure as Code, with a particular
focus on linters and static analyzers for the latter. For our literature search, we use the
following search queries on Google Scholar:

• (program OR code OR software) AND lint*
• code smell AND detect*
• ”infrastructure as code” AND (smell OR defect OR cost OR energy OR static

analysis OR lint*)

For tools used in industry, we search Google using the following queries:

• infrastructure as code linter
• infrastructure as code analyzer
• IaC linter
• IaC analyzer
• terraform linter
• terraform analyzer

We explicitly search for Terraform-oriented tools because the dataset by Feitosa et al. [34]
that serves as the starting point for our study is focused on Terraform, making those
tools especially relevant.

2.1 Code Smell Detection

The term “code smell”, coined by Beck and popularized by Fowler [39], refers to defects
and flaws in code that are not necessarily coding bugs or errors by themselves, but
may be indicators of deeper issues. The exact definition of what constitutes a code
smell is subjective and varies by domain, language and developer. Since the concept
was introduced, it has been extended to many programming languages and domains,
including Infrastructure as Code; we discuss this in more detail in Section 2.4. The
issues we investigate can be considered a type of “cost smell”, and so techniques for
code smell detection are of potential interest. As noted by Santos et al. [87] in their
systematic review on code smells, tools and methods for code smell detection are a key
area in code smell research.

Schumacher et al. [88] studied professional software developers’ ability to detect code
smells compared to automated methods and found that automated methods performed

4

Chapter 2. Background & Related Work 2.1. Code Smell Detection

better than humans, who often tended to disagree with one another, suggesting that au-
tomated detection as a first step in code review can decrease the effort spent on manual
code inspections. The low agreement among developers is also apparent from the work
by Hozano et al. [49], who studied how developers detect code smells and found that
individual developers do so in significantly different ways. Both studies support the
benefits of automated tools to detect issues in code.

One category of detection tools consists of metric-based approaches. Danphitsanuphan
and Suwantada [28] implemented code smell detection based on code metrics, as well as
an investigation into the correlation of these smells with structural bugs. Velioglu and
Selcuk [102] also introduced a metric-based approach where a set of training projects
is used to determine lower and upper bounds for code smell metrics to detect antipat-
terns. Arcelli Fontana et al. [36] proposed a benchmark-based approach to automatically
derive threshold values for metric-based code smell detection. JSNOSE, introduced by
Fard and Mesbah [32], combines static and dynamic analysis of JavaScript code using a
metric-based approach. A limitation shared by these techniques that use code metrics
is that they are often unable to highlight the exact location and source of issues, because
they rely on aggregate statistics to determine whether some higher-level unit of code,
e.g. class or file, contains code smells.

In addition to metric-based methods, various other approaches have been proposed.
Moha et al. [62] introduced DECOR, a method consisting of a set of tools to specify
design smells and their underlying code smells, and detect them using code genera-
tion from a rule-based domain-specific language combining metrics, relations and other
rules. Rasool and Ali [82] specified Android-specific code smells and implemented
an AST-walking tool to detect them. Another tool for Android smell detection is the
aDoctor project by Palomba et al. [72], which uses a combination of pattern matching
and graph analysis. Walker, Das and Cerny [103] studied the automated detection of
microservice-specific code smells by using a combination of graph analysis and metrics
on dependency and configuration artifacts. Despite the variety in approaches, a com-
mon theme among these studies is the fact that they encode code smells as rules which
can detect instances of these smells in source code, which is a simple but flexible way to
implement code smell detection.

Recent efforts have focused on machine learning (ML) methods for code smell detec-
tion. MLSmellHound by Kannan et al. [55] uses ML to adapt Pylint 1 results to include
relevant context around the detected smells. Fontana et al. [37], Dewangan et al. [30]
and Liu et al. [60] each proposed approaches for code smell categorization based on
ML and deep learning. Di Nucci et al. [31] performed an empirical evaluation of ML-
based smell detectors, concluding that existing tools performed poorly on codebases
containing mixed types of code smells. Pecorelli et al. [73] compared ML methods with
DECOR [62] and found that while DECOR generally performs better than the machine
learning methods, its precision is still too low for practical use. Similar to metric-based
methods, ML methods tend to focus on categorization of smells as opposed to identify-
ing the exact code location, significantly limiting their utility for practical static analysis
tools. All in all, ML approaches for smell detection still have a ways to go.

1https://www.pylint.org/

5

https://www.pylint.org/

Chapter 2. Background & Related Work 2.2. Linters

2.2 Linters

Automatic static analysis tools (ASATs) enable their users to inspect code and find prob-
lems like defects, style issues and deviations from best practices. ASATs aid in detecting
faults and highlighting refactoring opportunities early in the software development life
cycle, when they require less effort to address and are cheaper to fix, which has made
them popular among development teams [51]. A linter is a type of static analysis tool
that tends to perform relatively simple types of analyses to catch low-complexity issues
such as code smells or coding style violations [96]. Linters often integrate with devel-
opers’ code editors, allowing them to point at the exact location of issues in the code
the moment these issues are introduced. Examples of popular linters include Pylint
for Python and ESLint 2 for JavaScript. Figure 2.1 shows an example of how a linter
commonly presents issues to developers.

Figure 2.1: Example linter warning from ESLint in Visual Studio Code

To our knowledge, no secondary study exists that specifically covers linters. However,
there have been empirical studies into the use of linters in industry and works that in-
troduce new linters. For example, Hericko and Sumak [48] performed an MSR study to
measure linter usage and warnings in the JavaScript open-source ecosystem. Tomasdot-
tir, Aniche and Van Deursen [97] interviewed 15 developers of projects that use ESLint
on why and how they use the linter. They extended this research by also analyzing
over 9 500 ESLint configurations and performing a survey among 337 JavaScript devel-
opers on linter use [96]. Habchi, Blanc and Rouvoy [44] interviewed 14 developers on
the use of linters to detect performance issues in Android applications. These studies all
highlight the benefits that developers experience when adopting linters in their projects,
which include catching issues earlier in the development cycle, preventing errors, and
simplifying code reviews. However, developers also face challenges, such as creating
and maintaining the linters’ configuration, choosing which rules to enable or disable,
and dealing with false positives, as well as the fact that many linter rules are based on
experience as opposed to real-world evidence.

A number of studies have themselves introduced linters or extensions to existing lin-
ters. The original linter was Johnson’s Lint [54], released in 1978, which provided C
programmers with analyses of C programs that went beyond those offered by C compil-
ers of the time. More recently, Rafnsson et al. [74] created a plugin for ESLint which can
automatically detect cross-site scripting, security misconfigurations and SQL injections
using rules that walk JavaScript abstract syntax trees (ASTs). Goaer [41] introduced an

2https://eslint.org

6

https://eslint.org

Chapter 2. Background & Related Work 2.3. Infrastructure as Code

extension to Android Lint based on visitor-style rules to detect Android-specific energy
efficiency bugs. Ryou et al. [85] created Culint, a tool that uses two fine-tuned language
models to respectively classify variable-misuses in Python functions and suggest fixes.

DevReplay by Ueda, Ishio and Matsumoto [99] goes a step further by analyzing regular
programming behavior on open-source projects to automatically generate regular ex-
pression rules that can be used to detect project-specific coding rule violations. Vassallo
et al. [101] introduced CD-Linter, a linter for GitLab continuous integration/continuous
delivery (CI/CD) pipelines in Maven or Python projects, using pattern matching on
relevant artifacts to detect “CD smells”. Meanwhile, Sprinter by Alfredo, Santos and
Garrido [1] is a linter for Java that uses control-flow analysis and pattern matching on
control-flow graphs to detect structured programming issues. Almashfi and Lu [2] cre-
ated TAJSlint for JavaScript, which uses a combination of AST-walking rules and control-
flow analysis to detect JavaScript-specific code smells. It is clear that while there are
many different approaches to implementing linters, they generally have one thing in
common: the use of relatively simple rules to perform the detection of their respective
issues in source code.

2.3 Infrastructure as Code

Infrastructure as Code is a collection of techniques where the infrastructure of a software
system is deployed and configured using code, as opposed to manual configuration by
system administrators using e.g. interactive installation tools. Popularized as part of
the DevOps movement, IaC promotes the creation of reusable scripts to manage infras-
tructure, and it represents a widely-used practice [8, 63]. IaC is applied to various facets
of infrastructure management, such as configuration management across local and remote
machines and infrastructure orchestration of cloud service provider resources. Popular
examples of the former include Puppet 3, Chef 4 and Ansible 5, while the latter category
includes tools such as AWS CloudFormation 6 and Terraform 7, the focus of this study.

To illustrate how Terraform can be used to manage cloud resources, Listing 2.1 con-
tains an example of a Terraform configuration, written in the HashiCorp Configuration
Language (HCL) 8. Terraform uses so-called providers to abstract away the management
APIs offered by cloud providers. The primary construct in Terraform is the resource
block, which allows the developer to declare cloud resources and their properties. In
the example, a virtual server is defined with properties like the machine image (ami)
and instance type. The language also supports additional constructs such as variables,
loops and external modules, in order to manage complexity and abstract the creation
of similar resources. When Terraform is run using a configuration as its input, it uses
the cloud provider’s API to compare the actual state of the cloud infrastructure to the
desired state, and it creates a plan to perform the necessary changes that achieve this

3https://puppet.com
4https://chef.io
5https://www.ansible.com/
6https://docs.aws.amazon.com/cloudformation/
7https://terraform.io
8https://developer.hashicorp.com/terraform/language

7

https://puppet.com
https://chef.io
https://www.ansible.com/
https://docs.aws.amazon.com/cloudformation/
https://terraform.io
https://developer.hashicorp.com/terraform/language

Chapter 2. Background & Related Work 2.3. Infrastructure as Code

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "˜> 4.16"

}
}

required_version = ">= 1.2.0"
}

resource "aws_instance" "app_server" {
ami = "ami-830c94e3"
instance_type = "t3.micro"

}

Listing 2.1: Terraform configuration that provisions a compute instance on Amazon
Web Services, adapted from the Terraform tutorial 9

desired state. This plan can then be executed to apply the modifications or create new
resources.

Despite the fact that IaC is undeniably a cornerstone of cloud-based software develop-
ment, it is still a rather new practice, something which is also reflected by the relatively
sparse literature on the subject. In a 2019 systematic mapping study, Rahman, Mahdavi-
Hezaveh and Williams [76] identified the focus of existing studies on tools or extensions
of tools implementing IaC practices, noting a lack of research into defects and security
flaws. This was partly corroborated by a study from Guerriero et al. [42], who inter-
viewed 44 senior developers and found that support provided by existing tools is still
limited, and that there is a need for novel techniques for testing and maintaining IaC.

After those studies were published, more research efforts were directed towards qual-
ity and security concerns. Kumara et al. [57] performed a grey literature review to find
10 categories of good practices and 4 categories of bad practices for IaC, specifically
for the IaC tools Ansible, Puppet and Chef, while Chiari, De Pascalis and Pradella [21]
and Reddy Konala, Kumar and Bainbridge [83] reviewed the landscape of IaC static
analysis tools, finding a large number of tools focused on security and code quality.
Hasan, Bhuiyan and Rahman [45] examined internet artifacts such as blog posts to ex-
tract prevalent testing practices for IaC, the most notable ones being the use of linters for
the avoidance of antipatterns and the use of continuous integration to validate changes.
Dalla Palma et al. [26] compiled a catalog of 46 metrics for measuring the quality of IaC
scripts, which are used in a framework called RADON [71] for code smell and defect
prediction. Although all of the aforementioned studies have contributed to the under-
standing of security and quality aspects of IaC scripts, research is in its infancy, and
problems are still wide-spread in practice, as determined by the various studies that
have performed empirical analysis of IaC artifacts.

For example, Rahman, Farhana and Williams [75] performed quantitative analysis on
open-source IaC scripts combined with practitioner interviews to extract antipatterns

9https://developer.hashicorp.com/terraform/tutorials/aws-get-started/aws-b
uild

8

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/aws-build
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/aws-build

Chapter 2. Background & Related Work 2.4. IaC Smells

that correlate with defects, finding a set of 5 antipatterns—primarily related to the de-
velopment process—that lead to defects. Bhuiyan and Rahman [11] identified security
issues in IaC scripts that are frequently co-located, observing that between 17.9% and
32.9% of their inspected scripts contain co-located insecure coding practices.

Using a similar approach to our study, Chen, Wu and Wei [20] looked at code changes
where errors in IaC artifacts were fixed, in order to extract common error patterns, based
on HDBSCAN clustering. Their study shows the value of extracting issues and defects
from code changes, although it should be noted that their sample size of 14 Puppet ar-
tifacts is quite small. In another study, Rahman et al. [79] applied orthogonal defect
classification [22] to IaC scripts to categorize defects and compare their distribution to
non-IaC code. They found that unlike non-IaC codebases, where the frequency of in-
troduced defects is high early in a project’s lifecycle but decreases over time, IaC scripts
show a consistent temporal trend.

There is, however, very little (if any) literature on the intersection of IaC and cost. As
evidenced by the studies discussed so far, most research is concerned with security,
defects and quality issues, as well as code smells, which we discuss in more detail in
the following section. The lack of focus on cost management is surprising given the
fact that cost reduction is a key reason to adopt cloud computing, and by extension
IaC, in the first place. The only work we found that is tangentially related to IaC cost
concerns is a technical paper by Osaba et al. [69] in the context of the PIACERE project 10

introducing the IaC Optimizer Platform, a tool that can optimize IaC deployments for
user-defined constraints on availability, performance and cost. However, the tool is
designed to integrate with other tools from the PIACERE ecosystem, preventing its use
with existing IaC technologies like Terraform.

2.4 IaC Smells

The concept of (code) smells can be extended to IaC, and numerous studies have looked
at code smells in IaC codebases. Guo and Wu [43] performed a systematic literature re-
view on the prevalence and detection of code smells in microservice-based software, in-
cluding smells in IaC artifacts. Their review revealed a trend towards research into IaC
smell detection, but also a lack of studies focusing on impact analysis. Sharma, Fragk-
oulis and Spinellis [92] analyzed open-source repositories containing Puppet artifacts to
extract 13 implementation and 11 design configuration smells. Schwarz, Steffens and
Lichter [89] built upon this work by extending the catalog of smells and analyzing to
what extent these smells can apply to other IaC technologies, concluding that the origi-
nal smells can be extended to Chef. Dalla Palma et al. [27] compared machine learning
methods for defect prediction in Ansible artifacts. Another study by Dalla Palma, Di
Nucci and Tamburri [25] introduced AnsibleMetrics, a tool to compute metrics on An-
sible scripts that may predict defects. This tool is used by RADON Framework for IaC
Defect Prediction [71], an integrated framework to mine repositories, collect data and
train machine learning models for prediction of Ansible defects. Ntentos et al. [66] intro-
duced a method for detecting architectural smells, mainly related to coupling, and for
suggesting potential fixes. Rahman and Williams [78] performed qualitative analysis of

10https://piacere-project.eu/

9

https://piacere-project.eu/

Chapter 2. Background & Related Work 2.5. Static Analysis of IaC

IaC scripts involved in defect-related version control commits to extract properties of
source code that correlate with defects, and Rahman et al. [80] created a defect taxon-
omy for IaC. The main thread that runs throughout these existing smell-related studies
is their focus on smells relating to code quality and defects, again emphasizing a distinct
lack of focus on the cost aspects.

2.5 Static Analysis of IaC

To address code smells and other issues, there is a large number of tools for static
analysis of IaC introduced in literature or supported by industry. We provide a sum-
mary of the available tools in Table 2.1. We use the table by Reddy Konala, Kumar and
Bainbridge [83] as a starting point, and describe the following properties:

• Issues detected: the type of issues the tool detects. These include antipatterns, cor-
rectness violations, code smells and security smells. Additionally, terraform-compliance [70]
does not detect any specific kind of issue or even issues per se, instead allowing
users to define and detect custom properties.

• Target(s): which IaC technology the tool supports. These include infrastructure
orchestrators such as Terraform, AWS CloudFormation, Azure Resource Manager
(ARM) and TOSCA, configuration management tools such as Puppet, Chef and An-
sible, and container and image management tools like Docker, Kubernetes and Helm.

• Technique: the detection technique used by the tool. We identify rule-based ap-
proaches using regular expressions (simple text matches), ad-hoc rules (combining
ad-hoc properties to detect issues), graph analysis (often specifying rules in terms
of connections between components) and deep learning including a proprietary “AI
engine”. Moreover, RADON [71] uses data mining and code metrics to detect An-
sible antipatterns, Rehearsal [91] uses a SMT solver to encode Puppet scripts and
verify certain properties that indicate code smells, and SODALITE [58] uses on-
tologies and allows users to define SPARQL 11 queries to detect code smells.

• Extension mechanism: the method with which the tool can be extended, since
this is relevant for our own work. Several tools are proprietary or have not pub-
lished their source code, preventing them from being extended. Some tools offer
dedicated extension or plugin capabilities, while others are open-source but lack
these dedicated mechanisms, instead requiring custom extensions to be created.

We have omitted some of the tools from the original table. CloudSploit [5] does not
analyze IaC; instead, it connects to cloud providers’ APIs to collect information which
is then analyzed for security issues; SecGuru by Jayaraman et al. [52] detects issues in
firewall policies, which, while they can be considered IaC, are too specialized compared
to IaC technologies like Ansible or Terraform; finally, SecureCode by Dai et al. [24] ana-
lyzes shell scripts embedded in the IaC scripts as opposed to IaC code itself.

In addition, we have extended the set of tools using a combination of Google Scholar
and Google search, finding several tools that Reddy Konala, Kumar and Bainbridge did
not list: Ansible Lint [4], Bicep linter [100], GASEL [67], Regula [84], terrafirma [104],

11https://www.w3.org/TR/sparql11-query/

10

https://www.w3.org/TR/sparql11-query/

Chapter 2. Background & Related Work 2.5. Static Analysis of IaC

terraform-compliance [70], terrascan [94], TFLint [95], trivy [7] and an unnamed tool by
Opdebeeck, Zerouali and De Roover [68].

Tools which are supported by industry are marked with (I). Tools which can be consid-
ered linters are indicated with (L); here, we define linters as tools which perform sim-
plistic forms of analysis and can highlight the exact location of issues. Out of the 31 tools,
15 can be considered a linter under this definition. Because DevOps and specifically IaC
promote the use of software engineering practices for infrastructure management [8],
we argue that linters, which are popular among regular software development teams,
are a suitable way to implement static analysis for IaC. This is compounded by the fact
that infrastructure orchestrators directly influence cloud spend through their automated
creation of resources, which makes it worthwile to catch potential cost issues as early as
possible. However, among the identified tools, none support cost management, a gap
we aim to address in this work by implementing a linter for cost issues.

11

Chapter 2. Background & Related Work 2.5. Static Analysis of IaC

Table 2.1: Tools for static analysis of IaC

Tool Issues de-
tected

Target(s) Technique Extension mecha-
nism

ACID [80] Antipatterns Puppet Regular expressions N/A
Ansible Lint [4]
(I, L)

Antipatterns Ansible Ad-hoc rules Writing ad-hoc ex-
tensions in Python

BARREL [15] Correctness
violations

TOSCA Graph analysis Writing rules in
JavaScript

Bicep lin-
ter [100] (I, L)

Code smells,
security
smells

Bicep Regular expres-
sions, ad-hoc rules

Writing ad-hoc ex-
tensions in C#

Checkov [18]
(I, L)

Security
smells

Terraform
HCL/JSON/ plans,
CloudFormation,
ARM, Kubernetes,
Helm, Dockerfile

Regular expres-
sions, ad-hoc rules,
graph analysis

Writing rules in
YAML or Python

cookstyle [19]
(I, L)

Code smells Chef Regular expressions Writing RuboCop 12

extensions in Ruby
DeepIaC [14] Antipatterns Ansible Deep learning N/A
foodcritic [38]
(I, L)

Code smells Chef Regular expressions Writing rules in a
Ruby DSL

GASEL [67] Security
smells

Ansible Graph analysis N/A

GLITCH [86] Security
smells

Ansible, Chef, Pup-
pet

Regular expressions Writing rules and
support for addi-
tional languages in
Python

Häyhä [59] Security
smells

CloudFormation Graph analysis N/A

KICS [56] (I, L) Security
smells

Terraform HCL,
CloudFormation,
ARM, Google
Deployment Man-
ager, Docker,
Docker Compose,
Helm, Kubernetes,
Knative, Pulumi,
Serverless Frame-
work, Ansible

Regular expressions Writing policies in
Rego 13

Puppeteer [92]
(L)

Code smells Puppet Regular expressions Implementing de-
tection strategies in
Python

RADON [71] Antipatterns Ansible Data mining Writing ad-hoc ex-
tensions in Python

Regula [84]
(I, L)

Security
smells

Terraform
HCL/JSON/ plans,
CloudFormation,
ARM, Kubernetes

Ad-hoc rules, regu-
lar expressions

Writing policies in
Rego

Rehearsal [91] Code smells Puppet SMT solver N/A
Semgrep [90]
(I, L)

Code smells,
security
smells

Terraform, Docker-
file

Regular expressions Writing rules in
YAML

12https://github.com/rubocop/rubocop
13https://www.openpolicyagent.org/docs/latest/policy-language/

12

https://github.com/rubocop/rubocop
https://www.openpolicyagent.org/docs/latest/policy-language/

Chapter 2. Background & Related Work 2.5. Static Analysis of IaC

Tool Issues de-
tected

Target(s) Technique Extension mecha-
nism

SLAC [81] (L) Security
smells

Ansible, Chef Ad-hoc rules, regu-
lar expressions

Writing rules in
Python

SLIC [77] (L) Security
smells

Puppet Ad-hoc rules, regu-
lar expressions

Writing rules in
Python

Snyk IaC Secu-
rity [50] (I)

Security
smells

Terraform HCL,
CloudFormation,
ARM

Proprietary AI en-
gine

Writing policies in
Rego

SODALITE [58] Code smells TOSCA Ontology with
SPARQL queries

Writing SPARQL
queries for user-
defined smells

Sommelier [16]
(L)

Correctness
violations

TOSCA Ad-hoc rules Writing rules in
Python

SonarLint [93]
(I, L)

Code smells,
security
smells

Terraform HCL,
ARM, CloudForma-
tion, Kubernetes,
Dockerfile

Regular expressions Writing rules in
Java

TAMA [46] Antipatterns Ansible Ad-hoc rules, regu-
lar expressions

Writing rules in
Python

terrafirma [104]
(I)

Security
smells

Terraform plans Ad-hoc rules, regu-
lar expressions

Writing rules in
YAML or Python

terraform-
compliance [70]
(I)

Custom
properties

Terraform HCL Ad-hoc rules Writing policies us-
ing radish BDD 14

constructs
terrascan [94]
(I)

Security
smells

Terraform HCL,
CloudFormation,
ARM, Kubernetes,
Helm, Kustomize,
Dockerfile

Ad-hoc rules, regu-
lar expressions

Writing policies in
Rego

TFLint [95]
(I, L)

Code smells Terraform HCL Ad-hoc rules, regu-
lar expressions

Writing rulesets in
Go or Rego (experi-
mental)

tfsec [6] (I, L) Security
smells

Terraform
HCL/CDK

Regular expressions Writing policies in
Rego

trivy [7] (I, L) Code smells,
security
smells

Terraform
HCL/JSON/ tfvars,
CloudFormation,
ARM, Kubernetes,
Dockerfile, Helm
YAML

Regular expressions Writing modules in
TinyGo 15

Opdebeeck, Ze-
rouali and De
Roover [68]

Code smells Ansible Graph analysis N/A

14https://github.com/radish-bdd/radish
15https://tinygo.org/

13

https://github.com/radish-bdd/radish
https://tinygo.org/

3 Study Design

Our objective is to help developers manage the cost of their Infrastructure as Code de-
ployments, which we aim to do by building a cost linter for Infrastructure as Code. In
this chapter, we lay out our approach towards this goal and towards answering our re-
search questions. A summary of the design of our study is depicted in Figure 3.1. As
shown, our study consists of four main parts: data collection, pattern extraction, im-
plementation and evaluation. We detail each step in the following sections. After this
study design, we specify a set of requirements that the linter should adhere to.

Gather data from
Feitosa et al. (2024)

Update with commits
from 2022-2024

567 commits
from

414 repositories

Knowledge
model

Collect changes to IaC
�les

1818 IaC �le diffs

Thematic analysis

261 commits
from 216 repositories

with (anti)pattern occurrences

3 patterns
&

7 antipatterns

Frequency analysis

Implement
linter rules

3 Checkov
checks

TFLint ruleset
with 4 rules

RQ1

RQ2

Precision/recall
evaluation

Performance
measurement

RQ3
Requirement
veri�cation

1. Data collection

2. Pattern extraction

3. Implementation

4. Evaluation

Figure 3.1: Overview of the steps (rectangles) and outputs (parallelograms) of our study
design

14

Chapter 3. Study Design 3.1. Data Collection

3.1 Data Collection

For this work, we start from an existing dataset by Feitosa et al. that was constructed
in their study on cost awareness in IaC-enabled open-source software [33, 34], specif-
ically projects focusing on Terraform. The choice of Terraform (and its open-source
fork, OpenTofu) was motivated by its broad compatibility with cloud service providers,
accessible interface, and mature API, which have helped spread adoption in diverse de-
velopment environments [29]. In addition, GitHub hosts a significantly large volume of
Terraform projects, which provided a robust dataset for analysis.

The initial dataset was generated by filtering GitHub repositories that include Terraform
descriptor files (.tf or .tf.json), which are indexed by GitHub. This search targeted
repositories created after Terraform’s first release in 2014 up to May 2022. An initial pool
of 152 735 repositories containing Terraform files was collected for subsequent analysis.

To identify commits indicative of discussions related to cloud cost, a list of keyword
stems was employed (bill, cheap, cost, efficient, expens, and pay), designed
to capture various expressions of cost-awareness. Next, a set of 6 116 commits (from
2 010 repositories) containing the keywords in their messages was extracted.

From this refined set, a manual review was performed to further ensure the relevance
of the commits to cloud cost management. This involved a process where each commit
was initially examined by two researchers, with any conflicts resolved in consolidation
meetings involving the entire research team. This resulted in a final selection of 538
pertinent commits spanning 434 distinct repositories, which then formed the core data
used for further analysis in the prior study.

3.2 Updating the Original Dataset

Because the original study was conducted in May 2022, the dataset only contains com-
mits up until that time. We therefore update the dataset to include commits from June
2022 until May 2024 by re-running the scripts provided by the original study. Then, we
perform an initial round of labeling using the approach from the original study with two
independent raters. As a measure of agreement, we compute Krippendorff’s alpha [47],
finding a value of α = 0.43. Next, we attempt to resolve conflicts in a resolution meet-
ing, improving the agreement to α = 0.95. Finally, a third rater resolves the remaining
conflicts in another consolidation meeting. The result is a set of 606 cost-related commits
from 445 repositories.

The initial dataset provides the URL, message, and an assigned cost-related label for
each commit. For this study, we also need to recover the changes to IaC files, since we
focus on them to explore patterns and antipatterns of cost management. For example,
although a commit message may address cost of deployment, it is not certain that the
code changes reflect the cost-related (part of the) message.

During the commit retrieval we find that 31 repositories are no longer available, result-
ing in 39 commits not being accessible. From the remaining 567 commits (414 reposito-
ries), we extract an average of 4 IaC file diffs per commit (min: 1, median: 2, max: 59).
This data collection totals 1 818 file diffs from 1 742 distinct files.

15

Chapter 3. Study Design 3.3. Pattern Extraction

3.3 Pattern Extraction

To answer RQ1 (what recurring patterns can we find in code changes that address cost
issues in the IaC artifacts of cloud software?) and extract meaningful patterns and an-
tipatterns from the commits, we apply thematic analysis [35], a flexible method for qual-
itative data analysis. This method is particularly suited to our study because it allows
for both inductive reasoning, emerging from the data, and deductive reasoning, driven
by existing theory and the previous study. Also, this approach has been applied with
success in other domains to analyze commits [23, 64]. Inspired by these studies, our
thematic analysis process encompasses four stages:

1. Familiarization with the data: We first perform a detailed examination of each
commit’s content, including messages and associated code changes. In addition,
the previous study [33] assigned cost-related labels to each commit based on its
message, which we also consider.

2. Generating initial codes: Through iterative reading and discussion, we develop
a set of initial codes that describes the cost-related commit changes. We note that
multiple codes may occur in a single commit. These codes are intended to en-
capsulate key aspects of cost management practices, including the effect (e.g., in-
crease or reduce cost), action (e.g., add, remove or change) and affected property
(e.g., computing or network resource). Each code is documented and defined to
maintain consistency across the dataset. We also establish a code to identify when
no cost-changing actions are identified.

3. Validating themes: Codes are then collated into potential themes that reflect broader
(anti)patterns in the data. This step involves grouping and regrouping the codes
to identify significant trends and outlier practices. We perform multiple rounds of
discussion to refine these themes, ensuring they accurately represent the dataset
while considering the theoretical framework developed in our previous work.
Also, we filter out themes that do not occur in at least three different repositories,
similar to Cruz and Abreu [23] and Moura et al. [64].

4. Defining and naming themes: Each theme is further refined and ultimately de-
fined as a pattern or antipattern. Themes that effectively represent recurring solu-
tions are termed ‘patterns,’ while those that signify ineffective practices are termed
‘antipatterns.’ Each (anti)pattern is documented with a (i) brief introduction, (ii)
contextual understanding of the underlying IaC problem, (iii) the solution derived
from combining the related changes, authors’ experience, and logical arguments,
and (iv) an example code solution.

3.4 Implementation

To answer RQ2 (how can these patterns be implemented in a linter?), we aim to im-
plement the (anti)patterns identified in the previous step into a standalone linter or an
extension for an existing linter for IaC, in order to help cloud software developers catch
and fix cost problems in their codebases, and to enable researchers to further study the
occurrence and evolution of these (anti)patterns in IaC-enabled projects over time.

16

Chapter 3. Study Design 3.5. Evaluation

As a first step, we examine the identified (anti)patterns and the associated commit diffs
in order to determine the techniques that are required to detect the different issue types,
as discussed in Section 2.5. Moreover, we consider the supported targets, methods and
extension mechanisms among the landscape of IaC analyzers, as well as the require-
ments that we define later in this chapter. The combination of this information allows
us to select the appropriate implementation approach, i.e. implementing a linter from
scratch or extending an existing linter.

Next, drawing inspiration from prior works that have implemented IaC linters such as
Brogi, Di Tomasso and Soldani [16] and Rahman et al. [81], we encode the patterns as
rules to detect instances of the patterns from properties of Terraform source code, based
on the occurrences found in our dataset. Finally, we implement the rules in the rule
engines of two linters using the appropriate programming language. We make these
rule plugins available for community use and contributions 1 2. More information and
usage instructions can be found in Section 5.3 and Section 5.4.

3.5 Evaluation

In order to determine the accuracy and performance of our implementation and answer
RQ3 (how well does the resulting linter perform at detecting cost issues?), we evaluate
the implementation on two main criteria:

1. Relevance, i.e. precision and recall, in terms of true positive, false positive and false
negative matches of (anti)patterns;

2. Performance, i.e. how quickly the linter can complete a scan.

Besides these criteria, we discuss to which extent the tools that we extend and the re-
spective extensions themselves differ in regards to a set of requirements, defined in
Section 3.6.

3.6 Requirements

We list the requirements for the cost linter below. These requirements are the result of
problem analysis, our literature survey, and an open discussion. They are also accom-
panied by a brief justification. The set of requirements is intended to guide both the
selection of potential tools to extend, as well as the implementation of rules within such
tools. It is therefore a combination of tool requirements (FR2, FR3, FR5, FR6, FR7, FR8,
FR9, NFR2 and NFR3), and rule requirements (FR1, FR4 and NFR1).

1https://github.com/InputUsername/checkov/tree/cost-rules
2https://github.com/InputUsername/tflint-ruleset-cost

17

https://github.com/InputUsername/checkov/tree/cost-rules
https://github.com/InputUsername/tflint-ruleset-cost

Chapter 3. Study Design 3.6. Requirements

3.6.1 Functional Requirements

The linter must:

FR1 identify cost issues in IaC code.

The linter should be able to analyze IaC languages specifically, as opposed to other
languages (e.g. [54, 74]), and should identify cost-related issues, since that is to be
the main contribution of our study.

FR2 support other issue types than cost issues alone.

Ideally, the linter should support other issue types (e.g. code or security smells).
This effectively means that the cost smell detection should be integrated into an
existing linter which already supports other types of issues, because developers
report creating and maintaining linter configuration to be a challenge [96] and so
reducing the number of static analysis tools required is worthwile.

FR3 identify issues on a granular level beyond the file level.

Several types of smell detectors and static analysis tools, particularly metric-based
and ML-based ones, identify issues on a coarse level such as file level, class level
or function level. For example, BSDT (metric-based) by Danphitsanuphan and
Suwantada [28] detects smells on class and method level. To be useful for devel-
opers, the linter should give a precise indication of where the cost smell occurs.

FR4 suggest mitigation strategies to the identified issues.

Finding issues is one thing; knowing how to fix them is another. Developers tend
to use linters to prevent errors or issues [96], and suggesting fixes can help them
achieve this. Moreover, it could help make developers more aware of the under-
lying issues [44, 96].

FR5 feature the ability to disable or enable specific checks.

High configurability might help reduce false positives and allow developers to
enable only those rules that their project needs [96]. The ability to disable or enable
checks on a per-project or even per-analysis level is therefore beneficial to support.

FR6 support regular expression-based rules.

Of the 31 tools for IaC static analysis we identified, 19 support analysis using
rules based on regular expressions. While these are not without limitations when
it comes to accurate, end-to-end detection of smells in IaC scripts [83], they are
easy to implement and modify, and do not require (large) sets of training data
like ML-based or metric-based approaches. Thus, it makes sense for our linter to
support rules based on regular expressions.

FR7 support graph-based rules.

A minority, 5 out of the 31 tools, support graph analysis techniques or graph-based
rules. Graph-based rules may potentially be able to support more complex cost
smell detection approaches, making this a useful requirement to have. However,

18

Chapter 3. Study Design 3.6. Requirements

in order not to exclude the majority of tools that only support simpler types of
rules, this is not a hard requirement.

FR8 support IaC languages beyond Terraform.

For our work, we use the dataset collected by Feitosa et al. [34], which only con-
tains data on Terraform artifacts. As such, support for at least Terraform is a hard
requirement. However, we expect that some of the identified cost smells might
extend to other orchestrators and languages (e.g. CloudFormation). This means
that the ability to support additional IaC technologies besides Terraform is useful
as well.

FR9 support integration with integrated development environments (IDEs), at a mini-
mum Visual Studio Code and IntelliJ IDEA.

According to Guerriero et al. [42] who interviewed 44 senior software developers,
IDEs are among the most important support tools for IaC development. Their
research also specifically mentions VS Code and IntelliJ as prominent examples
of IDEs used for IaC. Moreover, an analysis of Google Trends [98] suggests that
VS Code and IntelliJ are popular IDEs, with both showing growth in recent years.
Together, VS Code and IntelliJ-based IDEs make up 4 out of the top 10 IDEs based
on Google Trends activity. It is reasonable to conclude that integration with VS
Code and IntelliJ is helpful for the adoption of a (cost) linter.

3.6.2 Non-functional Requirements

The linter must:

NFR1 raise as few false positives as possible.

Existing literature on static analysis indicates that developers frequently experi-
ence false positives [9, 53, 105]. Tomasdottir et al. [96] also found that developers
see false positives as a problem, but they do not experience false positives fre-
quently while using ESLint. In their study, Tomasdottir et al. speculate that this is
due to the highly configurable nature of ESLint as well as the simpler types of anal-
yses provided by linters compared to general static analysis tools. More research
is needed to determine whether this extends to IaC analyzers, specifically when
looking for cost smells. Nevertheless, minimizing false positives makes sense to
prevent developer confusion and frustration.

NFR2 be reactive and have a short response time, < 500 milliseconds.

This requirement ties in to FR9; developers should receive timely feedback in their
editor if cost smells are detected in their IaC code, thus a responsive linter is nec-
essary.

NFR3 be easy to adopt by developers.

In short, we aim to produce a result that is usable in practice. We expect that
supporting multiple issue types (FR2), configurability (FR5), support for many
languages (FR8) and IDE integrations (FR9), and limiting false positives (NFR1),
will all help developers adopt the tool in their development workflows.

19

4 Pattern Extraction

In this chapter, we present the results of our thematic analysis process. We note that
the contents of this chapter have been adapted as a paper which was accepted at the
50th Euromicro Conference Series on Software Engineering and Advanced Applications (SEAA)
2024 [13]. An accompanying dataset is available online 1.

During the analysis, we identified 161 codes, one denoting “no related changes iden-
tified” and the remaining 160 representing various cost-saving or -increasing actions
on cloud resources. We found that 368 of the 567 commits contained at least one cost-
related code, while 199 commits were coded with “no related changes identified”. The
top 10 codes (besides “no related changes”) are shown in Figure 4.1. The full set of codes
and descriptions is available in the online dataset.

Figure 4.1: Histogram of the top 10 codes before defining the patterns and antipatterns

1https://search-rug.github.io/iac-cost-patterns/

20

https://search-rug.github.io/iac-cost-patterns/

Chapter 4. Pattern Extraction 4.1. Patterns and Antipatterns

After extracting themes using thematic analysis and validating them as discussed in
Section 3.3, we identified 3 patterns and 7 antipatterns. We found that 60 of the 161 codes
integrated one of the (anti)patterns, while 101 were discarded for lack of relevance (e.g.,
in a theme present in fewer than three repositories). Ultimately, from the 368 commits
coded with at least one cost-related code, 261 contain at least one (anti)pattern. A more
detailed frequency analysis of (co-)occurrences is provided in Section 4.2.

4.1 Patterns and Antipatterns

We now list the collected patterns and antipatterns. Links to selected occurrences are
available in Table 4.1, and the full list can be found in Appendix A. The occurrences are
also included in the online version of the dataset, linked earlier in this chapter.

Table 4.1: Selected occurrences of (anti)patterns

Pattern Occurrences

Budget
AJarombek/global-aws-infrastructure (4a89f4b)
MartinFeineis/terraform (359ba42)
stuartellis/stuartellis-org-tf-modules (39a9cab)

Spot instances
openinfrastructure/terraform-google-gitlab-runner (8429375)
kathputli/terraform-aws (321b1ae)
naciriii/terraform-ec2-gitlab-runner (f8af6bc)

Object storage lifecycle rules
alphagov/govuk-aws (f844cd8)
alphagov/govuk-terraform-provisioning (ac105ab)
ExpediaGroup/apiary-data-lake (47e62f2)

Expensive instance
beaulabs/terraform aws ec2 instance (d6df68d)
gudlyf/TerraformOpenVPN (4bc861c)
IncredibleHolg/infra-aws-code (7090470)

Old generation
gudlyf/TerraformOpenVPN (be1245d)
alphagov/govuk-aws (6cfda6a)
greenbrian/musical-spork (24c07bf)

Expensive storage type
thomastodon/jabujabu (02210a3)
giantswarm/giantnetes-terraform (53ed24b)
Kalmalyzer/UE-Jenkins-BuildSystem (ee8942b)

Expensive network resource
stealthHat/k8s-terraform (681a3f8)
thomastodon/jabujabu (02210a3)
structurefall/jamulus-builder (7190744)

Overprovisioned resources
thomastodon/jabujabu (02210a3)
guilhermerenew/infra-cost (ba858d9)
chaspy/terraform-alibaba-isucon8 (53588da)

AWS - Expensive DynamoDB
deptno/terraform-aws-modules (49f447b)
ONSdigital/eq-terraform-dynamodb (40eb651)
olliefr/aws-terraform-cloud1 (bf75383)

Expensive monitoring
Eximchain/terraform-aws-quorum-cluster (6a56f40)
Accurate0/infrastructure (06889e0)
cloudspout/Gefjun (665692a)

21

https://github.com/AJarombek/global-aws-infrastructure/commit/4a89f4b8235961275fa0e6aaf20848f2b8b7e733
https://github.com/MartinFeineis/terraform/commit/359ba426393c78b78695797f9bdd6a08c0455720
https://github.com/stuartellis/stuartellis-org-tf-modules/commit/39a9cabac6765c75591ba258fef0d10ba7ae0f9e
https://github.com/openinfrastructure/terraform-google-gitlab-runner/commit/8429375df72b04cc6fedc1ebb5f2c2e4ba18b9f2
https://github.com/kathputli/terraform-aws/commit/321b1aee88f7d15dafe46aede2b86ced70061025
https://github.com/naciriii/terraform-ec2-gitlab-runner/commit/f8af6bc22bd3d827566e7e65deb63c13cdaf6031
https://github.com/alphagov/govuk-aws/commit/f844cd8e254b161bebef04101f8ce177bcd0840c
https://github.com/alphagov/govuk-terraform-provisioning/commit/ac105ab0a5ae38fbf69167e072f8970a4a61c3e8
https://github.com/ExpediaGroup/apiary-data-lake/commit/47e62f2fc73a96611606cd619c084d1ded9d844d
https://github.com/beaulabs/terraform_aws_ec2_instance/commit/d6df68da5ae58fb5c650c6be15d9d8e676a129db
https://github.com/gudlyf/TerraformOpenVPN/commit/4bc861c153b65a2d7c0d5f3fac30ab72b0fc6942
https://github.com/IncredibleHolg/infra-aws-code/commit/70904707a36ff8e5167e695de3529d8318911ba4
https://github.com/gudlyf/TerraformOpenVPN/commit/be1245d8634025277ba79a4155ee88d7eaffcdfb
https://github.com/alphagov/govuk-aws/commit/6cfda6ada5137b232ff442ae9f2aedc8520ee1b4
https://github.com/greenbrian/musical-spork/commit/24c07bfd5c31438fff6374e9ba3d577e6402d777
https://github.com/thomastodon/jabujabu/commit/02210a3d3ba4a770c29623825b7f54f3ff33f3c7
https://github.com/giantswarm/giantnetes-terraform/commit/53ed24b573947c73ea9f0f4f8b477c44b7de2d54
https://github.com/Kalmalyzer/UE-Jenkins-BuildSystem/commit/ee8942b2c5d59546dd3b3be5f2cb88500d0fe1be
https://github.com/stealthHat/k8s-terraform/commit/681a3f8b4942be495b3f2528fb9ee40d7a4eb08a
https://github.com/thomastodon/jabujabu/commit/02210a3d3ba4a770c29623825b7f54f3ff33f3c7
https://github.com/structurefall/jamulus-builder/commit/7190744187e0aed2df8ce84f2a944294d6d4fc5b
https://github.com/thomastodon/jabujabu/commit/02210a3d3ba4a770c29623825b7f54f3ff33f3c7
https://github.com/guilhermerenew/infra-cost/commit/ba858d94e29d03e3e81533df8cd8bc85b9f176f1
https://github.com/chaspy/terraform-alibaba-isucon8/commit/53588dad5dd4c13903a6c582f74e1afe2671d33e
https://github.com/deptno/terraform-aws-modules/commit/49f447bdbb3cf23499e8194e78f852ea1e256d3a
https://github.com/ONSdigital/eq-terraform-dynamodb/commit/40eb651a50d0dfd5cf047ef62c8a6259c1c66e02
https://github.com/olliefr/aws-terraform-cloud1/commit/bf753832a519b0649f8d58d93aa643afe3f94fc7
https://github.com/Eximchain/terraform-aws-quorum-cluster/commit/6a56f400f7de3f4d5cef646d92e3f848608031c1
https://github.com/Accurate0/infrastructure/commit/06889e08148d258f329118d43734f8c8dcff994e
https://github.com/cloudspout/Gefjun/commit/665692a86bb65ddfa6c001f296c76c17288e2944

Chapter 4. Pattern Extraction 4.1. Patterns and Antipatterns

Pattern - Budget

Use budgets to receive alerts about charged and forecast costs and control spending.

Context: The lack of explicit cost monitoring can often lead to unforeseen and undesir-
able costs.

Solution: Major cloud providers support the creation of budgets, which allow users
to define alerts about charged and forecast costs and control spending. Having one or
more budgets can help monitor and manage the cost of cloud deployments.

Example: Define a budget for a cost limit of 1200 USD for EC2, and generate an email
notification if the forecast monthly cost exceeds this amount:

resource "aws_budgets_budget" "example" {
name = "example"
budget_type = "COST"
limit_amount = "1200"
limit_unit = "USD"
time_unit = "MONTHLY"

cost_filter {
name = "Service"
values = [

"Amazon Elastic Compute Cloud - Compute",
]

}

notification {
comparison_operator = "GREATER_THAN"
threshold = 100
threshold_type = "PERCENTAGE"
notification_type = "FORECASTED"
subscriber_email_addresses = ["test@example.com"]

}
}

Pattern - Object storage lifecycle rules

Define lifecycle rules for object storage to move objects to cheaper storage or drop them
entirely.

Context: By default, objects stored in cloud object storage are retained, and therefore
billed, indefinitely. Objects also have a storage class or access tier, which can be used to
balance access performance and cost depending on the use case.

Solution: By configuring lifecycle rules or policies, objects can be transitioned to cheaper
storage classes or deleted after a certain amount of time.

Example: Transition objects under the ”log/” prefix to the Glacier storage class after 60
days, and expire after 90 days:

22

Chapter 4. Pattern Extraction 4.1. Patterns and Antipatterns

resource "aws_s3_bucket_lifecycle_configuration" "example" {
bucket = aws_s3_bucket.bucket.id

rule {
id = "log"

expiration {
days = 90

}

filter {
prefix = "log/"

}

status = "Enabled"

transition {
days = 60
storage_class = "GLACIER"

}
}

}

Pattern - Spot instances

Use spot instances to run interruptible workloads for significant cost savings compared
to regular instances.

Context: Continuously running compute instances are also continuously billed. Certain
types of workloads which can handle interruption, e.g. batch jobs, data analysis and
optional tasks, do not require on-demand, provisioned instances.

Solution: Major cloud providers offer excess compute capacity in the form of spot in-
stances. These provide discounts over on-demand compute instances, with the caveat
that instances can be preempted or deleted at any time when compute capacity needs
to be reclaimed. Users define a price limit and if the spot price falls below this limit, an
instance is allocated. If a user’s workloads can handle interruptions, spot instances can
offer an economical alternative to regular instances.

Example: Use spot instances to run batch jobs: if some of the instances are preempted,
the job is slowed down, but it does not completely stop. For example, request a worker
at a price of 0.03 USD:

resource "aws_spot_instance_request" "cheap_worker" {
...
spot_price = "0.03"
instance_type = "c4.xlarge"

tags = {
Name = "Worker"

}
}

23

Chapter 4. Pattern Extraction 4.1. Patterns and Antipatterns

Antipattern - Expensive instance

Compute instances are often overprovisioned even when a cheaper instance would suf-
fice.

Context: A recurring pattern in cloud deployments is that developers initially choose
compute instances which are overprovisioned, because it is difficult to know the re-
quirements upfront. This leads to situations where developers deploy, for example on
AWS, ’2xlarge’ instances, when in fact ’large’ or even ’medium’ would suffice.

Solution: Critically evaluate required performance levels and special functionality (e.g.
memory-optimized versus general-purpose instances), and scale down the provisioned
instance types where appropriate.

Example: Downgrade to a cheaper general-purpose instance in the same family to save
costs:

@@ -1,5 +1,5 @@
resource "google_compute_instance" "example" {

name = "example"
- machine_type = "n1-standard-1"
+ machine_type = "g1-small"

...
}

Antipattern - Old generation

Using newer resource generations gives similar performance for lower cost.

Context: Cloud providers occasionally update their offerings to support, for example,
newer CPU generations. These newer generations are often more efficient, making them
a more economical option compared to older generations.

Solution: Upgrade resources to newer generations to attain comparable or better per-
formance for a lower price. The most commonly replaced resources include, but are not
limited to, AWS’s t2 general-purpose compute instances and gp2 storage volumes.

Example: Switch from gp2 to gp3 storage, providing comparable performance but lower
cost:

@@ -1,7 +1,7 @@
resource "aws_instance" "example" {

...
root_block_device {

- volume_type = "gp2"
+ volume_type = "gp3"

...
}

}

24

Chapter 4. Pattern Extraction 4.1. Patterns and Antipatterns

Antipattern - Expensive storage type

More expensive storage types are often used even when cheaper storage types would
be sufficient.

Context: Developers are able to choose between different storage types (HDD vs SSD,
durability guarantees) for e.g. instances’ root disks. However, not all use cases require
highly durable SSD storage, making cheaper storage types a viable way to save cost.

Solution: Evaluate performance and durability guarantees for storage and switch to a
less expensive type where relevant.

Example: Switch an OS disk from Premium LRS storage to Standard LRS:

@@ -1,6 +1,6 @@
resource "azurerm_linux_virtual_machine" "example" {

...
os_disk {

- storage_account_type = "Premium_LRS"
+ storage_account_type = "Standard_LRS"

}
}

Antipattern - Expensive network resource

Network resources like NAT gateways, elastic IP addresses and subnets tend to be ex-
pensive while not being strictly needed.

Context: Due to their interdependence, the cost of certain types of networking resources
often adds up. For example, a developer may create multiple subnets, each having its
own NAT gateway, each of which in turn is assigned an IPv4 address. In other cases,
network resources are used which are not strictly required, e.g. load balancers.

Solution: It is often possible to forgo the use of the expensive resources entirely. Solu-
tions include subnets sharing a single NAT gateway, reducing the number of subnets or
removing the use of load balancers.

Example: Remove resources that are not strictly required, or reduce the number of net-
working resources. For example, the commonly used module terraform-aws-modules/vpc
has an option to use a single NAT gateway instead of creating one per subnet:

module "vpc" {
source = "terraform-aws-modules/vpc"

...

enable_nat_gateway = true
single_nat_gateway = true

}

25

Chapter 4. Pattern Extraction 4.1. Patterns and Antipatterns

Antipattern - Overprovisioned resources

Resources like RAM, storage and CPU utilization are often overprovisioned even when
lower values are acceptable.

Context: In a similar way to overprovisioned instances, it is difficult to estimate required
limits for resources such as root storage upfront, leading developers to overprovision
them, in turn raising costs.

Solution: Evaluate the resource requirements and lower the relevant values.

Example: Shrink the root storage size of an instance to reduce storage costs:

@@ -2,6 +2,6 @@ resource "aws_instance" "example" {
root_block_device {

- volume_size = 20 # GB
+ volume_size = 15 # GB

}
}

Antipattern - AWS - Expensive DynamoDB

AWS DynamoDB tables often use features that carry cost but are not required, especially
for infrequently accessed tables.

Context: DynamoDB tables might use provisioned billing mode, have high (> 1) read/write
capacity, or use global secondary indices. These features carry additional cost and are
not always required, especially for infrequently accessed tables.

Solution: Switching to pay-per-request billing mode, reducing provisioned read/write
capacity, and removing global secondary indices are ways to cost-optimize DynamoDB
tables.

Example: Set billing mode to pay-per-request:

resource "aws_dynamodb_table" "example_table" {
name = "HighScores"
billing_mode = "PAY_PER_REQUEST"

attribute {
name = "UserID"
type = "S"

}

attribute {
name = "Score"
type = "N"

}
}

26

Chapter 4. Pattern Extraction 4.2. (Co-)occurrences

Antipattern - Expensive monitoring

Monitoring solutions are expensive and might not be needed.

Context: Cloud providers offer ways to monitor deployed infrastructure and collect
metrics and logs. These solutions add cost for e.g. health checks and log storage, and
the benefits may not outweigh this cost.

Solution: Removing monitoring or logs for noncritical infrastructure is an effective way
to save cost.

Example: Remove a Route 53 health check for a private Plex instance to save costs:

@@ -1,6 +0,0 @@
-resource "aws_route53_health_check" "example" {
- fqdn = "plex.example.com"
- port = 443
- request_interval = "30"
- failure_threshold = "5"
-}

4.2 (Co-)occurrences

The occurrences of (anti)patterns and their co-occurrences within the same commit or
within the same repository are summarized by the UpSet plots of Figure 4.2 and Fig-
ure 4.3, respectively. As it can be seen in the figures, the most frequent ones are the
Expensive instance and Expensive network resources antipatterns. Not surprisingly, these
two antipatterns are also the two most frequent ones overall. The most frequent pattern,
on the other hand, is Budget with 27 commits across 27 distinct repositories. This could
be indicative of projects independently having their “moment of illumination” that spe-
cific cost items need to be kept under control and imposing budget limits accordingly.
The rest of the patterns are definitely less frequently occurring in comparison to that.

What is more interesting, however, is that the same antipatterns tend to occur repeatedly
in different commits from the same repositories. The most extreme example of this is
the Old generation antipattern occurring in 6 different commits of the (now deprecated)
AWS Terraform repository 2 for gov.uk applications from 5 different dates between
2019 and 2021. This recurrence points towards persistent problems with bringing the
same infrastructural aspects under control over time that needs further investigation
for its root cause.

Looking specifically at co-occurrences, from the long tail in both figures it can easily
be observed that two or more (anti)patterns co-occur relatively rarely, even when look-
ing at the granularity of repositories. Some of these co-occurrences are expected, e.g.
Expensive instance and Old generation, but some of them point to more complex, struc-
tural problems, e.g. Expensive instance and Overprovisioned resources. What Figure 4.3
cannot show is the ordering in which they occurred and the actions to address them.
Investigating this is beyond the scope of our work.

2https://github.com/alphagov/govuk-aws

27

https://github.com/alphagov/govuk-aws

Chapter 4. Pattern Extraction 4.2. (Co-)occurrences

51

27 27

16

51

6

38

11
13

1

10

1123
111

0

10

20

30

40

50

In
te

rs
ec

tio
ns

 s
iz

e

Object storage lifecycle rules

Spot instances

Expensive monitoring

Expensive storage type

Overprovisioned resources

Budget

AWS − Expensive DynamoDB

Old generation

Expensive network resource

Expensive instance

Patterns cooccurences in commits

56

27

27

17

54

6

39

12

18

18

0 20 40

Set size

Figure 4.2: (Co-)occurrences of (anti)patterns within commits, adapted from Bolhuis,
Feitosa and Andrikopoulos [13]

35

25

1

23

38

10

4
3

10

4
2

9

11 1 1

8

18

1

5

1
2

3
11 1 11 1

0

10

20

30

In
te

rs
ec

tio
ns

 s
iz

e

Object storage lifecycle rules

Spot instances

Expensive monitoring

Expensive storage type

Overprovisioned resources

Budget

AWS − Expensive DynamoDB

Old generation

Expensive network resource

Expensive instance

Patterns cooccurences in repositories

51

27

27

14

47

6

31

12

16

18

0 10 20 30 40 50

Set size

Figure 4.3: (Co-)occurrences of (anti)patterns within repositories, adapted from Bolhuis,
Feitosa and Andrikopoulos [13]

28

5 Implementation

Our hope is that the pattern catalog introduced in the previous chapter is a useful con-
tribution for practitioners in and of itself. However, considering the many advantages
of static analysis tools in general and linters in particular, we would like to go a step
further and detect these patterns in an automated fashion. In this chapter, we discuss
the translation of the patterns into linter rules and the implementation thereof.

5.1 Tool Selection

From the requirements for language support (FR8) and IDE support (FR9), as well as
the breadth of already available IaC analysis tools, we can conclude that consolidating
efforts in an existing tool is preferable to creating a tool from scratch. We start from the
IaC analyzers in Table 2.1; other tools referenced in Chapter 2 are already excluded by
FR8, as we found none that support Terraform, and adding Terraform support would
be beyond the scope of this project. We then follow the steps in Table 5.1 to select a
target for our extension based on the requirements and the functionality offered by the
respective tools.

After this filtering process, the tools that remain are Checkov [18] and TFLint [95]. Both
tools are popular, open-source, industry-backed IaC linters, with 6 753 and 4 756 GitHub
stars, respectively, as of July 2024. Because we cannot further separate them based on
their functionality and our requirements, we implement the linter rules in both Checkov
and TFLint and compare the results in our evaluation. However, before we proceed with
the implementation, we briefly discuss each tool.

Checkov is a linter with support for many different IaC technologies and formats, writ-
ten in Python. It supports Terraform’s HCL and JSON syntaxes and plan files, AWS
CloudFormation JSON and YAML templates and Azure Resource Manager templates,
among others. It is aimed at detecting common misconfigurations and comes with an
extensive set of over 1 200 rules, which it calls policies or checks. Checkov’s primary
focus is on detecting security smells and deviations from best practices, but in principle
it can detect arbitrary types of issues. It implements its own parsers to convert input
files into an intermediate format. In the case of Terraform, this involves parsing re-
source definitions and building a graph of resource connections, after which individual
resource configurations are passed to checks for inspection. Two check types are sup-
ported: attribute checks, which inspect (combinations of) attributes to determine whether
a resource “passes” or “fails” the check, and connection checks, which pass or fail depend-
ing on whether a resource is connected to some other resource of a given type. Besides

29

Chapter 5. Implementation 5.1. Tool Selection

Table 5.1: Tool exclusion process

Excluded Tools Reason

1 ACID [80], GASEL [67], Häyhä [59], Re-
hearsal [91], Opdebeeck et al. [68]

No source code available.

2 Snyk IaC Security [50] Free tier limited to 300 tests per month 1.

3 terrafirma [104], tfsec [6] Deprecated.

4 Ansible Lint [4], BARREL [15], Bicep lin-
ter [100], cookstyle [19], DeepIaC [14],
foodcritic [38], GLITCH [86], Pup-
peteer [92], RADON [71], SLAC [81],
SLIC [77], SODALITE [58], Sommelier [16],
TAMA [46]

No Terraform support (FR8).

5 terrascan [94], terraform-compliance [70],
Regula [84]

No IDE integrations (FR9).

6 Semgrep [90], trivy [7] No variable evaluation, no cross-file analy-
ses 2 3.

7 KICS [56] Requires multiple positive and negative ex-
amples per query, increasing implementa-
tion effort.

8 SonarLint No documented extension mechanism.

its built-in policies, Checkov also features an extension mechanism, using which de-
velopers can add custom checks. User-defined checks can be written in Python or a
YAML-based domain-specific language, though connection checks are only supported
in the latter.

TFLint, on the other hand, is a Terraform-oriented linter. It is written in Go, and sup-
ports inspections on Terraform files that use the HCL format. TFLint does not focus on
any particular category of issues and does not come with any rules built-in; instead, it
is built using a pluggable architecture, with inspection rules provided as plugins. These
so-called rulesets are executed by the host process and communicate bi-directionally
over gRPC 4: TFLint sends inspection requests to the ruleset plugins, after which the
plugins can request information about the Terraform configurations to be analyzed.
This architecture is further detailed in Appendix B. TFLint implements its own HCL
parser, which was forked from Terraform’s codebase. As a result, it supports arbitrary
inspections, and rulesets can even implement checks for syntax errors. Several official
rulesets are available for the “big three” cloud providers (AWS, Azure and GCP), as
well as a plugin for general Terraform language errors and best practices. Each plugin
is written in Go using the TFLint plugin SDK. Plugins implement one or more rules,

1https://snyk.io/plans/
2https://semgrep.dev/pricing
3https://aquasecurity.github.io/trivy/v0.52/docs/advanced/modules/
4https://grpc.io/

30

https://snyk.io/plans/
https://semgrep.dev/pricing
https://aquasecurity.github.io/trivy/v0.52/docs/advanced/modules/
https://grpc.io/

Chapter 5. Implementation 5.2. Mapping Patterns to Rules

which request Terraform configurations, inspect them, and emit zero or more issues as
a result. Rules define metadata such as a documentation or reference URL and a sever-
ity (notice, warning or error), while each issue contains a message and a source range
specifying the lines and columns where the issue occurred.

5.2 Mapping Patterns to Rules

Similar to past work [16, 77, 81], we define rules for detecting instances of (anti)patterns
in our pattern catalog. We select two patterns and two antipatterns: Budget, Object stor-
age lifecycle rules, Old generation and AWS - Expensive DynamoDB. We select these because
they constitute (anti)patterns that can apply unconditionally. By contrast, the remaining
patterns and antipatterns are conditional on the infrastructural requirements of a sys-
tem. For example, it is nontrivial to determine up-front how much root storage a server
will require or how much memory a Lambda needs, which makes it difficult to detect
the Overprovisioned resources antipattern.

Our catalog contains both patterns and antipatterns. However, most, if not all linters
use rules that detect the presence of some error, issue or bad practice. We therefore
reframe the meaning of patterns such that a rule for a pattern triggers if the pattern is
not applied, thus treating the absence of a pattern as an antipattern.

We extract the rules by examining the diffs of the commits in which each (anti)pattern
occurs, as well as the codes associated with the commit. In this way, we can formulate
expressions that succinctly describe the conditions that must hold for the rule to apply.

Although the patterns and antipatterns in our catalog are, for the most part, provider-
agnostic, our linter rules are not. Due to the fact that the overwhelming majority of
commits—over 72%, as highlighted in Appendix C—were made to systems that use
AWS, only three occurrences are systems that use another provider.

In the rule definitions, we use the following notation:

• type(r) denotes the resource type of r, e.g. ‘aws instance’;

• r.name refers to an argument or attribute of r 5, e.g. r.bucket;

• Resources can contain blocks 6, and predicates of the form has(...)Block(r) indicate
the existence of such a block in resource r.

It is also important to note that while existing studies’ rules do not consider features like
variable evaluation, ours do, because Terraform implements that functionality, and sup-
port is included in both Checkov and TFLint. The rules are thus assumed to be applied
to the expanded configuration, with e.g. variables substituted and loops evaluated.

5https://developer.hashicorp.com/terraform/language/syntax/configuration#ar
guments

6https://developer.hashicorp.com/terraform/language/syntax/configuration#bl
ocks

31

https://developer.hashicorp.com/terraform/language/syntax/configuration#arguments
https://developer.hashicorp.com/terraform/language/syntax/configuration#arguments
https://developer.hashicorp.com/terraform/language/syntax/configuration#blocks
https://developer.hashicorp.com/terraform/language/syntax/configuration#blocks

Chapter 5. Implementation 5.2. Mapping Patterns to Rules

5.2.1 Budget

¬∃r : (type(r) = ‘aws budgets budget’
∨ (type(r) = ‘aws cloudwatch metric alarm’ ∧ r.metric name = ‘EstimatedCharges’)
∨ type(r) = ‘google budgets budget’)

The Budget pattern states that it is a good practice to define budgets for infrastructure
that can warn about excessive forecast costs. Thus, while other rules apply to specific
resource definitions, the rule for Budget triggers if there is no budget or metric alarm for
estimated charges.

5.2.2 Object storage lifecycle rules

type(r1) = ‘aws s3 bucket’ ∧ ¬hasLifecycleBlock(r1)
∧ ¬∃r2 : (type(r2) = ‘aws s3 bucket lifecycle configuration’ ∧ r2.bucket = r1.id)

Following the Object storage lifecycle rules, we recommend developers define lifecycle
rules for object storage solutions in order to delete data which is no longer required or
transition it to cheaper storage tiers. Terraform’s AWS provider supports two ways of
defining these rules for an aws s3 bucket: (1) using one or more lifecycle rule
blocks; (2) using a aws s3 bucket lifecycle configuration pointing at the bucket.
Lack of either therefore triggers the rule for a given S3 bucket r1.

5.2.3 Old generation

The Old generation antipattern applies to two main resource types: aws instance and
aws ebs volume. For clarity, we define a separate rule for each resource.

Instances

type(r) = ‘aws instance’ ∧ isOldInstanceType(r.instance type)

In our analysis, we found that developers most often tend to move away, for cost rea-
sons, from the t2 and m4 instance classes. We therefore define the predicate isOldInstanceType(t)
to be true when the instance type t contains the regular expression pattern ’t2|m4’.

Volumes

type(r) = ‘aws instance’ ∧ hasRootVolumeBlock(r)
∧ isOldVolumeType(r.root volume.volume type)

∨ type(r) = ‘aws ebs volume’ ∧ isOldVolumeType(r.type)

Volumes can be defined in multiple ways, including as the root volume of an instance or
as a standalone Elastic Block Storage (EBS) volume. Similar to instances, isOldVolumeType(t)
is defined to be true if the volume type matches ’gp2’, which developers universally
move away from for cost reasons.

32

Chapter 5. Implementation 5.3. Rule Implementation

5.2.4 AWS - Expensive DynamoDB

type(r) = ‘aws dynamodb table’ ∧ (r.billing mode ̸= ‘PAY PER REQUEST’
∨ r.read capacity > 1 ∨ r.write capacity > 1

∨ hasGlobalSecondaryIndexBlock(r))

With AWS - Expensive DynamoDB, we identified three DynamoDB table configurations
to be cost-ineffective:

• Not using pay-per-request billing mode, i.e. using provisioned mode;

• Using read and/or write capacities higher than one;

• Defining global secondary indices.

If any of these conditions hold, it indicates an expensive DynamoDB table.

5.3 Rule Implementation

As a proof-of-concept, we have implemented the aforementioned detection rules in
Checkov and TFLint, as listed in Table 5.2. These implementations are available on
GitHub: a fork of Checkov with the custom checks 7, and a ruleset plugin for TFLint 8.
Usage instructions are presented in Section 5.4.

Table 5.2: (Anti)patterns implemented as linter rules

(Anti)pattern Checkov TFLint

Budget ✓

Object storage lifecycle rules ✓ ✓

Old generation ✓ ✓

AWS - Expensive DynamoDB ✓ ✓

5.3.1 Checkov

Apart from Budget, all (anti)patterns are implemented for Checkov. As discussed before,
Checkov’s rule engine applies its rules to individual resources. This means it cannot
perform arbitrary inspections on Terraform configurations, like detecting the absence of
a budget 9. Support for such rules could in principle be added by extending the rule
engine, but doing so is outside the scope of this project.

Regular checks are implemented in Python by extending the BaseResourceCheck
class. Custom checks can be scaffolded using an interactive prompt in Checkov’s command-
line interface, which also sets up the correct file structure for the check to work:

7https://github.com/InputUsername/checkov/tree/cost-rules
8https://github.com/InputUsername/tflint-ruleset-cost
9https://github.com/bridgecrewio/checkov/issues/4926

33

https://github.com/InputUsername/checkov/tree/cost-rules
https://github.com/InputUsername/tflint-ruleset-cost
https://github.com/bridgecrewio/checkov/issues/4926

Chapter 5. Implementation 5.3. Rule Implementation

checkov --add-check

An example of the structure of a check is provided in Listing 5.1. Checks define a de-
scription, unique identifier, one or more supported resources, a guideline URL and a set
of categories, primarily security-oriented. Then, the scan resource confmethod de-
fines how to validate a resource. The configuration is passed in as a Python dictionary,
which is then used to check (part of) the rule for AWS - Expensive DynamoDB.

class DynamoDbPayPerRequest(BaseResourceCheck):
def __init__(self):

This is the full description of your check
description = "Ensure that DynamoDB tables use PAY_PER_REQUEST billing mode"

This is the Unique ID for your check
id = "CKV_AWS_801"

These are the terraform objects supported by this check (ex:
aws_iam_policy_document)↪→

supported_resources = ['aws_dynamodb_table']

guideline = 'https://search-rug.github.io/(...)'

Valid CheckCategories are defined in checkov/common/models/enums.py
categories = [CheckCategories.CONVENTION]
super().__init__(name=description, id=id, categories=categories,

supported_resources=supported_resources, guideline=guideline)↪→

def scan_resource_conf(self, conf):
if 'billing_mode' not in conf.keys() or 'PAY_PER_REQUEST' not in

conf['billing_mode']:↪→
self.details.append('Using provisioned billing mode might incur

unnecessary cost for infrequently accessed tables')↪→
return CheckResult.FAILED

return CheckResult.PASSED

check = DynamoDbPayPerRequest()

Listing 5.1: Checkov check written in Python, which checks the billing mode of a Dy-
namoDB table

YAML checks need to be created manually. They use a domain-specific language 10,
which is based on combining attribute checks and connection checks with boolean op-
erators to define the conditions which cause the check to pass. Checks can furthermore
use operators such as exists, contains and regex match to validate resource at-
tributes and connections to other resources.

Listing 5.2 shows an example of a YAML check. In fact, it is a check that is already in-
cluded in Checkov 11, which fails when an S3 bucket does not have a connected lifecycle
configuration or does not define a lifecycle rule block. However, it is not clear whether

10https://www.checkov.io/3.Custom%20Policies/YAML%20Custom%20Policies.html
11https://github.com/bridgecrewio/checkov/blob/main/checkov/terraform/checks

/graph_checks/aws/S3BucketLifecycle.yaml

34

https://www.checkov.io/3.Custom%20Policies/YAML%20Custom%20Policies.html
https://github.com/bridgecrewio/checkov/blob/main/checkov/terraform/checks/graph_checks/aws/S3BucketLifecycle.yaml
https://github.com/bridgecrewio/checkov/blob/main/checkov/terraform/checks/graph_checks/aws/S3BucketLifecycle.yaml

Chapter 5. Implementation 5.3. Rule Implementation

the check was created with cost considerations in mind and does not come with a mes-
sage informing the developer of any cost concerns. Nevertheless, we use the existing
rule since it fully covers the Object storage lifecycle rules pattern and maps one-to-one to
our rule definition.

metadata:
name: "Ensure that an S3 bucket has a lifecycle configuration"
category: "LOGGING"
id: "CKV2_AWS_61"

definition:
or:

- and:
- cond_type: filter
attribute: resource_type
operator: within
value:

- aws_s3_bucket
- cond_type: connection

resource_types:
- aws_s3_bucket

connected_resource_types:
- aws_s3_bucket_lifecycle_configuration

operator: exists
- cond_type: attribute

resource_types:
- aws_s3_bucket

attribute: lifecycle_rule
operator: exists

Listing 5.2: Checkov check written in YAML, which ensures an S3 bucket defines a
lifecycle configuration

5.3.2 TFLint

As discussed earlier, TFLint is extended using a plugin system, and plugins are stan-
dalone programs written in Go that use the TFLint plugin SDK 12 13 to communicate
with the host program. The SDK exposes functions to enumerate resource definitions,
which also take an optional schema that can be used to select which attributes and
blocks will be required for inspection. In addition, there are functions to evaluate vari-
ables, and functions to emit issues with or without fixes.

TFLint’s approach is shown in more detail in Listing 5.3, a simplified version of the rule
for AWS - Expensive DynamoDB. Rules are defined as structs on which several meth-
ods are implemented. The main function to be implemented is Check, which takes
a handle to a runner, i.e. a connection to the main process, and implements the ac-
tual inspection by querying resources of type "aws dynamodb table", including any
"global secondary index" blocks, and emitting an issue for each block.

A caveat that should be mentioned is that TFLint can only partially implement Object
storage lifecycle rules; TFLint cannot evaluate cross-resource references 14, so the con-

12https://github.com/terraform-linters/tflint-plugin-sdk
13https://pkg.go.dev/github.com/terraform-linters/tflint-plugin-sdk
14https://github.com/terraform-linters/tflint/blob/v0.51.2/docs/user-guide/c

ompatibility.md#unsupported-named-values

35

https://github.com/terraform-linters/tflint-plugin-sdk
https://pkg.go.dev/github.com/terraform-linters/tflint-plugin-sdk
https://github.com/terraform-linters/tflint/blob/v0.51.2/docs/user-guide/compatibility.md#unsupported-named-values
https://github.com/terraform-linters/tflint/blob/v0.51.2/docs/user-guide/compatibility.md#unsupported-named-values

Chapter 5. Implementation 5.4. Usage

func (r *CostAwsExpensiveDynamoDbRule) Check(runner tflint.Runner) error {
tables, err := runner.GetResourceContent("aws_dynamodb_table", &hclext.BodySchema{

Attributes: []hclext.AttributeSchema{},
Blocks: []hclext.BlockSchema{

{Type: "global_secondary_index", Body: &hclext.BodySchema{}},
},

}, nil)
if err != nil {

return err
}

for _, table := range tables.Blocks {
for _, globalSecondaryIndex := range table.Body.Blocks {

if err := runner.EmitIssue(r, "global secondary indices are expensive",
globalSecondaryIndex.DefRange); err != nil {↪→

return err
}

}
}

return nil
}

Listing 5.3: TFLint rule, which detects the use of global secondary indices on Dy-
namoDB tables

nection between aws s3 bucket and aws s3 bucket lifecycle configuration
cannot be checked, only the presence of a lifecycle rule block.

5.4 Usage

To use the set of cost checks with Checkov, they can be extracted 15, placed in a directory,
and pointed at using the --external-checks-dir command-line argument. Alter-
natively, the fork can be built and installed locally 16. The checks have been developed
and tested against Checkov version 3.2.109. To run Checkov, the following command
invocation can be used:

checkov --evaluate-variables true \
--download-external-modules true \
--framework terraform \
--check <check id 1,check id 2,...> \
--directory "/path/to/project"

This runs the specified (comma-separated) checks on the target directory and subdi-
rectories, evaluating variables, downloading external modules and checking local and
external modules, while filtering all files except .tf and .tf.json files.

To install the TFLint ruleset, tflint-ruleset-cost can be downloaded and installed
by executing make install from the root directory. This will build the ruleset and

15https://github.com/InputUsername/checkov/tree/cost-rules/checkov/terraform
/checks/resource/aws/cost/

16https://github.com/bridgecrewio/checkov/blob/main/CONTRIBUTING.md#build-p
ackage-locally

36

https://github.com/InputUsername/checkov/tree/cost-rules/checkov/terraform/checks/resource/aws/cost/
https://github.com/InputUsername/checkov/tree/cost-rules/checkov/terraform/checks/resource/aws/cost/
https://github.com/bridgecrewio/checkov/blob/main/CONTRIBUTING.md#build-package-locally
https://github.com/bridgecrewio/checkov/blob/main/CONTRIBUTING.md#build-package-locally

Chapter 5. Implementation 5.4. Usage

copy it to the correct directory. Alternatively, it can be distributed as a GitHub release
and installed by following the steps in the TFLint developer guide 17. The ruleset was
developed and tested with TFLint version 0.51.1. TFLint can be executed as follows:

cd /path/to/project
terraform get
tflint --call-module-type=all \

--recursive \
--enable-plugin=cost \
--only="<rule name 1>" --only="<rule name 2>"

This command uses the specified ruleset plugin, enabling only specific rules, and per-
forms an inspection while calling both local and remote external modules. Note that to
evaluate external modules, they first need to be downloaded using terraform get.
Furthermore, TFLint accepts a parameter --chdir=path, but this will only inspect the
project root directory. Instead, the --recursive flag can be used to inspect all directo-
ries, though it is mutually exclusive with --chdir, which means changing the working
directory with cd beforehand is required.

Examples of performing a scan with Checkov and TFLint can be found in Appendix D.

17https://github.com/terraform-linters/tflint/blob/master/docs/developer-gui
de/plugins.md#4-creating-a-github-release

37

https://github.com/terraform-linters/tflint/blob/master/docs/developer-guide/plugins.md#4-creating-a-github-release
https://github.com/terraform-linters/tflint/blob/master/docs/developer-guide/plugins.md#4-creating-a-github-release

6 Evaluation

Having discussed the implementation of a set of linter rules in the previous chapter, we
now proceed with an evaluation of this implementation. We quantify the relevance of
the results returned by both linters, conduct a performance evaluation, and determine
the fulfillment of the requirements.

6.1 Relevance

In line with prior work [81, 86], we evaluate the precision and recall of the implemented
linter rules. Precision relates to the share of true positive and false positive matches
compared to all matches. Recall on the other hand relates to the share of true positives
and false negatives, i.e. the ability not to miss existing issues.

6.1.1 Setup and Results

Whereas the existing studies compute the precision and recall based on sets of files
which have been manually classified by smell type, we do not have that luxury: our
dataset only consists of a set of commits categorized by the type of issue they are ad-
dressing. We also do not have access to labeled files or commits beyond our dataset
because of the effort required in labeling. We further decide to evaluate only using com-
mits from our dataset because of the relatively small number of commits which can be
scanned successfully, as a result of e.g. parsing errors, or errors accessing external mod-
ules. For improved confidence in the results, a more comprehensive evaluation should
be performed in future work. The total number of commits used to evaluate Checkov is
72, while TFLint also has the occurrences associated with Budget, leading to a total of 99
commits.

While we know which (IaC) files are involved in each commit, we argue that this set of
files is too limited due to Terraform’s use of external modules, variable evaluation and
cross-file references. This means that running Checkov and TFLint against those files
that the commit modifies is not enough.

Instead, we create a snapshot of the parent commit(s) of each commit in our dataset 1

to obtain a repository state where the addressed (anti)pattern is present. We report the

1Two commits did not have a parent, i.e. were initial commits, and were therefore filtered out:
• chetanbothra/Terraform AWS Billing Alert (hash: 43b0d3b)
• openaustralia/infrastructure (hash: 63ee190)

38

Chapter 6. Evaluation 6.1. Relevance

precision and recall in terms of issues detected or missed by Checkov and TFLint in
Table 6.1.

For completeness, we also snapshot the repository state after each commit, since this
gives us a set of repositories where the addressed (anti)pattern is no longer present and
should thus not trigger the linter rules. The precision and recall for this extended set of
repository states can be found in Table 6.2.

Table 6.1: Precision and recall of Checkov and TFLint (“before” state)

Checkov TFLint

(Anti)pattern Count Precision Recall Count Precision Recall

Budget - - - 15 0.32 0.47
Object storage lifecycle rules 3 0.11 1.00 2 0.14 1.00
Old generation 31 0.80 0.52 10 0.67 0.60
AWS - Expensive DynamoDB 23 0.82 1.00 14 1.00 0.93

Table 6.2: Precision and recall of Checkov and TFLint (“before” and “after” states)

Checkov TFLint

(Anti)pattern Count Precision Recall Count Precision Recall

Budget - - - 15 0.15 0.47
Object storage lifecycle rules 3 0.06 1.00 2 0.08 1.00
Old generation 31 0.48 0.56 10 0.40 0.60
AWS - Expensive DynamoDB 23 0.53 1.00 14 0.81 0.93

As shown, overall results are mixed. In the “before” state, Checkov achieves a precision
≥ 0.8 for Old generation and AWS - Expensive DynamoDB, while its precision is low for
Object storage lifecycle rules because of a large number of false positives. Checkov misses
about half the issues for Old generation, but achieves 1.0 recall for the other (anti)patterns.
TFLint meanwhile has poor precision for Budget and Object storage lifecycle rules, also as
a result of a large number of false positives, but it performs better for Old generation and
AWS - Expensive DynamoDB. TFLint’s recall is ≥ 0.9 for Object storage lifecycle rules and
AWS - Expensive DynamoDB, while just under 50% and 60% of occurrences of Budget and
Old generation, respectively, are detected correctly.

By introducing the “after” state, naturally precision will remain equal at best, because
in this state, issues should theoretically be addressed. This also means that recall should
not change, assuming a commit that fixes one issue does not introduce another. From
the table, we can see that indeed recall stays the same, but precision drops across the
board following an increase in false positives.

Differences in occurrence counts between Checkov and TFLint might be explained by
the differences in parsing, variable evaluation and resolution of external modules be-
tween the two tools; we expect that TFLint’s use of Terraform’s own parsing code leads
to stricter enforcement of language rules and thus more repositories causing errors.

39

Chapter 6. Evaluation 6.1. Relevance

6.1.2 False Positives

The computed precision values could be deceptive because valid matches of (anti)pat-
terns, which are not fixed by a commit, are counted as false positives: like we deter-
mined in Section 4.2, most commits only address one (anti)pattern at a time, while mul-
tiple linter rules can (correctly) trigger for one commit. In fact, for Checkov, 23 commits
triggered two or more rules (“before” state; 13 in the “after” state), and for TFLint, 27
commits triggered multiple rules (26 “after”). To illustrate this, we have collected a
number of examples of such wrongly labelled false positives.

The project trajano/terraform-s3-backend addresses the AWS - Expensive Dy-
namoDB antipattern (commit hash: f4b61c7). However, upon manual inspection, its
“before” state (hash: 905fb70) does not define any budget or billing alarm, causing the
rule for Budget to correctly trigger in TFLint.

Another example is circleci/enterprise-setup (now archived), whose commit
(hash: 26cc529) addresses the Old generation antipattern, but the “before” state (hash:
f8c42ed) also triggers the rule for Object storage lifecycle rules in both Checkov and
TFLint. The offending AWS S3 bucket 2, as seen in Listing 6.1, indeed does not define
any lifecycle rules and is not connected to a lifecycle configuration.

54 resource "aws_s3_bucket" "circleci_bucket" {
55 # VPC ID is used here to make bucket name globally unique(ish) while
56 # uuid/ignore_changes have some lingering issues
57 bucket = "${replace(var.prefix, "_", "-")}-bucket-${replace(var.aws_vpc_id, "vpc-",

"")}"↪→
58

59 cors_rule {
60 allowed_methods = ["GET"]
61 allowed_origins = ["*"]
62 max_age_seconds = 3600
63 }
64

65 force_destroy = var.force_destroy_s3_bucket
66 }

Listing 6.1: Incorrect false positive for Object storage lifecycle rules

The project olliefr/aws-terraform-cloud1, which addresses AWS - Expensive
DynamoDB in its commit (hash: bf75383), also triggers the rules for Old generation
in Checkov and TFLint in its “before” state (hash: d0464cc). Inspecting the AWS EC2
instance 3, shown in Listing 6.2, confirms that this is a valid match: the instance type is
"t2.micro".

2https://github.com/CircleCI-Archived/enterprise-setup/blob/f8c42ed15fc935
c477a213ebdd69ac55af14e932/circleci.tf#L59-L71

3https://github.com/olliefr/aws-terraform-cloud1/blob/d0464cce1d4fe314e9c15
354b6567eaea409bbfe/example.tf#L27-L30

40

https://github.com/CircleCI-Archived/enterprise-setup/blob/f8c42ed15fc935c477a213ebdd69ac55af14e932/circleci.tf#L59-L71
https://github.com/CircleCI-Archived/enterprise-setup/blob/f8c42ed15fc935c477a213ebdd69ac55af14e932/circleci.tf#L59-L71
https://github.com/olliefr/aws-terraform-cloud1/blob/d0464cce1d4fe314e9c15354b6567eaea409bbfe/example.tf#L27-L30
https://github.com/olliefr/aws-terraform-cloud1/blob/d0464cce1d4fe314e9c15354b6567eaea409bbfe/example.tf#L27-L30

Chapter 6. Evaluation 6.1. Relevance

27 resource "aws_instance" "example" {
28 ami = "ami-04edc9c2bfcf9a772"
29 instance_type = "t2.micro"
30 }

Listing 6.2: Incorrect false positive for Old generation

While TFLint achieves 1.00 precision for AWS - Expensive DynamoDB, Checkov finds sev-
eral instances in repositories that have gone unaddressed. One example is the (archived)
project dwp/dataworks-aws-data-egress, which addresses Old generation in a com-
mit (hash: 14f065e) but has an expensive DynamoDB configuration 4 that can be seen
in Listing 6.3, by not using pay-per-request billing mode and using high provisioned
read/write capacity.

12 resource "aws_dynamodb_table" "data_egress" {
13 name = "data-egress"
14 hash_key = "source_prefix"
15 range_key = "pipeline_name"
16 read_capacity = 20
17 write_capacity = 20
18

19 attribute {
20 name = "source_prefix"
21 type = "S"
22 }
23

24 attribute {
25 name = "pipeline_name"
26 type = "S"
27 }
28

29 tags = merge(
30 local.common_tags,
31 {
32 Name = "data-egress"
33 },
34)
35 }

Listing 6.3: Incorrect false positive for AWS - Expensive DynamoDB

6.1.3 Latest Commits

The previous subsection gives some credibility to the existence of instances of (anti)patterns
in repositories that have gone unaddressed. In Table 6.3, we list the number of occur-
rences in the repositories’ latest commits. We additionally filter for repositories that are
active, that is, have been updated within the last 6 months. Although further analysis is
beyond the scope of this thesis, and we cannot with confidence rule out false positives,
these cases might hint at persistent problems both within and across projects.

4https://github.com/dwp/dataworks-aws-data-egress/blob/e9b3269f53ac9c0a6cc
a7ec4932ee50d1b99a148/data-egress.tf#L12-L35

41

https://github.com/dwp/dataworks-aws-data-egress/blob/e9b3269f53ac9c0a6cca7ec4932ee50d1b99a148/data-egress.tf#L12-L35
https://github.com/dwp/dataworks-aws-data-egress/blob/e9b3269f53ac9c0a6cca7ec4932ee50d1b99a148/data-egress.tf#L12-L35

Chapter 6. Evaluation 6.2. Performance

Table 6.3: Occurrences of patterns in (active) repositories’ latest commits

Checkov TFLint
Pattern All Active All Active

Budget - - 31 10
Object storage lifecycle rules 23 10 18 6
Old generation 6 2 6 3
AWS - Expensive DynamoDB 11 2 5 0

6.2 Performance

To determine performance, we measure the scan duration of Checkov and TFLint dur-
ing evaluation. Figure 6.1 shows the average inspection duration per repository for both
the “before” and “after” states. As shown, Checkov takes around 30 seconds for a full
repository scan, while TFLint takes slightly less than half a second. Figure 6.2, with
outliers removed, reveals that both tools have similar distributions, with relatively low
median scan duration but a longer tail on the upper end.

Results are dominated by a major outlier, though: the top four commits that took longest
to analyze with both Checkov (mean: 377.0 seconds) and TFLint (mean: 5.6 seconds)
all belong to the ministryofjustice/cloud-platform-environments project,
a large, actively-maintained repository containing over 7 700 Terraform files. This re-
lation between repository size (in terms of the number of lines of IaC code) and scan
duration is shown in more detail in Figure 6.3; the four outlier commits can clearly be
distinguished.

Figure 6.1: Average inspection duration for Checkov and TFLint

42

Chapter 6. Evaluation 6.3. Comparison Between Checkov and TFLint

Figure 6.2: Comparison of inspection duration for Checkov and TFLint

Figure 6.3: Relation between the number of lines of IaC code and inspection duration

6.3 Comparison Between Checkov and TFLint

Overall, both Checkov and TFLint are able to support cost (anti)pattern detection, in
addition to other issue types like security and code smells. Both tools also offer key
linter functionality, including the ability to precisely point out the location of an issue—
Checkov on the level of resources or attributes, and TFLint on the level of line and col-
umn spans—as well as the ability to supply documentation-related information along
with emitted issues, and simple regular expression rules. There are (minor) differences
in precision and recall, but in general, neither implementation is free from false pos-
itives or false negatives. Looking at detection capabilities, Checkov can support re-
source connection checks, whereas TFLint supports rules to detect resource existence.
An advantage of choosing Checkov is the flexibility afforded by parsing artifacts to an
intermediary format, enabling support for more IaC languages than Terraform. This
is contrasted by its performance, however, with TFLint scans being over an order of
magnitude faster on average.

43

Chapter 6. Evaluation 6.3. Comparison Between Checkov and TFLint

In Table 6.4, we list to what extent each implementation fulfills the requirements spec-
ified in Section 3.6. We distinguish three levels of fulfillment: fulfilled (indicated by),
partially fulfilled (G#) and not fulfilled (#).

Table 6.4: Fulfillment of requirements

Fulfillment
Requirement Description Checkov TFLint

FR1 Identify cost smells
FR2 Support issues beyond cost smells
FR3 Granularity beyond file level
FR4 Suggest mitigation strategies
FR5 Ability to disable or enable specific checks
FR6 Support regular expression rules
FR7 Support graph rules #
FR8 Language support beyond Terraform #
FR9 Support IDE integration G# G#

NFR1 Limit false positives G# G#
NFR2 Short response time #
NFR3 Easy to adopt by developers G# G#

As is shown in the table, most functional requirements are fulfilled by both the Checkov
and TFLint implementations, with a number of exceptions. As discussed in Section 5.3.2,
TFLint does not support graph rules (FR7). It also only supports Terraform and so it
does not satisfy FR8. The requirement for IDE integration, FR9, is partially achieved:
while both tools support IDE integration, Checkov’s plugins have been deprecated in
favor of the (paid) Prisma Cloud 5 service and its associated plugins. Meanwhile, TFLint
can be executed in Language Server Protocol (LSP) mode, but does not have IDE plu-
gins itself. It does however come packaged as part of MegaLinter 6, which has plugins
for Visual Studio Code and IntelliJ IDEA.

Following Section 6.1, Checkov and TFLint partially fulfill NFR1. The precision for cer-
tain (anti)patterns is quite high (≥ 0.8), while for others it is not. NFR2 is fully fulfilled
by TFLint, achieving an average response time for a full-project scan of 0.46 seconds, but
not by Checkov, which took around 30 seconds per project on average. Finally, since it
is effectively a combination of FR2, FR5, FR8, FR9 and NFR1, it follows that NFR3 is also
partially fulfilled by both tools.

5https://www.prismacloud.io/
6https://megalinter.io/latest/descriptors/terraform_tflint/

44

https://www.prismacloud.io/
https://megalinter.io/latest/descriptors/terraform_tflint/

7 Discussion

In this chapter, we discuss the findings for each phase of our study to answer the re-
search questions, as well as some of the limitations in this work.

7.1 Pattern Extraction

First, to find recurring themes in the way developers address cost issues in IaC artifacts
(RQ1), we carefully analyzed a set of 567 commits on Terraform files from 414 open-
source repositories, and through doing so curated a catalog of 3 patterns and 7 antipat-
terns specifically relating to IaC cost management. The predominance of antipatterns
may suggest that developers are primarily in a reactive state, addressing issues only
after they are introduced, as opposed to proactively avoiding them. Recognizing these
antipatterns, like using excessively provisioned resources or outdated resource classes,
is essential because they pinpoint where costs could escalate without proper manage-
ment. On the other hand, the identified patterns provide effective strategies to improve
cost efficiency, showcasing steps developers can take to prevent problems.

The analysis of (co-)occurrences reveals ongoing cost-related issues in projects. The re-
peated occurrence of the same antipatterns in various commits of a single repository
indicates a need for a more systematic cost management approach. This repeated strug-
gle with similar problems highlights the importance of having a structured framework
or toolkit to help developers consistently apply best practices and avoid common mis-
takes.

7.2 Implementation

Our literature search and list of IaC static analysis tools showed that existing research
and industry-supported tools are primarily concerned with security and code smells.
Nevertheless, we found two suitable IaC linters, Checkov and TFLint, which we were
able to extend with detection rules for cost issues (RQ2). We did so by analyzing the
commit diffs associated with two patterns and two antipatterns, and specifying a set of
detection rules based on the Terraform constructs involved with each issue. Then, we
translated these rules into checks for Checkov written in Python, and TFLint rules writ-
ten in Go, and we made these implementations available online. In this way, we have
provided an initial step towards automated detection of cost issues in Infrastructure as
Code.

45

Chapter 7. Discussion 7.3. Evaluation

Both tools do show shortcomings in terms of the types of rules that can be implemented,
though, with e.g. Checkov’s lack of resource existence checks and TFLint’s limitation in
scanning cross-resource dependencies. Besides implementation details, it is also worth
considering whether it even makes sense to detect certain (anti)patterns. For example,
some types of resources may be more expensive but required for enhanced network
isolation, such as virtual private clouds. In those cases a tradeoff needs to be made
between cost and other factors, which is difficult to do in an automated fashion.

7.3 Evaluation

The evaluation of our implementation (RQ3) showed mixed results in terms of preci-
sion and recall. Part of the low precision can be explained by the limitations of our
evaluation method and the fact that we did not have the means to label instances of pat-
terns that were never fixed. We suspect that the true number of false positives is lower
than the precision suggests. The cases of low recall for the Budget and Old generation
(anti)patterns are likely due to limitations in our implementation. For Budget, there were
several cases where developers moved away from AWS CloudWatch billing alarms in
favor of dedicated budgets, but since the detection rule checks for the existence of either
of those resources, the “absence of budget” is not detected in the before state. For Old
generation, we selected a subset of resource classes (t2 and m4 instances, gp2 volumes)
that were most common, but of course this means that cases like old instance types for
AWS Relational Database Service (RDS) servers and other old generation resources are
not detected.

In spite of the low precision and recall for certain (anti)patterns, we were able to iden-
tify cases where false positives were actually correct matches. This further strengthens
the idea that developers would benefit from a systematic approach to cost manage-
ment as opposed to repeatedly fixing one-off issues. What’s more, we also found that
occurrences of patterns and antipatterns exist even in repositories’ latest commits, a sur-
prising fact given that all repositories are involved in at least one cost-related commit,
showing cost awareness among the contributors of these projects. Although we have
not been able to verify how many false positives are among these matches, this is an
interesting result that may warrant future research.

In regards to performance, there is a stark difference between Checkov and TFLint.
Where TFLint fully complies with NFR2 (response time under 500 milliseconds), Checkov
is more than an order of magnitude slower. The difference in implementation language
(Python versus Go) likely plays a large part in this, as well as the architectures of the
respective programs. We expect that long scan durations can be partially mitigated by
incremental scans and caching (commonly implemented by IDE plugins), but evaluat-
ing this is outside the scope of this project.

All in all, most requirements are at least partially achieved, and we certainly expect
either implementation to have utility in developers’ workflows. Which of Checkov or
TFLint is better cannot be concluded with certainty; both tools have their strengths and
weaknesses when it comes to detection capabilities, responsiveness and other features
like IDE integration.

46

Chapter 7. Discussion 7.4. Threats to Validity

7.4 Threats to Validity

Being an empirical work, there a threats to its validity, which we discuss in the follow-
ing. The threats are based on the guidelines presented by Wohlin et al. [106].

Construct validity refers to the connection between what we intend to measure and
what we ultimately end up measuring. Our work relies on a rigorous thematic analysis
of the identified commits. Although robust, this method may miss instances where the
rationale is implicit rather than explicitly mentioned in the commit message.

We defined themes based on occurrences in at least 3 different repositories, in order to
ensure that they represent recurring practices as opposed to isolated cases. While this
approach produces more generalizable patterns, it might overlook less common but
potentially impactful practices.

Regarding the evaluation of the detection accuracy of our implementation, we are lim-
ited by the nature of our dataset. Due to the additional effort required to label unad-
dressed cost issues, we cannot confirm which false positive results are in fact unlabeled
but valid issues. This means the reported numbers for precision may not be fully repre-
sentative.

External validity involves threats to the generalizability of our results. The fact that
our work focuses solely on open-source repositories from GitHub that use Terraform
as their IaC tool may limit the generalizability of our pattern catalog and the derived
linter rules. While another thesis has shown the (anti)patterns to extend to AWS Cloud-
Formation [65], and while the catalog also applies to Terraform’s fork OpenTofu, future
research could improve the representativeness of the catalog and linter rules by ana-
lyzing repositories that use other cloud orchestration tools. This is especially relevant
given the large number of labels in our dataset with only one or two occurrences, where
extending the dataset may reveal new patterns and antipatterns.

Whereas the patterns and antipatterns that we defined are not provider-specific, their
occurrences in commits are. Over 72% of commits were found in projects that use Ama-
zon Web Services as their cloud provider, compared to 12% and 10% for Google Cloud
and Azure (respectively), which resulted in the extracted detection rules essentially be-
ing AWS-specific. Many of AWS’s (Terraform) resources do have analogous versions in
other providers, which means this bias towards AWS could be resolved in the future.

Reliability concerns the bias introduced by the researchers involved in data collection
or analysis. Manual filtering and thematic analysis have the potential to introduce sub-
jective biases. As a mitigation step, our analysis takes into account the codes assigned
by Feitosa et al. [33], which were carefully and iteratively defined and refined by multi-
ple researchers. Moreover, our own coding process also underwent scrutiny involving
multiple researchers to ensure consistency and objectivity.

Finally, to mitigate other possible threats to the reliability of our work, we documented
the analysis process and provided a dataset containing our documented list of codes, in-
dicators and (anti)patterns. The collection of the initial set of commits is also thoroughly
documented and replicable [33, 34].

47

8 Conclusion

With this work, our goal was to help developers of Infrastructure as Code-enabled cloud
software better manage the costs of their deployments by creating an automated tool
that can detect potential cost issues.

As a first step, we analyzed a set of commits and their diffs to classify the cost-saving
or -increasing actions taken by developers, producing a dataset of commits labeled with
these actions. From this, we extracted patterns that developers can apply to their IaC
manifests to manage cost, as well as antipatterns that should be avoided.

This pattern catalog can already be a useful educational resource for developers, but
automatically catching issues during development would be even more helpful. We
therefore also transferred several (anti)patterns to two popular IaC linters, Checkov
and TFLint. Our hope is that this can help developers proactively manage their cloud
spend as early in the development cycle as possible. Despite limitations in Checkov and
TFLint, imperfect detection and the presence of false positives, we were able to find un-
addressed instances of patterns and antipatterns in open-source repositories, suggesting
that either tool might help developers find common cost issues in their IaC codebases.

8.1 Future Work

Given the lack of prior art in regards to IaC-specific cost management, and taking into
account some of the limitations of our study, there are many different avenues for future
research:

• Implementing more (anti)patterns as linter rules: we have implemented a num-
ber of patterns as a proof-of-concept, but an obvious step would be to implement
more (anti)patterns as rules to make the linter(s) more comprehensive.

• Extending the work to other cloud orchestrators: our work limits itself to Ter-
raform because the dataset we use only focuses on Terraform files. However as
mentioned earlier, another thesis has shown that patterns and antipatterns from
our catalog also occur in projects using CloudFormation [65], and we expect some
of the (anti)patterns to extend to other orchestrators as well. This would mean an
increase in coverage of the catalog, and a possibility of implementing rules for a
linter targeting those technologies.

• Determining the prevalence and evolution of (anti)patterns: in Section 6.1.2, we
established that multiple repositories contain instances of the cost (anti)patterns

48

Chapter 8. Conclusion 8.1. Future Work

that, to our knowledge, have never been addressed, despite the developers’ clear
awareness of certain cost issues. Therefore, by running the implemented lin-
ter rules against open-source repositories, it may be possible to identify how of-
ten issues occur “in the wild” and when—or if—they are addressed throughout
projects’ lifetimes.

• Reaching out to developers: building on the previous point, finding out through
developer outreach if developers are making cost-related changes which are not
explicitly identified as such, and why developers are or are not addressing certain
issues.

• Investigating the effectiveness of ML models such as large language models
(LLMs): in line with the majority of IaC static analysis tools [83], our implemen-
tation uses regular expressions and ad-hoc rules to detect cost issues. These offer
flexibility and simplicity at the cost of accuracy. As we discussed in Chapter 2,
ML-based detection approaches come with drawbacks that make them challeng-
ing to use in a linter. However, it may be worth investigating if and how models
like LLMs could be used to detect cost smells in IaC artifacts, e.g. by using cloud
providers’ dedicated cost optimization guides in their reasoning process.

49

References

[1] Francisco Alfredo, André L. Santos, and Nuno Garrido. “Sprinter: A Didactic
Linter for Structured Programming”. In: OpenAccess Series in Informatics 102 (July
2022), pp. 1–2. ISSN: 21906807. DOI: 10.4230/OASICS.ICPEC.2022.2/-
/STATS.

[2] Nabil Almashfi and Lunjin Lu. “Code smell detection tool for java script pro-
grams”. In: 2020 5th International Conference on Computer and Communication Sys-
tems, ICCCS 2020 (May 2020), pp. 172–176. DOI: 10.1109/ICCCS49078.2020.
9118465.

[3] Vasilios Andrikopoulos et al. “How to adapt applications for the Cloud environ-
ment: Challenges and solutions in migrating applications to the Cloud”. In: Com-
puting 95.6 (June 2013), pp. 493–535. ISSN: 0010485X. DOI: 10.1007/S00607-
012-0248-2/TABLES/3.

[4] ansible/ansible-lint: ansible-lint checks playbooks for practices and behavior that could
potentially be improved and can fix some of the most common ones for you. URL: https:
//github.com/ansible/ansible-lint.

[5] aquasecurity/cloudsploit: Cloud Security Posture Management (CSPM). URL: https:
//github.com/aquasecurity/cloudsploit.

[6] aquasecurity/tfsec: Security scanner for your Terraform code. URL: https://github.
com/aquasecurity/tfsec.

[7] aquasecurity/trivy: Find vulnerabilities, misconfigurations, secrets, SBOM in contain-
ers, Kubernetes, code repositories, clouds and more. URL: https://github.com/
aquasecurity/trivy.

[8] Matej Artac et al. “DevOps: Introducing infrastructure-as-code”. In: Proceedings
- 2017 IEEE/ACM 39th International Conference on Software Engineering Companion,
ICSE-C 2017 (June 2017), pp. 497–498. DOI: 10.1109/ICSE-C.2017.162.

[9] Al Bessey et al. “A few billion lines of code later”. In: Communications of the ACM
53.2 (Feb. 2010), pp. 66–75. ISSN: 00010782. DOI: 10.1145/1646353.1646374.

[10] Betsy Beyer et al. Site Reliability Engineering: How Google Runs Production Systems.
O’Reilly Media, Inc., 2016. ISBN: 9781491929124.

[11] Farzana Ahamed Bhuiyan and Akond Rahman. “Characterizing Co-located In-
secure Coding Patterns in Infrastructure as Code Scripts”. In: Proceedings - 2020
35th IEEE/ACM International Conference on Automated Software Engineering Work-
shops, ASEW 2020 (Sept. 2020), pp. 27–32. DOI: 10.1145/3417113.3422154.

[12] Koen Bolhuis. Supplementary Material for the Master’s Thesis ”Catching Cost Issues
in Infrastructure as Code Artifacts using Linters”. 2024. DOI: 10.5281/zenodo.
13149367.

50

https://doi.org/10.4230/OASICS.ICPEC.2022.2/-/STATS
https://doi.org/10.4230/OASICS.ICPEC.2022.2/-/STATS
https://doi.org/10.1109/ICCCS49078.2020.9118465
https://doi.org/10.1109/ICCCS49078.2020.9118465
https://doi.org/10.1007/S00607-012-0248-2/TABLES/3
https://doi.org/10.1007/S00607-012-0248-2/TABLES/3
https://github.com/ansible/ansible-lint
https://github.com/ansible/ansible-lint
https://github.com/aquasecurity/cloudsploit
https://github.com/aquasecurity/cloudsploit
https://github.com/aquasecurity/tfsec
https://github.com/aquasecurity/tfsec
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/3417113.3422154
https://doi.org/10.5281/zenodo.13149367
https://doi.org/10.5281/zenodo.13149367

References

[13] Koen Bolhuis, Daniel Feitosa, and Vasilios Andrikopoulos. “A Catalog of Cost
Patterns and Antipatterns for Infrastructure as Code”. In: 2024 50th Euromicro
Conference on Software Engineering and Advanced Applications. 2024.

[14] Nemania Borovits et al. “DeepIaC: Deep learning-based linguistic anti-pattern
detection in IaC”. In: MaLTeSQuE 2020 - Proceedings of the 4th ACM SIGSOFT
International Workshop on Machine-Learning Techniques for Software-Quality Eval-
uation, Co-located with ESEC/FSE 2020 (Nov. 2020), pp. 7–12. DOI: 10.1145/
3416505.3423564.

[15] Antonio Brogi, Andrea Canciani, and Jacopo Soldani. “Modelling and analysing
cloud application management”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9306 (2015), pp. 19–33. ISSN: 16113349. DOI: 10.1007/978-3-319-24072-
5_2.

[16] Antonio Brogi, Antonio Di Tommaso, and Jacopo Soldani. “Sommelier: a tool for
validating TOSCA application topologies”. In: Communications in Computer and
Information Science 880 (2018), pp. 1–22. ISSN: 18650929. DOI: 10.1007/978-3-
319-94764-8_1.

[17] William J Brown et al. Antipatterns: Refactoring Software, Architectures, and Projects
in Crisis. Wiley, 1998.

[18] checkov. URL: https://www.checkov.io/.
[19] chef/cookstyle: A linting tool that helps you to write better Chef Infra cookbooks and In-

Spec profiles by detecting and automatically correcting style, syntax, and logic mistakes
in your code. URL: https://github.com/chef/cookstyle.

[20] Wei Chen, Guoquan Wu, and Jun Wei. “An Approach to Identifying Error Pat-
terns for Infrastructure as Code”. In: Proceedings - 29th IEEE International Sym-
posium on Software Reliability Engineering Workshops, ISSREW 2018 (Nov. 2018),
pp. 124–129. DOI: 10.1109/ISSREW.2018.00-19.

[21] Michele Chiari, Michele De Pascalis, and Matteo Pradella. “Static Analysis of
Infrastructure as Code: A Survey”. In: 2022 IEEE 19th International Conference
on Software Architecture Companion, ICSA-C 2022 (2022), pp. 218–225. DOI: 10.
1109/ICSA-C54293.2022.00049.

[22] Ram Chillarege et al. “Orthogonal Defect Classification—A Concept for In-Process
Measurements”. In: IEEE Transactions on Software Engineering 18.11 (1992), pp. 943–
956. ISSN: 00985589. DOI: 10.1109/32.177364.

[23] Luis Cruz and Rui Abreu. “Catalog of energy patterns for mobile applications”.
In: Empirical Software Engineering 24.4 (Aug. 2019), pp. 2209–2235. ISSN: 15737616.
DOI: 10.1007/S10664-019-09682-0.

[24] Ting Dai et al. “Automatically detecting risky scripts in infrastructure code”. In:
SoCC 2020 - Proceedings of the 2020 ACM Symposium on Cloud Computing (Oct.
2020), pp. 358–371. DOI: 10.1145/3419111.3421303.

[25] Stefano Dalla Palma, Dario Di Nucci, and Damian A. Tamburri. “AnsibleMet-
rics: A Python library for measuring Infrastructure-as-Code blueprints in Ansi-
ble”. In: SoftwareX 12 (July 2020), p. 100633. ISSN: 2352-7110. DOI: 10.1016/J.
SOFTX.2020.100633.

[26] Stefano Dalla Palma et al. “Toward a catalog of software quality metrics for in-
frastructure code”. In: Journal of Systems and Software 170 (Dec. 2020), p. 110726.
ISSN: 0164-1212. DOI: 10.1016/J.JSS.2020.110726.

51

https://doi.org/10.1145/3416505.3423564
https://doi.org/10.1145/3416505.3423564
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1007/978-3-319-94764-8_1
https://doi.org/10.1007/978-3-319-94764-8_1
https://www.checkov.io/
https://github.com/chef/cookstyle
https://doi.org/10.1109/ISSREW.2018.00-19
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://doi.org/10.1109/32.177364
https://doi.org/10.1007/S10664-019-09682-0
https://doi.org/10.1145/3419111.3421303
https://doi.org/10.1016/J.SOFTX.2020.100633
https://doi.org/10.1016/J.SOFTX.2020.100633
https://doi.org/10.1016/J.JSS.2020.110726

References

[27] Stefano Dalla Palma sdallapalma et al. “Singling the odd ones out: A novelty de-
tection approach to find defects in infrastructure-as-code”. In: MaLTeSQuE 2020
- Proceedings of the 4th ACM SIGSOFT International Workshop on Machine-Learning
Techniques for Software-Quality Evaluation, Co-located with ESEC/FSE 2020 20 (Nov.
2020), pp. 31–36. DOI: 10.1145/3416505.3423563.

[28] Phongphan Danphitsanuphan and Thanitta Suwantada. “Code smell detecting
tool and code smell-structure bug relationship”. In: 2012 Spring World Congress
on Engineering and Technology, SCET 2012 - Proceedings (2012). DOI: 10.1109/
SCET.2012.6342082.

[29] Leonardo Reboucas De Carvalho and Aleteia Patricia Favacho De Araujo. “Per-
formance Comparison of Terraform and Cloudify as Multicloud Orchestrators”.
In: Proceedings - 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing, CCGRID 2020 (May 2020), pp. 380–389. DOI: 10 . 1109 /
CCGRID49817.2020.00-55.

[30] Seema Dewangan et al. “A novel approach for code smell detection: An em-
pirical study”. In: IEEE Access 9 (2021), pp. 162869–162883. ISSN: 21693536. DOI:
10.1109/ACCESS.2021.3133810.

[31] Dario Di Nucci et al. “Detecting code smells using machine learning techniques:
Are we there yet?” In: 25th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2018 - Proceedings 2018-March (Apr. 2018),
pp. 612–621. DOI: 10.1109/SANER.2018.8330266.

[32] Amin Milani Fard and Ali Mesbah. “JSNOSE: Detecting javascript code smells”.
In: IEEE 13th International Working Conference on Source Code Analysis and Manip-
ulation, SCAM 2013 (2013), pp. 116–125. DOI: 10.1109/SCAM.2013.6648192.

[33] Daniel Feitosa et al. “Mining for cost awareness in the infrastructure as code ar-
tifacts of cloud-based applications: An exploratory study”. In: Journal of Systems
and Software 215 (Sept. 2024), p. 112112. ISSN: 0164-1212. DOI: 10.1016/J.JSS.
2024.112112.

[34] Daniel Feitosa et al. Supplementary Material for Mining Cost Awareness in the In-
frastructure as Code Artifacts of Cloud-based Applications. 2024. DOI: 10.5281/
ZENODO.11319775.

[35] Jennifer Fereday and Eimear Muir-Cochrane. “Demonstrating Rigor Using The-
matic Analysis: A Hybrid Approach of Inductive and Deductive Coding and
Theme Development”. In: International Journal of Qualitative Methods 5.1 (Mar.
2006), pp. 80–92. ISSN: 1609-4069. DOI: 10.1177/160940690600500107.

[36] Francesca Arcelli Fontana et al. “Automatic metric thresholds derivation for code
smell detection”. In: International Workshop on Emerging Trends in Software Metrics,
WETSoM 2015-August (Aug. 2015), pp. 44–53. ISSN: 23270969. DOI: 10.1109/
WETSOM.2015.14.

[37] Francesca Arcelli Fontana et al. “Code smell detection: Towards a machine learning-
based approach”. In: IEEE International Conference on Software Maintenance, ICSM
(2013), pp. 396–399. DOI: 10.1109/ICSM.2013.56.

[38] Foodcritic/foodcritic: Lint tool for Chef cookbooks. URL: https://github.com/
Foodcritic/foodcritic.

[39] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley,
1999.

52

https://doi.org/10.1145/3416505.3423563
https://doi.org/10.1109/SCET.2012.6342082
https://doi.org/10.1109/SCET.2012.6342082
https://doi.org/10.1109/CCGRID49817.2020.00-55
https://doi.org/10.1109/CCGRID49817.2020.00-55
https://doi.org/10.1109/ACCESS.2021.3133810
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1109/SCAM.2013.6648192
https://doi.org/10.1016/J.JSS.2024.112112
https://doi.org/10.1016/J.JSS.2024.112112
https://doi.org/10.5281/ZENODO.11319775
https://doi.org/10.5281/ZENODO.11319775
https://doi.org/10.1177/160940690600500107
https://doi.org/10.1109/WETSOM.2015.14
https://doi.org/10.1109/WETSOM.2015.14
https://doi.org/10.1109/ICSM.2013.56
https://github.com/Foodcritic/foodcritic
https://github.com/Foodcritic/foodcritic

References

[40] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994. ISBN: 0201633612.

[41] Olivier Le Goaer. “Enforcing Green Code with Android Lint”. In: Proceedings
- 2020 35th IEEE/ACM International Conference on Automated Software Engineer-
ing Workshops, ASEW 2020 (Sept. 2020), pp. 85–90. DOI: 10.1145/3417113.
3422188.

[42] Michele Guerriero et al. “Adoption, Support, and Challenges of Infrastructure-
as-Code: Insights from Industry”. In: Proceedings - 2019 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME 2019 (Sept. 2019), pp. 580–589.
DOI: 10.1109/ICSME.2019.00092.

[43] Di Guo and Haitao Wu. “A Review of Bad Smells in Cloud-based Applications
and Microservices”. In: Proceedings - 2021 International Conference on Intelligent
Computing, Automation and Systems, ICICAS 2021 (2021), pp. 255–259. DOI: 10.
1109/ICICAS53977.2021.00059.

[44] Sarra Habchi, Xavier Blanc, and Romain Rouvoy. “On adopting linters to deal
with performance concerns in android apps”. In: ASE 2018 - Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering 11 (Sept.
2018), pp. 6–16. DOI: 10.1145/3238147.3238197.

[45] Mohammed Mehedi Hasan, Farzana Ahamed Bhuiyan, and Akond Rahman.
“Testing practices for infrastructure as code”. In: LANGETI 2020 - Proceedings
of the 1st ACM SIGSOFT International Workshop on Languages and Tools for Next-
Generation Testing, Co-located with ESEC/FSE 2020 (Nov. 2020), pp. 7–12. DOI: 10.
1145/3416504.3424334.

[46] Mohammad Mehedi Hassan and Akond Rahman. “As Code Testing: Character-
izing Test Quality in Open Source Ansible Development”. In: Proceedings - 2022
IEEE 15th International Conference on Software Testing, Verification and Validation,
ICST 2022 (2022), pp. 208–219. DOI: 10.1109/ICST53961.2022.00031.

[47] Andrew F. Hayes and Klaus Krippendorff. “Answering the Call for a Standard
Reliability Measure for Coding Data”. In: Communication Methods and Measures
1.1 (Apr. 2007), pp. 77–89. ISSN: 1931-2458. DOI: 10.1080/19312450709336664.

[48] Tjasa Hericko and Bostjan Sumak. “Analyzing Linter Usage and Warnings Through
Mining Software Repositories: A Longitudinal Case Study of JavaScript Pack-
ages”. In: 2022 45th Jubilee International Convention on Information, Communication
and Electronic Technology, MIPRO 2022 - Proceedings (2022), pp. 1375–1380. DOI:
10.23919/MIPRO55190.2022.9803554.

[49] Mário Hozano et al. “Are you smelling it? Investigating how similar developers
detect code smells”. In: Information and Software Technology 93 (Jan. 2018), pp. 130–
146. ISSN: 0950-5849. DOI: 10.1016/J.INFSOF.2017.09.002.

[50] Infrastructure as Code Security — IaC Security — Snyk. URL: https://snyk.io/
product/infrastructure-as-code-security/.

[51] Ciera Christopher Jaspan, I. Chin Chen, and Anoop Sharma. “Understanding
the value of program analysis tools”. In: Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA (2007), pp. 963–
970. DOI: 10.1145/1297846.1297964.

[52] Karthick Jayaraman et al. Automated Analysis and Debugging of Network Connec-
tivity Policies. Tech. rep. MSR-TR-2014-102. Microsoft, July 2014. URL: https:

53

https://doi.org/10.1145/3417113.3422188
https://doi.org/10.1145/3417113.3422188
https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/10.1109/ICICAS53977.2021.00059
https://doi.org/10.1109/ICICAS53977.2021.00059
https://doi.org/10.1145/3238147.3238197
https://doi.org/10.1145/3416504.3424334
https://doi.org/10.1145/3416504.3424334
https://doi.org/10.1109/ICST53961.2022.00031
https://doi.org/10.1080/19312450709336664
https://doi.org/10.23919/MIPRO55190.2022.9803554
https://doi.org/10.1016/J.INFSOF.2017.09.002
https://snyk.io/product/infrastructure-as-code-security/
https://snyk.io/product/infrastructure-as-code-security/
https://doi.org/10.1145/1297846.1297964
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/

References

//www.microsoft.com/en-us/research/publication/automated-
analysis-and-debugging-of-network-connectivity-policies/.

[53] Brittany Johnson et al. “Why don’t software developers use static analysis tools
to find bugs?” In: Proceedings - International Conference on Software Engineering
(2013), pp. 672–681. ISSN: 02705257. DOI: 10.1109/ICSE.2013.6606613.

[54] Stephen C Johnson. Lint, a C Program Checker. Tech. rep. 78-1273. Bell Labs, Oct.
1978. URL: https://web.archive.org/web/20220123141016/https:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.
1841&rep=rep1&type=pdf.

[55] Jai Kannan et al. “MLSmellHound”. In: (May 2022), pp. 66–70. DOI: 10.1145/
3510455.3512773.

[56] KICS - Keeping Infrastructure as Code Secure. URL: https://www.kics.io/.
[57] Indika Kumara et al. “The do’s and don’ts of infrastructure code: A systematic

gray literature review”. In: Information and Software Technology 137 (Sept. 2021),
p. 106593. ISSN: 0950-5849. DOI: 10.1016/J.INFSOF.2021.106593.

[58] Indika Kumara et al. “Towards Semantic Detection of Smells in Cloud Infras-
tructure Code”. In: ACM International Conference Proceeding Series Part F162565
(2020), pp. 63–67. DOI: 10.1145/3405962.3405979.

[59] Julien Lepiller et al. “Analyzing Infrastructure as Code to Prevent Intra-update
Sniping Vulnerabilities”. In: (2021), pp. 105–123. ISSN: 1611-3349. DOI: 10.1007/
978-3-030-72013-1{_}6.

[60] Hui Liu et al. “Deep learning based code smell detection”. In: IEEE Transactions
on Software Engineering 47.9 (Sept. 2021), pp. 1811–1837. ISSN: 19393520. DOI: 10.
1109/TSE.2019.2936376.

[61] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. 2011.
DOI: 10.6028/NIST.SP.800-145.

[62] Naouel Moha et al. “DECOR: A method for the specification and detection of
code and design smells”. In: IEEE Transactions on Software Engineering 36.1 (2010),
pp. 20–36. ISSN: 00985589. DOI: 10.1109/TSE.2009.50.

[63] Kief Morris. Infrastructure as code: managing servers in the cloud. ” O’Reilly Media,
Inc.”, 2016.

[64] Irineu Moura et al. “Mining energy-aware commits”. In: IEEE International Work-
ing Conference on Mining Software Repositories 2015-August (Aug. 2015), pp. 56–67.
ISSN: 21601860. DOI: 10.1109/MSR.2015.13.

[65] Allia Neamt. “From Terraform to AWS CloudFormation: A Study of Cost Pat-
terns and Antipatterns”. Bachelor’s Thesis. University of Groningen, 2024.

[66] Evangelos Ntentos et al. “Detecting and Resolving Coupling-Related Infrastruc-
ture as Code Based Architecture Smells in Microservice Deployments”. In: IEEE
International Conference on Cloud Computing, CLOUD 2023-July (2023), pp. 201–
211. ISSN: 21596190. DOI: 10.1109/CLOUD60044.2023.00031.

[67] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. “Control and Data
Flow in Security Smell Detection for Infrastructure as Code: Is It Worth the Ef-
fort?” In: Proceedings - 2023 IEEE/ACM 20th International Conference on Mining
Software Repositories, MSR 2023 (2023), pp. 534–545. DOI: 10.1109/MSR59073.
2023.00079.

[68] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. “Smelly Variables in
Ansible Infrastructure Code: Detection, Prevalence, and Lifetime”. In: Proceed-

54

https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://doi.org/10.1109/ICSE.2013.6606613
https://web.archive.org/web/20220123141016/https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1841&rep=rep1&type=pdf
https://web.archive.org/web/20220123141016/https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1841&rep=rep1&type=pdf
https://web.archive.org/web/20220123141016/https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1841&rep=rep1&type=pdf
https://doi.org/10.1145/3510455.3512773
https://doi.org/10.1145/3510455.3512773
https://www.kics.io/
https://doi.org/10.1016/J.INFSOF.2021.106593
https://doi.org/10.1145/3405962.3405979
https://doi.org/10.1007/978-3-030-72013-1{_}6
https://doi.org/10.1007/978-3-030-72013-1{_}6
https://doi.org/10.1109/TSE.2019.2936376
https://doi.org/10.1109/TSE.2019.2936376
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/MSR.2015.13
https://doi.org/10.1109/CLOUD60044.2023.00031
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1109/MSR59073.2023.00079

References

ings - 2022 Mining Software Repositories Conference, MSR 2022 12.22 (2022), pp. 61–
72. DOI: 10.1145/3524842.3527964.

[69] Eneko Osaba et al. “An Evolutionary Computation-Based Platform for Optimiz-
ing Infrastructure-as-Code Deployment Configurations”. In: Lecture Notes in Net-
works and Systems 695 LNNS (2024), pp. 321–330. ISSN: 23673389. DOI: 10.1007/
978-981-99-3043-2_25.

[70] Overview — terraform-compliance. URL: https://terraform-compliance.
com/.

[71] Stefano Dalla Palma et al. “Within-Project Defect Prediction of Infrastructure-
as-Code Using Product and Process Metrics”. In: IEEE Transactions on Software
Engineering 48.6 (June 2022), pp. 2086–2104. ISSN: 19393520. DOI: 10.1109/TSE.
2021.3051492.

[72] Fabio Palomba et al. “Lightweight detection of Android-specific code smells: The
aDoctor project”. In: SANER 2017 - 24th IEEE International Conference on Software
Analysis, Evolution, and Reengineering (Mar. 2017), pp. 487–491. DOI: 10.1109/
SANER.2017.7884659.

[73] Fabiano Pecorelli et al. “Comparing heuristic and machine learning approaches
for metric-based code smell detection”. In: IEEE International Conference on Pro-
gram Comprehension 2019-May (May 2019), pp. 93–104. DOI: 10.1109/ICPC.
2019.00023.

[74] Willard Rafnsson et al. “Fixing Vulnerabilities Automatically with Linters”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 12570 LNCS (2020), pp. 224–244. ISSN:
16113349. DOI: 10.1007/978-3-030-65745-1_13.

[75] Akond Rahman, Effat Farhana, and Laurie Williams. “The ‘as code’ activities: de-
velopment anti-patterns for infrastructure as code”. In: Empirical Software Engi-
neering 25.5 (Sept. 2020), pp. 3430–3467. ISSN: 15737616. DOI: 10.1007/S10664-
020-09841-8/TABLES/31.

[76] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. “A system-
atic mapping study of infrastructure as code research”. In: Information and Soft-
ware Technology 108 (Apr. 2019), pp. 65–77. ISSN: 0950-5849. DOI: 10.1016/J.
INFSOF.2018.12.004.

[77] Akond Rahman, Chris Parnin, and Laurie Williams. “The Seven Sins: Security
Smells in Infrastructure as Code Scripts”. In: Proceedings - International Conference
on Software Engineering 2019-May (May 2019), pp. 164–175. ISSN: 02705257. DOI:
10.1109/ICSE.2019.00033.

[78] Akond Rahman and Laurie Williams. “Source code properties of defective in-
frastructure as code scripts”. In: Information and Software Technology 112 (Aug.
2019), pp. 148–163. ISSN: 0950-5849. DOI: 10.1016/J.INFSOF.2019.04.013.

[79] Akond Rahman et al. “Bugs in Infrastructure as Code”. In: (Sept. 2018). URL:
https://arxiv.org/abs/1809.07937v2.

[80] Akond Rahman et al. “Gang of eight: A defect taxonomy for infrastructure as
code scripts”. In: Proceedings - International Conference on Software Engineering
13.20 (June 2020), pp. 752–764. ISSN: 02705257. DOI: 10.1145/3377811.3380409.

[81] Akond Rahman et al. “Security Smells in Ansible and Chef Scripts”. In: ACM
Transactions on Software Engineering and Methodology (TOSEM) 30.1 (Mar. 2021),
p. 3. ISSN: 15577392. DOI: 10.1145/3408897.

55

https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1007/978-981-99-3043-2_25
https://doi.org/10.1007/978-981-99-3043-2_25
https://terraform-compliance.com/
https://terraform-compliance.com/
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1109/ICPC.2019.00023
https://doi.org/10.1109/ICPC.2019.00023
https://doi.org/10.1007/978-3-030-65745-1_13
https://doi.org/10.1007/S10664-020-09841-8/TABLES/31
https://doi.org/10.1007/S10664-020-09841-8/TABLES/31
https://doi.org/10.1016/J.INFSOF.2018.12.004
https://doi.org/10.1016/J.INFSOF.2018.12.004
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1016/J.INFSOF.2019.04.013
https://arxiv.org/abs/1809.07937v2
https://doi.org/10.1145/3377811.3380409
https://doi.org/10.1145/3408897

References

[82] Ghulam Rasool and Azhar Ali. “Recovering Android Bad Smells from Android
Applications”. In: Arabian Journal for Science and Engineering 45.4 (Apr. 2020),
pp. 3289–3315. ISSN: 21914281. DOI: 10.1007/S13369-020-04365-1.

[83] Pandu Ranga Reddy Konala, Vimal Kumar, and David Bainbridge. “SoK: Static
Configuration Analysis in Infrastructure as Code Scripts”. In: Proceedings of the
2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023 (2023),
pp. 281–288. DOI: 10.1109/CSR57506.2023.10224925.

[84] Regula. URL: https://regula.dev/.
[85] Yeonhee Ryou et al. “Code Understanding Linter to Detect Variable Misuse”.

In: ACM International Conference Proceeding Series (Sept. 2022). DOI: 10.1145/
3551349.3559497.

[86] Nuno Saavedra and João F. Ferreira. “GLITCH: Automated Polyglot Security
Smell Detection in Infrastructure as Code”. In: ACM International Conference Pro-
ceeding Series (Sept. 2022). DOI: 10.1145/3551349.3556945.

[87] José Amancio M. Santos et al. “A systematic review on the code smell effect”. In:
Journal of Systems and Software 144 (Oct. 2018), pp. 450–477. ISSN: 0164-1212. DOI:
10.1016/J.JSS.2018.07.035.

[88] Jan Schumacher et al. “Building empirical support for automated code smell de-
tection”. In: ESEM 2010 - Proceedings of the 2010 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (2010). DOI: 10.1145/
1852786.1852797.

[89] Julian Schwarz, Andreas Steffens, and Horst Lichter. “Code smells in infrastruc-
ture as code”. In: Proceedings - 2018 International Conference on the Quality of In-
formation and Communications Technology, QUATIC 2018 (Dec. 2018), pp. 220–228.
DOI: 10.1109/QUATIC.2018.00040.

[90] semgrep/semgrep: Lightweight static analysis for many languages. Find bug variants
with patterns that look like source code. URL: https://github.com/semgrep/
semgrep.

[91] Rian Shambaugh, Aaron Weiss, and Arjun Guha. “Rehearsal: A configuration
verification tool for puppet”. In: ACM SIGPLAN Notices 51.6 (June 2016), pp. 416–
430. ISSN: 15232867. DOI: 10.1145/2908080.2908083.

[92] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. “Does your configu-
ration code smell?” In: Proceedings - 13th Working Conference on Mining Software
Repositories, MSR 2016 (May 2016), pp. 189–200. DOI: 10 . 1145 / 2901739 .
2901761.

[93] SonarLint for IntelliJ. URL: https://docs.sonarsource.com/sonarlint/
intellij/.

[94] tenable/terrascan: Detect compliance and security violations across Infrastructure as
Code to mitigate risk before provisioning cloud native infrastructure. URL: https:
//github.com/tenable/terrascan.

[95] terraform-linters/tflint: A Pluggable Terraform Linter. URL: https://github.
com/terraform-linters/tflint.

[96] Kristin Fjola Tomasdottir, Mauricio Aniche, and Arie Van Deursen. “The Adop-
tion of JavaScript Linters in Practice: A Case Study on ESLint”. In: IEEE Transac-
tions on Software Engineering 46.8 (Aug. 2020), pp. 863–891. ISSN: 19393520. DOI:
10.1109/TSE.2018.2871058.

56

https://doi.org/10.1007/S13369-020-04365-1
https://doi.org/10.1109/CSR57506.2023.10224925
https://regula.dev/
https://doi.org/10.1145/3551349.3559497
https://doi.org/10.1145/3551349.3559497
https://doi.org/10.1145/3551349.3556945
https://doi.org/10.1016/J.JSS.2018.07.035
https://doi.org/10.1145/1852786.1852797
https://doi.org/10.1145/1852786.1852797
https://doi.org/10.1109/QUATIC.2018.00040
https://github.com/semgrep/semgrep
https://github.com/semgrep/semgrep
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://docs.sonarsource.com/sonarlint/intellij/
https://docs.sonarsource.com/sonarlint/intellij/
https://github.com/tenable/terrascan
https://github.com/tenable/terrascan
https://github.com/terraform-linters/tflint
https://github.com/terraform-linters/tflint
https://doi.org/10.1109/TSE.2018.2871058

References

[97] Kristin Fjola Tomasdottir, Mauricio Aniche, and Arie Van Deursen. “Why and
how JavaScript developers use linters”. In: ASE 2017 - Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering (Nov. 2017),
pp. 578–589. DOI: 10.1109/ASE.2017.8115668.

[98] TOP IDE index. URL: https://pypl.github.io/IDE.html.
[99] Yuki Ueda, Takashi Ishio, and Kenichi Matsumoto. “DevReplay: Linter that gen-

erates regular expressions for repeating code changes”. In: Science of Computer
Programming 223 (Nov. 2022), p. 102857. ISSN: 0167-6423. DOI: 10.1016/J.
SCICO.2022.102857.

[100] Use Bicep linter - Azure Resource Manager — Microsoft Learn. URL: https://
learn.microsoft.com/en-us/azure/azure-resource-manager/
bicep/linter.

[101] Carmine Vassallo et al. “Configuration smells in continuous delivery pipelines:
A linter and a six-month study on GitLab”. In: ESEC/FSE 2020 - Proceedings of
the 28th ACM Joint Meeting European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Nov. 2020), pp. 327–337. DOI:
10.1145/3368089.3409709.

[102] Sevilay Velioglu and Yunus Emre Selcuk. “An automated code smell and anti-
pattern detection approach”. In: Proceedings - 2017 15th IEEE/ACIS International
Conference on Software Engineering Research, Management and Applications, SERA
2017 (June 2017), pp. 271–275. DOI: 10.1109/SERA.2017.7965737.

[103] Andrew Walker, Dipta Das, and Tomas Cerny. “Automated Code-Smell Detec-
tion in Microservices Through Static Analysis: A Case Study”. In: Applied Sci-
ences 2020, Vol. 10, Page 7800 10.21 (Nov. 2020), p. 7800. ISSN: 2076-3417. DOI:
10.3390/APP10217800.

[104] wayfair-archive/terrafirma: A static analysis tool for Terraform plans. URL: https:
//github.com/wayfair-archive/terrafirma.

[105] Fadi Wedyan, Dalal Alrmuny, and James M. Bieman. “The effectiveness of au-
tomated static analysis tools for fault detection and refactoring prediction”. In:
Proceedings - 2nd International Conference on Software Testing, Verification, and Vali-
dation, ICST 2009 (2009), pp. 141–150. DOI: 10.1109/ICST.2009.21.

[106] Claes Wohlin et al. Experimentation in Software Engineering. Springer Berlin Hei-
delberg, 2012. ISBN: 9783642290442. DOI: 10.1007/978-3-642-29044-2.

57

https://doi.org/10.1109/ASE.2017.8115668
https://pypl.github.io/IDE.html
https://doi.org/10.1016/J.SCICO.2022.102857
https://doi.org/10.1016/J.SCICO.2022.102857
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/linter
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/linter
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/linter
https://doi.org/10.1145/3368089.3409709
https://doi.org/10.1109/SERA.2017.7965737
https://doi.org/10.3390/APP10217800
https://github.com/wayfair-archive/terrafirma
https://github.com/wayfair-archive/terrafirma
https://doi.org/10.1109/ICST.2009.21
https://doi.org/10.1007/978-3-642-29044-2

A List of (Anti)pattern Occurrences

Budget

• AJarombek/global-aws-infrastructure (4a89f4b)
• MartinFeineis/terraform (359ba42)
• stuartellis/stuartellis-org-tf-modules (39a9cab)
• forgotpw/forgotpw-infrastructure (f4363ad)
• Katesagay/terraform-repo (9aacfbe)
• darogina/terragrunt-aws-modules (9c84d03)
• chetanbothra/Terraform AWS Billing Alert (43b0d3b)
• ntk1000/aws-terraform-template (d016b96)
• StratusGrid/terraform-aws-single-account-starter (c291c09)
• nsbno/terraform-aws-cost-alarm (7e13549)
• 64kramsystem/ultimate aws certified cloud practitioner course terraform configuration

(2f36b8a)
• kelledge/idkfa (25cda0b)
• oke-py/aws-tf (ec2982c)
• cob16/aws static website (0d4fbd0)
• mintak21/terraform-old (c10b476)
• alphagov/govwifi-terraform (348b52a)
• eladidan/speedyhead.xyz-terraform (71f034f)
• coremaker/terraform-google-nucleus (11234f6)
• robgmills/jumpbox (028bbe1)
• AdrianNeatu/blog-terraform (3ba302c)
• richardhughes/infra-modules (48015a8)
• patheard/terraform-cantrill-aws-associate (bc7484c)
• alghanmi/terraform-modules (f4e8069)
• cds-snc/cloud-based-sensor (10bb572)
• rmaheshvarma/terraform (c866a7d)
• akerl/aws-account (91967d4)
• singaporewaketools/iaac (197502b)

Spot instances

• openinfrastructure/terraform-google-gitlab-runner (8429375)
• kathputli/terraform-aws (321b1ae)
• naciriii/terraform-ec2-gitlab-runner (f8af6bc)

58

https://github.com/AJarombek/global-aws-infrastructure/commit/4a89f4b8235961275fa0e6aaf20848f2b8b7e733
https://github.com/MartinFeineis/terraform/commit/359ba426393c78b78695797f9bdd6a08c0455720
https://github.com/stuartellis/stuartellis-org-tf-modules/commit/39a9cabac6765c75591ba258fef0d10ba7ae0f9e
https://github.com/forgotpw/forgotpw-infrastructure/commit/f4363ad27d366385f2388d073ce8af796e035406
https://github.com/Katesagay/terraform-repo/commit/9aacfbe12e3e7c1e726b9a3d834211aae01f419c
https://github.com/darogina/terragrunt-aws-modules/commit/9c84d03bde131e7f349dcd493ba5b7e55bf8ae2c
https://github.com/chetanbothra/Terraform_AWS_Billing_Alert/commit/43b0d3b4cef0d3f57d4f5d4f1c7aeb9bfc3e362a
https://github.com/ntk1000/aws-terraform-template/commit/d016b96d89370b8039817fabdfa055576cf6b4cc
https://github.com/StratusGrid/terraform-aws-single-account-starter/commit/c291c0954c89e1bfbdb76d4c8990baf9db986343
https://github.com/nsbno/terraform-aws-cost-alarm/commit/7e135499d33f0a5c51602a506fefe258cac072c6
https://github.com/64kramsystem/ultimate_aws_certified_cloud_practitioner_course_terraform_configuration/commit/2f36b8a5f2f818138da72d218c1f3c9666ed54aa
https://github.com/64kramsystem/ultimate_aws_certified_cloud_practitioner_course_terraform_configuration/commit/2f36b8a5f2f818138da72d218c1f3c9666ed54aa
https://github.com/kelledge/idkfa/commit/25cda0b77ff329a89551cc6f14fe8c62820fd424
https://github.com/oke-py/aws-tf/commit/ec2982c8742cc7bc294f8a3cc07ae9ba5ffcaced
https://github.com/cob16/aws_static_website/commit/0d4fbd0a7b296a5c9377a835dff89d1499716082
https://github.com/mintak21/terraform-old/commit/c10b476d869282ed6cf55def47445b9c703788fe
https://github.com/alphagov/govwifi-terraform/commit/348b52a2ae5d6d242c8802644f9e3a5e6460de1d
https://github.com/eladidan/speedyhead.xyz-terraform/commit/71f034f3e13e9118a2a954e1fc3c0d35153184f0
https://github.com/coremaker/terraform-google-nucleus/commit/11234f631f7370dd80ee5fbc5dd7bdbc12dcbf49
https://github.com/robgmills/jumpbox/commit/028bbe114d099b0388be9a46adcab80d9383a518
https://github.com/AdrianNeatu/blog-terraform/commit/3ba302c69eb2a491a5b23e94084b4ddd24a4a703
https://github.com/richardhughes/infra-modules/commit/48015a86eda461d99b580b69db5922acbe5bd28e
https://github.com/patheard/terraform-cantrill-aws-associate/commit/bc7484cd34698f2724e5d9f241fd9f53d953e3a3
https://github.com/alghanmi/terraform-modules/commit/f4e8069ff11b7ca7a15ce25843b26d00fb399ade
https://github.com/cds-snc/cloud-based-sensor/commit/10bb572d477197bd3874532bfd364de1cb496d05
https://github.com/rmaheshvarma/terraform/commit/c866a7dd2575dd2a3f4af83f5f081a5004d0e478
https://github.com/akerl/aws-account/commit/91967d4089ad9580ceae62f7845581935c892455
https://github.com/singaporewaketools/iaac/commit/197502b1ac4bab77b9ab017b755c4d75ddaa218b
https://github.com/openinfrastructure/terraform-google-gitlab-runner/commit/8429375df72b04cc6fedc1ebb5f2c2e4ba18b9f2
https://github.com/kathputli/terraform-aws/commit/321b1aee88f7d15dafe46aede2b86ced70061025
https://github.com/naciriii/terraform-ec2-gitlab-runner/commit/f8af6bc22bd3d827566e7e65deb63c13cdaf6031

Appendix A. List of (Anti)pattern Occurrences

• Hapag-Lloyd/terraform-aws-bastion-host-ssm (516075e)
• ToruMakabe/aks-anti-dry-iac (4ba7a9d)
• paperphyte/terraform-drone (79f4b7c)
• filhodanuvem/from-dev-to-ops (998be81)
• stephaneclavel/terraform (74b4ba4)
• tale-toul/SingleNodeOpenshiftOnLibvirt (6384306)
• JaredStufftGD/grok-airflow (7ac9544)
• kaz/kiritan.com (1cd96c7)
• openinfrastructure/terraform-google-multinic (7a9c468)

Object storage lifecycle rules

• alphagov/govuk-aws (f844cd8)
• alphagov/govuk-terraform-provisioning (ac105ab)
• ExpediaGroup/apiary-data-lake (47e62f2)
• SamTowne/BasketballDrillBot (4ec6d54)
• utilitywarehouse/tf telecom (1700745)
• trajano/terraform-s3-backend (cb9f00a)

Expensive instance

• beaulabs/terraform aws ec2 instance (d6df68d)
• gudlyf/TerraformOpenVPN (4bc861c)
• IncredibleHolg/infra-aws-code (7090470)
• ministryofjustice/cloud-platform-infrastructure (e5dd13d)
• cisagov/cyhy amis (4e67a50)
• Kalmalyzer/UE-Jenkins-BuildSystem (6360975)
• dshmelev/aws kube tc (853298a)
• aaaaasam/azure (c7bc0ce)
• rbabyuk/terra (beae899)
• Leonard-Ta/Sample-Security-service-Terraform (c16481a)
• jjffggpp/jjffggpp (93ee12a)
• EngineerBetter/kf-infra (fa5f7fb)
• KoutaroNohira/hashicat (81dc1d3)
• wallnerryan/terraform-scaleio (605e74f)
• UrbanOS-Examples/common (206394b)
• cookpad/terraform-aws-eks (59c4028)
• ayltai/hknews-infrastructure (68171be)
• joelchrist/terraform (bbf18d6)
• jg210/aws-experiments (5ff37f1)
• scott45/vof-deployment-scripts (c6b2c1b)
• fdns/terraform-k8s (f106917)
• ministryofjustice/hmpps-env-configs (670c006)
• ministryofjustice/hmpps-env-configs (954dda6)
• Linaro/qa-reports.linaro.org (76c8d1e)
• KieniL/terraform setups (37f66bc)

59

https://github.com/Hapag-Lloyd/terraform-aws-bastion-host-ssm/commit/516075e2987bdd1063f22768d451c1c1eb647175
https://github.com/ToruMakabe/aks-anti-dry-iac/commit/4ba7a9dc3085ab701c85737a4f36dd57fcd7596f
https://github.com/paperphyte/terraform-drone/commit/79f4b7c2cf3ad2d1a6d2646eaf27a08fd2611d07
https://github.com/filhodanuvem/from-dev-to-ops/commit/998be8119321e8812884075b078a1d5fb36cfa69
https://github.com/stephaneclavel/terraform/commit/74b4ba406b9ea761d27298165d0e0de45c9d8491
https://github.com/tale-toul/SingleNodeOpenshiftOnLibvirt/commit/638430604158044fcf123adaf8dfdcc91b1a873e
https://github.com/JaredStufftGD/grok-airflow/commit/7ac9544b0c651fd8193eb063079514d0aa41e290
https://github.com/kaz/kiritan.com/commit/1cd96c7f71e56629ffa07c38e12c4da19fcfc5f7
https://github.com/openinfrastructure/terraform-google-multinic/commit/7a9c468b88d2edee19007cff6529a20a38eeb363
https://github.com/alphagov/govuk-aws/commit/f844cd8e254b161bebef04101f8ce177bcd0840c
https://github.com/alphagov/govuk-terraform-provisioning/commit/ac105ab0a5ae38fbf69167e072f8970a4a61c3e8
https://github.com/ExpediaGroup/apiary-data-lake/commit/47e62f2fc73a96611606cd619c084d1ded9d844d
https://github.com/SamTowne/BasketballDrillBot/commit/4ec6d54e4d36ab02b0a7daf042e727717371eaec
https://github.com/utilitywarehouse/tf_telecom/commit/17007456991c1a8faa26b1f4ac993883f577d124
https://github.com/trajano/terraform-s3-backend/commit/cb9f00a2f6f23b44f7db08863ef5fb0b9ea0bc0c
https://github.com/beaulabs/terraform_aws_ec2_instance/commit/d6df68da5ae58fb5c650c6be15d9d8e676a129db
https://github.com/gudlyf/TerraformOpenVPN/commit/4bc861c153b65a2d7c0d5f3fac30ab72b0fc6942
https://github.com/IncredibleHolg/infra-aws-code/commit/70904707a36ff8e5167e695de3529d8318911ba4
https://github.com/ministryofjustice/cloud-platform-infrastructure/commit/e5dd13d33c1e927f932971d067d8f70e9041b5f3
https://github.com/cisagov/cyhy_amis/commit/4e67a501bb3f5187a3e9af523921ac62b8a88469
https://github.com/Kalmalyzer/UE-Jenkins-BuildSystem/commit/636097557e403eb1d6b6211b09e30c47e7f39466
https://github.com/dshmelev/aws_kube_tc/commit/853298ac74250964aa2d2ea921daa5905528b3a9
https://github.com/aaaaasam/azure/commit/c7bc0ce6f3fcaffcbbe7753f1a9d8437809bc167
https://github.com/rbabyuk/terra/commit/beae899804779adf914c08f290c5d71b542c9ed1
https://github.com/Leonard-Ta/Sample-Security-service-Terraform/commit/c16481a84d5823b65ce96bd811a265222385b43b
https://github.com/jjffggpp/jjffggpp/commit/93ee12adde6ac773c76b590fe89c24df372f326b
https://github.com/EngineerBetter/kf-infra/commit/fa5f7fb35b0b44020fb81dd5c4e3b9ceaca1f967
https://github.com/KoutaroNohira/hashicat/commit/81dc1d3f98034672d5f62f440f2cc3abc58ce2a2
https://github.com/wallnerryan/terraform-scaleio/commit/605e74facfa2ff519ba5cda6e57474666901bd8c
https://github.com/UrbanOS-Examples/common/commit/206394bcc75866953f64cbf3bd6214e4e6f96e91
https://github.com/cookpad/terraform-aws-eks/commit/59c40286757e1fa5cb5391421c5380e5ad506387
https://github.com/ayltai/hknews-infrastructure/commit/68171be117d3997b84253258f41fad6daedbc76a
https://github.com/joelchrist/terraform/commit/bbf18d695bd7597977ea7a97d5434ca7f1a37d57
https://github.com/jg210/aws-experiments/commit/5ff37f12a421fdd902d8eb1e6d7491ee181fd179
https://github.com/scott45/vof-deployment-scripts/commit/c6b2c1bee4c1e53e87fd3d94fc8c07cf64342d7b
https://github.com/fdns/terraform-k8s/commit/f106917bb7b2d8d4428022bb119585bf9f35769c
https://github.com/ministryofjustice/hmpps-env-configs/commit/670c006bad288d0360c3811aa63b3c323753c385
https://github.com/ministryofjustice/hmpps-env-configs/commit/954dda617d47007a8a1ff5780d3174e900e95be1
https://github.com/Linaro/qa-reports.linaro.org/commit/76c8d1ee35046912b6da4f1cc23e8b1dcc12abe9
https://github.com/KieniL/terraform_setups/commit/37f66bc43f57b1b7a5a897c58cefe09900afd7ef

Appendix A. List of (Anti)pattern Occurrences

• digio/terraform-google-gitlab-runner (07f8279)
• jharley/azure-basic-demo (7cd3d20)
• pangeo-data/terraform-deploy (f8163bd)
• pangeo-data/terraform-deploy (7244eed)
• aeternity/terraform-aws-devnet (f4113a8)
• schubergphilis/terraform-aws-mcaf-matillion (3b0e2fe)
• binbashar/le-tf-infra-aws (0208ae3)
• fpco/terraform-aws-foundation (cfe9203)
• Civil-Service-Human-Resources/lpg-terraform-paas (59477d3)
• ibm-cloud-architecture/iks vpc lab (629819c)
• goodpen/gke-v.1.0 (45053a0)
• rshurts/gke-cd-with-spinnaker (3bc712a)
• kaz/kiritan.com (1cd96c7)
• midl-dev/tezos-auxiliary-cluster (9cbfeba)
• NLnetLabs/rpki-deploy (8bd6e74)
• TimonB/tf-azure-example (ce89df3)
• 00inboxtest/terraform-google-vault (1d0b5db)
• Amberoat/didactic-octo-eureka (494706f)
• robertdebock/terraform-aws-vault (757edca)
• covid-videoplattform/covid-videoplattform (83d8b92)
• alphagov/govuk-infrastructure (a51a3bf)
• pelias/terraform-elasticsearch (8454c8e)
• ironpeakservices/infrastructure (2ca24fa)
• robertdebock/git-terraform-demo (5638b1a)
• robertdebock/git-terraform-demo (6863740)
• jenkins-infra/aws (586fde0)
• poseidon/terraform-azure-kubernetes (4989bf2)
• poseidon/typhoon (8d2c8b8)
• poseidon/typhoon (b68f8bb)
• tlc-pack/ci-terraform (af285dd)
• binbashar/le-tf-infra-aws (10cf135)

Old generation

• gudlyf/TerraformOpenVPN (be1245d)
• alphagov/govuk-aws (6cfda6a)
• alphagov/govuk-aws (aeb3bfb)
• alphagov/govuk-aws (5fa5da9)
• alphagov/govuk-aws (19d187e)
• alphagov/govuk-aws (806b1a2)
• alphagov/govuk-aws (8d7d2eb)
• greenbrian/musical-spork (24c07bf)
• dotancohen81/Rancher (9094427)
• cisagov/cyhy amis (7b8d924)
• yardbirdsax/elasticsearch-the-hard-way (521bae5)
• GBergeret/tf-vpc-module (34d80ec)

60

https://github.com/digio/terraform-google-gitlab-runner/commit/07f8279fe65a35c0e595f3171f3d75791e49a9ae
https://github.com/jharley/azure-basic-demo/commit/7cd3d202d8723c565704f23c143cae3b1e1d6d2b
https://github.com/pangeo-data/terraform-deploy/commit/f8163bd52bea3774e2f160cff0523c602e65d933
https://github.com/pangeo-data/terraform-deploy/commit/7244eed07a1008675f45cc4349bf68141bb29edc
https://github.com/aeternity/terraform-aws-devnet/commit/f4113a8f7e52991dfb75f63688aeba77bac76b01
https://github.com/schubergphilis/terraform-aws-mcaf-matillion/commit/3b0e2fe42d660664c49d54ae8706de004a9b4176
https://github.com/binbashar/le-tf-infra-aws/commit/0208ae3bc238f029b1faf6bdc3552dbe6147657b
https://github.com/fpco/terraform-aws-foundation/commit/cfe92035f1b281cddfcf62664ec6b96e85e0ac32
https://github.com/Civil-Service-Human-Resources/lpg-terraform-paas/commit/59477d3dc237e72252bde005b783213b7e8ed961
https://github.com/ibm-cloud-architecture/iks_vpc_lab/commit/629819ce0c440760be155874cb42ab497f0304bd
https://github.com/goodpen/gke-v.1.0/commit/45053a0862bf97f0525862c411fa4da5d59ac397
https://github.com/rshurts/gke-cd-with-spinnaker/commit/3bc712aba0c797053b5cdc113e3e46afb6cff8a5
https://github.com/kaz/kiritan.com/commit/1cd96c7f71e56629ffa07c38e12c4da19fcfc5f7
https://github.com/midl-dev/tezos-auxiliary-cluster/commit/9cbfebaab11cb3466b160d18ef2eb46c0b875d55
https://github.com/NLnetLabs/rpki-deploy/commit/8bd6e745475f635d6f6b6929a545afa2e1d9dd57
https://github.com/TimonB/tf-azure-example/commit/ce89df3cebc6487146391afe9517661053229f77
https://github.com/00inboxtest/terraform-google-vault/commit/1d0b5db7f310dc6a47af3130a97e5373d9cdaddf
https://github.com/Amberoat/didactic-octo-eureka/commit/494706fc421a0ddda47f7d543b7e7a296c378c26
https://github.com/robertdebock/terraform-aws-vault/commit/757edca9d6fb2231ebdcf03ec611183c59eaf39b
https://github.com/covid-videoplattform/covid-videoplattform/commit/83d8b928ecb3f271a058bb30eaa1e05ce10e0434
https://github.com/alphagov/govuk-infrastructure/commit/a51a3bfcd73fd55ecd43aa36ce3f266f0cefc2dc
https://github.com/pelias/terraform-elasticsearch/commit/8454c8ee25e821abde10b73a2fec691269e41822
https://github.com/ironpeakservices/infrastructure/commit/2ca24fa9114b5b4389768d5ab93c1e6d99bb287c
https://github.com/robertdebock/git-terraform-demo/commit/5638b1a044215292a5e3fa405b6a0567c6b35436
https://github.com/robertdebock/git-terraform-demo/commit/686374095321975d851932a77b139d627f50c7d5
https://github.com/jenkins-infra/aws/commit/586fde061356513609fe4f2014a11ddcec849c35
https://github.com/poseidon/terraform-azure-kubernetes/commit/4989bf2d4a5eed7f1fcb01f63db5624afa113232
https://github.com/poseidon/typhoon/commit/8d2c8b8db692b27b89d18e47a40cf7b49562694e
https://github.com/poseidon/typhoon/commit/b68f8bb2a9f0825af76a563051c32100386024db
https://github.com/tlc-pack/ci-terraform/commit/af285dd17beb9c35ea6339b3b9f43d6b166b5411
https://github.com/binbashar/le-tf-infra-aws/commit/10cf13515c722708cfacb8f22ca9b05abca67505
https://github.com/gudlyf/TerraformOpenVPN/commit/be1245d8634025277ba79a4155ee88d7eaffcdfb
https://github.com/alphagov/govuk-aws/commit/6cfda6ada5137b232ff442ae9f2aedc8520ee1b4
https://github.com/alphagov/govuk-aws/commit/aeb3bfbe393cdfc02e62b812843ed75cf5f245e4
https://github.com/alphagov/govuk-aws/commit/5fa5da9756f12559b490217dd5b173db48e7f2a9
https://github.com/alphagov/govuk-aws/commit/19d187e4a29147cbcf1cfae456cfcbfa8ad52b45
https://github.com/alphagov/govuk-aws/commit/806b1a2a47f2f4e580e524b2cf8cc5928749d972
https://github.com/alphagov/govuk-aws/commit/8d7d2ebe0dbe9ebf8009572d1d710c4700cf245e
https://github.com/greenbrian/musical-spork/commit/24c07bfd5c31438fff6374e9ba3d577e6402d777
https://github.com/dotancohen81/Rancher/commit/90944271b4e8bd46e3d42ac64bc4964a33a8fdc3
https://github.com/cisagov/cyhy_amis/commit/7b8d9247a679295e0e1791b13d6c437c473e44b8
https://github.com/yardbirdsax/elasticsearch-the-hard-way/commit/521bae59a4002a616eac44c1681ca5066bbd00c8
https://github.com/GBergeret/tf-vpc-module/commit/34d80ece7d0ef598414baffceb074c6580dd819b

Appendix A. List of (Anti)pattern Occurrences

• cisagov/vulnerable-instances (f704100)
• dwp/dataworks-aws-data-egress (14f065e)
• circleci/enterprise-setup (26cc529)
• bh1m2rn/gitlab-environment-toolkit (b9750f0)
• travis-ci/terraform-config (4f641b1)
• byu-oit/terraform-aws-rds (86a0795)
• poseidon/terraform-azure-kubernetes (633eb93)
• poseidon/terraform-aws-kubernetes (e09126b)
• deadlysyn/terraform-keycloak-aws (1c982ac)
• ONSdigital/eq-terraform (79845fe)
• kinvolk-archives/lokomotive-kubernetes (f2f4deb)
• smarman85/a new hope (de97a6b)
• kmishra9/PL2-AWS-Setup (0d7b5b0)
• cisagov/cool-sharedservices-nessus (5403a89)
• guillaumekh/wg-terraform-template (effee9c)
• ninthnails/terraform-aws-camellia (0019704)
• openaustralia/infrastructure (63ee190)
• robertdebock/terraform-aws-vault (e3b6520)
• cisagov/cool-assessment-terraform (3138943)
• pelias/terraform-elasticsearch (21c1827)
• lowflying/OVPN—TF (be1245d)
• figurate/bedrock (bffc023)
• alphagov/govuk-aws (ffa7525)
• jg210/aws-experiments (b09b668)
• ministryofjustice/cloud-platform-environments (ce50204)
• ministryofjustice/cloud-platform-environments (b6cea25)
• ministryofjustice/cloud-platform-environments (aa07f2d)

Expensive storage type

• thomastodon/jabujabu (02210a3)
• giantswarm/giantnetes-terraform (53ed24b)
• Kalmalyzer/UE-Jenkins-BuildSystem (ee8942b)
• Leonard-Ta/Sample-Security-service-Terraform (c16481a)
• falldamagestudio/UE4-GHA-BuildSystem (e58083a)
• bculberson/btc2snowflake (9f8227b)
• ministryofjustice/hmpps-env-configs (0328838)
• travis-infrastructure/terraform-stuff (1e208af)
• sdcote/cloudsql (dfe44fc)
• wellcomecollection/archivematica-infrastructure (ce576be)
• jshcmpbll/Cloud-Mac-KVM (361885d)
• TimonB/tf-azure-example (b49579f)
• phillhocking/aws-ubuntu-irssi (1532e0c)
• bhfsystem/fogg (81e606a)
• bhfsystem/fogg (7cc487f)
• cisagov/freeipa-server-tf-module (99fd319)

61

https://github.com/cisagov/vulnerable-instances/commit/f70410061b8c6b9249895571e05dfb7a142efb18
https://github.com/dwp/dataworks-aws-data-egress/commit/14f065e5161fee14c286c34df7db9f5516ef9bb6
https://github.com/circleci/enterprise-setup/commit/26cc5295c2bb9d8756e450712e0f5f75af440c4a
https://github.com/bh1m2rn/gitlab-environment-toolkit/commit/b9750f0bb88bc22256085b6bc8f060055e90a8c4
https://github.com/travis-ci/terraform-config/commit/4f641b162fa877aef842481631906d5bfe874781
https://github.com/byu-oit/terraform-aws-rds/commit/86a0795540edb426c3226775d73fcd4ce807d36a
https://github.com/poseidon/terraform-azure-kubernetes/commit/633eb938742a43be09612b944c29aaaf70dac119
https://github.com/poseidon/terraform-aws-kubernetes/commit/e09126b45746f1c967d1990fa04ce781a0478c6d
https://github.com/deadlysyn/terraform-keycloak-aws/commit/1c982ac4120ae3ed5a88c38f2a4d568ad9a83d22
https://github.com/ONSdigital/eq-terraform/commit/79845fe095cd87287346f40d2adce9b28a32ef35
https://github.com/kinvolk-archives/lokomotive-kubernetes/commit/f2f4deb8bb44988eeb0b64b919e51fb556aef4fb
https://github.com/smarman85/a_new_hope/commit/de97a6b8033c866c3b711468207aa4890049daaa
https://github.com/kmishra9/PL2-AWS-Setup/commit/0d7b5b0f6f92ff6cfde1f17ad96d1b1459a0957a
https://github.com/cisagov/cool-sharedservices-nessus/commit/5403a8978053a1299b0afe8d7fc59e914fc5e354
https://github.com/guillaumekh/wg-terraform-template/commit/effee9cbc473af5d07cfc3aacece50aa6e59753a
https://github.com/ninthnails/terraform-aws-camellia/commit/0019704e14723aaf326840ab36c594c3f514a2d4
https://github.com/openaustralia/infrastructure/commit/63ee190c0ae1832bb72681e1e4b1b14a9367b4bb
https://github.com/robertdebock/terraform-aws-vault/commit/e3b6520960a88aacbf03339dc1368f680a8bee9a
https://github.com/cisagov/cool-assessment-terraform/commit/3138943ab4d15cc256d322e1128862ef11383c73
https://github.com/pelias/terraform-elasticsearch/commit/21c1827f4507eae217d43d99ad8cb1bbb1337e21
https://github.com/lowflying/OVPN---TF/commit/be1245d8634025277ba79a4155ee88d7eaffcdfb
https://github.com/figurate/bedrock/commit/bffc023eeff075ef281b1fd261897f4c7216b354
https://github.com/alphagov/govuk-aws/commit/ffa75257747f225577616e6cf517eee965221041
https://github.com/jg210/aws-experiments/commit/b09b668e5c3a11366551168541480b69e94c8c3a
https://github.com/ministryofjustice/cloud-platform-environments/commit/ce502048eb3cd95e708f4575efefaf8dc60d7722
https://github.com/ministryofjustice/cloud-platform-environments/commit/b6cea25115ac93a788cdedc2fe2f94d2c7ff6658
https://github.com/ministryofjustice/cloud-platform-environments/commit/aa07f2d9772cc376589bec2cbb42f9ba849927db
https://github.com/thomastodon/jabujabu/commit/02210a3d3ba4a770c29623825b7f54f3ff33f3c7
https://github.com/giantswarm/giantnetes-terraform/commit/53ed24b573947c73ea9f0f4f8b477c44b7de2d54
https://github.com/Kalmalyzer/UE-Jenkins-BuildSystem/commit/ee8942b2c5d59546dd3b3be5f2cb88500d0fe1be
https://github.com/Leonard-Ta/Sample-Security-service-Terraform/commit/c16481a84d5823b65ce96bd811a265222385b43b
https://github.com/falldamagestudio/UE4-GHA-BuildSystem/commit/e58083adbf91e7daa8ddb5db6c3b2e5c8c0a906c
https://github.com/bculberson/btc2snowflake/commit/9f8227bf53ebc2b1bb0b99d0697f9f66eed7ab6d
https://github.com/ministryofjustice/hmpps-env-configs/commit/0328838420ac0d3754cf772a7d2f5bb1612193ed
https://github.com/travis-infrastructure/terraform-stuff/commit/1e208af4c83d093c900f4cccedbca6183142a07f
https://github.com/sdcote/cloudsql/commit/dfe44fcf8f5a477e1fbc354f1b1d87af28895c0f
https://github.com/wellcomecollection/archivematica-infrastructure/commit/ce576be106257496e20d946d6eab5f8783dada92
https://github.com/jshcmpbll/Cloud-Mac-KVM/commit/361885d22c0304cb44683f9b005f82ca5e269841
https://github.com/TimonB/tf-azure-example/commit/b49579fbecbe8002932fdfb86146f83efd60bfcf
https://github.com/phillhocking/aws-ubuntu-irssi/commit/1532e0c298ec4f8d7d749a884f7c46f2a2cf53d3
https://github.com/bhfsystem/fogg/commit/81e606a72e7c2e06c2f6d9c204086157aa82eac3
https://github.com/bhfsystem/fogg/commit/7cc487f270d553f819fea0cf96e872c374979305
https://github.com/cisagov/freeipa-server-tf-module/commit/99fd319a72d25441acf36fd2c167a875e9028935

Appendix A. List of (Anti)pattern Occurrences

• ministryofjustice/cloud-platform-terraform-monitoring (87401ba)
• ministryofjustice/hmpps-env-configs (7c1ba78)

Expensive network resource

• stealthHat/k8s-terraform (681a3f8)
• thomastodon/jabujabu (02210a3)
• structurefall/jamulus-builder (7190744)
• joshuaspence/infrastructure (d8e1979)
• joshuaspence/infrastructure (b9b9465)
• dexterchan/Terraform Webserver (af5af0b)
• austin1237/clip-stitcher (4eed76f)
• IoT-Data-Marketplace/mp-infrastructure (5afcf39)
• InvictrixRom/website-infrastructure (09e4004)
• InvictrixRom/website-infrastructure (44d6632)
• pvandervelde/infrastructure.azure.core.network.hub (0ecf0a1)
• Midas-Protocol/webtwo-infra (25ed031)
• GBergeret/tf-vpc-module (5e63c83)
• GBergeret/micro-service-as-code (46f76d5)
• ecsworkshop2018/expertalk-2018-ecs-workshop (034908d)
• kitchen/personal-terraform (fe1f266)
• robertlupinek/rh-ex407 (0c679d7)
• skehlet/aws-batch-processing (decdbce)
• poseidon/terraform-aws-kubernetes (ef0372d)
• paperphyte/terraform-drone (f62bfeb)
• nisunisu/AWS Blue Green Deployment (d0741cd)
• ryanlg/ryhino-public (e51b958)
• masterpointio/terraform-aws-nuke-bomber (33fbb76)
• kinvolk-archives/lokomotive-kubernetes (0c4d59d)
• alhardy-net/terraform-core-aws-alhardynet-networking (30be6aa)
• alhardy-net/terraform-core-aws-alhardynet-networking (f7b96f0)
• alhardy-net/terraform-core-aws-alhardynet-networking (b26b9e5)
• imma/fogg-env (7de4530)
• schubergphilis/terraform-aws-mcaf-matillion (3b0e2fe)
• binbashar/le-tf-infra-aws (a873443)
• binbashar/le-tf-infra-aws (19c37f7)
• binbashar/le-tf-infra-aws (bbfbd24)
• mads-hartmann/cloud.mads-hartmann.com (667f571)
• opszero/terraform-aws-kubespot (decc970)
• stSoftwareAU/sts-network (bf59a4c)
• lean-delivery/terraform-module-aws-core (25bbff7)
• CheesecakeLabs/django-drf-boilerplate (e4003aa)
• covidapihub/terraform-covidapihub (3c5d381)
• simplygenius/atmos-recipes (d27b483)
• hellupline/terraform-eks-cluster (2bd0135)
• tsub/ecs-sandbox (8501faf)

62

https://github.com/ministryofjustice/cloud-platform-terraform-monitoring/commit/87401ba23af26d379d8132cc09fd7cd212773ba1
https://github.com/ministryofjustice/hmpps-env-configs/commit/7c1ba780a59f6a8682870318e70bf800a2d183a2
https://github.com/stealthHat/k8s-terraform/commit/681a3f8b4942be495b3f2528fb9ee40d7a4eb08a
https://github.com/thomastodon/jabujabu/commit/02210a3d3ba4a770c29623825b7f54f3ff33f3c7
https://github.com/structurefall/jamulus-builder/commit/7190744187e0aed2df8ce84f2a944294d6d4fc5b
https://github.com/joshuaspence/infrastructure/commit/d8e1979ea7954076f64ab4d3337b95f14a06fc31
https://github.com/joshuaspence/infrastructure/commit/b9b9465314e3b5ada78340d06b90703136cdf3dc
https://github.com/dexterchan/Terraform_Webserver/commit/af5af0b8e6a59a9c5879fde7eaaa86d694c2bfa2
https://github.com/austin1237/clip-stitcher/commit/4eed76f9bfd4f93181660178ea689d98cd6d66d5
https://github.com/IoT-Data-Marketplace/mp-infrastructure/commit/5afcf39a85fc972eb9bb3486e5dc8aeeba77d3ee
https://github.com/InvictrixRom/website-infrastructure/commit/09e400452c1bde25fe393dd56c2fd608b84a18ac
https://github.com/InvictrixRom/website-infrastructure/commit/44d66328ea4467d05d7fb8092631aff5afbd8b26
https://github.com/pvandervelde/infrastructure.azure.core.network.hub/commit/0ecf0a154918bd9bdc0f53557bc1f80920da6b14
https://github.com/Midas-Protocol/webtwo-infra/commit/25ed0319bf8099f0cc79eceba9104c73d9507e0d
https://github.com/GBergeret/tf-vpc-module/commit/5e63c8390cb1001daf4ad74bb2926cc060c0de08
https://github.com/GBergeret/micro-service-as-code/commit/46f76d50b8569f450ce909e04f3c5fa81b97737a
https://github.com/ecsworkshop2018/expertalk-2018-ecs-workshop/commit/034908d914982eacea51b0ac61f2781069387412
https://github.com/kitchen/personal-terraform/commit/fe1f2665b198308a438ec3d46b24843089df1a2a
https://github.com/robertlupinek/rh-ex407/commit/0c679d7adfa5bf38d5c7846958f3508fc036b3e9
https://github.com/skehlet/aws-batch-processing/commit/decdbce98d33cf2599aee554779ef5d8b5361d8f
https://github.com/poseidon/terraform-aws-kubernetes/commit/ef0372d2684ef920c6e54cf8b9f80d87db90e636
https://github.com/paperphyte/terraform-drone/commit/f62bfebb54530c9466cfdb21336794f24bcd63a7
https://github.com/nisunisu/AWS_Blue_Green_Deployment/commit/d0741cddb32ed7970904693e3a697603fa21bbbb
https://github.com/ryanlg/ryhino-public/commit/e51b9583b2df3154b5c82da361d411d65ed23bab
https://github.com/masterpointio/terraform-aws-nuke-bomber/commit/33fbb76715ce6e35565b5f83f7ece0f9df37d282
https://github.com/kinvolk-archives/lokomotive-kubernetes/commit/0c4d59db87b67d7c7a0a0f54677961a01ed8fbe4
https://github.com/alhardy-net/terraform-core-aws-alhardynet-networking/commit/30be6aa1969e37d512153b558540fe714b635c4c
https://github.com/alhardy-net/terraform-core-aws-alhardynet-networking/commit/f7b96f0b28008f8aed881cc211a5f3fdb3ae67ac
https://github.com/alhardy-net/terraform-core-aws-alhardynet-networking/commit/b26b9e5d1b13602a4c192d9697a12df7770906b2
https://github.com/imma/fogg-env/commit/7de45302cfa8a7dca88ab61b3021091cc480b495
https://github.com/schubergphilis/terraform-aws-mcaf-matillion/commit/3b0e2fe42d660664c49d54ae8706de004a9b4176
https://github.com/binbashar/le-tf-infra-aws/commit/a873443bd618ac9c14d12210ed4d12a11cc1f733
https://github.com/binbashar/le-tf-infra-aws/commit/19c37f7e4e65d14e760f1ff8cf60cfd1e98c1a8b
https://github.com/binbashar/le-tf-infra-aws/commit/bbfbd2484ace2819ffceac9155b995ab870ee3a3
https://github.com/mads-hartmann/cloud.mads-hartmann.com/commit/667f5715c19534bfe5b01ad692979447412fd033
https://github.com/opszero/terraform-aws-kubespot/commit/decc9706133af9978ada6cf58a1a63343468e8a0
https://github.com/stSoftwareAU/sts-network/commit/bf59a4c995822ccfdeee64781345c12ebefa967f
https://github.com/lean-delivery/terraform-module-aws-core/commit/25bbff736936b64a6120ef9608498830ecec33c0
https://github.com/CheesecakeLabs/django-drf-boilerplate/commit/e4003aa3c51b789e2a2b5828768a7d0f34659209
https://github.com/covidapihub/terraform-covidapihub/commit/3c5d381a20fbd287f1003271ee1ba64272325074
https://github.com/simplygenius/atmos-recipes/commit/d27b48345a3827b8a10cb5388e42bd5cbea484bb
https://github.com/hellupline/terraform-eks-cluster/commit/2bd01358b3a30d1680074f9bbd120da3a1456450
https://github.com/tsub/ecs-sandbox/commit/8501fafbba186919c9e9b55a6a3fc72b4fb80909

Appendix A. List of (Anti)pattern Occurrences

• schubergphilis/terraform-aws-mcaf-vpc (6ca41e5)
• davidcallen/parkrunpointsleague (21627e4)
• HarsheshShah08/HS-Terraform (e0d0f04)
• nagpach/terraform-example-aws-vpc (35d26fd)
• appbricks/cloud-inceptor (782a0a3)
• firehawkvfx/firehawk-prototype-deprecated (894fb1d)
• Xin00163/terraform (f69ce38)
• jeffawang/infrastructure (9f61081)
• stephengrier/my-infra (e5742d6)
• naftulikay/titan (a0ea4fd)
• alphagov/govuk-aws (9b54cd6)
• binbashar/le-tf-infra-aws (8b1c39c)
• robertdebock/terraform-aws-vault (4ddd021)

Overprovisioned resources

• thomastodon/jabujabu (02210a3)
• guilhermerenew/infra-cost (ba858d9)
• chaspy/terraform-alibaba-isucon8 (53588da)
• dwp/dataworks-aws-data-egress (14f065e)
• akaron/kubeadm aws (2e2092e)
• robertdebock/terraform-azurerm-container-group (c0d6578)
• fdns/terraform-k8s (f106917)
• jackofallops/terraform-aws-mysql-cluster (7b2a446)
• alphagov/govwifi-terraform (38d0a67)
• pangeo-data/terraform-deploy (f8163bd)
• eduardobaitello/terraform-eks (c11fca6)
• jshcmpbll/Cloud-Mac-KVM (361885d)
• kaz/kiritan.com (1cd96c7)
• dylanmtaylor/dylanmtaylor-terraform-aws (44016d6)
• roysjosh/terraform-unifi (da9e286)
• phillhocking/aws-ubuntu-irssi (1532e0c)
• ministryofjustice/cloud-platform-terraform-monitoring (87401ba)
• wellcomecollection/buildkite-infrastructure (50957e0)

AWS - Expensive DynamoDB

• deptno/terraform-aws-modules (49f447b)
• ONSdigital/eq-terraform-dynamodb (40eb651)
• olliefr/aws-terraform-cloud1 (bf75383)
• garylb2/terraform-example-patterns (6de6d83)
• Arkoprabho/TerraformTutorial (ba317d7)
• jkstenzel95/jks.gameservers (411ab99)
• techservicesillinois/aws-enterprise-vpc (0d21bea)
• austin1237/gifbot (c11dabf)
• servers-tf/infrastructure (cc9e50a)

63

https://github.com/schubergphilis/terraform-aws-mcaf-vpc/commit/6ca41e5ad697201a1d225e5d15134e547ee6ced3
https://github.com/davidcallen/parkrunpointsleague/commit/21627e4057b3446b511e4369ca366e297cfc87eb
https://github.com/HarsheshShah08/HS-Terraform/commit/e0d0f044c54ebf491c122664d03e0cfe5d2b0823
https://github.com/nagpach/terraform-example-aws-vpc/commit/35d26fd046185ae079e09fa6435c41ae685e679e
https://github.com/appbricks/cloud-inceptor/commit/782a0a3c30cf83bcaeacc942789ccc903576fe8a
https://github.com/firehawkvfx/firehawk-prototype-deprecated/commit/894fb1d80c7a3953b7a51d7acd5e9b942faced8f
https://github.com/Xin00163/terraform/commit/f69ce3812180a20bbda69ff1432a1cd36342bc3b
https://github.com/jeffawang/infrastructure/commit/9f610811aea8c523332e9dccad9bb0800b70691e
https://github.com/stephengrier/my-infra/commit/e5742d6f4f93dd432c9d8d0a31493d43c45aaff1
https://github.com/naftulikay/titan/commit/a0ea4fd84a409fe4ee853effa9f309a005b0efc1
https://github.com/alphagov/govuk-aws/commit/9b54cd6e875843c3ecade45ce37e863357b6e0e9
https://github.com/binbashar/le-tf-infra-aws/commit/8b1c39cf7e64610b4c17f5b2697a782f0ec99f7e
https://github.com/robertdebock/terraform-aws-vault/commit/4ddd02182a1f210bb9f614fbba5ef11b4fcbe827
https://github.com/thomastodon/jabujabu/commit/02210a3d3ba4a770c29623825b7f54f3ff33f3c7
https://github.com/guilhermerenew/infra-cost/commit/ba858d94e29d03e3e81533df8cd8bc85b9f176f1
https://github.com/chaspy/terraform-alibaba-isucon8/commit/53588dad5dd4c13903a6c582f74e1afe2671d33e
https://github.com/dwp/dataworks-aws-data-egress/commit/14f065e5161fee14c286c34df7db9f5516ef9bb6
https://github.com/akaron/kubeadm_aws/commit/2e2092ec94b27a4c3f0b9f4ee4d46a1983a72518
https://github.com/robertdebock/terraform-azurerm-container-group/commit/c0d6578f1ebbdcc9cab091017259e4d596bfe8c9
https://github.com/fdns/terraform-k8s/commit/f106917bb7b2d8d4428022bb119585bf9f35769c
https://github.com/jackofallops/terraform-aws-mysql-cluster/commit/7b2a446b0915a3ad26093f8234f7493ff152138a
https://github.com/alphagov/govwifi-terraform/commit/38d0a67cf70d46c26675ce60a7a647eef0f11e52
https://github.com/pangeo-data/terraform-deploy/commit/f8163bd52bea3774e2f160cff0523c602e65d933
https://github.com/eduardobaitello/terraform-eks/commit/c11fca6440a5000648f690e6282778fb4ec73309
https://github.com/jshcmpbll/Cloud-Mac-KVM/commit/361885d22c0304cb44683f9b005f82ca5e269841
https://github.com/kaz/kiritan.com/commit/1cd96c7f71e56629ffa07c38e12c4da19fcfc5f7
https://github.com/dylanmtaylor/dylanmtaylor-terraform-aws/commit/44016d6a8e496b69308a81e88af8c9ef8b710ab3
https://github.com/roysjosh/terraform-unifi/commit/da9e2869456610a0228cb14f850c6eccddbb15e0
https://github.com/phillhocking/aws-ubuntu-irssi/commit/1532e0c298ec4f8d7d749a884f7c46f2a2cf53d3
https://github.com/ministryofjustice/cloud-platform-terraform-monitoring/commit/87401ba23af26d379d8132cc09fd7cd212773ba1
https://github.com/wellcomecollection/buildkite-infrastructure/commit/50957e0478fd4c4d945ac593822436f6a7ec8111
https://github.com/deptno/terraform-aws-modules/commit/49f447bdbb3cf23499e8194e78f852ea1e256d3a
https://github.com/ONSdigital/eq-terraform-dynamodb/commit/40eb651a50d0dfd5cf047ef62c8a6259c1c66e02
https://github.com/olliefr/aws-terraform-cloud1/commit/bf753832a519b0649f8d58d93aa643afe3f94fc7
https://github.com/garylb2/terraform-example-patterns/commit/6de6d83d930bd9459e1cf8c311fa7b45c3f90987
https://github.com/Arkoprabho/TerraformTutorial/commit/ba317d7e402f014589e230fad8c7384016211ba2
https://github.com/jkstenzel95/jks.gameservers/commit/411ab992ba07e698cb08b56eb4cfc9d6e001d43f
https://github.com/techservicesillinois/aws-enterprise-vpc/commit/0d21bea79e1936e2bdaee58bd6e328dd08e59b30
https://github.com/austin1237/gifbot/commit/c11dabf1ea02c0e044c62448986bb3f9abdf3967
https://github.com/servers-tf/infrastructure/commit/cc9e50a3864511f9fb9f871293e6a6e7e2719d2c

Appendix A. List of (Anti)pattern Occurrences

• jsoconno/aws-terraform-remote-state-infrastructure (fed8be2)
• ONSdigital/eq-terraform (6eaf697)
• nikkiwritescode/flask-app-terraform-deployment (af47bb6)
• kperson/terraform-modules (53bd2d8)
• kody-abe/terraform (169c776)
• jenkins-x/terraform-aws-eks-jx (cce6b14)
• telia-oss/terraform-aws-terraform-init (e8c7b2e)
• trajano/terraform-s3-backend (f4b61c7)
• poldi2015/chat-app (cb45bf1)
• tesera/terraform-modules (3cd4d7b)
• MichaelDeCorte/TerraForm (3799ee8)
• TalkingFox/SignalWs (935d9d6)
• codequest-eu/terraform-modules (ffe23d4)
• dgorbov/terraform-s3-backend-setup (81f8274)
• sbogacz/terraform-aws-state-backend (1744863)
• giuseppeborgese/terraform-locking-s3-state (6b4e59e)
• Accurate0/infrastructure (eef88fd)
• ministryofjustice/cloud-platform-environments (0c1b402)

Expensive monitoring

• Eximchain/terraform-aws-quorum-cluster (6a56f40)
• Accurate0/infrastructure (06889e0)
• cloudspout/Gefjun (665692a)
• terraform-google-modules/terraform-example-foundation (8391f1b)
• tdooner/flynn (a9ea9d0)
• elliotpryde/personal-infrastructure (772c5ad)
• elliotpryde/personal-infrastructure (7c4205c)
• alghanmi/terraform-modules (570d3d8)
• thoughtbot/flightdeck (c784bc0)
• chapas/tf-az-kubernetes (bcc6e19)
• Accurate0/infrastructure (bd63efe)
• rust-lang/simpleinfra (05370cc)
• binbashar/le-tf-infra-aws (8b1c39c)
• dfds/infrastructure-modules (1c9c92d)
• matihost/monorepo (6995c99)
• alphagov/govuk-infrastructure (3386d76)
• alphagov/govuk-infrastructure (6017d0b)

64

https://github.com/jsoconno/aws-terraform-remote-state-infrastructure/commit/fed8be2748bc2286a6f9888d282d66763ba612ed
https://github.com/ONSdigital/eq-terraform/commit/6eaf697bf9f111214a6d74ee3094e5784a57d1bb
https://github.com/nikkiwritescode/flask-app-terraform-deployment/commit/af47bb6201f1dcc8264e60da429e4ff8d126e56c
https://github.com/kperson/terraform-modules/commit/53bd2d84776f9ed7ae287fc59ed42f87bd7bbc4b
https://github.com/kody-abe/terraform/commit/169c7768b0b1584945362c035a2b227d2f579466
https://github.com/jenkins-x/terraform-aws-eks-jx/commit/cce6b14692fccd30c027851607a9526151d4c3d2
https://github.com/telia-oss/terraform-aws-terraform-init/commit/e8c7b2eb22d08ddd1a1bb375cb6efa4165c9098f
https://github.com/trajano/terraform-s3-backend/commit/f4b61c7bedae856439f01499de1ec9050b4c40fc
https://github.com/poldi2015/chat-app/commit/cb45bf17da799afaa789206e3fcd39d9403e0567
https://github.com/tesera/terraform-modules/commit/3cd4d7b55ac2003153fd0670151ab395ae182431
https://github.com/MichaelDeCorte/TerraForm/commit/3799ee8b9677d02254eb6d6f50f3732df4c8374e
https://github.com/TalkingFox/SignalWs/commit/935d9d683608b4d8a97ef6ccc2c8ab7c14eec0d0
https://github.com/codequest-eu/terraform-modules/commit/ffe23d4c2cd78035bef0dfb261701e7ed8dd588d
https://github.com/dgorbov/terraform-s3-backend-setup/commit/81f82740760a357a86b3a77f9ed400624edcb218
https://github.com/sbogacz/terraform-aws-state-backend/commit/174486319f3b956807d56e5433880f9978884f93
https://github.com/giuseppeborgese/terraform-locking-s3-state/commit/6b4e59e8b844417dc5c247bdef1b0adb8e2e7028
https://github.com/Accurate0/infrastructure/commit/eef88fd3e61cf4b5e04682824e76df5348b60de5
https://github.com/ministryofjustice/cloud-platform-environments/commit/0c1b4028575aeaabf7543c7357c4e26d610677c3
https://github.com/Eximchain/terraform-aws-quorum-cluster/commit/6a56f400f7de3f4d5cef646d92e3f848608031c1
https://github.com/Accurate0/infrastructure/commit/06889e08148d258f329118d43734f8c8dcff994e
https://github.com/cloudspout/Gefjun/commit/665692a86bb65ddfa6c001f296c76c17288e2944
https://github.com/terraform-google-modules/terraform-example-foundation/commit/8391f1bd4322fec04fda7509b537c5f66cddbbd9
https://github.com/tdooner/flynn/commit/a9ea9d09727825f9a047e70d94caf73c99e6b2a8
https://github.com/elliotpryde/personal-infrastructure/commit/772c5ad20818738b09d01cd70ca3de80cbf66dcb
https://github.com/elliotpryde/personal-infrastructure/commit/7c4205cd130c5463d7f39aa6f281e198c143d0d9
https://github.com/alghanmi/terraform-modules/commit/570d3d8440ed399ed8b30bffe1fd7a2adc197771
https://github.com/thoughtbot/flightdeck/commit/c784bc0a3f747b66ab7cd01f23bbbdbad3bfe705
https://github.com/chapas/tf-az-kubernetes/commit/bcc6e190b8f8a12b590089fb755c4f552f179ad0
https://github.com/Accurate0/infrastructure/commit/bd63efe7cf8fd2d9ae3a1497c342f97a7d22a7f5
https://github.com/rust-lang/simpleinfra/commit/05370cc8f9852987e20cf5c659e5249dd1f2181c
https://github.com/binbashar/le-tf-infra-aws/commit/8b1c39cf7e64610b4c17f5b2697a782f0ec99f7e
https://github.com/dfds/infrastructure-modules/commit/1c9c92d966c342d42ac5c915a7c01f6a98a38122
https://github.com/matihost/monorepo/commit/6995c99e0561c29b6e8d0ff84d3b2504d1772fe8
https://github.com/alphagov/govuk-infrastructure/commit/3386d7637c06f84cc3cc252f96d43e511cea428e
https://github.com/alphagov/govuk-infrastructure/commit/6017d0be84adac6b90b46f3d0bc2376a7e9b8e85

B TFLint Inspection Process

Runner (host as goroutine)RuleSet (plugin)TFLint (host)

Runner (host as goroutine)RuleSet (plugin)TFLint (host)

Start server

Apply plugin configs

Start server

Request to run inspection

Request to get Terraform configs

Return resources/modules

Request to evaluate expressions

Return evaluated values

Emit issues

End of inspection

Return issues

Figure B.1: Sequence diagram of TFLint’s inspection process, from the TFLint documen-
tation 1

1https://github.com/terraform-linters/tflint/blob/master/docs/developer-gui
de/architecture.md

65

https://github.com/terraform-linters/tflint/blob/master/docs/developer-guide/architecture.md
https://github.com/terraform-linters/tflint/blob/master/docs/developer-guide/architecture.md

C Distribution of Cloud Providers

Figure C.1 lists the distribution of cloud provider codes assigned to commits. The total
number of occurrences (568) does not match the number of commits (567); this differ-
ence is accounted for by the fact that 3 commits were assigned 2 cloud provider codes
because of provider migrations and 3 commits were assigned 2 or more codes due to
multi-cloud deployments. In addition, 6 commits were not assigned a cloud provider
code because the commit did not apply to any specific cloud provider, instead using
Terraform to e.g. apply Helm charts.

Figure C.1: Distribution of cloud provider codes

66

D Example Scans

resource "aws_instance" "server" {
instance_type = "t2.micro"

}

resource "aws_ebs_volume" "storage" {
availability_zone = ""
type = "gp2"

}

Listing D.1: Example Terraform file for the Old generation antipattern

Figure D.1: Example result of a Checkov scan

67

Appendix D. Example Scans

resource "aws_dynamodb_table" "table0" {
billing_mode = "PAY_PER_REQUEST"

}

resource "aws_dynamodb_table" "table1" {
global_secondary_index {
}

}

resource "aws_dynamodb_table" "table2" {
read_capacity = 20
write_capacity = 20

}

Listing D.2: Example Terraform file for the AWS - Expensive DynamoDB antipattern

Figure D.2: Example result of a TFLint scan

68

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Research Objective
	Contributions
	Outline

	Background & Related Work
	Code Smell Detection
	Linters
	Infrastructure as Code
	IaC Smells
	Static Analysis of IaC

	Study Design
	Data Collection
	Updating the Original Dataset
	Pattern Extraction
	Implementation
	Evaluation
	Requirements
	Functional Requirements
	Non-functional Requirements

	Pattern Extraction
	Patterns and Antipatterns
	(Co-)occurrences

	Implementation
	Tool Selection
	Mapping Patterns to Rules
	Budget
	Object storage lifecycle rules
	Old generation
	AWS - Expensive DynamoDB

	Rule Implementation
	Checkov
	TFLint

	Usage

	Evaluation
	Relevance
	Setup and Results
	False Positives
	Latest Commits

	Performance
	Comparison Between Checkov and TFLint

	Discussion
	Pattern Extraction
	Implementation
	Evaluation
	Threats to Validity

	Conclusion
	Future Work

	References
	List of (Anti)pattern Occurrences
	TFLint Inspection Process
	Distribution of Cloud Providers
	Example Scans

