
NeoRepro: A Tool For
Creating Replication Packages

for Mining Software
Repository Research using a

Graph Database

Andrew Rutherfoord

University of Groningen

NeoRepro: A Tool For Creating Replication
Packages for Mining Software Repository Research

using a Graph Database

Bachelor’s Thesis

To fulfill the requirements for the degree of
Bachelor of Science in Computing Science

at the University of Groningen under the supervision of
Prof. Vasilios Andrikopoulos (University of Groningen)

and
Dr. Daniel Feitosa (University of Groningen)

Andrew Rutherfoord (s4667646)

August 2, 2024

Abstract

In this thesis we present NeoRepro, an application which can be used to con-
duct a Mining Software Repositories (MSR) study and create a replication
package for the study, which can easily be distributed alongside the research
paper for replication of the results. These packages encompass all source
data and scripts used in the study. The NeoRepro application is centered
around the Neo4j graph database which is used to store all gathered soft-
ware repository data and facilitate querying of the collected data. Using a
centralized data storage solution enables the data to be queried quickly with
a standardized query language without revisiting the original data sources.
To enhance our tool, we conducted a thorough analysis of existing tools in
this domain, identifying key areas for improvement which NeoRepro ad-
dresses. We demonstrate the application’s utility by creating and distribut-
ing a replication package for an existing MSR study. Our evaluation confirms
that NeoRepro is highly effective in producing replication packages that fa-
cilitate the accurate replication of research results.

Contents

1 Introduction 3

2 Related Work 5
2.1 Code Libraries for MSR . 5
2.2 Toolsets for MSR . 5
2.3 Database Systems for MSR . 7
2.4 Design decisions for MSR tools 9

3 Requirements 10
3.1 Personas . 10
3.2 Requirements . 11

4 Architecture 13
4.1 Drilling . 15
4.2 Analyzing the mined Data . 19
4.3 Replication Package . 21

5 Evaluation 22
5.1 Case Study . 22
5.2 Comparative Analysis . 28

6 Conclusion 30

A Additional Data 37

1

List of Figures

3.1 Pohl et al Requirements template outline [12] 10

4.1 Architecture of NeoRepro. 14
4.2 NeoRepro frontend home page displaying README and menu. 15
4.3 The drill configuration editor page of the NeoRepro frontend. 16
4.4 UML Class Diagram of Driller Worker. 17
4.5 Frontend interface where the user can see the current status of

each drill job. 18
4.6 Structure of the Graph Database storing Git repositories. In-

spired by GraphRepo [20] . 19
4.7 NeoRepro query interface . 20
4.8 NeoRepro database management and backup interface. 20

5.1 Steps of data collection and analysis that were used in Mining
Cost Awareness Study [8] . 23

5.2 Structure of the Graph Database for Mining Cost Awareness
replication. 26

2

1 | Introduction

Mining Software Repositories (MSR) is a process of extracting data from ver-
sion control code repositories in order to “uncover actionable information
about software systems” [24]. MSR is a growing field of research within com-
puting science as it allows data to be gathered about the code that was written
under the constraints of the real world, such as time constraints and techni-
cal debt. This allows for research to be conducted into areas such as technical
debt [2], software risk assessment [4], and cost awareness [8]. Research in
this field is often done by extracting data from code repositories stored in
the Git format. In 2023, there were 284 million open source repositories on
GitHub [22] alone, which provides a vast number of software projects in a
variety of domains of computing science which can be analysed using MSR.

During an MSR study, data is collected and analyzed to answer a specific re-
search question. Upon completion of the study and the writing of a research
paper, a replication package is often released alongside the paper in order
to abide by the ACM Artifact Review standards. According the the ACM,
a replication package (or artifact) should contain anything “used as part of
the study or generated by the experiment itself” [1]. Releasing a replication
package that contains all the source data and scripts used to gather the data,
enables the independent replication of the results of a study. Ideally it should
facilitate the replication of a study from start to finish without needing any
additional information. Unfortunately, creating a replication package can be
challenging, since the research process typically focuses on obtaining data
to support the research question rather than on creating well-documented
datasets and scripts for external use.

To address this challenge, a system that requires minimal configuration and
saves all data during the study can significantly reduce the effort needed
to create a replication package. NeoRepro 1 is designed with this in mind,
allowing researchers to conduct an entire MSR research project within it, in-
cluding repository drilling and data analysis. By consolidating all these func-
tionalities into a single system and enabling researchers to save their work as
they progress, NeoRepro simplifies the creation of comprehensive and acces-
sible replication packages.

MSR studies are usually conducted with a research question and hypothe-

1NeoRepro: https://github.com/AndrewRutherfoord/NeoRepro-MSR-tool

3

https://github.com/AndrewRutherfoord/NeoRepro-MSR-tool

sis predefined before data is found, which will be analysed to answer the
predefined question(s). In previous studies [3, 8], custom scripts were built
which extracted the data needed to answer their pre-defined research ques-
tion. In order to make new observations on a mined dataset the scripts have
to be modified and then re-run on the dataset. This leaves little room for ex-
ploratory studies since updating the scripts and re-processing the data from a
large set of software repositories is a time consuming task. Therefore NeoRe-
pro provides a simple configuration interface which can extract information
from a large number of repositories quickly with a large amount of flexibil-
ity, but without the need to write custom scripts. All of the extracted data is
loaded into a Neo4j 2 graph database where it can be efficiently queried us-
ing Neo4j’s Cypher query language 3 without needing to traverse the source
repository data again.

Once the entire study is complete, the drill configuration, dataset queries,
and multiple dataset images (from different stages in the study) are all con-
tained within a single Git repository alongside all of the NeoRepro tooling.
This comprehensive repository can be easily distributed, enabling other re-
searchers to access and replicate the study with minimal effort. By embed-
ding query scripts and detailed instructions within the replication package,
NeoRepro improves the reproducibility and transparency of research find-
ings, facilitating peer validation and further research based on the original
study. Ultimately, NeoRepro allows researchers to focus on research while
ensuring that their work is easily reproducible and verifiable.

In the our research and creation of this tool we aimed to answer two research
questions:

• How does NeoRepro improve the accuracy and ease of replicating an
MSR study’s results?

• What are the key advantages of using the Neo4j graph database for data
storage and retrieval in the context of MSR studies?

To answer these research questions this paper will be in the following struc-
ture. In section 2 we will present a number of related tools and how NeoRe-
pro compares to each. In section 3 we will outline the requirements that Ne-
oRepro fulfills. Section 4 we outlines the architecture and technologies used
in the creation of NeoRepro and exhibits all of the features that NeoRepro
offers. In section 5 we evaluate the effectiveness of our tool by performing a
case study in which we create a replication package for an existing study, as
well as addressing the shortcomings and advantages of NeoRepro. Finally,
in section 6 we conclude our analysis with some final thoughts and future
work.

2Neo4j Graph Database: https://neo4j.com/
3Neo4j Cypher Query Language: https://neo4j.com/docs/cypher-manual/

current/introduction/

4

https://neo4j.com/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/

2 | Related Work

To facilitate MSR research, a number of tools have been created which allow
researchers to easily retrieve information from a large number of Git repos-
itories. MSR research projects are often done with bespoke scripts that use
code libraries such as GitPython1 and JGit2. These libraries provide an inter-
face that facilitates interaction with a Git repository with code, allowing for
the construction of tools which can extract data from repositories for a given
study. However, using libraries to create bespoke scripts to mine data from
version control repositories for each new study can be time-consuming.

2.1 Code Libraries for MSR

Since the process of gathering data from repositories is often very similar
across different MSR research, software libraries like PyDriller3 have been
created specifically for MSR research and facilitate the extraction of reposi-
tory information, alongside a number of common metrics which are used in
MSR. PyDriller is an abstraction ontop of GitPython but provides a simpler
interface for extracting data from Git repositories. In the research conducted
by the PyDriller team, their tool was found to require fewer lines of code to
achieve the same outcome when compared to a tool created using GitPython
alone [21]. Since pydriller is a Python library, it provides a researchers with a
lot of flexibility in what information is extracted from a repository. However,
PyDriller “does not include a CLI for batch mode processing,” [15] so for
each study a script needs to be written that can extract the necessary data.
Since PyDriller is widely used for MSR research and already provides the
repository drilling functionality, we decided to use it in the implementation
of our driller workers for NeoRepro.

2.2 Toolsets for MSR

Although PyDriller provides significant flexibility due to it’s implementation
as a Python library, it necessitates writing a custom script for data extraction.
This outlines the need for unified tools that provide functionality out of the

1GitPython: https://github.com/gitpython-developers/GitPython
2JGit: https://www.eclipse.org/jgit/
3PyDriller: https://github.com/ishepard/pydriller

5

https://github.com/gitpython-developers/GitPython
 https://www.eclipse.org/jgit/
https://github.com/ishepard/pydriller

2.2. Toolsets for MSR 2.2. Toolsets for MSR

box. Multiple toolsets which provide data extraction and analysis function-
ality from software development repositories have been created. Grimoire-
Lab [6] is one such toolset. GrimoireLab provides an open source set of tools
to “retrieve, organize, analyze and visualize software development data”[6].
When compared to other similar tools for analysing software development
data, the breadth of data sources is what differentiates GrimoireLab. It can
collect data from 30 different kinds of repositories and aggregate it onto a
single system.

In order to achieve their flexibility and breadth of tooling, GrimoireLab has
adopted a modular design in which each module provides capability to com-
plete one type of task and communicates with the other components of the
system. The modular design system has facilitated the creation of an exten-
sive set of first and third party modules which can be used to extract and
analyze repository data. Furthermore, this extendability allows researchers
to create their own modules for a specific study if none of the existing mod-
ules are suitable. However, there are a large number of first-party modules
that GrimoireLab has created. One such module that has seen extensive use
is the SortingHat 4, a module which tries to merge identities from across and
merges them together automatically and also provides an interface for man-
ually merging identities [6]. The modules can also be used as stand alone
libraries in Python, which has facilitated wide use of modules like Perceval 5

and SortingHat.

Although the GrimoireLab toolset can provide a wide variety of insights and
enables customisation due to it’s modular design, in our testing we found
that setting up and using the GrimoireLab stack with the relevant modules
was quite difficult and might not be worthwhile for a small MSR task. Fur-
thermore, with the scale of the GrimoireLab toolset, understanding the tool
enough to be able to write custom modules with specific functionality would
be quite difficult. Although we opted not to use GrimoireLab toolset for the
creation of replication packages, the concept of an extendable, modular, uni-
fied tool is followed by NeoRepro.

When conducting MSR studies, a large number of repositories need to be
sampled in order to ensure that a reliable result is reached. The sheer vol-
ume of data involved necessitates an efficient way to traverse it and retrieve
relevant information. There have been a number of attempts to improve this
process. One such approach is to create a Domain Specific Language (DSL)
which can be used to query data gathered from mining. For example, QO-
RAL [13] uses a DSL in order to streamline the process of gathering rele-
vant data. A DSL is a software language tailored to a specific domain or
task [9, p.1]. DSLs are often compiled into lower level languages so they
can be executed. By using a DSL, which is compiled to an executable in a
lower level language, they were able to reduce the number of man hours

4GrimoireLab SortingHat: https://github.com/chaoss/
grimoirelab-sortinghat

5GrimoireLab Perceval: https://github.com/chaoss/grimoirelab-perceval

6

https://github.com/chaoss/grimoirelab-sortinghat
https://github.com/chaoss/grimoirelab-sortinghat
https://github.com/chaoss/grimoirelab-perceval

2.3. Database Systems for MSR 2.3. Database Systems for MSR

needed to process data for an MSR study [13]. Although using a DSL sig-
nificantly improves the process for researchers to formulating queries across
their datasets, the speed of traversing the dataset to respond to that query de-
pends on the underlying implementation of the DSL. Furthermore, the usage
of a DSL rather than a standardized language provides an additional barrier
to entry for new users of the tool since they will need to learn the DSL to use
the tool, that is only needed for using that particular tool.

Although a DSL such as QORAL can allow data to be easily extracted from
a large number of repositories, they do not improve the time taken to tra-
verse all of the repositories and gather the information. To address this,
platforms such as Boa [7] provide datasets and infrastructure as a service
so that researchers can access pre-created datasets and easily query them.
Similar to QORAL, Boa uses a custom DSL which facilitates querying their
pre-created dataset on their infrastructure. Accessing Boa is done through a
web interface 6 where users can formulate and execute queries on pre-made
datasets of open source repositories. Once a query is written, it is executed
on Boa’s infrastructure. This is convenient for MSR research as it removes
the need to “develop expertise in programmatically accessing version control
systems” [7] and there is also no requirement to “establish an infrastructure
for downloading and storing the repository data” [7]. Additionally, since the
datasets are already publicly available, producing a replication package for
a new study only requires publishing the Boa queries that were used. These
queries can be used by third parties to replicate their results by accessing Boa,
thus removing the need to set up a way to distribute datasets.

Despite the convenience of platforms which provide datasets and infrastruc-
ture as a service, they cause the replication of studies which used them to
be inherently reliant on that service staying online. If a service that provides
datasets online were to stop working, it would leave any studies that used
the datasets without a method for replication, or access to the original data.
For example, SeCold was a “linked data source code dataset for software en-
gineering researchers” [11], but the dataset was shutdown in 2012 due to “a
licensing issue” [19]. As a result, a distributed, open source approach might
be a better alternative for some, ensuring the longevity and accessibility of
datasets and replication packages. This approach reduces the dependency
on a single point of failure, and could allow for community maintenance in
case the original maintainer is no longer maintaining their tool or dataset. As
a result, NeoRepro follows an open source approach to it’s data. All source
code for the tool and all data for a replication package is published freely for
anyone to run on their own computer.

2.3 Database Systems for MSR

One way to create a local dataset which is easy to manage and fast to query
is to load repository data onto a standard data storage system where it is

6Boa Web Interface: https://boa.cs.iastate.edu/

7

https://boa.cs.iastate.edu/

2.3. Database Systems for MSR 2.3. Database Systems for MSR

accessed using industry standard query language. One such approach is to
load the mined data onto a relational database where SQL can be used be
used for queries. With decades of development and widespread usage, rela-
tional database systems and SQL have become the standard for data storage.
Consequently, anyone with prior experience using a relational database will
be able to efficiently access and query the repository data without needing to
learn any MSR-specific DSLs or tools. However, since Git repositories have
many relationships between items (for example, each commit is related to a
previous commit, and is also related to an author, etc) it can be difficult to for-
mulate queries that traverse distant relations. Furthermore, databases with
a strict schema may be limiting for an MSR study as adding relevant data is
difficult and require changes to the schema of the database. This makes these
types of databases difficult to adapt to the needs of an individual study. As
a result, GrimoireLab opted to use a no-SQL database in order to provide
flexibility in which data is stored in their database.

An alternative data system that can be used is a graph database, which stores
data as a collection of nodes and edges, where the nodes (or entities) repre-
sent an attribute, and the edges represent the relationship between them [16].
Each node or edge can also contain additional information, much like a row
in a relational database system. A graph database is ideal for storing data
from Git repositories since a Git repository is, by it’s nature, formatted like
a graph [20]. For example, commits and authors are treated as entities, and
the relationships between the authors and the commits are represented by an
edges. Graph databases are ideal in a situation like this, where the data is
“highly connected” [16] since they treat relationships as “first-class citizens
of the graph data model” [18, p. 6].

The GraphRepo team [20] used a graph database in the creation of creat-
ing their tool. They utilised the Graph Database Neo4j 7 to build a platform
which data from mined repositories can be loaded onto in order to facili-
tate queries against the mined data. GraphRepo is a Python library that is
built using PyDriller and provides a variety of drillers and miners for MSR.
Their drillers are used to extract data from Git repositories and insert it into
a Neo4j database. The drillers receive a configuration dictionary for a sin-
gle repository and drill the repository based on the configuration. Once the
information is inserted into a Neo4j database, the miners are used to access
a Neo4j database and programmatically extract information for the drilled
data. GraphRepo’s approach to extracting repository data was the main in-
spiration for the data drilling and data storage used by our tool NeoRepro.
Much like our tool, GraphRepo used PyDriller to perform the drilling. How-
ever, there were a few aspects that resulted in us building our tool’s driller
from scratch. At the time of writing, the most recent commit to GraphRepo
is 4 years ago. As a result, a large number of the dependencies that are used
have changed significantly. Furthermore, we found that GraphRepo’s imple-
mentation did not provide sufficient access to PyDriller configurations. This

7Neo4j: https://neo4j.com/why-graph-databases/

8

https://neo4j.com/why-graph-databases/

2.4. Design decisions for MSR tools 2.4. Design decisions for MSR tools

resulted in drills that searched for specific information drilling a lot of addi-
tional information. Finally, there were a large number of additional features
and abstractions that were not necessary for the aims of our tool. As a re-
sult the drilling we opted to not extend GraphRepo’s implementation and
instead used our own.

2.4 Design decisions for MSR tools

The Kaiaulu team [15] conducted an extensive analysis of MSR tools and
their design decisions in order to create their tool. The decisions made by
Kaiaulu inspired a number of the design decisions used in NeoRepro. In
their analysis they found that there are two main ways of configuring MSR,
“tool configuration files” and “project configuration files” [15]. We decided to
use the “project configuration file” approach to configuring NeoRepro since
it supports “replication through the storage of data in a single harmonized
schema”. This approach suited our goals of creating a replication package
application. Similar to Kaiaulu, NeoRepro uses YAML for it’s project config-
uration files since it is easily human-readable.

The Kaiaulu team also noted different processing methods that were used
throughout different MSR tools. They noted that existing tools either use
batch mode or an interactive mode [15]. For NeoRepro we opted to use a
batch processing mode for the drilling of the repositories since this worked
best with the configuration file approach that was mentioned earlier. How-
ever for querying the data NeoRepro uses an interactive mode, as the user
has direct access to the database and can directly query the data. The Ka-
iaulu team also noted that “existing tools choose either APIs or Command
Line Interface (CLI)s” [15]. We opted to only provide an API for extending
the tool. NeoRepro is designed to be primarily accessed through it’s fron-
tend.

Finally, the Kaiaulu teams recommends that tools have a minimal path to
data [15] in order to allow users to easily start using the tool. The tool should
require minimal upfront learning in order for the user to be able to use the
tool.

Both the Kaiaulu tool and the NeoRepro tool provide extensive functionality
for performing an entire MSR study, however our approach varies slightly
from that of Kaiaulu. NeoRepro provides a comprehensive graphical user
interface which allows a user to easily interact with the system. Kaiaulu in-
stead provides a CLI and API for interacting with their tool. Both approaches
provide access to the extensive features of each tool, but in different ways.

Both Kaiaulu and NeoRepro make use of a Graph model for representing the
data retrieved, however where NeoRepro uses the off the shelf Neo4 Graph
Database, Kaiaulu uses their own system. We decided to use the off the shelf
Neo4j database in order to leverage the extensive query functionality that it
has.

9

3 | Requirements

Based on our analysis of existing tools for MSR, we will now outline the
requirements that the NeoRepro aims to satisfy. To ensure that our require-
ments are clear we followed the template outline by Pohl et al [12, p.53],
shown in Figure 3.1. This template has the following components:

1. System: The relevant tool or software that this requirement is for

2. Modal Verb: Conveys the necessity of achieving a given requirements.
“shall” indicates legal necessity, “should” indicates that it is highly rec-
ommended, “will” indicates a future requirement, and “may” indicates
a future desired requirement.

3. Process Verb: The core functionality that the requirement specifies.

4. Object: Some process verbs need to be considered with along with a
specific object. For example, if the process verb is “print”, the object
would be what is printed [12].

5. Additional information: Details that improve clarity of requirement.

3.1 Personas

In order to outline the requirements of this system we must first outline the
potential user of the system. The following personas represent different types
of users who will interact with the tool and how they are likely to use it.
The goals and abilities of each persona may vary significantly and thus the

Figure 3.1: Pohl et al Requirements template outline [12]

10

3.2. Requirements 3.2. Requirements

requirements must be tailored to suite the needs of each.

MSR Researcher

This persona is using the tool to perform a MSR study and may wish to create
a replication package for their study. During the new study this persona may
need to extend the functionality of the tool to fit their specific needs since all
MSR studies are different.

Data Consumer

This persona is accessing a replication package created by a MSR Researcher
to use the dataset, queries and results from a replication package.

Study Replicator

This user is using the tool to replicate the results of a previous study that
provided a replication package using our tool. This persona has similar goals
to the ‘Data Consumer’ but may wish to replicate the entire process of the
study rather than just accessing the dataset.

3.2 Requirements

Functional Requirements

Mining the Repositories

The application:

• Will reduce the scripting effort, when compared to writing a bespoke
script with PyDriller , required to create a dataset from a list software
repositories provided by the user.

• Will have flexibility for the user to define what data is mined from a
given repository on per commit basis.

• Will provide functionality to filter a commit based on a string in the
commit message.

• Will consolidate mined data from multiple software repositories onto
one storage system where it can all be queried simultaneously.

• Will provide the ability to set default drilling parameters which are ap-
plied when drilling each individual repository.

• Will allow default mining parameters to be overridden by a configura-
tion for specific repositories to be drilled (i.e. repository specific mining
parameters)

11

3.2. Requirements 3.2. Requirements

• Will provide the user with feedback to indicate the drilling progress of
each repository.

• Will allow drill configurations to be saved in the system so that it will
be included in the replication package.

Querying Mined Repository Data

• Will provide an interface for researchers to query the mined data

• Will utilize a standardized query language to retrieve information from
the mined repository data

• Will allow queries to be saved and re-run again later.

• Will allow query results to be saved.

• Will provide example queries so that a new user can get examples of
how to use the system.

Replication Packages

• Will be able to save the dataset at different stages in the study so that
data consumers and study replicators can access datasets from different
stages of the study.

• Will be able to package the dataset, queries and query tooling used in a
study for distribution as a replication package

Non-Functional Requirements

• Queries on mined data should be processed faster when using Neo-
Repro than if they were run with scripts that traverse the repositories
directly

• The user interface should be intuitive and provide access to all system
functionality.

• The code for the application will be documented and easily extendable
to allow an MSR Researcher to extend the tool for the specific needs of
their study

• Using a replication package should require minimal setup and no as-
sistance other than the replication package documentation.

• The system should use standard MSR packages for extracting the data
to ensure that MSR Researchers can easily adapt the functionality.

12

4 | Architecture

In this section we will discuss the architecture and technologies used to create
NeoRepro. In order to reduce the difficulties during installation and setup of
NeoRepro, all components are run within Docker 1 containers and orches-
trated using a Docker Compose. “Containers are standardized, executable
components that combine application source code with the operating sys-
tem libraries and dependencies required to run that code in any environ-
ment.” [26] By using Docker, the user will only need to install Docker on
their host system. No additional applications or dependencies need to be
installed on the root operating system. NeoRepro can be executed using a
single Docker Compose command and can be run on any system with the
Docker Engine installed. An overview of the system architecture, broken
down into Docker containers is outlined in Figure 4.1.

We decided to structure the core of NeoRepro around a graph database,
since the structure of a Git repository is similar in structure to a graph. For
this purpose we are using Neo4j, which is particular well suited for mod-
elling and querying graph data. In a study by Jouili et al. [10] Neo4j was
found have superior performance when benchmarked against other simi-
lar graph databases when doing read intensive operations. However, in the
same study, Neo4j was not the best in read-write intensive benchmarks, but
since the dataset will be built once but then queried many times, this trade
off is acceptable. Furthermore, Neo4j has a query language called Cypher
which “is like SQL for graphs” [17] and follows a syntax that is very similar
to SQL. By making use of this query language, we will be able to give re-
searchers an interface to query and visualise the graph data which will feel
familiar to anyone with experience using SQL. Moreover, Neo4j is a schema-
less database, meaning that there is no predefined schema that the data must
abide by. This provides flexibility for researchers to add any additional data
without the constraints of a predefined schema.

The architecture of the system is broken down into two distinct stages: the
drilling stage and the query stage. Drilling is the process of extracting data
from a repository. The drilling is performed based on a drilling configuration
which describes the repositories that should be drilled and what should be
drilled from each. The drilled repository data is then inserted into the Neo4j

1Docker: https://www.docker.com/

13

https://www.docker.com/

Figure 4.1: Architecture of NeoRepro.

database. In the second stage, the user can utilise the Cypher query language
to extract, mutate and reduce the information in the Neo4j database. Back-
ups of the Neo4j database can taken at any time during this stage to allow
the database to be reverted. Once the study is complete, all of the drill con-
figurations, Cypher queries and database backups can easily be added to a
replication package along with the entire tool that was used to create them.

The frontend of NeoRepro provides a user-friendly interface that simplifies
interaction with the various components of the system. The frontend has a
corresponding backend through which interaction with the rest of the system
is conducted. All standard features of the NeoRepro can be accessed through
the frontend, and all drill configurations, Cypher Queries and Neo4j backups
can be saved to the backend where they are stored in Docker volumes. These
Docker volumes are located directly in the cloned NeoRepro repository on
the user’s system. This makes it easy for a researcher to commit their files
to a repository and leverage the robust version control of Git, whilst also
enabling easy distribution of the replication through any of the Git storage
platform, such as GitHub.

Once the Docker containers for the application are running, the user can
access the frontend at http://localhost:5173/. Figure 4.2 shows the
home page of the frontend where the README file of the tool’s repository is
displayed. This allows the user to easily access instructions for using the tool
from directly within the frontend. On the left side of Figure 4.2 is the menu
which provides access to the other features of the application. In order from
top to bottom they are:

1. Home page displaying README.

14

http://localhost:5173/

4.1. Drilling 4.1. Drilling

Figure 4.2: NeoRepro frontend home page displaying README and menu.

2. Drill configuration editor. Shown in Figure 4.3

3. Job status view. Shown in Figure 4.5

4. Manage Database. Shown in Figure

5. Query Neo4j. Shown in Figure 4.7

The NeoRepro tool is designed to be run locally on a researchers machine,
and thus there are no considerations about access control or network security
in the current version of NeoRepro.

4.1 Drilling

The first stage of using NeoRepro is the drilling stage. During the drilling
stage, data is extracted from the repositories which are being studied and
inserted into the Neo4j graph database, where it can be analyzed at a later
stage. Rather than creating our own repository drilling functionality from
scratch, we opted to utilise the state of the art tool PyDriller [21] to drill the
repository data. This provides an MSR researcher with metrics and function-
ality that they are familiar with.

Instead of requiring the user to create their own script which can extract data
from the repositories and insert the data into Neo4j, we to use a YAML con-
figuration. We constructed our own YAML configuration schema which the
user can follow to provide a list of repositories and additional configura-
tions to limit which data is drilled from a given repository. This provides the
researcher with flexibility in what information is extracted from the repos-
itories rather than extracting all of the data, which can be time consuming
for large repositories. We chose YAML as the configuration format for it’s

15

4.1. Drilling 4.1. Drilling

Figure 4.3: The drill configuration editor page of the NeoRepro frontend.

readability and ease of use, which is as a result of the reduced syntactic com-
plexity when compared to other configuration languages, such as JSON.

The configuration file contains two main sections; the defaults and the repos-
itories sections. The repositories section contains a list of all repositories that
will be drilled along with drill configurations specific to that repository. The
defaults section contains configurations that will be applied to all reposito-
ries. If a configuration parameter is present in the defaults and in an individ-
ual repository’s configuration, the default is overridden for that particular
repository. The defaults or an individual repository configuration can con-
tain any of the following sections:

• pydriller: Configurations passed directly to the PyDriller Repository
class 2.

• filters: Filters that reduce the amount of drilled data with string
comparisons.

Permitting direct access to the parameters of PyDriller from the drill config-
uration provides flexibility in how the repository is drilled and allows re-
searchers that are proficient in the use of PyDriller to access the parameters
they are familiar with, whilst removing the necessity of writing their own
drilling script.

For an example configuration, see Listing 5.1 in the Case Study section.

The NeoRepro frontend, shown in Figure 4.3, provides an editor in which the
user can compose the drill configuration and check if it is correct using the
built in schema check. This editor interface uses the Monaco editor 3, which

2Pydriller Repository configurations: https://pydriller.readthedocs.io/en/
latest/repository.html

3Monaco Editor: https://microsoft.github.io/monaco-editor/

16

https://pydriller.readthedocs.io/en/latest/repository.html
https://pydriller.readthedocs.io/en/latest/repository.html
https://microsoft.github.io/monaco-editor/

4.1. Drilling 4.1. Drilling

Figure 4.4: UML Class Diagram of Driller Worker.

is the same base editor that is used by Visual Studio Code, so will provide a
familiar interface to a large number of developers. Through this interface, the
user can save drill configurations or load existing configurations. If the user
saves the configuration through the frontend then it will be stored correctly
so that it can be distributed in the replication package later on.

NeoRepro uses Driller Workers, which are Docker containers dedicated to
executing the drilling of repositories. The Driller Workers are designed such
that multiple instances can run simultaneously and drill repositories in par-
allel. The user can adjust the number of driller nodes that they want to run
based on their computer’s hardware can handle. To ensure efficient work-
load distribution, communication between the Driller Workers and the back-
end is conducted via RabbitMQ, an open source message queueing system 4.
The workers are setup in a Remote Procedure Call (RPC) configuration which
enables the backend to invoke drill jobs on the workers as needed and ex-
pects a status return value from the workers to indicate the drill job’s current
status. As a result, when the user executes a drill configuration from the
frontend, it is split into one job per repository that is to be drilled, and added
to the message queue. The jobs are then evenly distributed among the run-
ning driller workers, which execute repository drilling using PyDriller. As
the data is extracted from the repository, it is inserted into the Neo4j graph
database. The driller workers are implemented in Python in order to make

4RabbitMQ: https://www.rabbitmq.com/

17

https://www.rabbitmq.com/

4.1. Drilling 4.1. Drilling

Figure 4.5: Frontend interface where the user can see the current status of
each drill job.

use of PyDriller, and communication via RabbitMQ is conducted using the
package AIO Pika 5. As shown in Figure 4.4, the driller workers are con-
structed using Python’s Object Oriented syntax to create modular compo-
nents which can be adapted to the needs of an individual study if our config-
uration is not suitable.

During the drilling process, the user can access the Job Status page, shown
in Figure 4.5, on the frontend to see the current status of the drill jobs in real
time. The FastAPI backend receives status messages from the driller workers
via RabbitMQ that indicate the current state of the jobs. These messages are
sent to the frontend over a WebSocket, which “makes it possible to open a
two-way interactive communication session” [23] so that the frontend can
receive realtime job status messages.

The repository data is inserted into the graph database in a structure sim-
ilar to that of the original Git repository. This structure is inspired by that
used by the GraphRepo team [20] in their tool. As shown in Figure 4.6 each
commit is represented by a node in the database and is linked to the devel-
oper who made the commit, the files that were modified and the branches
which the commit belongs to. The nodes in Neo4j can hold additional data
that was retrieved from PyDriller during the drilling stage, such as the Delta
maintainability score. Delta maintainability is a widely used metric in MSR
which “is the proportion of low-risk change in a commit” [5]. During the
drilling stage, the user can also opt to have file changes (in the Git diff format)
recorded in the database too by setting index_file_modifications to
true in the configuration. If this is enabled then the file changes are added to
the MODIFIED relationship between the relevant commit and the file nodes.

5AIO Pika: https://aio-pika.readthedocs.io/en/latest/

18

https://aio-pika.readthedocs.io/en/latest/

4.2. Analyzing the mined Data 4.2. Analyzing the mined Data

Figure 4.6: Structure of the Graph Database storing Git repositories. Inspired
by GraphRepo [20]

4.2 Analyzing the mined Data

After the repository data has been inserted into the Neo4j database during
the Drilling phase, the data can be queried using Cypher. The use of Cypher
makes it easy to query the deeply related data that comes from a Git repos-
itory. There are two places where Cypher queries can be executed; Either in
the NeoRepro frontend, or in the Neo4j frontend. The NeoRepro frontend,
shown in Figure 4.7, provides only basic functionality with regards to auto-
completion and data display when compared to the Neo4j interface. It simply
displays the data as a table on the frontend. However the main advantage of
using the NeoRepro frontend is the ability to save and load queries. Further-
more, the queries that are saved are placed in the correct location for being
added to the replication package. Finally, out of the box NeoRepro comes
with some example queries that are relevant to querying Git repositories,
which could be useful when a user is trying to learn the new system. Alter-
natively, the Neo4j frontend comes built in to the Neo4j Docker container that
we are using for NeoRepro. This frontend provides a more feature rich in-
terface with functionality to display the repository data in a graph diagram,
and also has better autocompletion. However, in our testing we found that
the rendering of the graph was only useful on small scale queries to visual-
ize data but since it has a render limit of 300 nodes, it is not useful for large
datasets and queries. Although the Neo4j interface is not used by NeoRepro,
it is still accessible to users if they wish to access it’s visualization features.

During a study, additional information may need to be added to the database.
For example, in the case study they had to add labels to cost related commits
for topic modelling. For small changes to the data, this can be done through a
Cypher query interface, but for large changes with very specific functionality

19

4.2. Analyzing the mined Data 4.2. Analyzing the mined Data

Figure 4.7: NeoRepro query interface

Figure 4.8: NeoRepro database management and backup interface.

the need arises for writing short scripts which can insert additional data into
the database. This is where the object oriented, modular design outlined in
Figure 4.4 proves useful. Rather than writing a script from scratch that needs
to interact with the Neo4j database, the Neo4jStorage class, seen in Figure
4.4, can be extended which provides the functionality for interacting with the
database. This makes it easy for custom behavior to be added to NeoRepro.
This process was done for the case study in order to insert the labels.

During the analysis stage, snapshots of the current database state can be
taken in order to backup the state of the database. These snapshots of the
database can be reloaded into the database if a mistake was made during an
operation. These database images are also stored in the replication package
and thus a third party could access the data at different stages of the study.
The interface where database backups are taken is shown in Figure 4.8. In
this interface some additional metrics about the current state of the database

20

4.3. Replication Package 4.3. Replication Package

are also accessible.

4.3 Replication Package

The primary purpose of NeoRepro is to make the creation of a replication
package for an MSR study simple. In order to do this, the MSR researcher
must clone the NeoRepro repository and use it as a template at the start of
a study. This ensures that all necessary components and configurations are
available. Once the template is cloned, the researcher can conduct their MSR
study using the tool as explained in the previous 2 sections.

The NeoRepro repository contains predefined directories where files used in
the study are located. These locations come with some pre-made examples
to help guide the user. The files in these directories are passed into NeoRe-
pro’s Docker containers using volumes, which allow directories in the host
file system to be mapped to a particular location within a given Docker con-
tainer. Using volumes makes the tool adaptable in case the user would like
to change the location where these files are stored.

By leveraging Git for version control, the tool enables researchers to manage
their replication package easily and track changes that they make using a tool
that is familiar to most. Furthermore, this replication ability can also be used
during the study. At any stage of a line of research, if the dataset or con-
figurations need to be shared with a co-worker for replication or validation,
this can be done using the replication abilities of NeoRepro by adding it to
the Git repository. There are a plethora of platforms, such as GitHub, which
can be used to distribute Git repositories, thus making the distribution of the
replication package simple.

Once a study is complete and the replication package has been published as a
Git Repository, the data and queries used in the study can be easily accessed
and interacted with by a third party. By cloning the replication package and
executing it with the Docker compose command, the user has access to the
entire tool set that was using during the original research. Therefore, regard-
less of whether the user want to replicate the study in it’s entirety, or just
access the datasets that were generated during the study, they can do so.

21

5 | Evaluation

To assess the performance and utility of NeoRepro, this section presents a
detailed evaluation through a targeted case study. The objective is to illus-
trate the practical utility of NeoRepro in performing an MSR studies and in
generating replication packages. We selected a well-documented MSR study
as our case, aiming to replicate the results using NeoRepro. This not only
tests the effectiveness of our tool in a real-world scenario but also provides a
benchmark against which to measure improvements over existing tools.

In addition to demonstrating NeoRepro’s capabilities, we also conduct a com-
parative analysis with other MSR tools in the field. This comparison focuses
on several key metrics, including ease of use, efficiency in data handling,
and the overall quality of the replication packages generated. Through this
comparative approach, we aim to highlight the distinct advantages that Ne-
oRepro offers over it’s counterparts and discuss any aspects that NeoRepro
fails to improve over existing tools. The results from this case study will
offer valuable insights into the enhancements that NeoRepro brings to the
MSR community, highlighting it’s potential as an advancement in creation of
replication packages.

5.1 Case Study

To evaluate the effectiveness of our novel tool, we created the replication
package from the “Mining for Cost Awareness in the Infrastructure as Code
Artifacts” [8] study in NeoRepro 1. The replication package is a Git repos-
itory which contains all of the drilling configurations, Cypher queries and
database snapshots that were used throught the following case study. The
original study aimed “to examine to what extent software developers are
aware of the cost of deploying and operating cloud-based software, and what
kind of concerns and action initiatives they are having about it” [8]. To an-
swer this question, they searched for open source repositories which used
Terraform Infrastructure as Code (IaC) to define the resources that software
is deployed on. This allowed them to examine whether developers where
aware of the influences that their modifications to the code had on the cost
of deploying the application. This research serves as an ideal case study as

1Case Study Replication Package GitHub Repository: https://github.com/
AndrewRutherfoord/cloud-cost-awareness-NeoRepro-reproduction

22

https://github.com/AndrewRutherfoord/cloud-cost-awareness-NeoRepro-reproduction
https://github.com/AndrewRutherfoord/cloud-cost-awareness-NeoRepro-reproduction

5.1. Case Study 5.1. Case Study

Figure 5.1: Steps of data collection and analysis that were used in Mining
Cost Awareness Study [8]

it used a number of bespoke scripts to extract and analyze information from
open source repositories. Furthermore, all of the scripts used in the produc-
tion of the original study have been provided by the researchers in an exten-
sive replication package 2. The steps that were used to collect the data in the
study can be seen in Figure 5.1. In the original study they answered 3 re-
search questions, but in this case study we will only focus research question
1: “What kind of relevant information can we extract from commits on IaC
artifacts?”. As a result we will not replicate any of the data or scripts that
were used in the analysis or research questions 2 and 3. As shown in figure
5.1, the analysis for research question 1 followed 3 steps:

1. Searching for repositories which used Terraform (156585 Repositories
were found) [8]

2. Filter out repositories that don’t contain Terraform artifact files (Re-
duced to 152,735) [8]

3. Filter by keyword in commit messages (2010 repositories) [8]

In our replication of this study we will only focus on steps 2 and 3 of the
study since the first step, curating a set of relevant repositories to be drilled,
differs significantly depending on the source of the data that needs to be an-
alyzed. Since our tool is designed to be a general tool that can be adapted to
a study, we didn’t see this step as relevant to our aims. In this case they had
to query the GitHub API in order to find repositories which were suitable for
their study. When doing the case study we will use the curated list of 488

2Replication Package for Mining Cost Awareness Study: https://github.com/
feitosa-daniel/cloud-cost-awareness/

23

https://github.com/feitosa-daniel/cloud-cost-awareness/
https://github.com/feitosa-daniel/cloud-cost-awareness/

5.1. Case Study 5.1. Case Study

repositories that was provided in the replication package and perform the
second and third steps using our NeoRepro. Unfortunately during our repli-
cation we found that 32 of the repositories that were analyzed in the original
study were no longer available on GitHub, so we were unable to extract this
information. However, we were still left with 456 repositories which could
be drilled for our replication. The missing repositories highlights the need
to be able to distribute the dataset that was used during the study since the
source data may no longer be accessible in the future.

Drilling the Repositories

The process of replicating the data from the Cost Awareness Study started by
converting their curated list of 488 repositories into the configuration file that
is used by the drilling component of NeoRepro. Once the all of the reposito-
ries were added to the configuration file, we set up the default drill configura-
tions which were applied to each repository. By putting the configurations in
the default section, they are applied to the drilling of each repository. Using
the pydriller section we are able to directly access Pydriller’s configura-
tions and the commits that are drilled. In this case we limited the data to
which we driller commits to 30th May 2022 [8, p.4], which is the date that
the original study ended their data collection. Furthermore, we only drilled
commits which contained changes to Terraform files, since these are the only
files that the original study was concerned with. We also used the commit
string filtering to limit the drilled commits to onces that contained cost re-
lated keywords in the commit messages. A snippet of the configuration used
in the drilling for the case study can be seen in Listing 5.1.

In this case study we used the configuration file to perform a targeted drill,
however by reducing or removing these targeted configurations, we could
increase the scope of the data drilling process. This broader approach can
be particularly useful in exploratory studies or during the initial stages of
research to uncover new insights. This flexibility demonstrates the versatil-
ity of our tool, allowing it to facilitate highly focused data extraction when
needed, while also being capable of comprehensive data drilling from the
repository. This adaptability ensures that researchers can tailor the data col-
lection process to suit the specific needs of their study, whether they require
precise, targeted data or a wide-ranging exploratory dataset.

Once the configuration was composed, it was executed from the frontend,
which sent the configuration to the FastAPI backend which added each indi-
vidual repository drill job to the RabbitMQ. The message queue distributed
the repository drill jobs evenly among the driller worker nodes, ensuring
that the drilling is completed in parallel. When performing this case study,
we had 3 driller workers instances running (on a single machine), so 3 reposi-
tory drill jobs could be executed simultaneously. The number of driller work-
ers can be changed by the user based on the capabilities of their computer.
Whilst the drilling was underway, the frontend provided live feedback that
showed which repositories were being drilled currently, which had failed,

24

5.1. Case Study 5.1. Case Study

Node Type Number of Nodes

Repository 387

Branch 335

Developer 338

Commit 528

File 1873

Number of each type of node in the database after the initial case study
drilling.

and which had already finished. This allows the user to see a high level
overview of the drilling process without needing to look at the logs from the
driller worker Docker containers. Once all of the repositories had finished
drilling with the configurations shown in listing 5.1 we were left with 3475
nodes in the database. The repository data at this point was in the structure
shown in 4.6.

defaults:
delete_clone: false
index_file_modifications: true
pydriller: # Configuration of pydriller directly.

to: "2022-05-30"
only_modifications_with_file_types:

- ’.tf’
- ’.tf.json’

filters:
commit:

- field: ’msg’
value:

- cheap
- expens
- cost
- efficient
- bill
- pay

method: ’contains’

repositories:
- name: website-infrastructure

url: https://github.com/InvictrixRom/website-
infrastructure.git

- name: bespin
url: https://github.com/schramm-famm/bespin.git
...

Listing 5.1: Snippet of drill configuration used during “Mining for Cost
Awareness” case study

25

5.1. Case Study 5.1. Case Study

Once the data had been inserted into the database, a database backup was
taken in order to create an backup of the original source data. This way if
a mistake is made during a query or a script that removes or modifies some
data, the database can be rolled back to that version. This backup is also part
of the replication package that was created, so therefore a third party will
be able to access and use the original data if they need to. Unfortunately the
backup taken at this stage is quite large at 1.4 MB and this means that loading
the data from the backup can take quite a lot of time.

Storage of Additional Data

Figure 5.2: Structure of the Graph Database for Mining Cost Awareness repli-
cation.

As it stands, NeoRepro is designed to only extract information from Git
repositories and insert it into the Neo4j. This means that other datasources
often used for MSR research, such as issues or pull requests, cannot be eas-
ily mined. However, the schemaless nature of the Neo4j database makes it
simple to add additional data, or even adapt the driller worker to extract
data from whichever datasource is needed. This extendability of the driller
worker is possible due to the object oriented design of the driller worker,
shown in figure 4.4. By extending the Neo4jStorage class, a script can eas-
ily be written that can write data into the Neo4j database that links to the
existing repository data.

In the original cost awareness study, they manually decided on codes for each
commit that “refer to central ideas in the discussion and their characteristics”
[8] during the commit message. For this case study we needed to insert the
code data and link it to the commit. We extended the Neo4jStorage class,
from figure 4.4, and used the Neo4j access functionality it provides to easily
write a short script that added the code data. The code data was provided
in the replication package from the original study so our script parses the

26

5.1. Case Study 5.1. Case Study

JSON file, creates a node for each Code and then creates a MEMBER_OF re-
lationship between the code and each relevant commit. The structure of the
resulting data is shown in figure 5.2. This resulted in 718 labelled commits.
The number of commits per code word can be seen in Appendix A.

The same process can be followed for data from different sources to add them
and link it to the repository data. For example, in to answer research ques-
tion 2 of the Mining for Cost Awareness study, GitHub issues were also stud-
ied for information relating to cost awareness. In our study we did not use
the Issue data that they gathered, however it could inserted into the Neo4j
database easily using this method. Furthermore, the issues could be linked
to the repository that it belongs to if it existed in in the database. By unifying
all of this data onto a single database where relationships can be created be-
tween any two nodes, it facilitates a number of different queries that might
not have been feasible with other methods of data storage.

Analysis of Case Study Data

Now that all of the repository and code data has been inserted into the Neo4j
database, the analysis of the data can be performed using Cypher. We wrote
queries that replicate the results that the original study performed on this
data.

MATCH (l:Code)--(c:Commit) RETURN l.name as Name, count(c) as
Num_Commits ORDER BY Num_Commits DESC

Listing 5.2: Cypher query to count commits per code

With a simple query we were able to count the number of commits per label
and we also found that saving was the most popular code, at 255 commits,
and awareness was the second most popular, at 139 commits. This is the
same as they had in the original research paper [8, p.7] The query used is
shown in Listing 5.2.

MATCH (f:File)-[m:MODIFIED]-(c:Commit)--(b:Branch)--(r:
Repository), (code:Code)--(commit)

WHERE f.name CONTAINS ".tf"
AND r.name = "terraform-google-vault"

WITH r, f, COUNT(m) AS modifications, code
ORDER BY modifications DESC
RETURN r.name AS repository, f.name AS file, modifications,

code.name

Listing 5.3: Cypher query most modified terraform file per code

Although we are easily able to query commits per label data using Cypher,
this functionality could have easily been achieved though simpler means.
Where using Cypher provides significant benefits over other means is when
querying data across many relationships. As an example, we decided to
write a query to find the most modified Terraform file per code word in a
particular repository in the case study. This involves finding the file that is

27

5.2. Comparative Analysis 5.2. Comparative Analysis

modified in the most commits in a particular repository and and grouping it
by the file code word. The query that retrieves this information can be seen
in listing 5.3.

Releasing the replication package

Since the entire process to recreate the replication package for the Cost Aware-
ness Study was done on NeoRepro, the process of releasing the replication
package was simple.

Through the creation of the case study replication package we used the Git
repository for version control. This was used repeatedly when rollbacks were
required due to a mistaken change to a file. By using Git version control
throughout, and publishing the repository on GitHub, the replication pack-
age was ready to be released from the start.

In order to create documentation for the replication package, we wrote a
README.md file, which contains documentation for how to use the replica-
tion package. This README file is also displayed on the home page of the
frontend so that a third party can easily reference the README whilst using
the replication package frontend.

Once the README file was written, the replication package was complete. It
contains the drilling configuration, additional scripts, queries and database
backups that were used or created throughout the course of the case study.

This shows that using NeoRepro significantly improves the process of creat-
ing a replication package for a MSR.

5.2 Comparative Analysis

Based on the insights gained through performing the case study, we will now
analyze how NeoRepro improves on the state for tools in MSR and replica-
tion packages. The case study shows that NeoRepro is capable of performing
an MSR study from start to finish.

As shown the Case Study section, NeoRepro possesses the capabilites to per-
form an entire MSR study from start to finish. The use of a configuration file
for drilling repositories is significantly simpler than writing a custom script
each time. The configuration file that NeoRepro uses provides more pre-
cise configurations for drilling the repository data when compared to other
MSR tools which also use a configuration file, such as GraphRepo. Provid-
ing direct access to PyDriller’s parameters through our YAML configuration
allows researchers who are familiar with PyDriller to access the features the
are accustomed to without writing a bespoke script.

The ability for NeoRepro to drill multiple software repositories concurrently
through the use of the Driller Worker Docker containers significantly speeds

28

5.2. Comparative Analysis 5.2. Comparative Analysis

up the drilling process. None of the widely used tools that were surveyed in
our analysis of existing tools possessed concurrent drilling abilities.

The original replication package from the Cost Awareness in Infrastructure as
Code study had data from each stage of their study, however all of the com-
mit data was just stored in a JSON file as a list, which loses all of the related
data such as the developer, the repository information and file change infor-
mation. This is the primary advantage of the NeoRepro replication method,
it provides a simple storage method so that data can be distributed along
with all of the context.

As addressed previously, NeoRepro is not able to process other data sources
easily. Processing data that is not Git Repository data requires writing a script
to load it. To some extend this defeats the purpose of NeoRepro as we aimed
to reduce the need for custom scripts. However we feel we have found a
fair middle ground by creating a framework that can be extended to create a
script to extract additional data.

Another aspect that reduces the effectiveness of NeoRepro as a tool for MSR
studies is for a large dataset the backups that are taken from the Neo4j graph
database are very large and the process of loading them into Neo4j takes a
long time. For the full dataset image from the case study, it took over an
hour to load the dataset. However a reduced dataset was able to be loaded
quickly. This is unfortunately a shortcoming of the Neo4j database as this is
their method for backing up the database. A potential method for improving
the loading time of the database it to just take an image of the Neo4j docker
volume and add that to the replication package. This method could allow the
different states to be swapped our with minimal changeover time. However
we are unsure of the size implications of this method. For an initial version
of NeoRepro, we feel that the current backup method is sufficient, but could
definitely be improved in future iterations of the tool.

29

6 | Conclusion

In this paper, though a comprehensive analysis of existing tools for MSR we
have found a need for a system to easily create a replication package for an
MSR study. As a result we created NeoRepro, a system for performing a
MSR study from start to finish and then allows for the creation of a repli-
cation package. The use of NeoRepro for repository mining eliminates the
need to write bespoke drilling scripts while providing the flexibility to con-
figure repository data extraction as required by the study. From our analysis
of existing tools we found that a graph database would be the most effec-
tive storage method for this tool. By leveraging a Neo4j graph database for
data storage, NeoRepro efficiently handles complex relationships within the
repository data, enabling powerful queries on repository data using Cypher
queries.

To evaluate the utility of NeoRepro we conducted a case study by creating
a replication package for the “Mining for Cost Awareness in the Infrastruc-
ture as Code Artifacts” [8] study. By reproducing the steps of their study on
NeoRepro, we were successful in creating a replication package which can
be used to replicate the results of their research and can easily be distributed
though GitHub.

Although NeoRepro provides powerful functionality for extracting data from
repositories, it lacks functionality for extracting data from other sources, such
as GitHub Issues or Pull Request, both of which are commonly used in MSR
analysis. Although a researcher can extend the object oriented source code
of NeoRepro’s drillers to extract data from other sources, in future, it would
be worthwhile to develop drilling functionality for other data. Additionally,
this drilling extended functionality would need to be incorporated into the
drilling frontend.

30

Acknowledgements

I would like to thank my supervisors Prof. Vasilios Andrikopoulos and Dr.
Daniel Feitosa for suggesting this project and providing invaluable guidance
and feedback throughout the process of creating the NeoRepro tool and the-
sis.

31

Bibliography

[1] Artifact Review and Badging - Current. URL: https://www.acm.org/
publications/policies/artifact-review-and-badging-
current (visited on 08/02/2024).

[2] Markus Borg et al. “Increasing, Not Diminishing: Investigating the Re-
turns of Highly Maintainable Code”. In: Proceedings of the 7th ACM/IEEE
International Conference on Technical Debt. TechDebt ’24. New York, NY,
USA: Association for Computing Machinery, June 2024, pp. 21–30. ISBN:
9798400705908. DOI: 10.1145/3644384.3644471. URL: https:
//dl.acm.org/doi/10.1145/3644384.3644471 (visited on
08/02/2024).

[3] Enzo Camuto et al. “A Suite of Process Metrics to Capture the Effort
of Developers”. In: Proceedings of the 2021 10th International Conference
on Software and Computer Applications. ICSCA ’21. New York, NY, USA:
Association for Computing Machinery, July 2021, pp. 131–136. ISBN:
978-1-4503-8882-5. DOI: 10.1145/3457784.3457805. URL: https:
//dl.acm.org/doi/10.1145/3457784.3457805 (visited on
04/01/2024).

[4] Morakot Choetkiertikul et al. “Characterization and Prediction of Issue-
Related Risks in Software Projects”. In: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. May 2015, pp. 280–291. DOI:
10.1109/MSR.2015.33. URL: https://ieeexplore-ieee-org.
proxy-ub.rug.nl/document/7180087 (visited on 08/02/2024).

[5] Marco Di Biase et al. “The Delta Maintainability Model: Measuring
Maintainability of Fine-Grained Code Changes”. In: 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt). Montreal, QC, Canada:
IEEE, May 2019, pp. 113–122. ISBN: 978-1-72813-371-3. DOI: 10.1109/
TechDebt.2019.00030. URL: https://ieeexplore.ieee.org/
document/8785997/ (visited on 07/02/2024).

[6] S. Dueñas et al. “GrimoireLab: A Toolset for Software Development
Analytics”. In: PeerJ Computer Science 7 (2021), pp. 1–53. ISSN: 2376-
5992. DOI: 10.7717/PEERJ-CS.601.

[7] Robert Dyer et al. “Boa: A Language and Infrastructure for Analyz-
ing Ultra-Large-Scale Software Repositories”. In: 2013 35th International
Conference on Software Engineering (ICSE). San Francisco, CA, USA: IEEE,
May 2013, pp. 422–431. ISBN: 978-1-4673-3076-3 978-1-4673-3073-2. DOI:

32

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3644384.3644471
https://dl.acm.org/doi/10.1145/3644384.3644471
https://dl.acm.org/doi/10.1145/3644384.3644471
https://doi.org/10.1145/3457784.3457805
https://dl.acm.org/doi/10.1145/3457784.3457805
https://dl.acm.org/doi/10.1145/3457784.3457805
https://doi.org/10.1109/MSR.2015.33
https://ieeexplore-ieee-org.proxy-ub.rug.nl/document/7180087
https://ieeexplore-ieee-org.proxy-ub.rug.nl/document/7180087
https://doi.org/10.1109/TechDebt.2019.00030
https://doi.org/10.1109/TechDebt.2019.00030
https://ieeexplore.ieee.org/document/8785997/
https://ieeexplore.ieee.org/document/8785997/
https://doi.org/10.7717/PEERJ-CS.601

Bibliography Bibliography

10.1109/ICSE.2013.6606588. URL: http://ieeexplore.
ieee.org/document/6606588/ (visited on 06/22/2024).

[8] Daniel Feitosa et al. Mining for Cost Awareness in the Infrastructure as
Code Artifacts of Cloud-based Applications: An Exploratory Study. Dec. 2023.
arXiv: 2304.07531 [cs]. URL: http://arxiv.org/abs/2304.
07531 (visited on 02/27/2024).

[9] Paul Hudak. “Domain Specific Languages”. In: (Dec. 1997). URL: https:
//cs448h.stanford.edu/DSEL-Little.pdf (visited on 12/02/2024).

[10] Salim Jouili and Valentin Vansteenberghe. “An Empirical Comparison
of Graph Databases”. In: 2013 International Conference on Social Comput-
ing. Sept. 2013, pp. 708–715. DOI: 10.1109/SocialCom.2013.106.
URL: https://ieeexplore.ieee.org/abstract/document/
6693403 (visited on 03/30/2024).

[11] I. Keivanloo and J. Rilling. “Software Trustworthiness 2.0 - A Semantic
Web Enabled Global Source Code Analysis Approach”. In: Journal of
Systems and Software 89.1 (2014), pp. 33–50. ISSN: 0164-1212. DOI: 10.
1016/j.jss.2013.08.030.

[12] Chris Rupp Klaus Pohl. Requirements Engineering Fundamentals, 2nd Edi-
tion: A Study Guide for the Certified Professional for Requirements Engineer-
ing Exam - Foundation Level - IREB Compliant. 2nd Edition. Rocky Nook,
Inc., Apr. 2016. ISBN: 978-1-937538-77-4.

[13] Hiroki Nakamura et al. “QORAL: An External Domain-Specific Lan-
guage for Mining Software Repositories”. In: 2012 Fourth International
Workshop on Empirical Software Engineering in Practice. Oct. 2012, pp. 23–
29. DOI: 10.1109/IWESEP.2012.20. URL: https://ieeexplore.
ieee.org/abstract/document/6363292 (visited on 03/13/2024).

[14] YAML Org. The Official YAML Web Site. URL: https://yaml.org/
(visited on 06/29/2024).

[15] Carlos Paradis and Rick Kazman. “Building the MSR Tool Kaiaulu: De-
sign Principles and Experiences”. In: vol. 13365. 2022, pp. 107–129. DOI:
10.1007/978-3-031-15116-3_6. arXiv: 2304.14570 [cs]. URL:
http://arxiv.org/abs/2304.14570 (visited on 07/04/2024).

[16] Jaroslav Pokorný. “Graph Databases: Their Power and Limitations”.
In: Computer Information Systems and Industrial Management. Ed. by Khalid
Saeed and Wladyslaw Homenda. Cham: Springer International Pub-
lishing, 2015, pp. 58–69. ISBN: 978-3-319-24369-6. DOI: 10.1007/978-
3-319-24369-6_5.

[17] Query a Neo4j Database Using Cypher - Getting Started. URL: https://
neo4j.com/docs/getting-started/cypher-intro/ (visited
on 07/01/2024).

[18] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases: New Op-
portunities for Connected Data. "O’Reilly Media, Inc.", June 2015. ISBN:
978-1-4919-3086-1.

[19] secold. Some Research Domain Shutdown OpenData Project Due to Licens-
ing Issues http://bit.ly/OqshMK but We Keep Our Hope Alive http://bit.ly/ROFmPO.
Nov. 2012. URL: https://x.com/secold/status/245295898840678400.

33

https://doi.org/10.1109/ICSE.2013.6606588
http://ieeexplore.ieee.org/document/6606588/
http://ieeexplore.ieee.org/document/6606588/
https://arxiv.org/abs/2304.07531
http://arxiv.org/abs/2304.07531
http://arxiv.org/abs/2304.07531
https://cs448h.stanford.edu/DSEL-Little.pdf
https://cs448h.stanford.edu/DSEL-Little.pdf
https://doi.org/10.1109/SocialCom.2013.106
https://ieeexplore.ieee.org/abstract/document/6693403
https://ieeexplore.ieee.org/abstract/document/6693403
https://doi.org/10.1016/j.jss.2013.08.030
https://doi.org/10.1016/j.jss.2013.08.030
https://doi.org/10.1109/IWESEP.2012.20
https://ieeexplore.ieee.org/abstract/document/6363292
https://ieeexplore.ieee.org/abstract/document/6363292
https://yaml.org/
https://doi.org/10.1007/978-3-031-15116-3_6
https://arxiv.org/abs/2304.14570
http://arxiv.org/abs/2304.14570
https://doi.org/10.1007/978-3-319-24369-6_5
https://doi.org/10.1007/978-3-319-24369-6_5
https://neo4j.com/docs/getting-started/cypher-intro/
https://neo4j.com/docs/getting-started/cypher-intro/
https://x.com/secold/status/245295898840678400

Bibliography Bibliography

[20] Alex Serban, Magiel Bruntink, and Joost Visser. GraphRepo: Fast Ex-
ploration in Software Repository Mining. Aug. 2020. DOI: 10.48550/
arXiv.2008.04884. arXiv: 2008.04884 [cs]. URL: http://
arxiv.org/abs/2008.04884 (visited on 02/20/2024).

[21] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. “PyDriller:
Python Framework for Mining Software Repositories”. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ES-
EC/FSE 2018. New York, NY, USA: Association for Computing Ma-
chinery, Oct. 2018, pp. 908–911. ISBN: 978-1-4503-5573-5. DOI: 10.1145/
3236024.3264598. URL: https://dl.acm.org/doi/10.1145/
3236024.3264598 (visited on 02/20/2024).

[22] Kyle Daigle Staff GitHub. Octoverse: The State of Open Source and Rise of
AI in 2023. Nov. 2023. URL: https://github.blog/2023-11-08-
the-state-of-open-source-and-ai/ (visited on 03/13/2024).

[23] The WebSocket API (WebSockets) - Web APIs | MDN. Mar. 2024. URL:
https://developer.mozilla.org/en-US/docs/Web/API/
WebSockets_API (visited on 07/17/2024).

[24] M. Vidoni. “A Systematic Process for Mining Software Repositories:
Results from a Systematic Literature Review”. In: Information and Soft-
ware Technology 144 (Apr. 2022), p. 106791. ISSN: 0950-5849. DOI: 10.
1016/j.infsof.2021.106791. URL: https://www.sciencedirect.
com/science/article/pii/S0950584921002317 (visited on
02/20/2024).

[25] What Is an API (Application Programming Interface)? | IBM. Apr. 2024.
URL: https://www.ibm.com/topics/api (visited on 08/01/2024).

[26] What Is Docker? | IBM. June 2024. URL: https://www.ibm.com/
topics/docker (visited on 06/30/2024).

34

https://doi.org/10.48550/arXiv.2008.04884
https://doi.org/10.48550/arXiv.2008.04884
https://arxiv.org/abs/2008.04884
http://arxiv.org/abs/2008.04884
http://arxiv.org/abs/2008.04884
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
https://dl.acm.org/doi/10.1145/3236024.3264598
https://dl.acm.org/doi/10.1145/3236024.3264598
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://doi.org/10.1016/j.infsof.2021.106791
https://doi.org/10.1016/j.infsof.2021.106791
https://www.sciencedirect.com/science/article/pii/S0950584921002317
https://www.sciencedirect.com/science/article/pii/S0950584921002317
https://www.ibm.com/topics/api
https://www.ibm.com/topics/docker
https://www.ibm.com/topics/docker

Glossary

API “a set of rules or protocols that enables software applications to com-
municate with each other to exchange data”[25]. 9

git A version control system that is widely used within software develop-
ment. A project that is managed by git is called a repository. 2–5, 8, 13,
14, 18, 19, 21, 22, 26, 28, 29

JSON A standard file format storage of data. . 16, 27, 29

SQL Structured Query Language. A standardised language that is used to
make queries in relational database systems.. 8, 13

YAML YAML Ain’t Markup Language™: YAML is a human-friendly data
serialization language for all programming languages. [14]. 15, 28

35

Acronyms

CLI Command Line Interface. 9

DSL Domain Specific Language. 6–8

IaC Infrastructure as Code. 22, 23

MSR Mining Software Repositories. 3–12, 15, 18, 21, 22, 26, 28–30

RPC Remote Procedure Call. 17

36

A | Additional Data

Drilling Configuration Example

Listing A.1: Snippet drill confugration used during “Mining for Cost Aware-
ness” case study:
defaults:

delete_clone: false
index_file_modifications: true
pydriller: # Configuration of pydriller directly.

to: "2022-05-30"
only_modifications_with_file_types:

- ’.tf’
- ’.tf.json’

filters:
commit: # siblings in list behave as AND

- field: ’msg’
value:

- cheap
- expens
- cost
- efficient
- bill
- pay

method: ’contains’

repositories:
- name: website-infrastructure

url: https://github.com/InvictrixRom/website-infrastructure
.git

- name: bespin
url: https://github.com/schramm-famm/bespin.git

Number of Commits Per Code

37

Name Number of Commits
alert 28
area 9
awareness 139
billing_mode 19
cluster 11
domain 5
feature 39
increase 8
instance 91
networking 39
policy 6
provider 17
saving 255
storage 52

38

	Introduction
	Related Work
	Code Libraries for MSR
	Toolsets for MSR
	Database Systems for MSR
	Design decisions for MSR tools

	Requirements
	Personas
	Requirements

	Architecture
	Drilling
	Analyzing the mined Data
	Replication Package

	Evaluation
	Case Study
	Comparative Analysis

	Conclusion
	Additional Data

