= 7 university of faculty of science
E gronin gen / and engineering
From Terraform to AWS

CloudFormation: A Study of Cost
Patterns and Antipatterns

Allia-lasmina Neamt

groningen and engineering

/ university of faculty of science

University of Groningen

From Terraform to AWS CloudFormation: A Study of Cost Patterns and
Antipatterns

Bachelor’s Thesis

To fulfill the requirements for the degree of
Bachelor of Science in Computing Science
at the University of Groningen under the supervision of
dr. D. Feitosa (Computing Science, University of Groningen)
and
Prof. dr. V. Andrikopoulos (Computing Science, University of Groningen)

Allia-Iasmina Neamt (54796756)

August 1, 2024

Abstract

Context: As one of the most popular software deployment environments, cloud computing presents a
wide range of advantages. However, even though a major factor in any project, it is not yet established
how much of a role cost plays in the decision between multiple cloud computing services. Rather, it might
be the case that cost concerns are initially overlooked, to later emerge and negatively influence the project.

Objective: This study aims to investigate software developers’ cost awareness when using cloud comput-
ing services, as well as the potential implications of lack thereof. The focus of the research is the AWS
CloudFormation service, a popular tool for the provisioning of the infrastructure as code for software de-
ployment.

Methods: Through a process of data mining, we build a dataset of relevant public GitHub repositories that
use the AWS CloudFormation service and discuss cost-related concerns in the commit messages. Further,
we apply thematic analysis to identify patterns and antipatterns for cost optimization, as well as correlate
them with the results from the predecessor study performed in the context of the Terraform service.

Results: With a dataset of 206 commits that make cost-related changes, we demonstrate the applicability
of the predecessor Terraform patterns and antipatterns for AWS CloudFormation. Additionally, we iden-
tify two new patterns: the usage of cost reports and the implementation of preventative cost reduction
templates.

Contents

1 Introduction

2 Related work

2.1 Costassessmentincloud computing o L oL
22 Challengesof [aCtools
23 AWSCloudFormation e
24 Datamining
25 (Anti)patternextraction L
3 Study design
3.1 Objective and Research Questions,
3.2 Imitialdataset e
321 Datamining
3.2.2 Datavalidationand labelling
3.3 Commitsdatacollection
3.4 Thematic Analysis
35 Frequency Analysis
4 Results
41 Dataset e
42 Catalogue
421 Patterns
422 Antipatterns L
4.3 (CO-)OCCUITEINECES . v v v v v v e

5 Discussion

51 Interpretationof Results L
511 Anti-practices e
5.2 Implications to Practitioners and Researchers
53 Threatstovalidity
531 Externalvalidity
532 Internalvalidity
533 Reliability

6 Conclusions

List of Tables

4.1

4.2

Predecessor Terraform patterns with numbers of occurrences in distinct commits and repos-

itories for AWS CloudFormation 16
Predecessor Terraform antipatterns with numbers of occurrences in distinct commits and
repositories for AWS CloudFormation 18

List of Figures

3.1
3.2
3.3

4.1

Overview of the data collection and thematicanalysis 11
Overview of the predecessor and current related works on IaC cost optimizations 12
Steps of the data collection team contribution o 0 L. 13
Unique co-occurrences of (anti)patterns within single commits and repositories, for both

Terraform and AWS CloudFormation i e 19

1 | Introduction

In the software engineering competition for speed and efficiency, cloud computing emerged as an innova-
tive solution for increasing scalability and flexibility. With a large variety of tools and services, companies
can now opt to use the cloud instead of managing their own private hardware, while developers are en-
abled to focus on solutions rather than their limitations [1].

Among the crucial factors that have ensured the popularity of cloud computing is the reduction of costs in
comparison to on-premise computing [2]. The initial promise of the cloud has been of fast and convenient
services, cheaper than the competitors” [3].

However, after the striking success of the first cloud computing services [4], numerous solutions have
emerged from opposing companies [5]. As expected, a wide range of pricing rates has followed, with var-
ious payment methods, such as subscription-based plans, pay-as-you-go plans and reserved instances [6].
Contrasting and comparison between cloud computing services became increasingly difficult as assessing
the final costs required a comprehensive understanding of the different payment methods, as well as their
long-term implications [7]. Additionally, several services involved hidden costs, including data storage
and transfer payments that would be requested only after the initial commitment. In numerous cases, by
the time such costs are revealed, too many resources have already been invested in the project to consider
alternative cloud computing services [5].

Due to the increased difficulty of properly assessing costs, this factor appears to be overlooked when se-
lecting a cloud computing service, as software developers prioritize other elements, including convenience,
efficiency and speed [9]. Nevertheless, the failure to accurately estimate expenses can have a significant
negative impact on a project by potentially leading to budget overruns, completion delays or span limita-
tions [10].

Given the broad spectrum of cloud computing services, ranging from serverless computing to DevOps
tools and more, a scope reduction for our project is in order. Since the focus of the project are cost consid-
erations of cloud computing in general, the analysis of a specific programming language or environment
would not provide sufficiently broad results, as external validity might be threatened. Instead, we choose
to inspect Infrastructure as Code (IaC) tools, a fairly used practice for provisioning cloud infrastructure by
using machine-readable descriptor files [11]. With the main advantage of increased automation, IaC tools
also facilitate consistency, scalability and reusability of projects.

As the complexity of cloud-based applications increases, so does the difficulty of manually managing the
infrastructure and deployment of such systems due to scaling issues [12], security considerations [13] and
human error. Infrastructure as code tools provide a more viable option by offering automation and effi-
ciency. Despite the numerous advantages, similarly to all cloud computing services, these tools can pose
several challenges, including cost-related considerations. If ignored and initially unmanaged, inefficient
provisioning practices can have a severe negative impact on financial planning and become increasingly
more difficult to spot and remedy:.

Through this research, our first aim is to identify cost-related discussions within the IaC development
community to further highlight the underlying issues that lead to such undesired outcomes. The project

Chapter 1. Introduction

is a direct continuation of the study investigating cost awareness in the context of the open-source IaC
tool Terraform! [14]. The authors identify expenses as a relevant point of concern for software developers,
as well as observe the actions taken to reduce these costs. As a successor study, we intend to ensure
consistency by following the same methodology while also increasing generalizability by expanding our
research to a provider-specific tool. For this study, the specific cloud computing solution under scrutiny
is the Amazon Web Services (AWS) CloudFormation?, a service for the definition and provisioning of
Infrastructure as Code through declarative YAML or JSON templates.

Following the same methodology as [14], an initial dataset of cost-related commits is collected as part
of a team contribution involving three students. We further develop a software solution that collects a
significant dataset by mining data from public GitHub repositories. The projects of interest are the ones that
make use of AWS CloudFormation and discuss cost-related topics within the commits. Additionally, since
our goal is to uncover the insights of software developers truly familiarized with AWS CloudFormation, we
consider projects that simply use the default configuration templates as irrelevant. Thus, the set of projects
is filtered to only include the repositories that modify the AWS CloudFormation configuration files. After
creating the dataset, we manually validate and label the information.

While the theoretical understanding of the extent of cost awareness in the context of cloud computing
services is an essential foundation for future research, identifying concrete solutions can have a practical
impact and encourage positive change within the developers” community. After the collective effort of
creating the initial dataset of commits, the individual component of the research focuses on uncovering the
existence and implications of such a practical solution: software patterns and antipatterns.

Software patterns are design-level reusable solutions to common software development problems. Also
referred to as design patterns, these blueprints for improving specific code issues originally emerged in
the context of object-oriented design [15], but quickly extended to a wide range of connected fields, such
as data management [16] or system design [17, 18]. In contrast, software antipatterns are frequently used
counterproductive or ineffective practices that can lead to negative consequences or unsatisfactory out-
comes. Where patterns define proven solutions to be followed, antipatterns highlight frequent pitfalls and
bad practices that should be avoided if possible. Both patterns and antipatterns can be used to define
code quality standards with regard to different aspects, including security [19, 20], efficiency [21] and fault
detection [22].

Publicly available information regarding patterns and antipatterns can have a major preventative effect
during the development of a project as programmers are enabled to avoid common mistakes. Moreover,
even after the completion of a task, continuous access to new information on the topic of good practices
can encourage code verification and improvement [23], as well as foster consistency and maintainability

[24, 25].

With the individual contribution, we strive to extend another work that also branched out from the origi-
nal Terraform Cost Awareness study [14], the Terraform Catalogue of Cost Patterns and Antipatterns [26].
Whereas the base study focused on the cost-related messages of Terraform commits, the Catalogue aimed
to increase applicability by interpreting the concrete code changes and grouping them into themes to be
further refined into cost-optimization patterns. For the Terraform IaC tool, three patterns and seven an-
tipatterns emerged. To increase generalizability, we evaluate the applicability of these results for AWS
CloudFormation and, potentially, observe the existence of new themes. The aforementioned labelled com-
mits dataset obtained through the team effort constitutes the basis for the individual pattern and antipat-
tern extraction.

The main goal of our research is therefore to extend our knowledge regarding cost patterns and antipatterns for
Infrastructure as Code tools, and in particular of AWS CloudFormation, in order to offer more thorough insights
into practical optimization solutions. Through prevention and education, we aim to encourage developers to

v.terraform.io/

amazon.com/cloudformation/

https://www.terraform.io/
https://aws.amazon.com/cloudformation/

Chapter 1. Introduction

learn from common mistakes and proactively optimize the cost component of cloud computing tools.

Throughout the remainder of the paper, we first review in Section II relevant related works on multiple
topics we are interested in, including cost considerations, challenges of IaC tools, specifications of AWS
CloudFormation, data mining and (anti)pattern detection. Further, in Section III, we describe the method-
ology and study design used for the collection and analysis of cost-related AWS CloudFormation commits
from GitHub. In Section IV, we present our results regarding patterns and antipatterns, as well as their
co-occurrences and comparison to the predecessor study. We further interpret our findings, discuss the
implications for both practitioners and researchers and identify threats to validity in Section V. Lastly, Sec-
tion VI summarizes the observations and describes our potential future works.

2 | Related work

For the state of the art, several general subtopics are of interest for the project: cost in the context of cloud
computing as the general focus of the paper, IaC tools as the more specific focus and AWS CloudFormation
as the service under investigation. Additionally, as the main techniques required for the team contribution
and the individual contribution described in the previous section, data mining and pattern and antipattern
detection, respectively, are also to be investigated.

2.1 Cost assessment in cloud computing

Widely popular solutions, cloud computing services are preferred by software developers due to their scal-
ability, flexibility and efficiency. As concluded by recent studies, factors that contribute to this decision can
be highly varied, such as the type of the organization or its level of digitalization [27]. Consequently, the
choice between cloud computing services has a subjective component, as each software developer intends
to best fulfil their needs and expectations.

In the past, cost has been regarded as a highly relevant factor in the context of migration to the cloud
[28, 29], as well as an essential consideration for an optimal selection between cloud computing services
[30]. However, correctly estimating the expenses of a service appears to be difficult, both in research [31]
and in practice. There are little to no previous works regarding the actual degree to which programmers
are aware of cost-related issues when selecting between multiple cloud computing services and the impact
that lack of consideration might have on a project.

Whereas no outside studies relate entirely to our topic, it must be noted that this research is a direct con-
tinuation of the study by Feitosa et al. [14]. Throughout their paper, the authors focus on uncovering
cost-related issues and considerations programmers have in the context of the Terraform cloud computing
service. By using a process of data mining, the authors have obtained a substantial database of commits
and issues from public GitHub repositories that discuss cost-related topics. The data was further statis-
tically analyzed and interpreted through topic modelling and a knowledge graph. As conclusions of the
predecessor study, it was observed not only that software developers have significant concerns about the
expenses of the Terraform service but also that clear actions are taken in order to reduce these costs. The
same methods will be utilized to implement our project, with the significant distinction of focusing on the
AWS CloudFormation tool instead of the Terraform tool.

2.2 Challenges of IaC tools

With highly different specifications, IaC tools are a broad class of cloud computing services, still under-
going changes and improvements. Based on the coupling level between the IaC tool and its cloud service
provider, two main categories can be identified: provider-specific IaC tools and provider-agnostic IaC tools
[32]. The former category employs a tight coupling, as the tools are designed to interact with their partic-
ular cloud service providers. Examples include the Amazon Web Service (AWS) CloudFormation and the

2.3. AWS CloudFormation Chapter 2. Related work

Azure Resource Manager Templates'. The latter category allows for a looser coupling and the tools are
designed in a vendor-neutral manner that facilitates the provisioning of cloud infrastructure, regardless of
the used service provider. Examples of provider-agnostic IaC tools are Terraform, Pulumi? and OpenTofu?,
an open-source fork of Terraform.

Despite the numerous advantages of provisioning automation, IaC tools also pose disadvantages, many
still unexplored throughout current research or lacking awareness within the community. A relevant re-
cent study [33] deployed an approach similar to ours by investigating software developers’ discussions on
the Stack Overflow platform to highlight the challenges faced when using various tools, such as Terraform
and Ansible. The conclusion of the research is straightforward and seven main topics of concern are identi-
fied: server configuration, policy configuration, networking, deployment pipelines, variable management,
templating and file management.

Moreover, while investigating common strategies for adopting IaC tools and their shortcomings, a previ-
ous work [34] reveals a limited level of support and documentation of provisioning techniques. As implied
by the research, this leads to developers testing novel but ultimately faulty implementation methods, in-
stead of relying on established good practices. A similar point is also raised in another related study [35],
as one of the main concerns identified regarding the usage of IaC tools is the reliability and resilience of
the code itself. Improper or undocumented changes to the infrastructure are further portrayed as a sig-
nificant threat. Within the same research, more suggestions towards mitigating challenges of IaC tools are
presented, including access management to limit the misuse of the functionalities caused by lack of in-
formation, as well as standardization and reliable implementations for reduced maintenance efforts. The
existence of previous works focused on the various hidden challenges of IaC tools proves that the topic is
indeed of interest and further research on elements such as cost considerations would be relevant.

2.3 AWS CloudFormation

The Amazon Web Service CloudFormation, released in 2011, is a service that allows users to describe and
provision Infrastructure as Code in a declarative manner. The tool has become a popular cloud computing
solution, as it decreases the difficulty of infrastructure management by using standardized templates while
ensuring reusability and scalability. Additionally, due to its compatibility with a large variety of services
provided by Amazon Web Service, CloudFormation is relatively simple to implement and maintain, at
least within the AWS context.

However, despite the numerous advantages, the service has several drawbacks and risks that are becoming
more visible due to recent research on the topic. One relevant previous work unmasks the hidden vulner-
abilities that emerge during updates [36]. In another study regarding IaC tools, the authors reveal that
issues of AWS CloudFormation include insufficient transaction management of stack creation and update,
as well as the absence of sharing for templates [37].

Whereas it appears clear that there is a general interest in the shortcomings of the AWS CloudFormation
service, its expenses are not directly highlighted. There are certain costs associated with the service that
might not be justifiable for every project, especially not in comparison to the alternative cloud computing
solutions. Research contrasting between multiple such services [38] reveals cost as a relevant differentia-
tion factor and indicates possible shortcomings of the AWS CloudFormation service.

Moreover, as a highly integrated part of AWS, projects that use CloudFormation or any other AWS ser-
vices are challenging to transfer to other environments due to additional data transfer costs. Despite the
cost-related disadvantages, there is no clear indication of software developers adopting a cautious ap-
proach to budget planning when selecting the cloud computing service for a project. Given its prominent

1

https://azure.microsoft.com/en-us/products/arm-templates
Zhitpb 2/ /v pulumi.com/
Bhttps://opentofq.org/

https://azure.microsoft.com/en-us/products/arm-templates
https://www.pulumi.com/
https://opentofu.org/

2.4. Data mining Chapter 2. Related work

level of popularity and few officially recognized concerns regarding expenses, cost awareness appears to
be lacking in the context of the AWS CloudFormation service as well. This behaviour is somewhat surpris-
ing, as AWS also provides the AWS Pricing Calculator*, a web-based solution for estimating the costs of
using the services within the AWS environment. The tool is highly customizable and can assess expenses
based on input configurations, allowing developers to understand their specific spending scenario and,
theoretically, remedy potential issues early on.

While the AWS Pricing Calculator is ideal for pre-deployment financial planning, another tool, the AWS
Cost Explorer °, is also available for management and analysis of costs and usage after deployment. More-
over, external to the environment, but specifically designed to be easily coupled with cloud providers like
AWS, the Infracost tool can be particularly useful since it can calculate expected spendings directly from
Infrastructure as Code configurations®. However, neither solution is automatically integrated with AWS
CloudFormation, increasing the difficulty of cost assessment, as it would require time-consuming manual
data entry into the tools or research and implementation of other services to automate the process. Addi-
tionally, a lack of previous works on the topic highlights a gap in our knowledge of whether developers
are aware of such cost estimation options prior to getting started or only after significant budgeting issues
are encountered. As the second situation implies a later stage of development, the configuration of AWS
CloudFormation might be too complex to easily integrate the cost management tools.

2.4 Data mining

As a process of discovering patterns, trends or meaningful information within large data sets, data mining
has become a relevant tool used for highly diverse statistical tasks such as pattern recognition and predic-
tive analysis. Due to the transparency and collaborative view of open science, public repositories can be
utilized as a rich and insightful source of information during the process of data mining. Implementing
this tool has become increasingly popular and has provided the logistical basis of numerous recent stud-
ies. The topics of interest and the datasets to be mined have a wide range, with some relevant examples
focused on social media data [39], clinical data [40, 41] and public education data [42].

Research within the computing science field has also benefited from data mining techniques, mostly cen-
tered around various question and answers forms, such as Stack Overflow [33, 43], Reddit [44] and GitHub

[45, 46].

On the specific topic of data mining for the assessment of cost awareness, the only relevant previous re-
search to be considered is the Terraform study [14]. However, other predecessors have implemented the
technique of mining data from public repositories with the purpose of assessing awareness on different yet
related topics. Several works analyzing energy consumption awareness [47, 48], as well as the research on
performance-related concerns [49], have successfully collected relevant datasets through data mining and
provided clear insights into their respective topics. Additionally, the aforementioned related studies have
concluded that increased awareness in general can prove to be beneficial.

2.5 (Anti)pattern extraction

As one of the logical operations to be performed on mined data, pattern and antipattern recognition al-
lows the definition and interpretations of practices to be followed or, on the contrary, to be avoided for
optimization purposes. In the context of Infrastructure as Code tools, this technique has been successfully
used for the optimization of different aspects that can, in turn, improve the overall quality of the project.
Multiple previous works propose a similar approach of initially investigating common code changes re-
garding a specific factor to further extract patterns and antipatterns to potentially remedy the identified

https://calculator.aws/#/
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://www.infracost.io/

2.5. (Anti)pattern extraction Chapter 2. Related work

issues. One such factor frequently encountered in Infrastructure as Code tools research is code quality, for
which multiple pattern extraction methods have been deployed, including quantitative analysis of data
mined from public software repositories [50, 51], historical commits interpretation through clustering [52]
and code smell examination [53, 54]. As a second example, previous works have also relied on pattern and
antipattern extraction to improve software security through methods such as association rule mining to
co-locate issues [55] or control and data flow in code smell detection [56].

Whereas pattern and antipatterns extraction is a highly used data interpretation technique, there is little
to no related work regarding the optimization of the cost factor, with the only relevant previous research
being the predecessor study to this one of the Terraform Catalogue of Patterns and Antipatterns [26]. How-
ever, the existence of extensive research using this technique suggests a certain practicability and reliability
of patterns and antipatterns that we can further apply to the gap of cost considerations.

3 | Study design

3.1 Objective and Research Questions

As previously mentioned, our first goal is to extend the predecessor Terraform Catalogue of Cost Patterns
and Antipatterns [26] through evaluating its applicability for AWS CloudFormation and, thus, the first
research question emerges:

* RQ1: How applicable are the Terraform cost reduction patterns in the context of AWS CloudForma-
tion?

Moreover, as defined by the predecessor study, a pattern can only be deemed relevant if observed in at
least three different repositories. As this was not the case with all commits identified and analyzed for the
Terraform Catalogue, the addition of the AWS CloudFormation results might result in previously irrelevant
themes passing the threshold. Our second research question is:

¢ RQ2: Do the patterns that failed the relevance check in the context of Terraform become relevant after
the addition of the AWS CloudFormation results?

Lastly, since the Terraform Catalogue may not cover all possible patterns, especially in the context of dif-
ferent Infrastructure as Code tools, the third research question aims to increase the generalizability of the
set of results:

* RQ3: What other patterns emerge?

To answer the research questions, we start from the basis of the Terraform Catalogue of Cost Patterns and
Antipatterns and apply a similar methodology. An overview can be found in Figure 3.1 and each step is
further detailed.

3.2 Initial dataset

As a team effort, we collect commits discussing costs from repositories that implement AWS CloudForma-
tion. To appropriately reflect what the average software developer is interested in, we gather information
from public GitHub repositories, a rich source of diversity. The results are further used for analysis in
three individual works, as shown in Figure 3.2. The initial dataset collection can be divided into two stages
detailed below.

3.2.1 Data mining

To obtain the desired set of commits, data is mined from public GitHub repositories through an automated
code base developed by the team. The implementation has been broken down into several smaller units
validated through unit testing. Most of the system logic has been taken over from the methodology of
the Terraform study [14], including Python as the programming language. An overview can be found in
Figure 3.3 and each unit is explained further.

10

3.2. Initial dataset Chapter 3. Study design

Initial dataset
collection

h 4

830 commits
| from /
/448 repositories,

Terraform Catalogue
Feitosa et al. 2024

Changes to 1aC files
collection

h 4

¥

| 262 labelled | " 3 pattems
5 17.803 laC

{ commits from | — file diffs and

/205 repositories, /7 antipatterns /

h

Thematic Analysis » 2 new patterns

Legend

133 commits from () previous work

120 repositories
» matched » Frequency Analysis

with Terraform o _—
(anti)patterns individual contribution

173 commits from |:| process

148 repositories

1 with (anti)pattern 5 result

OCcCcurences

() team contribution

Figure 3.1: Overview of the data collection and thematic analysis

Unit 1 - Data retrieval

The first step is to identify relevant repositories and save them in a dataset in the form of links. Whereas
AWS CloudFormation cannot be identified at this point since it does not have a unique extension or mark,
we know that the repositories must contain YAML or JSON files for the declarative provisioning of the
Infrastructure as Code. After a preliminary analysis of data samples with the two extensions, we chose
to only focus on YAML as we observed a lower number of false positives. Further, the GitHub API code
search querying method can be used to identify files with the YAML or YML extension. Since such a re-
quest gives as a result 1.000 random files that fit the criteria, we increased the likelihood of true positives
by writing multiple queries, each also searching for the name of an AWS CloudFormation resource (e.g.,
“AWS::EC2::Instance”) in addition to the extension. Further, we identified the repositories the resulting
files belong to and saved the unique links in the dataset. We have run this script multiple times. As part of
the GitHub API logic, the random files given by the code search are slightly different each time.

After a unique repository link is saved in the dataset, the next step is for the Python script to make a
clone request to the GitHub API and save the actual repository. This step is required since the filtering
defined in the next unit needs access to the concrete files of the project. The commits are automatically
pulled when the repository is cloned.

Unit 2 - Information filter

For the initial dataset collection, only the commit messages are under scrutiny and we are interested in
identifying the ones that contain cost-related information. We find such relevant commits by searching for
specific keywords in the messages. For consistency, we have used the set of keywords from the Terraform
Cost Awareness Study [14] with the following term stems: bill, cheap, cost, efficient, expens and pay.
Commits that do not include any keyword are eliminated from the dataset as the probability of identifying

11

3.3. Commits data collection Chapter 3. Study design

Terraform Catalogue of
Cost Patterns and
Antipatterns
Feitosa et al. 2024

Terraform Cost
— Awareness Study o
Feitosa et al. 2024

| 3 patterns and 7
antipatterns

() previous work

C) team contribution

v individual contribution

I:l study
5 result

AWS CloudFormation
Cost Awareness Study
team contribution

labelled commits
dataset

initial commits
dataset

Terraform

labelled and_) v ".r l

AWS CloudFormation AWS CloudFormation AWS CloudFormation
Cost Awareness GitHub Cost Awareness Cost Patterns and
vs Stack Overflow Commits Data Analysis Antipatterns
Nicolae Tkacenko Alexandru Cirlan Allia Neamt

Terraform
/ Stack Overflow
discussions

Figure 3.2: Overview of the predecessor and current related works on IaC cost optimizations

cost considerations in their messages decreases drastically.

Unit 3 - Service filter

Lastly, the cloned repository dataset is filtered to include only the commits that change AWS CloudForma-
tion configuration files. Whereas this service does not have a specific mark, we know that its YAML file
must contain a specific structure with three nested keys: first "Resources", then, under it, a key with any
name and, finally, the "Type" key. The value of the latter must be the name of an AWS CloudFormation
resource, meaning it will start with the string "AWS::". Through a Python script, the dataset is filtered so
only the commits that contain this specific structure in at least one YAML file are kept. Additionally, we
compare each such file with a set of official AWS CloudFormation templates !. If there is a perfect match
with one of the templates, the file is not taken into account.

3.2.2 Data validation and labelling

Team members have manually analyzed the initial dataset by understanding the meaning of the commit
message and assigning one or more labels to describe it. For consistency reasons, the same labels from the
Terraform Cost Awareness study [14] are used, with minimal additions or refinements further elaborated in
Alexandru Cirlan’s thesis, as shown in Figure 3.2. The purpose of the data validation stage is to establish
the meaning of each data point and its relevance for cost awareness. To increase reliability, two team
members have independently checked each element. In case of conflicts, a third team member was required
to make an impartial choice. We have identified 262 cost-related commits from 205 repositories.

3.3 Commits data collection

In the initial dataset we have collected commits that discuss cost considerations in their messages and
change AWS CloudFormation files. As mentioned before, we have also assigned labels to each commit
describing, if applicable, the cost-related change as suggested by the message. For the individual contri-
bution, we use this initial dataset for pattern and antipattern extraction. However, moving forward, the
concrete code changes of the commits are required since the messages alone do not provide sufficient in-
formation regarding the used practices and their implications.

Int tps://aws.amazon.com/cloudformation/resources/templates/

12

https://aws.amazon.com/cloudformation/resources/templates/

3.4. Thematic Analysis Chapter 3. Study design

GitHub
GitHub
AFI
=g
z
£ 2y
£ get 1.000 get
pm----- | R1——® random » R== 4
AWS CloudFormation ! files
resoUrces H
Resource1 |---- : 2 Yy T
et 1.000 get sort unigue clone [~_
Resource 2~ pe----e-s--oq | Rz —» random » Ra== » R== |--»R
files repos
- Ry
Resourcen p---- 1 - B %
: get 1.000 get l
------- L Rn —» random » R== e -
files |
—
commits
-/
e
o 2
S = g
Legend = § ‘g
code search query that takes as input an extension (_yaml OR .yml) N
file links and a string (AWS CludFormation resource) P
r | clone request that takes as input the repository to be cloned e
repository links CF_
\commits)
—_ X S
}-’\ /‘4 dataset of A s g thexaction performed on Ato obtain B
N cloned elements . » B Aisinputfor B

Figure 3.3: Steps of the data collection team contribution

For each commit previously labelled as cost-related, we have retrieved the changed AWS CloudFormation
files. Between the initial dataset collection and the commit changes collection, one repository has become
unavailable and its corresponding one commit has been omitted. From the remaining 261 commits, we
have collected 17.803 code changes in 388 files.

3.4 Thematic Analysis

To identify cost patterns and antipatterns, we apply thematic analysis, a process of systematically coding
and categorizing data to observe the emergence of themes. Through carefully grouping and regrouping
the data based on similarities, this method facilitates pattern recognition and has been successfully used
for commit analysis by previous works [45].

To ensure consistency with the predecessor study, the set of three patterns and seven antipatterns de-
scribed in the Terraform Catalogue [26] is utilized as a basis to which we deductively attempt to match the
new AWS CloudFormation commits. Additionally, if the previous patterns do not correspond, an induc-
tive approach is used to directly identify similarities between commits to further group them into potential
new themes. For a thorough and reliable analysis aligned with the previous study, the following steps are
implemented:

1. Familiarization with the data: The first step is to manually examine each commit while taking into
consideration the message, the concrete code changes from AWS CloudFormation configuration files

13

3.5. Frequency Analysis Chapter 3. Study design

and, additionally, the labels assigned during the team contribution.

2. Generating initial codes: For each commit, codes are assigned to describe the nature of the cost-
related changes. Such a code can be given to multiple commits, whereas some commits that do
not directly affect costs receive a no-change code. To ensure consistency, we have started from the
Terraform Catalogue [26] by first attempting to match each commit with one or more of the previously
defined codes. In case none were deemed appropriate, new codes were generated while maintaining
the naming style from the predecessor study. Each new code has been defined and added to the
Terraform Catalogue set of codes to allow for consistent future expansions.

3. Validating themes: After the generation and definition of codes, the commits can be further grouped
based on similarities to observe broader themes. However, to better respond to RQ1 that questions
the applicability of the Terraform patterns for AWS CloudFormation, we first attempt to match each
commit to one of the previous three patterns or seven antipatterns. As a further step in case no
Terraform patterns are appropriate, we group the commits based on the assigned codes to identify
recurring trends, as well as outliers in the form of rarely used practices. Aligning with the prede-
cessor study, a theme must occur in at least three different repositories to be considered relevant.
Additionally, consolidation discussions are performed to reduce the risk of an interpretation bias and
increase reliability.

4. Defining and naming themes: Whereas some commits are directly matched with previous Ter-
raform patterns and antipatterns, the new themes observed are further analyzed and defined into
new patterns for solutions to common issues or, respectively, antipatterns for ineffective practices
to be avoided. To create a coherent set of results with both Terraform and AWS CloudFormation,
the documentation of the new patterns and antipatterns includes a brief description, a contextual
interpretation of the issues, the observed solution and an example.

3.5 Frequency Analysis

We perform frequency analysis to compare our results to the Terraform Catalogue [26] findings as part of
RQ1 and RQ2 and properly analyze the new patterns for RQ3. By first calculating the occurrences and co-
occurrences of patterns in both commits and repositories, we aim to further understand their interactions
and implications.

14

4 | Results

4.1 Dataset

Following the methodology described in the previous chapter, we manually analyzed the code changes
from the 262 commits with relevant cost-related messages, as established during the team data labelling
phase. Furthermore, we used codes to describe the nature of these changes for the thematic analysis pro-
cess. To ensure consistency, we started from the basis of predecessor codes defined for the Terraform
Catalogue of Patterns and Antipatterns and attempted to assign one or more codes to describe the changes
in each commit. As a result, we identified the cost-related predecessor codes 104 times in 93 commits from
86 repositories, whereas the no cost change code was assigned to 56 commits from 47 repositories, deeming
them irrelevant to our research. Additionally, to better tailor to the uniqueness of the AWS CloudForma-
tion IaC tool, we defined new codes to describe changes that did not previously occur in the context of
Terraform. We uncovered 98 new codes, corresponding to 133 commits from 109 repositories. Overall,
when considering both new and old codes, our results reveal a total of 206 commits from 167 repositories
labelled as containing at least one cost-related change. This number represents 78.6% of the total amount
of commits with relevant messages we investigated through thematic analysis.

After the coding process, the commits could be further grouped into themes based on similarities. As part
of the first research question of observing the relevance of the predecessor Terraform Catalogue results, we
first attempted to use the assigned codes to match each AWS CloudFormation commit with one or more of
the ten patterns and antipatterns already defined. However, if none were deemed appropriate, we grouped
the commits in the hopes of uncovering themes and found two new candidate patterns. As a result, we
matched 133 distinct commits from 120 repositories with the predecessor (anti)patterns and 49 commits
from 38 repositories with our two new patterns. It must be noted that the intersection of the two sets of
numbers reveals 9 commits and, respectively, 10 repositories that contain both old and new (anti)patterns.
Additionally, we investigated the co-occurrences of the AWS CloudFormation (anti)patterns and compared
them to the predecessor Terraform results in order to better understand their interactions and differences.

Moreover, to ensure consistency with the predecessor Terraform Catalogue, we also implemented the rele-
vance check of each new theme only being taken into account if it occurs in at least three different reposi-
tories. Following this restriction, we uncovered 26 commits from 24 repositories with assigned cost-related
codes that could not be grouped into new (anti)patterns. Additionally, as part of the second research ques-
tion, we considered the possibility that the patterns that did not pass the relevance check in the context
of Terraform might gain significance after the addition of the AWS CloudFormation results since the total
number of distinct repositories with occurrences could reach three. However, none of the codes we iden-
tified but could not group into new (anti)patterns could be matched with the Terraform ungrouped codes
either.

Our findings have been added to the Catalogue and our observations including co-occurrences of (anti)patterns
are presented in detail below.

15

4.2. Catalogue Chapter 4. Results

4.2 Catalogue

The Catalogue of Patterns and Antipatterns for IaC tools contains diverse cost-optimization practices iden-
tified through the combined analysis of the Terraform and AWS CloudFormation tools. As a successor
of the Terraform Catalogue [26], we briefly revisit the predecessor (anti)patterns with their applicability
for AWS CloudFormation and further define the new themes we uncovered. The dataset is also available
online’.

4.2.1 Patterns

As effective practices to be followed, patterns can improve efficiency and reduce the overall spendings of a
project. The table below contains the names and descriptions of the three predecessor patterns as defined in
the Terraform Catalogue, as well as the number of distinct commits and repositories in which we identified
each pattern while analyzing AWS CloudFormation.

Table 4.1: Predecessor Terraform patterns with numbers of occurrences in distinct commits and
repositories for AWS CloudFormation

Name Description Commits Repositories
Budget Use budgets to receive alerts about | 14 14
charged and forecasted costs and control
spending.
Object storage | Define lifecycle rules for object storage to | 13 12
lifecycle rules move objects to cheaper storage or drop

them entirely.

Spot instances Use spot instances to run interruptible | 1 1
workloads for significant cost savings
compared to regular instances.

Additionally, as a result for our third research question, we identified two new patterns further defined in
terms of an introduction, context, solution and an example.

1. Cost Report - cost report elements can be used to obtain information on the actual spendings over a
period of time.

Context: Given the complexity and scale of cloud computing projects, cost management
might be overlooked and, in turn, lead to overspending.

Solution: Major cloud providers offer cost reporting tools such as CUR buckets and
lambda rules to collect and later visualize and analyze cost and usage information. These
tools enable cost tracking, allow programmers to gain insights into spending trends and
might uncover cost-related issues.

We have identified the Cost Report pattern in 38 distinct commits from 27 repositories?.

Example:

@@ -0,0 +1,24 @@

+ AWSTemplateFormatVersion: "2010-09-09"

+ Description: 'Monthly Cost and Usage Report’
+ Parameters:

1

nttps://search-rug.github.io/iac-cost—-patterns/

2https: //search—-rug.github.io/iac-cost-patterns/cost—-report/
IS J.g IS IS

16

https://search-rug.github.io/iac-cost-patterns/
https://search-rug.github.io/iac-cost-patterns/cost-report/

4.2. Catalogue Chapter 4. Results

Bucket:
Type: String
Frequency:

Type: String

Default: "monthly"

AllowedValues:

- "monthly"

- "weekly"

- "hourly"
Resources:
MonthlyCostReport:

Type: "AWS::CUR: :ReportDefinition"

T S T T S

2. Preventative Template - templates with predefined configurations that enforce cost-optimizing meth-
ods can proactively manage and reduce future expenses.

Context: Retroactively implementing cost-saving changes can be inefficient and expensive,
especially in the context of large systems.

Solution: Preventative templates can be designed to prioritize cost-optimizations and lead
to a proactive enforcement of good practices further on.

We have identified the preventative template pattern in 23 distinct commits from 21 repositories®.

Example:

@@ -0,0 +1,111 @@
+ AWSTemplateFormatVersion: 2010-09-09
+ Description: Template for reducing costs on PN
+
Parameters:
StopEc2FuctionTagName:
Type: String
Default: "tostop’
Description: Name of EC2 Tag that will be stopped

StopEc2FuctionTagValue:
Type: String
Default: " true’
Description: Value of EC2 Tag that will be stopped

StopEc2FuctionTagNameCronExpression:
Type: String
Default: "cron(0 22 * % 2 x)’
Description: Cron expression when ec2 stop

Resources:
StopEc2Fuction:
Type: AWS:Lambda::Function

T T S S S S TC I ~IC SR e

4.2.2 Antipatterns

In contrast to patterns, antipatterns highlight counterproductive methods that lead to undesired results
and should be omitted from projects. The seven Terraform antipatterns from the Bolhuis et al. study are
further briefly described, while the number of occurrences we identified in both commits and repositories
are shown.

3¢ tps://search-rug.github.io/iac-cost-patterns/preventative-template/

17

https://search-rug.github.io/iac-cost-patterns/preventative-template/

4.3. (Co-)occurrences

Chapter 4. Results

Table 4.2: Predecessor Terraform antipatterns with numbers of occurrences in distinct commits and
repositories for AWS CloudFormation

Name Description Commits Repositories
Expensive in- | Compute instances are often overprovi- | 13 12
stance sioned even when a cheaper instance

would suffice.
Expensive moni- | Monitoring solutions are expensive and | 5 5
toring might not be needed.
Old generation Using newer resource generations gives | 19 19

similar performance for lower cost.
Expensive stor- | More expensive storage types are often | 4 4
age type used even when cheaper storage types

would be sufficient.
Expensive net- | Network resources like NAT gateways, | 10 8
work resource elastic IP addresses and subnets tend

to be expensive while not being strictly

needed.
Overprovisioned | Resources like RAM, storage and CPU | 26 25
resources utilization are often overprovisioned

even when lower values are acceptable.
AWS - Expensive | AWS DynamoDB4 tables often use fea- | 42 37
DynamoDB tures that carry cost but are not required,

especially for infrequently accessed ta-

bles.

We have not identified any new antipatterns for AWS CloudFormation.

4.3 (Co-)occurrences

To better understand the behaviour and interactions of (anti)patterns, we analyze their co-occurrences
within the same commit and, respectively, the same repository, as well as perform comparisons with the
results from the predecessor Terraform Catalogue. The co-occurrences are summarized by the UpSet plots
in Figure 4.1.

The ten Terraform patterns and antipatterns have a different distribution for AWS CloudFormation. The
most significant difference we observe is the increased preference for proactivity and prevention of AWS
CloudFormation users, with patterns having higher overall occurrence rates than in the case of Terraform.
The two previously most frequent results, the Expensive instance and the Expensive network resource are
encountered significantly less often, coming in seventh and ninth in our list of results. However, while
only the fifth most identified Terraform theme, the AWS-Expensive DynamoDB antipattern was observed
the most for AWS CloudFormation, with 42 commits in 37 repositories. The frequency increase of this
antipattern is expected since, as an AWS database service, DynamoDB is logically more likely to be paired
with AWS CloudFormation rather than Terraform. Additionally, in the predecessor results, Budget was the
most frequent pattern with the fourth highest number of occurrences, while the other two patterns had the
last and second-to-last rates. In contrast, according to our results, the two new patterns, the Cost Report and
Preventative template, are ranked second and fourth, with the Budget pattern being sixth.

By analyzing the relationships between themes, we discover that two or more (anti)patterns are more

18

4.3. (Co-)occurrences Chapter 4. Results

(Co-)occurrences in commits

49
45
33
27 55
21 g
o

IIIIII“ZHIH :

o | -
(]

2
s

S

Intersection size
5 B 8 3
]
I
LB
I
S
_H
5
3
.-
Ll
o
'™
'™
i~
"
"
-
-

Intersection size

42— AWS - Expensive DynamoDB @ I
51— Expensive network resource 38— Cost report (]
50— Expensive instance o I 26 Overprovisioned resources . I
e] 0ld generation ° 23 Preventive cost template . I
27 Budget [1omm 0ld generation 3 I
25 AWS - Expensive DynamoDB . i Budget e I
17 Overprovisioned resources [- Expensive instance °
I 13m Object storage lifecycle rules .
7 Expensive storage type ° 10m Expensive network resource . I
2| Spot instances. .] Expensive monitoring °
oM Expensive monitoring . E | Expensive storage type °
ol Object storage lifecycle rules L] 1 Spot instances .
50 0 2% 0 .
Terraform AWS CloudFormation

(Co-)occurrences in repositories

&

8

30
20

38
3
s,
19
o Iiaaa
, (]]
.

17 16

Intersection size
Intersection size
2N W

0 R .
: ‘s .., . BNNNENGézza2222222222:
EEEemi3llllrlliy
37— AWS - Expensive DynamoDB @ I
By | Expensive instance 27— Cost report]
45 - Expensive network resource @ I I 25m- Overprovisioned resources o I }
omm Old generation ° I 21mm Preventive cost template . I
27 Budget . I lomm Old generation . I
25HM AWS - Expensive DynamoDB . I . Budget .
pvl | Expensive instance L]
by | Overprovisioned resources L] I »m Object storage lifecycle rules L]
ol Expensive storage type L4 L | Expensive network resource L] I
2E GrbioiEnas . 51 Expensive monitoring .
E | Expensive monitoring L] a Expensive storage type L]
AN s . Y Spotinstances o
5 0 25 0 .
e Terraform AWS CloudFormation

Figure 4.1: Unique co-occurrences of (anti)patterns within single commits and repositories, for both Ter-
raform and AWS CloudFormation

likely to co-occur in the context of AWS CloudFormation than Terraform. This is the case for both commits
and repositories, with the Cost Report — Preventative template combination being the fourth most frequent
overall. Moreover, the three most encountered co-occurrences are composed of either two patterns or two
antipatterns, suggesting consistency in mentality and approach, with a low likelihood of developers being
preventative and corrective at the same time. However, despite the slightly higher rates of co-occurrences

in comparison to the predecessor study, our results still reveal single pattern occurrences as more frequently
encountered.

As also observed during the Terraform predecessor study, we encounter multiple implementations of the
same (anti)pattern in different commits from the same repository. The most representative example we
have found in this sense is the Sage AWS Organizations* repository with occurrences of the Cost Report
pattern in five commits from four different dates between 2022 and 2023. The first commit [link] integrates
the usage of cost reports into the project with the required AWS Cost and Usage Report buckets, the sec-
ond commit [link]| adds a cost report lambda function, while the remaining three commits ([link], [link],
[link]) implement cost categories. Since clearly connected, the changes could have been grouped into one
single, more structured commit. The recurring occurrence of the pattern suggests inconsistency and lack
of planning when addressing cost concerns, with a rather chaotic approach. As the predecessor Terraform
results also support this observation, it appears that, when using IaC tools in general, developers struggle
with the structure for cost optimisations and are prone to making repetitive mistakes.

4https://github.com/zaro0508/organizations—infra

19

https://github.com/zaro0508/organizations-infra/commit/544592f6cab75e460d3146b55ad892e1e0542aca
https://github.com/zaro0508/organizations-infra/commit/1a35ef50ccf357c8319a60fd1c95bd6fd412517b
https://github.com/zaro0508/organizations-infra/commit/ec619370e7601e750d87cf893b85ec1efeab3c84
https://github.com/zaro0508/organizations-infra/commit/f62de2443313d2f963f6101663417d16e696a0a9
https://github.com/zaro0508/organizations-infra/commit/beb53a2eeb616963179238a6d11c06b003539e95
https://github.com/zaro0508/organizations-infra

5 | Discussion

With the results presented throughout the previous Section, we further interpret them and attempt to un-
derstand the hidden implications, following the structure of the research questions. Moreover, to ensure
the credibility of our research, we acknowledge the limitations of our study design and present the methods
we have used to mitigate the threats. Lastly, we describe the implications of our results for both practition-
ers and researchers in the hopes of encouraging the integration of better practices, as well as more work on
the topic of cloud computing costs.

5.1 Interpretation of Results

When analyzing the applicability of the ten predecessor Terraform cost-optimization (anti)patterns for
AWS CloudFormation (RQ1), we observe a fairer distribution of patterns and antipatterns. As implied
by the previous results, Terraform users are mostly in a reactive state of addressing spending issues only
after they emerge and rarely deploy preventative techniques in the form of patterns. AWS CloudForma-
tion users, on the other hand, are almost equally likely to prefer either behaviour, with a steady balance
between prevention and correction. Whereas in the context of Terraform antipatterns had significantly
higher occurrence rates than patterns, our results reveal a more even distribution of the two, indicating
that preferred practices can vary greatly across different IaC tools, with neither being more relevant.

Furthermore, by comparing the co-occurrences of patterns and antipatterns for the two IaC tools, it be-
comes apparent that it is more frequent for AWS CloudFormation users to address multiple issues at the
same time than it had been previously observed for Terraform. As the more significant difference, our re-
sults reveal co-occurrences in 18.5% of the total intersection size of the commits (32 out of 173), substantially
higher compared to the 4.2% identified for the predecessor (10 out of 237). Similarly, in the case of reposito-
ries, we find pattern combinations in 21.6% of the total intersection size (32 out of 148), while the Terraform
study only reports 13.2% (27 out of 204). It might be the case that the rigidity of the provider-specific tool
and the restrictions of operating within the AWS environment actually encourage developers to rely more
on research when making changes. This preventative approach increases the chances of uncovering un-
foreseen shortcomings or better practices, leading, in turn, to unplanned refactorings. More interestingly,
the most frequent co-occurrences are each composed of two patterns, the Preventative Template and Cost
Report and, respectively, the Preventative Template and Budget, suggesting that an overall proactive mindset
can lead to a broader view and increase the likelihood of identifying potential risks early on. The rea-
son behind the preference for combinations of patterns rather than antipatterns, as well as the long-term
implications and benefits of prevention, is the subject for future investigation.

Despite the significant differences between the co-occurrences of themes for Terraform and AWS CloudFor-
mation, we also observed a lack of a systematic approach for cost-optimizations, as the same (anti)patterns
have been identified in multiple distinct commits of the same repository. The prevalence of this observation
in both the predecessor research and our results leads to the conclusion that developers struggle to man-
age the complexity of IaC tools and could benefit from automated frameworks to enforce more structured
strategies.

By identifying each Terraform (anti)pattern at least once in the context of AWS CloudFormation, we strengthen

20

5.1. Interpretation of Results Chapter 5. Discussion

the applicability of the Catalogue for IaC tools in general. However, as discussed in Section 4.1, none of
the Terraform patterns that failed the relevance check before passed the threshold after the combination of
the results either (RQ2), highlighting the fact that each IaC tool has unique particularities and implications
which might need to be omitted from our set of patterns and antipatterns in order to increase generalizabil-
ity. A Catalogue of cost-optimization practices collected from multiple environments can create a useful
basis for problem identification and solving, but more specificity can only be gained from detailed research
on the IaC tool of interest.

While the investigation of new themes (RQ3) reveals two new cost-optimization patterns in comparison
to the results of the predecessor Terraform Catalogue, no new antipatterns are identified. Therefore, AWS
CloudFormation users might be slightly more preventative in comparison to Terraform users, which could
be the case due to the difference in the nature of the two IaC tools. As a provider-specific tool, AWS Cloud-
Formation is designed specifically to function within the AWS environment. Especially for inexperienced
developers, this restriction could generate the need to understand the AWS services and possibilities prior
to getting started. Through research, patterns and good practices are more likely to be found. On the other
hand, Terraform is a provider-agnostic tool that allows coupling with other services. This higher level of
freedom could result in developers being more willing to try different methods and fix errors as they are
encountered instead of relying on preventative research. Thus, it might be the case that the rigidity of
AWS CloudFormation generates a cautious behaviour and leads to the identification of patterns, while the
flexibility of Terraform allows developers to make and correct mistakes through antipatterns. However,
more research on the significant differences between preferred practices across IaC tools and the potential
correlation with the nature of the service, is needed in order to deepen our observations.

5.1.1 Anti-practices

Moving further than our initial research questions, we have also identified multiple instances of a specific
behaviour of AWS CloudFormation users that cannot be classified as neither a pattern nor an antipattern
and which has not been observed for the Terraform tool either. We have found 19 commits from 18 reposi-
tories with changes that directly oppose one or more of our cost-optimization (anti)patterns and, in doing
so, lead to price increases. However, the uniqueness of these observed anti-practices is that their com-
mit messages reflect the developer’s knowledge of the cost impact, while the reason for the choice is also
provided. In comparison to accidental changes with unintentional price implications, the commits in ques-
tion clearly show a certain degree of cost awareness, but a different factor is prioritized, such as speed or
efficiency.

As an example, we identified a commit [link] that changes the storage solution from the cheaper gp3 vol-
umes to the more expensive iol. The commit message reveals an understanding of the price increase ("We
stopped using iol volumes for cost reasons") and the prioritization of a different factor, namely the branch
synchronization time (..., but masters take a really long time to catch up without them"). Furthermore, the
commit highlights an overall awareness of cost implications that leads to strategic decision making and fi-
nancial planning ("This reintroduces it for masters only, which shouldn’t be a huge cost given that masters
restart rarely.")

While cost is not always the most important concern, the existence of anti-practices proves that multiple
AWS CloudFormation developers understand the budget implications and, by doing so, are enabled to
make informed decisions and avoid unpleasant surprises. Therefore, through more research and increased
awareness on the topic of cost, we expect to not only encourage spendings reductions, but to also promote
the importance of educated choices as negative consequences can be better ameliorated when properly
understood.

21

https://github.com/openrelayxyz/ethercattle-deployment/commit/ca3c67b8d2ad3d06e92a197df1a8a83337306d1f

5.2. Implications to Practitioners and Researchers Chapter 5. Discussion

5.2 Implications to Practitioners and Researchers

The Catalogue of Cost Patterns and Antipatterns we defined offers valuable insights into different prac-
tices and their implications. Through the combination of the specific results from both Terraform and AWS
CloudFormation, we increase the applicability of our observations and encourage developers to make more
informed decisions and avoid common pitfalls. The collection of solutions to recurrent issues of provision-
ing IaC tools, with both explanations and examples, represents a blueprint for simple cost-optimization
techniques we expect to help improve code quality. Whereas patterns are intended to promote prevention
and caution, antipatterns allow developers to remedy errors in order to avoid the negative consequences
efficiently.

Furthermore, as part of a group of connected projects, we aim to stimulate more work on the topic of chal-
lenges of IaC tools and, eventually, cloud computing in general. Given the complexity and abstraction level
of such services, it becomes difficult to obtain a comprehensive view of the implications of small choices,
increasing the likelihood of mistakes with substantial effects. Our research provides the groundwork for
multiple branches of related potential investigations. As strongly implied throughout our interpretation
of the results, there are clear differences between Terraform and AWS CloudFormation regarding the dis-
tribution of (anti)patterns. Future research to uncover the reasons behind this observation and its appli-
cability to other environments can provide significant progress towards understanding the particularities
and complications of IaC tools in general. Moreover, by expanding our suggestion that co-occurrences of
patterns highlight an overall preventative mindset and risk aversion, subsequent work can further identify
the factors that encourage developers to adopt and maintain proactivity.

Lastly, despite AWS being an elaborated environment that offers cost estimation and management solu-
tions, we highlighted a lack of awareness and several difficulties in handling expenses in the context of
CloudFormation. The reasons why developers neglect to integrate cost services early on, as well as their
level of awareness regarding different optimization tools, are compelling directions for future work. Such
research questions could further lead to the broader exploration of the general challenges of complex cloud
computing systems or even the development of automated solutions for efficiently operating within these
environments.

5.3 Threats to validity

To avoid potential risks to the quality of our research, we identified several limitations of the study de-
sign and attempted to mitigate them. Both internal and external validity, as well as reliability are further
investigated.

5.3.1 External validity

As the main goal of the group of connected projects is to eventually create a collection of cost-related ob-
servations and (anti)patterns for IaC tools in general, a broad applicability is an essential feature. With
numerous providers and styles, IaC tools are diverse, not only with regards to provisioning methods and
requirements, but also in terms of maintenance and cost-optimization techniques, posing a threat to gen-
eralizability. However, as a successor of the two Terraform works [14, 26], we expand the same research
questions and methodology to a second IaC tool, thus improving the external validity of our combined re-
sults. AWS CloudFormation and Terraform present numerous differences, including the provider, the pro-
visioning language and the type, with the former being provider-specific and the latter provider-agnostic.
Given the clear dissimilarities between the two, as well as the consistency of using the same research ap-
proach in our successor work, we expect our combined results to have a high applicability for IaC tools in
general. However, it must also be noted that the growing diversity of cloud computing solutions cannot
be fully represented by the two tools we have chosen to investigate, as unique particularities might arise.
Posing the same research questions in the context of other IaC tools as part of future work can increase
generalizability even more.

22

5.3. Threats to validity Chapter 5. Discussion

Moreover, through the data collection and labelling process, we have obtained a relatively small set, with
206 commits from 167 repositories. This aspect can threaten the representativeness of our research, as the
sample might not appropriately reflect the broader population. However, the comparison and addition
of the Terraform results increase the statistical power of our observations, while a future expansion of the
dataset to include more entities might also contribute to the external validity.

5.3.2 Internal validity

For processing and analyzing the datasets, several choices could have threatened internal validity and
could have been investigated further. Due to time constraints, as well as our interest in active projects,
we have only mined the last 10.000 commits of a repository and therefore relevant changes triggered by
the maturation of the data might have been neglected. Additionally, both the predecessor Terraform study
and our work exclusively focus on public code from the GitHub platform, which can present unforeseen
particularities and increase the likelihood of a selection bias. The future exploration of code from different
platforms and environments could potentially mitigate the threat.

Furthermore, as part of a trade-off between external and internal validity, we focused on generalizabil-
ity, leading to a slight reduction in the specificity of our results. This behaviour can be observed in the
choice to first attempt to match the AWS CloudFormation new commits with the predecessor Terraform
(anti)patterns to increase applicability, while potentially neglecting unique features. Additionally, by only
including in the Catalogue patterns that occur in at least three different repositories, we ensure relevance
but might disregard very specific yet impactful practices.

As part of the open science approach, we aim to increase transparency and encourage collaboration by
thoroughly documenting the process and results. We expect peer review and potential future related works
to contribute to mitigating the remaining threats to validity.

5.3.3 Reliability

Since our work involves manual labour and data interpretation throughout multiple stages, it becomes
essential to ensure the consistency and stability of the measurements. As part of both the team data la-
belling process and the individual thematic analysis, we foresaw the possibility of an interpretation bias
skewing the results based on the expectations or preferences of the researcher. Additionally, human error
in the form of mistakes or oversights could also alter the outcomes. In order to combat both risks, multiple
researchers have independently interpreted and labelled each element, while the inter-rater reliability has
been calculated and verified to match a predefined standard. However, even with the taken precautions,
it must be noted that open coding and thematic analysis are slightly uncertain methods. For this reason,
our labelling process might be susceptible to judgement errors and omissions of data points that contain
implicit or vague cost considerations.

23

6 | Conclusions

As part of a team contribution, we mined commits from public GitHub repositories and manually labelled
the entities with regards to the cost-related topics mentioned in the messages. As a result, we identified 262
commits that use AWS CloudFormation and discuss cost considerations. Further, in terms of individual
research contribution, we performed thematic analysis on the resulting dataset by first assigning codes to
describe the concrete code changes of the commits previously deemed relevant. 206 of the 262 commits
received at least one cost-related code. Afterwards, we attempted to match the new commits with one
of the three patterns and seven antipatterns from the Terraform predecessor study. Each previous theme
was identified at least once in the context of AWS CloudFormation, strengthening the applicability of the
Terraform Catalogue for IaC tools in general.

Moreover, while implementing the predecessor relevance check of a theme only emerging if encountered
in at least three different repositories, we revealed 26 commits with cost-related codes that could not be
grouped into new (anti)patterns. Besides, the commits in question could not be matched with any of
the Terraform commits that failed the relevance check either, highlighting the existence of very specific
particularities of each IaC tool that cannot be generalized. Finally, by grouping the unmatched commits, we
identified two new patterns: the usage of cost reporting elements, which we found in 38 distinct commits
and the implementation of preventative cost optimization templates, recorded in 23 commits. Therefore,
we strengthen the observations of the predecessor study and, through our new results, observe a more
preventative and structured approach in CloudFormation repositories.

Regarding future work, we aim to normalize the methodology and analysis procedure throughout the
group of connected projects to present a consistent set of combined results. As one of our preliminary
choices, we only focused on the YAML provisioning option of AWS CloudFormation and, therefore, we
intend to broaden the validity of our results by also analyzing the JSON option. Further, we aim to expand
the applicability and reach of our Catalogue by posing the same research questions for different popular
IaC tools as dictated by their trends and evolution. By employing this approach, we expect to either confirm
the relevance of our (anti)patterns or, on the contrary, identify new practices and expand our set of results
even more. Lastly, the growing Catalogue can be further used to create automated tools, such as linters or
plugins, for more systematic cost-optimization strategies.

24

Bibliography

[1]
2]

[3]

[5]

(6]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

N. Dimitri. “Pricing cloud laaS computing services”. In: Journal of Cloud Computing 9.1 (2020). DOI:
10.1186/s13677-020-00161-2.

H. Rehman, S. Majumdar, and M. Rajkumar. “Benefit and risk factors influencing organizations to
migrate from On-Premise to cloud computing model of software product”. In: Smart Intelligent Com-
puting and Applications (2019), pp. 185-202. DOI1: 10.1007/978-981-32-9690-9_109.

A. Chalker et al. “Cloud and on-premises data center usage, expenditures, and approaches to return
on investment: A survey of academic research computing organizations”. In: Practice and Experience
in Advanced Research Computing (2020), pp. 26-33. DOI: 10.1145/3311790.3396642.

J. Emeras et al. “Amazon Elastic Compute Cloud (EC2) versus in-House HPC platform: A cost anal-
ysis”. In: IEEE Transactions on Cloud Computing 7(2) (2019), pp. 456—468. DOI: 10.1109/tcc.2016.
2628371.

R. Kelley et al. “Choosing the right compute resources in the cloud: An analysis of the compute
services offered by Amazon, Microsoft and Google”. In: International Conference on Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (2020), pp. 214-223. DOI: 10 . 1109 / cyberc49757 .
2020.00042.

H. S. Abusaimeh, A. A. A. Sharabati, and S. M. Asha. “Using cloud computing services to enhance
competitive advantage of commercial organizations”. In: International Journal of Data and Network
Science 7(3) (2023), pp. 1349-1360. DOI: 10.5267/7.17dns.2023.4.003.

L. Liu et al. “A practical, integrated multi-criteria decision-making scheme for choosing cloud ser-
vices in cloud systems”. In: IEEE Access 9 (2021), pp. 88391-88404. DOI: 10.1109/access . 2021 .
3089991.

H. Park, G. R. Ganger, and G. Amvrosiadis. “MIMIR: Finding cost-efficient storage configurations
in the public cloud”. In: Proceedings of the 16th ACM International Conference on Systems and Storage
(2023),22-34.DOI1: 10.1145/3579370.3594776.

R. R. Papalkar, P. R. Nerkar, and C. Dhote. “Issues of concern in storage system of IoT based big
data”. In: International Conference on Information, Communication, Instrumentation and Control (2017),
pp-1-6.DOL: 10.1109/icomicon.2017.8279126.

A. S. Dunk and A. Kilgore. “Top management involvement in RD budget setting: The importance
Of financial factors, budget targets, and RD performance Evaluation”. In: Advances in Management
Accounting 11 (2003), pp. 191-206. DOI: 10.1016/s1474-7871(02)11008-2.

Y. Zhang et al. “Lifting the fog of uncertainties”. In: Proceedings of the 2023 ACM Symposium on Cloud
Computing (2023), 48—-64. DOL: 10.1145/3620678.3624646.

K. Patel. “Mastering Cloud Scalability”. In: Advances in computer and electrical engineering book series
(2024), 155-169. DOI: 10.4018/979-8-3693-0900-1.ch008.

S. Jha and H. Gupta. “Cloud computing security challenges and related mitigation strategies”. In:
AIP Conference Proceedings (2024). DOI: 10.1063/5.0214142.

D. Feitosa et al. “Mining for Cost Awareness in the Infrastructure as Code artifacts of cloud-based
applications: An exploratory study”. In: (2023). DOI: 10.2139/ssrn. 4436874,

E. Gamma et al. “Design Patterns: Elements of Reusable Object-Oriented Software”. In: Addison-
Wesley Professional (1994).

25

https://doi.org/10.1186/s13677-020-00161-2
https://doi.org/10.1007/978-981-32-9690-9_19
https://doi.org/10.1145/3311790.3396642
https://doi.org/10.1109/tcc.2016.2628371
https://doi.org/10.1109/tcc.2016.2628371
https://doi.org/10.1109/cyberc49757.2020.00042
https://doi.org/10.1109/cyberc49757.2020.00042
https://doi.org/10.5267/j.ijdns.2023.4.003
https://doi.org/10.1109/access.2021.3089991
https://doi.org/10.1109/access.2021.3089991
https://doi.org/10.1145/3579370.3594776
https://doi.org/10.1109/icomicon.2017.8279126
https://doi.org/10.1016/s1474-7871(02)11008-2
https://doi.org/10.1145/3620678.3624646
https://doi.org/10.4018/979-8-3693-0900-1.ch008
https://doi.org/10.1063/5.0214142
https://doi.org/10.2139/ssrn.4436874

Bibliography Bibliography

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

F. Al-Hawari. “Software design patterns for data management features in web-based information
systems”. In: Journal of King Saud University 34(10) (2022), 10028-10043. DOI: 10.1016/ 7. jksuci .
2022.10.003.

M. Ozkaya and M. Kose. “Designing and Implementing Software Systems using User-defined Design
Patterns”. In: (2021). DOI: 10.5220/0010571404970504.

D. Drozdov et al. “Utilizing Software Design Patterns in Product-Driven Manufacturing System: A
Case Study”. In: Studies in computational intelligence (2019), 301-312. DOI: 10 . 1007 /9783030~
27477-1_23.

A. Van Den Berghe, K. Yskout, and W. Joosen. “A reimagined catalogue of software security pat-
terns”. In: (2022). DOI: 10.1145/3524489.3527301.

K. Yskout, R. Scandariato, and . W. Joosen. “Do security patterns really help designers?” In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering 1 (2015), 292-302. DOI: 10 .
1109/ICSE.2015.49.

M. E. Rana et al. “The Impact of Flyweight and Proxy Design Patterns on Software Efficiency: An
Empirical Evaluation”. In: International Journal of Advanced Computer Science and Applications 10(7)
(2019). DOI: 10.14569/17acsa.2019.0100724.

N. K. L. Cheng, N. C. P. Chang, and N. C. P. Chu. “Software fault detection using program patterns”.
In: (2011). DOI: 10.1109/icsess.2011.5982308.

T. Feng et al. “Software design improvement through anti-patterns identification”. In: IEEE Interna-
tional Conference on Software Maintenance (2004), p. 524. DOI: 10.1109/ICSM.2004.1357866.
S.Rochimah, P. G. Nuswantara, and R. J. Akbar. “Analyzing the Effect of Design Patterns on Software
Maintainability: A Case Study”. In: (2018). DOI: 10.1109/cecccis.2018.8692876.

P. Hegeddis et al. “Myth or Reality? Analyzing the Effect of Design Patterns on Software Maintain-
ability”. In: Communications in computer and information science (2012), 138-145. DOI: 10.1007/978~
3-642-35267-6_18.

K. Bolhuis, D. Feitosa, and V. Andrikopoulos. “A Catalog of Cost Patterns and Antipatterns for In-
frastructure as Code”. In: 2024 50th Euromicro Conference on Software Engineering and Advanced Appli-
cations. 2024.

R. Machuga. “Factors determining the use of cloud computing in enterprise management in the EU
(considering the type of economic activity)”. In: Problems and Perspectives in Management 18(3) (2020),
93-105.DOI: 10.21511/ppm.18(3) .2020.08.

V. Andrikopoulos et al. “How to adapt applications for the Cloud environment”. In: Computing 95(6)
(2012), pp- 493-535. DOI: 10.1007/s00607-012-0248-2.

P. Jamshidi, A. Ahmad, and C. Pahl. “Cloud migration research: A systematic review”. In: IEEE Trans-
actions on Cloud Computing 1(2) (2013), pp. 142-157. DOI: 10.1109/tcc.2013.10.

M. Hosseinzadeh et al. “Service selection using multi-criteria decision making: A comprehensive
overview”. In: Journal of Network and Systems Management 28(4) (2020), pp. 1639-1693. DOI: 10.1007/
s10922-020-09553-w.

M. Shuaib et al. “Why adopting cloud is still a challenge?—A review on issues and challenges for
cloud migration in organizations”. In: Advances in Intelligent Systems and Computing (2019), 387-399.
DOL: 10.1007/978-981-13-5934-7_35.

O. Tomarchio, D. Calcaterra, and G. D. Modica. “Cloud resource orchestration in the multi-cloud
landscape: a systematic review of existing frameworks”. In: Journal of Cloud Computing 9(1) (2020),
p-49.DOI: 10.1186/513677-020-00194-7.

M. Begoug et al. “What do Infrastructure-as-Code practitioners discuss: An empirical study on Stack
Overflow”. In: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(2023), pp- 1-12. DOI: 10.1109/esem56168.2023.10304847.

M. Guerriero et al. “Adoption, support, and challenges of Infrastructure-as-Code: Insights from in-
dustry”. In: IEEE International Conference on Software Maintenance and Evolution (2019), pp. 580-589.
DOI: 10.1109/icsme.2019.00092.

26

https://doi.org/10.1016/j.jksuci.2022.10.003
https://doi.org/10.1016/j.jksuci.2022.10.003
https://doi.org/10.5220/0010571404970504
https://doi.org/10.1007/978-3-030-27477-1_23
https://doi.org/10.1007/978-3-030-27477-1_23
https://doi.org/10.1145/3524489.3527301
https://doi.org/10.1109/ICSE.2015.49
https://doi.org/10.1109/ICSE.2015.49
https://doi.org/10.14569/ijacsa.2019.0100724
https://doi.org/10.1109/icsess.2011.5982308
https://doi.org/10.1109/ICSM.2004.1357866
https://doi.org/10.1109/eeccis.2018.8692876
https://doi.org/10.1007/978-3-642-35267-6_18
https://doi.org/10.1007/978-3-642-35267-6_18
https://doi.org/10.21511/ppm.18(3).2020.08
https://doi.org/10.1007/s00607-012-0248-2
https://doi.org/10.1109/tcc.2013.10
https://doi.org/10.1007/s10922-020-09553-w
https://doi.org/10.1007/s10922-020-09553-w
https://doi.org/10.1007/978-981-13-5934-7_35
https://doi.org/10.1186/s13677-020-00194-7
https://doi.org/10.1109/esem56168.2023.10304847
https://doi.org/10.1109/icsme.2019.00092

Bibliography Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

G. N. Nedeltcheva et al. “Challenges towards modeling and generating Infrastructure-as-Code”. In:
Companion of the 2023 ACM/SPEC International Conference on Performance Engineering (2023), 189-193.
DOI: 10.1145/3578245.3584937.

J. Lepiller et al. “Analyzing Infrastructure as Code to prevent intra-update sniping vulnerabilities”.
In: Tools and Algorithms for the Construction and Analysis of Systems (2021), pp. 105-123. DOI: 10.1007/
978-3-030-72013-1_6.

Y. Yamato et al. “Development of template management technology for easy deployment of virtual
resources on OpenStack”. In: Journal of Cloud Computing 3(1) (2014), p. 7. DOI: 10.1186/s13677 -
014-0007-3.

Y. Al Moaiad et al. “Cloud service provider cost for online University: Amazon Web Services versus
Oracle Cloud Infrastructure”. In: Lecture Notes in Computer Science (2023), 302-313. DOI: 10 . 1007/
978-981-99-7339-2_26.

Y. Xue et al. “A LDA-based social media data mining framework for plastic circular economy”. In:
International Journal of Computational Intelligence Systems 17(1) (2024), p. 8. DOL: 10.1007 /544196~
023-00375-"7.

R. Hellali et al. “Corticosteroid sensitivity detection in sepsis patients using a personalized data min-
ing approach: A clinical investigation”. In: Computer Methods and Programs in Biomedicine 245 (2024),
p. 108017. DOI: 10.1016/7.cmpb.2024.108017.

H. Liao et al. “Mining and fusing unstructured online reviews and structured public index data for
hospital selection”. In: Information Fusion 103 (2024), p. 102142. DOI: 10.1016/ . inffus.2023.
102142.

R. Cerezo et al. “Reviewing the differences between learning analytics and educational data mining:
Towards educational data science”. In: Computers in Human Behavior 154 (2024), p. 108155. DOI: 10 .
1016/j.chb.2024.108155.

A. Diyanati et al. “A proposed approach to determining expertise level of StackOverflow program-
mers based on mining of user comments”. In: Journal of Computer Languages 61 (2020), p. 101000. DOTI:
10.1016/3j.c0la.2020.101000.

T. Igbal et al. “Mining Reddit as a new source for software requirements”. In: IEEE 29th International
Requirements Engineering Conference (2021), pp. 128-138. DOI1: 10.1109/re51729.2021.00019.

D. Atzberger et al. “CodeCV: Mining expertise of GitHub users from coding activities”. In: IEEE
22nd International Working Conference on Source Code Analysis and Manipulation (2022), pp. 143-147.
DOI: 10.1109/scam55253.2022.00021.

C. Zimmerle et al. “Mining the usage of reactive programming APIs”. In: Proceedings of the 19th
International Conference on Mining Software Repositories (2022), 203-214. DOI: 10 . 1145 /3524842 .
3527966.

L. Cruz and R. Abreu. “Mining questions about software energy consumption”. In: Proceedings of the
11th Working Conference on Mining Software Repositories (2014), pp. 22-31. DOI: 10.1145/2597073.
2597110.

I. Moura et al. “Mining energy-aware commits”. In: 2015 IEEE/ACM 12th Working Conference on Min-
ing Software Repositories (2015). DOI: 10.1109/msr.2015.13.

T. Das, M. Di Penta, and I. Malavolta. “A quantitative and qualitative investigation of performance-
Related commits in Android apps”. In: IEEE International Conference on Software Maintenance and Evo-
lution (2016), pp. 443-447. DOL: 10.1109/icsme.2016.49.

A. Rahman, E. Farhana, and L. Williams. “The ‘as code” activities: development anti-patterns for
infrastructure as code”. In: Empir. Softw. Eng. 25 (2020), pp. 3430-3467. DOI: 10 . 1007 /510664 ~
020-09841-8.

A. Rahman. “Anti-Patterns in Infrastructure as Code”. In: 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 2018. DOI: 10.1109/icst.2018.00057.
W. Chen, G. Wu, and J. Wei. “An Approach to Identifying Error Patterns for Infrastructure as Code”.
In: 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE,
2018.DO1: 10.1109/issrew.2018.00-109.

27

https://doi.org/10.1145/3578245.3584937
https://doi.org/10.1007/978-3-030-72013-1_6
https://doi.org/10.1007/978-3-030-72013-1_6
https://doi.org/10.1186/s13677-014-0007-3
https://doi.org/10.1186/s13677-014-0007-3
https://doi.org/10.1007/978-981-99-7339-2_26
https://doi.org/10.1007/978-981-99-7339-2_26
https://doi.org/10.1007/s44196-023-00375-7
https://doi.org/10.1007/s44196-023-00375-7
https://doi.org/10.1016/j.cmpb.2024.108017
https://doi.org/10.1016/j.inffus.2023.102142
https://doi.org/10.1016/j.inffus.2023.102142
https://doi.org/10.1016/j.chb.2024.108155
https://doi.org/10.1016/j.chb.2024.108155
https://doi.org/10.1016/j.cola.2020.101000
https://doi.org/10.1109/re51729.2021.00019
https://doi.org/10.1109/scam55253.2022.00021
https://doi.org/10.1145/3524842.3527966
https://doi.org/10.1145/3524842.3527966
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1109/msr.2015.13
https://doi.org/10.1109/icsme.2016.49
https://doi.org/10.1007/s10664-020-09841-8
https://doi.org/10.1007/s10664-020-09841-8
https://doi.org/10.1109/icst.2018.00057
https://doi.org/10.1109/issrew.2018.00-19

Bibliography Bibliography

[63] T.Sharma, M. Fragkoulis, and D. Spinellis. “Does your configuration code smell?” In: Proceedings of
the 13th International Conference on Mining Software Repositories. ICSE "16. ACM, 2016. DOI: 10.1145/
2901739.2901761.

[54] J. Schwarz, A. Steffens, and H. Lichter. “Code Smells in Infrastructure as Code”. In: 2018 11th Inter-
national Conference on the Quality of Information and Communications Technology (QUATIC). IEEE, 2018.
DOI: 10.1109/quatic.2018.00040.

[55] E A.Bhuiyan and A. Rahman. “Characterizing co-located insecure coding patterns in infrastructure
as code scripts”. In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering Workshops. ASE "20. ACM, 2020. DOI: 10.1145/3417113.3422154.

[56] R. Opdebeeck, A. Zerouali, and C. De Roover. “Control and Data Flow in Security Smell Detection
for Infrastructure as Code: Is It Worth the Effort?” In: 2023 IEEE/ACM 20th International Conference on
Mining Software Repositories (MSR). IEEE, 2023. DOI: 10.1109/msr59073.2023.00079.

28

https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1109/quatic.2018.00040
https://doi.org/10.1145/3417113.3422154
https://doi.org/10.1109/msr59073.2023.00079

	Introduction
	Related work
	Cost assessment in cloud computing
	Challenges of IaC tools
	AWS CloudFormation
	Data mining
	(Anti)pattern extraction

	Study design
	Objective and Research Questions
	Initial dataset
	Data mining
	Data validation and labelling

	Commits data collection
	Thematic Analysis
	Frequency Analysis

	Results
	Dataset
	Catalogue
	Patterns
	Antipatterns

	(Co-)occurrences

	Discussion
	Interpretation of Results
	Anti-practices

	Implications to Practitioners and Researchers
	Threats to validity
	External validity
	Internal validity
	Reliability

	Conclusions

