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Abstract

This thesis aims to develop an enhanced model for aortic valve (AV) diameter prediction that
accounts for demographic variability and discrepancies in measurement techniques. Leveraging
an extensive and diverse donor dataset from Cryolife Inc., previously unobservable patterns are
analysed. This donor dataset is made up of physical AV diameter measurements, whereas diag-
nosis for aortic stenosis is done via echocardiographic AV diameter estimates. Thus, to address
potential discrepancies between physical and echocardiographic measurements, a supplemen-
tary dataset from the University Medical Center Groningen (UMCG) was used for adults and
models from existing literature were used for those 18 and under. The recent acquisition of
the Lopez et al. dataset – which encompasses only those 18 and under – allowed for retroac-
tive validation and a robust analysis of measurement biases. Following the data exploration
of the donor dataset, an unexplainable trend was observed in the AV diameter measurements
over time. Consequently, a bespoke segment neighbourhood algorithm was developed to ob-
jectively identify changepoints in the residuals. The trends between these changepoints were
then corrected in the AV diameter measurements. It was found that the most suitable model to
predict AV diameter was a generalised additive model (GAM) including tensor product smooth
interaction terms. To account for heteroscedasticity due to the large demographic variability,
a GAM was created to model the conditional standard deviation with respect to the demo-
graphic attributes/variables. Combined, these models can be used for Z-score computation, as
is standard in the cardiology field. This research enhances predictive accuracy and uncertainty
quantification for aortic valve diameters, contributing to more reliable assessments for diagnosis
and aortic valve replacement surgery.
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1 Introduction

The primary objective of this study is to develop a refined model of aortic valve (AV) diameter
measurements that accounts for both demographic variability and measurement technique discrep-
ancies. By comparing the final model against previous models and applying it to extreme cases –
such as individuals who are obese or significantly smaller than average – we aim to enhance the
predictive accuracy and uncertainty quantification of AV diameter measurement techniques.

Traditional datasets used in such studies have been limited by size and demographic diversity,
restricting the applicability of research findings across different populations. The acquisition of an
extensive and diverse donor dataset from Cryolife Inc., a company specialising in aortic health,
presents an unprecedented opportunity to fill this gap in cardiovascular research. Encompassing a
wide range of AV diameter measurements across a diverse population allows one to explore patterns
and discrepancies that were previously unobservable.

To ensure the accuracy of our findings, potential discrepancies between physical measurements of
AV diameter and those obtained via echocardiography – a common non-invasive technique used to
assess heart valves – were addressed. To this end, a supplementary dataset consisting of echocardio-
graphic measurements was compiled at the University Medical Center Groningen (UMCG). Given
the challenges in collecting echocardiographic data, only about 60 measurements from a less diverse
adult population were available. The findings could not be extrapolated to younger demographics.
Therefore, regression equations from existing literature concerning individuals under 18 were to be
utilised to assess systematic biases in younger populations. Towards the end of the research con-
ducted for this thesis, a new echocardiographic dataset became available. Specifically, the Lopez
et al. dataset which only encompasses individuals 18 and under. This allowed for retroactively
validating the previously applied method, as well as a more robust analysis of the bias between
the physical and echocardiographic measurements for those 18 and under. These two echo datasets
were employed to create a bridging model between the physical and echo AV diameter measurements.

The research begins with the data description, exploration, and preprocessing of all three datasets:
the Cryolife donor dataset, the UMCG data, and the Lopez et al. dataset. This is followed by
a visual exploration of the potential differences between the physical and echocardiographic AV
diameter measurements. During the donor data and model exploration, a trend was observed in
the AV diameter measurements over time and the residuals over time. With the aim of better
generalisability, this was corrected via the implementation of a bespoke changepoint algorithm.

The subsequent sections – Theory, Methodology, and Results – are each divided into subsections that
cover: modeling and evaluation, using body surface area (BSA) as a variable rather than height and
weight, correcting trends in the AV diameter measurements, and addressing the potential echocar-
diographic biases. The Theory section introduces the modelling frameworks as well as the research
questions. Moreover it covers the rationale behind the choices made, based on theoretical consider-
ations and expected outcomes. The Methodology section details the practical implementations and
parameter choices. The Results section presents the findings, discussing where these findings match
and do not match initial expectations, as well as the implications.

The significance of this research lies in its potential to provide a more accurate, validated model
of aortic valve measurements that can be utilised in diverse clinical settings. This could lead to
improved diagnostic and surgical outcomes for patients with aortic valve anomalies, particularly in
cases where existing models fall short. Moreover, a detailed and robust analysis of the uncertainty,
not just accuracy, accompanying healthy AV diameter predictions has not yet been researched. This
thesis also includes a flexible implementation of the segment neighbourhood algorithm, allowing for
practically any cost function and penalty choice.

By bridging the gap in knowledge with a comprehensive analysis of a uniquely large and diverse
dataset, this thesis contributes to the broader field of cardiovascular research, offering insights that
could inform future studies and medical practices.
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2 Motivation

Aortic stenosis (AS) is a severe cardiovascular condition that affects a substantial number of individ-
uals. For example, in the United States up to 1.5 million people suffer from AS and approximately
500,000 are experiencing severe AS [1][2][3]. Without timely intervention in the form of aortic valve
replacement (AVR), a significant portion of patients with severe AS face a bleak prognosis, with
a survival rate of less than two years after the onset of symptoms[4]. Aortic stenosis is commonly
caused by aortic valve disease, the prevalence of which has been steadily increasing[5]. In 2019,
its prevalence was as high as 1160 cases per million persons resulting in 411 valve procedures per
million for aortic valve disease in the United States in 2019[6]. Notably, the majority of these cases
present in patients at older ages i.e. well into adulthood.

The choice of the appropriate aortic valve replacement is paramount in ensuring successful out-
comes for these patients. Incorrect expectations about a patient’s prosthetic valve can lead to
patient prosthesis mismatch (PPM)[7]. However, selecting the correct valve size is complex. The
two primary challenges in aortic valve replacement surgery involve avoiding undersizing, which can
lead to insufficient capacity, valve leakage or dislodgement, and preventing oversizing, which may
result in improper expansion, reduced valve longevity, potential complications with the heart’s elec-
trical system, and damage to the surrounding area[8]. Moreover, improper valve sizing can result
in aortic regurgitation, a condition where the aortic valve fails to close properly, allowing blood to
flow back into the left ventricle[9].

Pediatric cardiologists customarily use nomograms and Z-scores of the aortic valve diameter, for
which many models are available online[5]. However, the large number of models - based on rel-
atively small numbers of echocardiographs - cannot be extrapolated to adults, as they were not
part of the datasets analysed. There is also a lack of standardisation in this area of research[10].
Instead, adult cardiologists and cardiac surgeons use simplifications that have evolved over decades.
Nomograms and Z-scores are most commonly based on BSA. However, models based on BSA are
potentially less accurate for individuals in extreme cases e.g. obese people[11]. Considering the
increasing obesity epidemic, this is becoming a more prevalent issue. It has been proposed to use a
separate model with a different cut-off value for those with BMIs over 30, but this dichotomy only
partially solves the problem as the problem is not of a dichotomous nature. Therefore, it would lead
to improved insight into the relative size of aortic valves if we would have access to reliable expected
AV diameters for adult patients with a wider range of BMI values, and taking the universally avail-
able variables sex, age, height, and weight into account.

To address these critical challenges and enhance the accuracy and precision of aortic valve size
predictions, this project will leverage three distinct datasets. The first of which is the Cryolife
dataset made up of measurements from aortic heart valves obtained from deceased donors. These
valves have been measured physically, and health attributes of the donors have also been collected.
Notably, this dataset is the largest of its kind and covers a wide range of characteristics, including
groups that have not been previously studied. Furthermore, with such a large dataset, it becomes
possible to accurately quantify the precision of the expected AV diameters. It will also be possi-
ble to investigate how the standard deviation varies with regards to the predictors. However, it
is important to note that this dataset relies on physical measurements, while echocardiograms are
the primary diagnostic imaging tool in clinical practice. The second and third datasets, made up
of echocardiographic measurements and the same predictors, will be used to investigate whether
there is a systematic, quantifiable difference between the physical and echo measurements for AV
diameters in adults and those 18 and under. This ensures the models based on the donor data are
applicable in a clinical setting.
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3 Literature Review of the Current Models

From four recent papers, this literature review summarises the final models found to estimate the
size of the aortic annulus (also known as the aortic valve diameter). It evaluates the strengths
and limitations of each paper, and underscores the necessity for an inclusive model that reduces
uncertainty and extends across a broader demographic spectrum, including a wider age and weight
range. Some quick characteristics can be summarised in a table as follows:

Model Published Sample size Age (years) Predictor
Mahgerefteh et al. 2021 3,215 2 – 18 BSA or Height
Lopez et al. 2017 3,566 0 – 17.99 BSA
Cantinotti et al. 2016 1,151 0 – 17 BSA
Pettersen et al. 2008 782 0 – 18 BSA

Table 1: Summary of papers

One immediate limitation of all of these papers is that the data used only spans individuals under 18.
While the most significant change in valve sizes occur between 0 and 18, it has not been well-studied
how AV diameter potentially changes in adulthood. Furthermore, all the papers have rather small
sample sizes. Obtaining a large number of echocardiographic measurements from healthy people
over a broad demographic is challenging, thus the papers have been limited on the amount of data
they can base their models on. The papers also only consider one parameter: an estimate of body
surface are (BSA). With the exception of Mahgerefteh et al. who also include a model based solely
on height. This is not without reason, Lopez et al. found that age, sex, and race were statistically
significant but not clinically significant. While on average these variables may not lead to a clinically
significant difference in predictions, what is not considered is the improvement in the certainty of
the predictions. This becomes especially relevant for individuals in extreme subgroups.

In this field, the standard for diagnostic purposes is using Z-scores. Explicitly, these are computed
as follows:

Z-score =
f(AV0)− E[f(AV)]

σ̃
, (1)

where AV0 is the observed aortic valve (AV) diameter, σ̃ is the estimated standard deviation, f is
a transformation designed to make the residuals normally distributed, and E[f(AV)] is the model
used to predict the average, healthy AV diameter. Below are the models from each paper.

The Mahgerefteh et al. model is from a 2021 paper which builds on the work done by Lopez
et al. in 2017. The same model structure is considered with slightly different results when using
BSA as a parameter, and Mahgerefteh et al. also introduces and compares the validity of using only
height as a parameter.

Model 1 (Mahgerefteh et al.[12]).

E
[

AV

BSA0.5

]
≈ 1

N

N∑
i=1

(
AVi

BSA0.5
i

)
= 1.50 ⇐⇒ E [AV] ≈ 1.50 · BSA0.5 (2)

E
[

AV

Heighti

]
≈ 1

N

N∑
i=1

(
AVi

Height

)
= 1.17 ⇐⇒ E [AV] ≈ 1.17 ·Height (3)

Model 2 (Lopez et al.[13]).

E
[

AV

BSA0.5

]
≈ 1

N

N∑
i=1

(
AVi

BSA0.5
i

)
= 1.48 ⇐⇒ E [AV] ≈ 1.48 · BSA0.5 (4)

These model structures are somewhat unusual as they require you to first transform the outcome
variable using the independent variable (e.g., dividing by BSA0.5). This was done as a normalising
transformation for the Z-score computation. Then, the mean of what is referred to as the “indexed
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parameter” is the expected value. For later work, we would like to obtain a model with AV as
the outcome variable. Thus, it has been rearranged for E[AV], where the AV diameter is given in
centimetres. However, it is important to note that while it does resemble a simple linear regression
without an intercept, these models are not equivalent to that. In this case the coefficient estimate
for

√
BSA is approximated via the mean of the AV diameter measurements divided by the respec-

tive transformed BSA measurement. This is not equivalent to estimating the same coefficient via a
linear regression, though it is a close approximation. For both Lopez and Mahgerefteh, the standard
deviation is simply estimated from the indexed parameter.

As previously mentioned, Lopez et al. investigated whether including only BSA as a parameter
was sufficient. They report no clinically significant difference when including age, sex, and race.
Mahgerefteh et al. built on this by investigating whether the further simplification of only including
height would lead to a sufficiently accurate model. However, since both papers have datasets that
include healthy, non-obese children it makes intuitive sense that only height could provide sufficiently
accurate models when compared to BSA.

Model 3 (Cantinotti et al.[14]).

E[ln(AV)] = 2.750 + 0.515 · ln(BSA) (5)

Cantinotti et al. uses a different approach for the model structure. Both the measurements and
the predictor BSA are transformed using a log transformation, and then a simple linear regression
is used. The AV diameter predictions – after transforming them back to the original scale – are
given in millimetres. Unlike the ethnically diverse datasets used in Lopez et al. and Mahgerefteh
et al., this dataset only includes Caucasian Italians. Considering that Lopez et al. found race to
be statistically significant, this could have led to some bias in the final model. To estimate the
standard deviation to be used in the Z-score, the standard estimate of the error (SEE) is used. This
is computed using the root mean squared error (RMSE) and they obtained a value of 0.088.

Model 4 (Pettersen et al.[15]).

E[ln(AV)] = −0.874 + 2.708 · BSA− 1.841 · BSA2 + 0.452 · BSA3 (6)

Lastly, Pettersen et al. also log transformed the measurements, however they used a non-linear
modeling approach. In contrast to a simple linear model, they have applied a generalised additive
model (GAM). The AV diameter predictions are given in centimetres. A very good fit was achieved,
with an R squared of 0.94. However, this is specific to their data which is made up of quite a
small sample size comparatively. To compute the Z-score, the RMSE is also used – as was done by
Cantiontti et al. – and they obtained a value of 0.214.

Despite the limitations of their datasets, these models allow for a great starting point and can
be used to explore whether there may be a systematic difference in physical measurements and
echocardiographic measurements for those under 18. On average, their models have accurate re-
sults for the demographics studied. Thus, it is not unreasonable to consider using these models to
investigate a potential bias between echocardiographic aortic valve diameter measurements and the
physical measurements from the donor dataset.
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4 Data Description, Exploration, and Preprocessing

Each subsection covers one dataset and follows the same structure:

1. A Data description

2. Using histograms and bar charts to visualise how the raw data is distributed

3. Density plots split by the binary variable of interest

4. Investigating Outliers

5. Correlation matrices for a concise overview

6. Simple linear plots of the outcome variable versus the independent variables alongside
linearisation transformations

7. LOESS (locally estimated scatterplot smoothing) fits to explore whether nonlinear
relationships may be present

8. Other notable finds

4.1 Donor Data

The dataset originates from the database of Cryolife Inc, a US company, that measured, processed,
and sold aortic homografts for decades, containing observations of 75,142 subjects and recorded
nine features. The outcome variable of interest is the aortic valve (AV) diameter and since it has
2,366 missing values, this brings the dataset to 72,776 observations. The dataset also includes ‘PV
diameter’, this is the diameter of the pulmonary valve and is not used. The donor characteristics
recorded are age, sex, weight, and height. The body surface area (BSA) has been computed according
to the Haycock formula (eq. 12), this feature is discussed in Section 5.3.2. Age has been recorded
in years and covers a large range, between 0 and 59. Notice the large range in weight and height as
well.

Feature Units Number of NAs Mean Median Range
AV diameter mm 2,366 21.47 22.50 3.50 – 36.50
PV diameter mm 24,156 23.86 25.50 3.50 – 35.50
Age Years 0 34.28 39.00 0 – 59
Sex Boolean 0 – – 0,1
Weight kg 0 78.98 79.55 1.34 – 352.27
Height cm 0 164.17 172.72 30.48 – 236.22
BSA (Haycock) m2 0 1.88 1.98 0.12 – 4.43
Dissection Date Date 0 – – 1985/06/05 – 2016/09/27

Table 2: Summary of dataset features.

To begin the data exploration, histograms and bar charts were created to visualise how the data is
distributed, which are included in the appendix in Figure 41. The AV measurements, height, weight,
and BSA seem to be bimodally distributed, with one large peak and a smaller peak at the lower
values, this can be explained since one can also see a large spike in the age histogram at age zero
i.e. this is related to distinct subgroups within the data (adults and children). The age histogram
itself shows three peaks: a pronounced one at zero years, with other notable peaks around ages 20
and 50. From the bar chart, it can be seen that there is approximately double the number of male
observations compared to female (32% female and 68% male). Given the large size of the dataset,
this imbalance will not be a problem. As can be seen in the density plots split by sex and overlayed,
the data is similarly representative for both males and females.
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Figure 1: Density plots split by sex for the donor data.

Note that the densities in Figure 1 have evenly spaced spikes, these are most evident in the male AV
diameter measurements. These spikes are due to the fact that the original measurements were taken
in imperial units and converted to metric units i.e. from feet, inches, and pounds to centimetres,
millimetres, and kilograms.

The independent variables not being normally distributed is not an assumption or problem for
generalised linear models (GLMs) or generalised additive models (GAMs). However, there is an
assumption that the error component is from the exponential family e.g. normally distributed. This
assumption is typically addressed by ensuring that the response variable follows an appropriate
distribution from the exponential family, possibly by selecting an appropriate link function. This is
one method to more closely adhere to the normality assumption of the residuals. In our case, the
response variable is not very normally distributed, nor does it seem to follow any other distribution
from the exponential family. After a log transformation, there is an improvement in the bimodality,
potentially leading to residuals that better meet the normality assumption. This can be seen in
Figure 2 below. Furthermore, the bimodality in the outcome variable looks to be reflected and may
well be captured via by the - possibly nonlinear - patterns and interactions in the data. This may
also help result in an error component that satisfies the necessary assumption for the residuals.
Ultimately, after fitting the models, we will assess this assumption and the overall model fit through
residual analysis to confirm. Moreover, while this assumption aids in robust statistical analysis, it is
most important when inference is the goal. This assumption supports the validity of standard errors,
confidence intervals, t-tests, etc. derived from the model. Since prediction with high accuracy and
certainty is the aim, this assumption is of less concern. In this case, generalisability to unseen data
is more critical.

6



Figure 2: Histograms showing before and after applying a log transformation on the outcome variable
AV. The normal curve is given in red.

With regards to outliers, the approach used was to only dispose of theoretically implausible ob-
servations, those that were likely inaccurate measurements. Notice that in the height and weight
histograms, there are some observations of extremely high values. To further investigate possible
outliers, age versus AV, height, and weight were plotted. For a more in-depth look, these plots were
also faceted by sex.

Figure 3: Raw data: Height versus Age faceted by sex with a horizontal, dashed red line at 200cm.
Hex bins are used due to the huge amount of data.
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In Figure 3, notice that for both males and females there are observations that clump around a
horizontal line at a height of 200cm. These look disconnected from how the rest of the data is
distributed. Moreover, according to the CDC’s 2015-16 NHANES survey, heights at 198cm are in
the 99.84th percentile for males and 100th percentile for females[16]. Whereas for our data they are
in the 98.89 and 99.66 percentiles for males and females respectively, this is far too many.

Figure 4: Raw data: Height versus AV faceted by sex. In the red box are the points that demon-
strate strange behaviour.

Furthermore, in Figure 4, when plotting the AV diameter versus height it can be seen that these
heights at 200cm exhibit a counter-intuitive behaviour with respect to the AV diameter. At these
larger heights, the observations are clumping at smaller AV diameter values (highlighted in the
Figure using a red box). This goes against the general shape of the data and would imply that, at
a height of around 200cm and beyond, the AV diameter decreases. From this exploration and the
CDC survey, it was decided that heights above 198cm were to be removed as these observations -
at least the vast majority of them - are likely inaccurate. Using the height-for-age charts from the
WHO[17], the implausible observations for under 5s were also discarded e.g. a 2 year old with a
height above 125cm. Since one of the goals is to obtain a model applicable for a diverse population,
only the observations with very extreme weights (outside of the 99th percentile) were dropped.

To explore which predictors are promising and to get a concise overview, correlation matrices can
be useful. The correlation matrices split by sex can be found in the appendix. For this data all
the predictors have high correlation coefficients with the response variable AV. Between the predic-
tors the correlation coefficients are also very high, however multicollinearity is also not a concern
for prediction. To take a closer look at the relationships between the predictors and the outcome
variable, simple linear plots can be used as is demonstrated in Figure 5. Additionally, for GLMs,
there is an assumption that the relationships between the outcome variable and the predictors are
linear. These plots can also be used to check whether that assumption is satisfied.

8



Figure 5: Linearity transformations for the donor data. The plots on the top are before the chosen
transformations are applied and the plots on the bottom are after.

There is certainly an improvement in the linearity of the relationships, this was also checked via
fitting simple linear models and checking the goodness-of-fit metrics. Moreover, simplifying the
relationship between the predictors and outcome variable can also help reduce the complexity for
nonlinear modelling approaches. After applying these transformations, LOESS fits can be used to
see if there is any evidence to support whether nonlinear relationships may still be better suited.

When applying separate LOESS models by sex, as seen in Figure 6, a divergence for larger values
is captured for all three predictors. For small values, the fit is also seemingly less skewed in all
three plots. LOESS allows for very flexible fits, and despite this we get very smooth results. This
is a positive sign as it shows that they are not overfitting. There is definitely evidence to support
a nonlinear modeling approach as, compared to the linear models, the LOESS results appear to be
more appropriate and seem to capture nuances that the linear models do not.
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Figure 6: Donor data: separate models are applied based on sex, overlayed on the entire dataset.
On the top are linear fits and on the bottom are LOESS fits.

The final notable find during the exploration is a trend in the AV diameter measurements over time,
shown in Figure 7. Most obvious is a seemingly negative linear trend around the years 1995 and
2004. However, further trends and changepoints could be identified via an objective analysis. When
visualising the predictors over time, there were no indications of similar trends (see Figure 43 in
the appendix). For further analysis, once models have been applied, residuals can be used to better
investigate this finding. Why changepoints are identified in the residuals and not the AV diameter
measurements themselves is explained in Section 5.3.3. It is also important to note that there is
very limited data before the year 1995, which gets more and more sparse further back in time.

Figure 7: A LOESS model applied to the AV measurements over time.
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4.2 Echocardiographic Data

4.2.1 UMCG data: Over 18s

The Echocardiographic data has been collected at the UMCG with the intention to investigate
the difference between the physical AV diameter measurements obtained from the donor data and
echocardiographic estimations. Therefore, the same clinical features are present. There are 85
observations, however once NAs are removed there are 68 observations.

Feature Units Number of NAs Mean Median Range
Mean AV diameter mm 4 21.00 21.18 13.80 – 25.57
Age Years 0 44.57 42.50 18 – 80
Sex Boolean 0 – – M, F
Weight kg 1 77.86 76.00 53 – 130
Height cm 12 176.7 176.0 159 – 199
BSA (Haycock) m2 12 1.95 1.93 1.54 – 2.64

Table 3: Summary of dataset features.

The mean AV diameter is the average of three measurements. Four echocardiograms were found to
be inadequate and not suitable for measurements of the aortic annulus diameter. The age range
only covers adults, thus this dataset can only be used to compare the difference in measurements for
adults. As was done for the donor data, histograms were created as a starting point. The histograms
are seen in the appendix, Figure 44. For this data, the variables are somewhat normally distributed.
Compared to the donor data, these histograms are less skewed and they do not seem to be obviously
bimodal. However, since there is not a large amount of data, the overall shape of the histograms
are more susceptible to fluctuations caused by the random nature of sample collection. This can
result in a histogram that does not clearly resemble a normal distribution, even if the data are from
a normally distributed population. For the outcome variable AV, the Shapiro-Wilks test gives a
p-value of 0.133. Thus, there is not enough evidence to say that AV is not normally distributed.
Lastly, it can be seen that the number of observations for males and females are approximately
equal. The density plots disaggregated by sex are not very informative, due to the small number of
observations overall. They are included in the appendix in Figure 45 and show nothing of concern.
Throughout the exploration, no outliers were found i.e. no seemingly inaccurate measurements.

Figure 8: Correlation matrices for the continuous variables for the adult echocardiographic mea-
surements split by sex.
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When looking at the relationships between AV and the predictors via correlation matrices in Figure
8, there was an interesting correlation found. Notably, exclusively for females there is a negative
correlation between AV diameter and age. This can also be seen visually in Figure 9, when looking
at the linear models in the AV versus age plot. For males, the linear fit looks practically flat whereas
for females there is a negative trend. According to expert opinion, when visibility is low, more con-
servative estimates of the AV diameter are taken. Thus, this negative correlation could, for instance,
be due to the breast tissue around the chest making it more challenging to get clear echocardiograms.

Various transformations were applied to the variables and no improvement (or worsening) in linear-
ity was found, Figure 46 demonstrating this can be seen in the appendix. Goodness-of-fit metrics
also agree with what can be seen visually.

The LOESS fit plots in Figure 9 look overly sensitive, which suggests that there is overfitting. These
irregular patterns indicate that a flexible, nonlinear approach is fitting noise rather than capturing
true relationships, leading to potentially misleading interpretations. This is likely due to the fact
that this is a small dataset. In such cases, linear models are often more effective. Linear models tend
to generalise better in scenarios with limited data, providing a more robust and reliable analysis.
Furthermore, the linear models in Figure 9 show that, when split by sex, there is more than a simple
shift in difference in the AV diameter measurements between males and females. Only when looking
at AV versus weight does it resemble a simple change in the intercept.

Figure 9: UMCG echo data: separate models are applied based on sex, overlayed on the entire
dataset. The observations are also colour coded. On the top are linear fits and on the bottom are
LOESS fits.
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4.2.2 Lopez et al. Data: Under 18s

Towards the end of my project, the Lopez et al. dataset was acquired, which recently became
publicly available. This dataset comprises 3,566 observations, offering a valuable resource for an
analysis of a potential bias between physical and echocardiographic measurements. Below is Table
4, giving an overview of the variables included in the dataset.

Feature Units Number of NAs Mean Median Range
AV mm 336 1.66 1.70 0.00 – 3.40
Age Years 0 7.60 6.36 0.00 – 17.99
Sex Boolean 0 – – 0, 1
Weight kg 1 29.76 22.00 2.00 – 94.00
Height cm 0 116.3 118.6 43.2 – 207.2
BSA (Haycock) m2 1 0.95 0.85 0.16 – 2.21

Table 4: Summary of Lopez dataset. Only the relevant features from their dataset(s) have been
included

In Figure 47, the histogram for each variable has three peaks except for the AV diameter. The AV
looks somewhat bimodal, also after various transformations. Similarly as for the donor data, this is
not a big concern. In the bar chart, it can be seen that the number of observations for males and
females are approximately equal.

When looking at the density plots disaggregated by sex in Figure 10, notice that there is much more
overlap compared to the donor data and the adult echo data. This makes sense since the data only
spans those under 18, a more significant difference in characteristics would only be expected if the
data would cover individuals into adulthood.

Figure 10: Density plots split by sex for the Lopez et al. echo data.
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The data was examined for outliers through the same methods described previously. There were no
observations that deviated significantly from the overall pattern of the dataset, nor did any observa-
tion have any indication of being an implausible or inaccurate measurement. Thus, no observations
had to be discarded.

The correlation matrices in Figure 48 (in the appendix) show very high correlation for all the vari-
ables, both with the outcome variable AV and between each other. There are no notable differences
in the correlation coefficients when split by sex.

Figure 11: Linearity transformations for the Lopez et al. data. The plots on the top are before the
chosen transformations are applied and the plots on the bottom are after.

When applying linearity transformations, seen in Figure 11, the most obvious improvement in lin-
earity is seen for the weight variable. However, there is also an improvement in the relationship with
age. Specifically, the downward curve seen for lower ages is not well-captured before the transfor-
mations. For height, there is a slight upwards curve in the pattern of the data that is not captured.
After the transformations, the larger heights are better fit with a linear model but there seems to
be a downward curve introduced that it is not fitting so well. Overall, the transformations applied
have resulted in relationships closer to linear between the predictors and the outcome variable.

As before, to check whether a nonlinear approach may still be more appropriate LOESS fits were
applied in Figure 12. Similarly to the donor data, the dataset is sufficiently large, enabling the
LOESS models to produce very smooth curves that do not appear to overfit. Despite being slight,
there are subtleties in the data that seem to be better fit with a nonlinear approach. Take, for
example, the downward curve at lower heights mentioned previously. For the weight predictor, it
can be seen that the same divergence between to the two LOESS models seen in the donor data
also starts to appear here. However, this divergence is less noticeable since this data does not
include as large a range in weight. Given the exploratory evidence seen here, pursuing a nonlinear
method (GAMs) could be justified as it poses little risk of overfitting and may offer improvements
in prediction accuracy compared to a linear approach.
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Figure 12: Lopez et al. data: separate models are applied based on sex, overlayed on the entire
dataset. The observations are also colour coded. On the top are linear fits and on the bottom are
LOESS fits.

4.3 The Difference Between the Donor Data and the Echo Data

To begin investigating the potential systematic differences between physical and echocardiographic
measurements, a visual exploration is first conducted. It is crucial to acknowledge the following:

• The UMCG echocardiographic measurements are confined to adults

• The Lopez et al. echocardiographic measurements are confined to under 18s

• Previous models exclusively encompass individuals under 18 years of age

Access to the Lopez et al. data was only achieved close to the end of writing my thesis. Consequently,
the UMCG echocardiographic data was employed to explore differences in adults, while previous
models were utilised to assess differences in individuals below 18 years of age. Now, the Lopez et
al. data has also been included in assessing the difference. This will allow for an analysis of how
informative the methods and conclusions would have been based on using a model of the echo AV
diameter measurements alone.

4.3.1 Using All the Echocardiographic data to Explore the Differences

Looking at the density plots in Figure 13, there is an indication that on average the UMCG echocar-
diographic measurements are smaller than the physical donor measurements. This is further sup-
ported by the similarly distributed weight, height but without the smaller peak around the smaller
measurements (since the UMCG data only spans adults). Explicitly, despite the echocardiographic
data including observations that are generally older, larger people, the AV measurements are smaller
when compared to the donor data. However, the measurements do not seem to be smaller by a huge
margin.
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Figure 13: Density plots with the UMCG echo data is denoted by 0, the donor data is denoted
by 1, and the Lopez echo data is denoted by 2.

To further explore the distributions of the echocardiographic datasets compare to the donor dataset,
boxplots are used. Subsets of the donor data are used such that the age demographics of the
respective echo datasets are comparable. The boxplots in Figure 14 support that on average, the
adult UMCG echocardiographic AV diameter measurements are slightly smaller than the physical
donor measurements. This is despite also showing that the height, weight, and age are similarly
distributed.

Figure 14: Boxplots comparing the variables for the UMCG echo data denoted by 0 and an adult
subset of the donor data denoted by 1.
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In Figure 15, comparing box plots for the Lopez et al. echocardiographic measurements and the
donor measurements, the median AV look approximately the same. This is along with the median
and range for every predictor being similar. The only noticeable difference is that the donor data
spans slightly more varied demographics, especially for weight.

Figure 15: Boxplots comparing the variables for the Lopez echo data denoted by 2 and a subset
of individuals 18 and under for the donor data denoted by 1.

To check whether the AV diameter measurements vary similarly with the predictors, the three dif-
ferent datasets was plotted together and separate LOESS fits were applied. This also allows one to
see whether there is evidence for a noticeable discontinuity between the UMCG and Lopez et al.
echo datasets.

Figure 16: LOESS fits and the data for AV versus Age with: the UMCG echo data is denoted by
0, the donor data is denoted by 1, and the Lopez echo data is denoted by 2.
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Figure 16 shows the AV versus age, and this shows some very interesting results. This plot is of
particular interest since we know that the three datasets span different age ranges. It can be seen
that the Lopez et al. data and LOESS fit overlap heavily with the donor data and fit. This would be
evidence pointing towards no systematic difference between the physical and echocardiographic AV
diameter measurements for those 18 and under. With regards to the UMCG data, there does seem
to be an indication that the AV diameter measurements are systematically lower than those of the
donor data. However, the difference in the quantity of data is notable. Drawing solid conclusions
based on the 68 UMCG echo observations will be somewhat dubious.

Figure 17: LOESS fits and the data for AV versus Age with: the UMCG echo data is denoted by
0, the donor data is denoted by 1, and the Lopez echo data is denoted by 2.

For the AV versus height in Figure 17, both the Lopez and UMCG LOESS fits are consistently
below the donor data fits. LOESS fits for the UMCG echo data are not very appropriate due to
the limited data, leading to curves that are not very smooth. However, the UMCG data still looks
consistently below the donor data when compared to the same regions. In these two plots it can be
seen that both echo datasets overlap heavily and the LOESS fit for the Lopez data looks reasonable
for the UMCG data as well. Notice that the Lopez LOESS fits deviate more from the donor fits for
large heights and weights, as well as very low heights and weights. The fact that their data spans
a smaller demographic could be contributing towards this. Thus, when quantifying and correcting
the echocardiographic bias it makes sense to ensure a subsample of the donor data is taken such
that the demographics are similarly distributed.

4.3.2 Using Existing Models to Explore Differences in Individuals 18 and Under

The trained models, with their determined coefficients, from the literature overview are plotted along
with the same model structures trained on a subset of the donor data. This gives an indication of
how their chosen model structures would have differed if trained on physical measurements with
similar demographics.
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(a) The Lopez and Mahgerefteh models based on
BSA (equations 4 and 2 respectively).

(b) The Mahgerefteh et al. model based on height
(eq. 3).

Figure 18: In green are the same model structures trained on a subset of the donor data, in red
is the Lopez et al. model, and in purple are the Mahgerefteh et al. models.

In Figure 18, it can be seen that the Lopez and Mahgerefteh models are consistently below the same
model structures fit using the donor subset. This implies that the echo AV diameter measurements
may be systematically smaller than the physical AV diameter measurements from the donor data.

(a) The Cantinotti et al. model (eq. 5). (b) The Pettersen et al. model (eq. 6).

Figure 19: In green are the same model structures trained on a subset of the donor data, in pink
is the Cantinotti et al. model, and in orange is the Pettersen et al. model.

Looking at the donor fits compared to the Cantinotti and Pettersen models (Figure 19), there is
a crossover apparent in both plots. For the most part, both models are also below the donor fits.
However, these plots are indicating that extrapolation for large BSA values is inappropriate for both
of these models.
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5 Theory

The Theory section explains the rationale behind the research by outlining and introducing the
models and frameworks that underpin the study. The section also describes the research hypotheses
and questions. Specifically, it covers the reasoning behind the choices made and what results could
be expected based on theoretical justifications and previous findings.

5.1 Introduction to Generalised Linear Models and Generalised Additive
Models

Throughout this entire section the following two books are referenced: “Introduction To Generalized
Linear Models” by Dobson and Barnett[18] and “Generalized Additive Models: an introduction with
R” by Simon N. Wood[19]. For generalised linear models (GLMs), the estimation of the regression
coefficients β typically uses an iterative algorithm such as Iteratively Reweighted Least Squares
(IRLS). To understand the update equation used to estimate β, a few things need to be introduced.

The general form of a GLM is expressed as

g(E[yi]) = g(µi) = ηi = xT
i β, yi ∼ EF (µi, ϕ) (7)

where g is the link function, EF denotes the exponential family, ϕ is a scale parameter, µi is the
expected value of the response variable yi, ηi is the linear predictor, and xi is the vector of predictor
variables for the i-th observation. In the IRLS update equation, the design matrix X is used. This
is an n × p matrix of predictors, where n is the number of observations and p is the number of
predictors. The working dependent variable zi is used to linearise the model and is defined as

zi = ηi + g′(µi)(yi − µi),

where g′(µi) is the derivative of the link function. Next, the weight matrix W is used to adjust for
variability and also linearise the model fitting process. It is a diagonal matrix with elements

wi =
1

g′(µi)2Var(yi)
,

Finally, the coefficient vector β is updated using the IRLS update equation:

β(k+1) = (XTWX)−1XTWz,

where β(k+1) represents the updated estimate of the regression coefficients after the k-th iteration.

Generalised additive models (GAMs) extend GLMs by allowing the linear predictor to be represented
as the sum of smooth functions of the predictors, rather than just a linear combination. The general
form of a GAM is given by:

g(E[yi]) = g(µi) = ηi = β0 + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . . , (8)

where ηi is the additive predictor, and fj(·) are smooth functions of the predictors xk. The estimation
of GAMs looks very similar to what was described for GLMs with a few key differences. First, each
smooth function fj(xj) is represented using basis functions. For instance, cubic splines with K basis
functions can be used, where:

fj(xj) =

K∑
k=1

βjkBjk(xj),

with Bjk(xj) being the spline basis functions and βjk the coefficients. Next, a design matrix X is
constructed for the model, made up of design matrices for each smooth term Xj . The coefficients
are estimated using a penalised version of the Iteratively Reweighted Least Squares (IRLS) algo-
rithm, known as Penalised Iteratively Reweighted Least Squares (P-IRLS). At each iteration k, the
coefficients are updated according to:

β(k+1) =

XTWX+
∑
j

λjSj

−1

XTWz,
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where Sj is the penalty matrix for each smooth term, and λj represents the smoothing parameters.
This iterative process incorporates both the fitting of the model and the penalisation of the smooth
functions to prevent overfitting.

5.2 Tensor Product Smooth Interactions in Generalised Additive Models

When looking at the general form of a generalised additive model (GAM), equation 8, notice that
there is a multivariate smooth function included. These can be used to capture complex interactions
and, in this paper, are used when considering highly complex, “full” GAMs. Using the term “full”
with respect to GAMs is somewhat an abuse of terminology, since “full” (or “complete”) is typically
used when referring to linear models. Regardless, it is a convenient way to refer to a GAM that
includes the smooth main effects and all the possible complex smooth interaction terms.

It quickly became apparent that choosing how to include multivariate smooths was not as straightfor-
ward as expected. There are several ways to include complex interactions, with the most prominent
methods being isotropic smooths, and two ways to include tensor product smooth interactions e.g.
s(x1, x2), te(x1, x2) and ti(x1, x2) respectively, where x1, x2 are covariates. For this section, Simon
Wood’s book[19] was once again extremely useful.

Isotropic smooths are functions that produce identical predictions of the response variable under
any rotation or reflection of the covariates. This implies that the smooth function is invariant to
geometric transformations of the covariate space, meaning it treats all directions equally and does
not favour any particular orientation or axis. Consequently, to maintain the desired invariance
assumption of the isotropic smooth, the covariates should be on the same scale or unit. If the
covariates are not on the same scale, rotations or reflections would distort the relative contributions
of different covariates, leading to different predictions. In simple terms, isotropic smooths assume
uniform smoothness in all directions, using the same smoothing parameter for each predictor. In our
context, isotropic smooths are not appropriate for including multivariate smooths since the variables
are not on the same scale or unit.

Tensor product smooths address the issue of modeling responses when variables have different units
or scales, allowing for different levels of smoothness in different directions. These smooths combine
marginal smooths of each predictor to construct an interaction term by taking the tensor product
of basis functions for each predictor. For instance, using cubic splines, the tensor product of cubic
splines in each direction forms the smooth. For three variables, the basis functions are represented
as:

fx1x2x3
(x1, x2, x3) =

I∑
i=1

L∑
l=1

K∑
k=1

βilkbk(x3)dl(x2)ai(x1).

If ⊙ is the row-wise Kronecker product, given an appropriate ordering of the βilk into a vector β,
the design matrix X can then be evaluated as follows:

X = Xx1
⊙Xx2

⊙Xx3
.

The marginal design matrices Xx1
, Xx2

, and Xx3
are the design matrices that evaluate the marginal

smooths for each variable. Using the row-wise Kronecker product then combines these marginal
design matrices into a single design matrix and ensures all interactions between the variables are
included. The accompanying penalty, as derived by Wood, would be:

J(fx1x2x3) ≈ J∗(fx1x2x3) = λx1J
∗
x1
(fx1x2x3) + λx2J

∗
x2
(fx1x2x3) + λx3J

∗
x3
(fx1x2x3), (9)

where

J∗
x1
(fx1x2x3

) = β⊤S̃x1
β, S̃x1

= S′
x1

⊗ IL ⊗ IK ,

J∗
x2
(fx1x2x3

) = β⊤S̃x2
β, S̃x2

= II ⊗ S′
x2

⊗ IK ,

J∗
x3
(fx1x2x3

) = β⊤S̃x3
β, S̃x3

= II ⊗ IL ⊗ S′
x3
.
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Each Si corresponds to a penalty matrix for the basis functions of one variable, penalising wiggliness.
The prime and star, i.e. S′

i and J∗
i , represent the re-parametrisations that they have undergone

(explained in detail in Wood’s book[19]). The ⊗ symbol denotes the Kronecker product and λi is
the smoothing parameter controlling the degree of smoothness for each variable independently. To
avoid further complexity and unnecessary depth, further details and derivations are omitted. The
most important thing to notice here is that there is a penalty term for each marginal smooth.

The tensor product smooths include both the marginal smooths of each variable and their inter-
actions e.g. the smooth main effects are included within te(x1, x2). For inference, this can be
problematic because it makes it challenging to test whether the main effects and lower-order in-
teractions would be sufficient (or whether the higher-order interaction is statistically significant).
Since our main goal is prediction, there would presumably be no question about using this method
to include multivariate smooths. However, it isn’t quite so simple.

There is another formulation of tensor product smooth interactions, ti(·), that is used when one
wants to exclude the marginal smooths and lower order interactions. These are referred to as
“ANOVA decompositions of smooths”. According to Wood, “if we subject the marginal smooths
of a tensor product to sum-to-zero identifiability constraints before constructing the tensor product
basis, then the resulting interaction smooths do not include the corresponding main effects”[19].
This constraint centres the smooth functions around zero, effectively removing the constant term
from the basis functions, isolating interaction effects from main effects. This is achieved by column-
centering the marginal design matrices Xi before constructing the final design matrix X. This then
removes the unit function from the span of the marginals, with the result that the tensor product
basis will not include the smooth main effects that result from the product of a marginal basis with
the unit functions in the other marginal bases. The resulting penalty structure for this formulation
is slightly different. Instead of a sum of penalty terms for each marginal smooth, there is one com-
bined penalty term for the interaction.

In practice, it was found that using te(·) alone resulted in models with worse evaluation metrics.
When including the main effects and lower order interactions there was an improvement in perfor-
mance, but further improvement was seen when using ti(·). Consider the following two models:

ŷ = β0 + s(x1) + s(x2) + ti(x1, x2) (10)

ŷ = β0 + te(x1, x2) (11)

These two formulations should be practically identical, given that they have the same smoothing ba-
sis and are only partitioned differently. However, there is also a difference in their penalty structure.
The ti(·) model, equation 10, has one penalty per univariate smooth term and a combined penalty
for the interaction term. In contrast, the te(·) model, equation 11, is made up of two penalty terms
i.e. one per marginal smooth as demonstrated in equation 9. Why exactly this difference results
in the ti(·) model arriving at better results is not entirely clear. More penalisation could result in
reduced complexity which could possibly limit overfitting, however this is somewhat speculative.
Interestingly, this same scenario and outcome was seen by Wood in an example implementation in
chapter 7.2.3[19]. In any case, due to the better results, when implementing the full GAM, ti(·) was
used.
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5.3 Research Questions

The Research Questions section outlines the specific questions and goals that this thesis aims to
address. These are derived from the motivation, theoretical framework, and literature review,
reflecting the gaps identified and the objectives of the research.

5.3.1 Modelling: Theoretical Choices and Rationale

This paper considers both generalised linear models (GLMs) and generalised additive models (GAMs)
as modelling frameworks. These were introduced in Section 5.1. Beginning with GLMs, a conven-
tional approach favoured for its simplicity and effectiveness, provides a preliminary analysis of
relationships within data and also allows us to investigate whether a complex, nonlinear approach
is necessary or not.

The preprocessing stage involved transformations applied to both the outcome variable and inde-
pendent variables. These transformations helped to both improve the linearity between the outcome
variable and the predictors as well as bring the distribution of the outcome variable closer to nor-
mal. Such transformations ensure that the assumptions underlying linear regression — linearity,
homoscedasticity, and normality — are more closely met, thus providing a more robust analysis. No
link function was found to be necessary, thus the models applied are simply linear models (LMs).
Although GAMs are designed to handle non-linearity, starting with variables that exhibit simpler,
near-linear relationships can reduce the complexity of the smooth functions required. This sim-
plification can lead to more stable models. Essentially, less complex splines might be required to
capture the dynamics in the data, leading to a more straightforward computation and potentially
more robust model outcomes. Thus, the same transformations of the variables are used when ap-
plying GAMs.

Since the donor data spans a very diverse population, subjects that are obese, very short, and well
into adulthood are included. Considering these cases, the potential limitations of GLMs – which
were indicated to in the exploration – become apparent. In these instances, the relationship between
variables may not be adequately captured by a linear approach, even after using a link function and
transforming the dependent variables. While interactions can, and should be, included to better
capture the complex relationships between the predictors and the outcome variable, they do not
necessarily capture the possible nonlinear relationships. Furthermore, including an excessive number
of interactions could possibly lead to overfitting. This can be particularly true if the model includes
interactions that are not supported by a theoretical understanding of the data and variables i.e.
simply including all variables and all possible combinations as is done in a full model.

Generalised additive models extend the linear model by allowing for nonlinear relationships between
the dependent variable and the predictors via smooth functions. With the donor dataset exceeding
70,000 observations, concerns regarding overfitting with GAMs are mitigated. Moreover, splines
incorporate regularisation techniques directly into their formulation i.e. a penalised version of the
usual iteratively reweighted least squares (P-IRLS) is used. This regularisation in splines directly
counters the increase in complexity, leading to a model that is more robust to overfitting. In con-
trast to GLMs with numerous interactions, GAMs could provide a more parsimonious approach to
modelling complex, nonlinear relationships without excessive parameterisation. However, it would
still be worthwhile to also consider a “full” GAM which includes tensor products. Tensor products
are a way to include, in essence, n-dimensional interaction surfaces when the variables are not on
the same scale/unit. Including such terms reduces interpretability further, thankfully that is not
a concern since accurate prediction is the goal. However, the added complexity does also further
increase risks of overfitting. To investigate whether overfitting is occurring or not, the performance
on out-of-sample evaluation metrics of the full LM and GAM are compared to a reduced LM and
GAM with comparable goodness-of-fit metrics. If generalisability is not compromised, there is no
reason not to use the full model specification.
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Accurate prediction of the healthy aortic valve (AV) diameter is not the only goal, to compute
Z-scores it is also necessary to obtain an estimate of the standard deviation that accompanies the
prediction. Since inference is not the goal, if the homoscedasticity assumption is violated it is of more
concern to accurately predict the AV diameter size and associated standard deviation, not to ensure
the assumption holds. To account for the heteroscedasticity, the residuals squared can be modelled
with respect to the independent variables. The formula for this is given in the Methodology section
(eq. 18). This is a model of the conditional variance and when taking the square root gives the
conditional standard deviation. Additionally, it’s important to note that the residuals also reflect
the natural variability in AV diameters among healthy individuals e.g. for very young individuals,
before puberty, less variation in the AV diameter would be expected. Given the data and predictors
included, for even the best model this natural variation may not be possible to capture. Thus, it
will likely be necessary to model the conditional standard deviation.

When it comes to model evaluation, there are a few considerations. For model selection, the R
squared, AIC, and BIC were looked at. When the primary goal is prediction, these performance
metrics, while useful, are not always the most critical metrics to consider. They are based on
in-sample error estimates. This means they might not fully capture the model’s performance on
new data, which is a more critical aspect of predictive modeling. However, during the early stages
of model selection, to obtain reduced models with similar performance metrics, the R squared,
AIC and BIC are utilised. Direct measures of predictive accuracy, i.e. Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE), are more important in this case. To assess uncertainty,
the conditional standard deviation with respect to the variables is plotted. Using the residuals, a
model for the conditional variance can be made (eq. 18). Taking the square root of the conditional
variance, the conditional standard deviations are plotted against the variables. The impact of the
other variables are then isolated from each other as these have been accounted for in the model.
Otherwise, the plots look very similar to each other since age, height, and weight interact heavily.
These are used to help find the best model as well as compare the final model to established models
from the literature. Lastly, they can also show whether the previous models were right to assume
the homoscedasticity assumption was not violated and to use a static value for their estimates of
the standard deviation to be used in the Z-score formula.

5.3.2 Should BSA be used?

By far the most popular BSA formula used in the established models is the Haycock formula[20].
This formula is as follows:

BSAHaycock (m2) = 0.024265 ·Weight (kg)
0.5378 ·Height (cm)

0.3964
(12)

This is formula originates from a 1978 paper[20]. The coefficient and exponents in the Haycock
formula are derived from fitting the model to a dataset consisting of 81 patients that range from
infants to adults and it was aimed to have a normal distribution of body types. Individuals who are
significantly above or below average body proportions may not be well-represented by this model.
The formula assumes a homogeneous relationship between height and weight across all individuals.
For a larger, more diverse dataset including atypical proportions — such as in extremely obese or
very short individuals — the relationship between height and weight and how they contribute to
body surface area likely do not follow the same pattern. This is exemplified by the variation seen in
BSA values depending on the formula used. In Figure 20, at first glance, on the entire donor popu-
lation, the different formulas are surprisingly consistent. This is despite their varying formulations
and that the coefficients have been estimated on different datasets.

However, when looking at extreme subsets of the data a different picture can be seen. The average
of applying the different formulas can be taken for each observation and the distribution of the
respective differences for each formula can be visualised via boxplots. Two example subsets are
demonstrated in Figure 21.
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Figure 20: Various BSA formulas[21][22][23][24] applied to the full donor dataset.

In Figure 21, it can be seen that there is variation in the BSA values for very short adults, especially
in the ranges. For obese individuals, there is more variation evident in the medians. When looking
at the y-axis, the deviations do look slight. However, BSA values only range between around 0.1
and 3.5. Whether this disparity is indicative of issues with implementing models using BSA can be
investigated. While the Lopez and donor datasets do not include body surface area measurements,
BSA as a predictive variable compared to using height and weight (along with interactions) can
be analysed. That analysis will focus on evaluating how models, which vary based on the included
variables, perform in predicting AV diameter. Special attention will be given to how these models
perform on individuals in extreme cases.

(a) Very short adults. A subset of 1160 adults
below the 3rd percentile in height.

(b) Very obese individuals. A subset of 5390 in-
dividuals with a BMI greater than 40.

Figure 21: Boxplots comparing five different BSA formulas applied to subsets of the donor data.
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5.3.3 Trend Correction: A Bespoke Changepoint Algorithm

This section explains why a bespoke implementation of the segment neighourbood (SN) algorithm
for changepoint analysis was necessary for trend correction in the donor data. The limitations of
existing R packages are discussed and demonstrated via a simulated example.

During the data exploration phase, what looks to be a trend was observed between two time points
in the AV diameter measurements over time. This trend was also evident in the residuals following
the fitting of an initial predictive model. Notably, this trend is not documented in existing literature,
nor could it be explained by expert opinions, suggesting an anomaly unique to the donor dataset.

The standard implementations of changepoint models available in various R packages assume a
flat gradient between changepoints, which did not align with the observation of a decreasing trend
rather than a mere shift in mean values. Moreover, the observed negative trend seems to be rather
symmetric around the mean. Therefore, using algorithms that rely on minimisation of the MSE
based on fitting means (a flat gradient) would likely miss these changepoints. An example of such
a package is the ‘changepoint’ package in R. This has been applied to a simulated example:

(a) Binary Segmentation. Zero
changepoints were found.

(b) PELT. Two changepoints
were identified, one is correct.

(c) Segment Neighbourhood
with SIC penalty Three change-
points were identified, two are cor-
rect.

Figure 22: Applying all possible methods supported by the ‘changepoint’ package in R on simulated
data that mimics the behaviour seen visually in the donor data.

A different R package allows for more flexibility than simply fitting means. ‘Segmented’ fits seg-
mented (piecewise linear) regression models to the data, the sum of squared residuals is minimised
to find the best fit. The package allows the slope of the regression line to change at designated
changepoints, it does not support scenarios where these segments are disjointed. The end point of
one linear segment must meet the starting point of the next, ensuring piecewise continuity. When
applying this to the simulated data (Figure 23a), it can be seen that this would not be suitable for
the donor data.
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(a) Segmented R package. Two incorrectly iden-
tified changepoints.

(b) Strucchange R package. Both changepoints
correctly identified.

Figure 23: Comparing two R packages that allow for linear fits.

The final, and most suitable, package found was ‘strucchange’. This package allows for disjointed
linear fits between segments and can be seen in Figure 23b. It works to find the correct change-
points in the simulated data and it outputs the coefficients for the linear models fit within each
segment. This would likely be sufficient for our use case, however there are two limitations. The
first is that there is no choice in the penalty used. For computing the optimal changepoints, their
algorithm is based on the SN algorithm and by default it minimises the total residual sum of squares
(RSS) for a specified maximum number of changepoints. Since the RSS gets smaller endlessly with
more changepoints, once the maximum number of changepoints has been reached, BIC is used to
determine the optimal number of changepoints (complexity is then penalised). Every number of
changepoints and their respective RSS and BIC is printed. There is no way to manually tune how
heavily the complexity is penalised, and this is adequate in the simulated example. On the one
hand, the fixed structure ensures that model comparison is objective and consistent. On the other
hand, it can be useful to allow for different penalty choices. For specific applications, especially in
complex models or when domain-specific knowledge suggests a different approach, the fixed penalty
choice might not be ideal. The second drawback is that there is also no flexibility in the cost func-
tion, only linear regression can be used. For the trend seen in the donor data, this is likely sufficient
but it does limit easier and further exploration i.e. different cost functions may achieve better results.

Consequently, a segment neighbourhood algorithm with a different approach was developed. This
SN algorithm accommodates different cost functions and penalty choices, and allows for discontinuity
between segments. Additionally, this implementation outputs the optimal number of changepoints
and their locations directly.

Bement and Waterman showed that the segment neighbourhood algorithm converges to the optimal
number of changepoints[25]. The complexity of this algorithm has been well-defined by Auger and
Lawrence[26]. Its complexity and runtime grows very fast with increasing amounts of data and
changepoints. Explicitly, the time complexity of the algorithm is O(Qn2), where Q is the maximum
number of changepoints under consideration and n is the number of data points, i.e. the algorithm’s
performance degrades quadratically with the number of data points and linearly with the number
of changepoints. To combat this, a minimum window (segment) size ω can be introduced to speed
up the aglorithm. The overall complexity of each iteration will be reduced, as the number of fea-
sible segmentations is limited. The only concern is that this constraint might lead the algorithm
to not identify trends in segments smaller than ω. If the underlying true changepoints all satisfy
the minimum window size ω, then the algorithm should still converge to the optimal segmentation.
Furthermore, by skipping over short-term fluctuations, the segmentation might become more robust
against noise. With an appropriate choice for ω, there is not much concern that genuine trends are
missed. Moreover, it would not be wise to fit linear models in very small segments, and with the
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penalty term it would likely not achieve a minimised cost function anyway.

While the trend correction will be applied to the AV diameter measurements, the changepoints and
the model of the trends will be identified via the residuals over time. Since the trend(s) in the AV
measurements might be influenced by the independent variables included in the model, identifying
the changepoints and trend(s) this way can lead to confounding effects where any identified trend
is a mix of the genuine trend and the effects of the predictors. By applying a correction based
on this, one may end up removing information that would have been provided by the predictors.
Thus, it is a more appropriate approach to use the residuals. The residuals isolate the portion of
the AV measurements not explained by the model i.e. the impact of the independent variables has
already been accounted for. Therefore, trend(s) in the residuals reflect a purer signal of unmodeled
trends. The goal is to ensure that the adjusted data results in a model that closer adheres to the
assumptions and may generalise better.

5.3.4 Why Correcting a Possible Echocardiographic Bias Matters

The Cryolife donor dataset is made up of physical measurements of the AV diameter, whereas the
previous models have been based on echocardiographic measurements of the AV diameter. Since
echo measurements are an estimate of the true AV diameter, it seems counter intuitive to include
a correction based on a possible echo bias. However, it is important to note that there are two
scenarios in which predictions of the AV diameter based on the donor data will be used:

1. For diagnostic purposes to decide whether a patient’s health complaints are due to an
inappropriately sized aortic annulus

2. In preparation for surgery to predict the AV diameter a healthy person of the patient’s
specified characteristics should have had

When considering the first use case: if there is a quantifiable, systematic difference between the
estimated AV diameter via echocardiographs it would be extremely important to incorporate this
into the model. Since diagnosis is done via echo estimates, it could lead to an over/under-diagnosis
of individuals. In the second use case, it makes no sense to include an echocardiographic bias cor-
rection. When predicting the most appropriate AV diameter for a patient, the measurements closest
to physical reality should be used. This implies that there should be two separate models, one for
diagnosis via Z-scores and one for precise AV diameter prediction.

Once pseudo-echo AV diameter measurements have been obtained for the donor data, it will not
suffice to only create a bridging model between the physical and pseudo-echo measurements. The
predictive model for diagnosis will need to be retrained with the pseudo-echo measurements so that
a model for the conditional variance based on these echo corrected measurements can be created.

28



6 Methodology

6.1 Model Selection Methodology

As mentioned in Section 5.3.1, linear models (LMs) and generalised additive models (GAMs) were
both considered for predicting healthy aortic valve diameters. To identify the best model structure
and eventually justify it, the Results section presents the outcomes for five different model struc-
tures. These five models are outlined below, followed by the method used to compare them.

To investigate whether a nonlinear approach is beneficial, linear models are compared to GAMs.
Furthermore, since there is a huge amount of data, highly complex models are considered in attempt
to achieve the highest accuracy possible. Specifically, these are the full LM and GAM.

Full Linear Model:

ln(AV) = β0 + β1Sex + β2ln(Age + 1) + β3ln(Weight) + β4

√
Height

+ β5(ln(Age + 1)× Sex) + β6(ln(Weight)× Sex) + β7(
√
Height× Sex)

+ β8(ln(Weight)× ln(Age + 1)) + β9(
√

Height× ln(Age + 1)) + β10(ln(Weight)×
√
Height)

+ β11(ln(Weight)× ln(Age + 1)× Sex) + β12(
√
Height× ln(Age + 1)× Sex)

+ β13(ln(Weight)×
√

Height× Sex) + β14(ln(Weight)×
√
Height× ln(Age + 1))

+ β15(ln(Weight)×
√

Height× ln(Age + 1)× Sex) + ε. (13)

Full Generalised Additive Model:

ln(AV) = β0 + β1Sex + s(ln(Age + 1)) + s(ln(Weight)) + s(
√
Height)

+ s(ln(Age + 1), Sex) + s(ln(Weight), Sex) + s(
√
Height, Sex)

+ ti(ln(Weight), ln(Age + 1)) + ti(
√

Height, ln(Age + 1)) + ti(ln(Weight),
√
Height)

+ ti(ln(Weight), ln(Age + 1), Sex) + ti(
√
Height, ln(Age + 1), Sex)

+ ti(ln(Weight),
√
Height, Sex) + ti(ln(Weight),

√
Height, ln(Age + 1))

+ ti(ln(Weight),
√
Height, ln(Age + 1), Sex) + ε, (14)

where s(x) denotes a smooth function applied to the variable x, s(x, Sex) are separate smooth func-
tions of the variable x separated by sex, and ti(·) is a tensor product smooth interaction. A large
value of 15 was used for the number of knots, this is because the large amount of data and smoothing
penalties limit the risks of overfitting.

To examine whether overfitting may still be occurring despite the large amount of data, the full LM
and GAM are compared to a much reduced LM and GAM. A backwards elimination approach was
used to find reasonable reduced models. Using R-squared, BIC, AIC, and the residual plots, many
interactions were removed and similar results for the performance metrics were maintained. The
reduced models are shown below.

Reduced Linear Model:

log(AV) = β0 + β1Sex + β2 log(Age + 1) + β3 log(Weight) + β4

√
Height

+ β5(log(Age + 1)× Sex) + β6(log(Weight)× Sex)

+ β7(
√
Height× Sex) + β8(log(Weight)×

√
Height)

+ β9(
√
Height× log(Age + 1)) + β10(log(Weight)× log(Age + 1))

+ β11(log(Weight)×
√
Height× log(Age + 1)) + ε. (15)
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Reduced Generalised Additive Model:

log(AV) = β0 + β1Sex + s(log(Age + 1)) + s(log(Weight)) + s(
√
Height)

+ s(log(Age + 1), Sex) + s(log(Weight), Sex) + s(
√
Height, Sex) + ε, (16)

Lastly, to investigate BSA as a predictor, the best performing model using BSA as a variable can
be compared to the best model using height and weight separately. The model using BSA is the
full GAM as shown below,

Generalised Additive Model using BSA:

log(AV) = β0 + β1Sex + s(log(Age + 1)) + s(log(BSA))

+ s(log(Age + 1), Sex) + s(log(BSA), Sex)

+ ti(log(BSA), log(Age + 1))

+ ti(log(BSA), log(Age + 1), Sex) + ε. (17)

Once the best model has been selected from these five options, the conditional variance can be
modelled to compute the conditional standard deviation necessary for the Z-score computation.

Generalised Additive Model for the Conditional Variance:

r2 = β0 + β1Sex + s(Age) + s(Weight) + s(Height)

+ s(Age, Sex) + s(Weight, Sex) + s(Height, Sex) + ε, (18)

where r denotes the residuals. The residuals are computed on the original scale i.e. the predictions
are back-transformed. Taking the square root of predictions based on this model gives the condi-
tional standard deviation.

6.1.1 Comparing the Accuracy and Uncertainty of Models

This section covers the methodology used to compare the five models under consideration. When
applying an in-sample evaluation, the following method is utilised:

1. Propose a model specification

2. Goodness-of-fit measures i.e. R-squared, various residuals plots

3. Model selection criteria i.e. AIC and BIC

4. Evaluation metrics i.e. root mean squared error (RMSE), mean absolute error (MAE)

Two approaches are used for the out-of-sample evaluation:

1. Introduce test/train splits using K-fold cross validation and take an average.

2. Utilise external validation datasets, namely the Lopez et al. and the UMCG echocardiographic
datasets.

The evaluation metrics, RMSE and MAE, can then be applied to the test and validation datasets.

Aside from the measures and metrics applied for in-sample and out-of-sample evaluation, it was of
particular interest to see how the models performed on extreme subsets of the data. To investigate
this, the following method was employed:
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1. Create five extreme case subsets of the data:

(a) Obese individuals: those with BMI greater than 40

(b) Very short adults: individuals above 18 and below the 3rd percentile in height

(c) Older females: females older than 55

(d) Older males: males older than 55

2. For each subset:

(a) For each model, the RMSE and MAE can be computed via the method described in
Figure 24.

(b) Repeat this 100 times, store the obtained RMSEs and MAEs

(c) Return the average RMSE and MAE for both models

Via this method, the models are trained and tested on the same data for each run. This ensures a
fair comparison.

Figure 24: Flowchart demonstrating the method used to compare the performance of models on
extreme subgroups.

Moreover, to better compare the uncertainty and not just accuracy, the conditional standard de-
viation for each model can be plotted against the variables. All the models can be used to make
conditional variance predictions based on the donor data, and then the conditional standard devia-
tions can be easily plotted.
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6.2 Implementation of a Segment Neighbourhood Algorithm for Trend
Correction

The segment neighbourhood algorithm identifies the optimal segmentation of time-series data by
minimising a penalised cost function across potential changepoints and minimum window/segment
size constraint. It uses dynamic programming to efficiently compute the cost of segments. The code
can be found in the Appendix C.

Input:

• Data sequence y = (y1, y2, . . . , yN ) where yi ∈ R

• Maximum number of changepoints Q

• Penalty constant β

• Cost function C(y, β, q): computing the cost (measure of fit) and includes a penalty term
dependent on β and the number of changepoints q

• Minimum window (segment) size ω

Output: The location of the optimal changepoints as the vector s and total cost CT .

Initialisation:

• Initialise cost matrix M ∈ RN+1,Q+1 with ∞ as elements (arbitrarily large elements)

• Initialise matrix L ∈ RN+1,Q+1 with −1s to store positions of last changepoints

• Start with C0 = C(y1:0, β, 0) = 0 i.e. the cost of zero segments and no data is zero

Dynamic Programming:

1. For each potential number of changepoints q from 1 to Q+ 1

(a) For each potential ending index i from 2 to N + 1

• If q = 1 and i− 1 ≥ ω,
Mi,q = C(y1:(i−1), β, q − 1).

• If q > 1,
Mi,q = min

0<j<i
i−j≥ω

(C(yj:(i−1), β, q − 1) +Mj,q−1)

Li,q = argmin
0<j<i
i−j≥ω

(C(yj:(i−1), β, q − 1) +Mj,q−1).

2. Return the matrices M and L

Reconstruction of Optimal Segmentation:

1. Compute the total cost CT from the last row of the cost matrix M . The vector m :=
MN+1,(1:Q+1) contains the total costs for segmenting the full data sequence for zero up to
Q changepoints, mi ∈ R is an element of m. The lowest total cost CT is

CT = min
i

mi

2. Identify the optimal number of changepoints q∗ that result in the minimum total cost:

q∗ = argmin
i

(mi)− 1
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3. Extract the segmentation path from the matrix L using the optimal number of changepoints.
Starting at the last position N + 1 and tracing back through the entries in L which point to
the indices of the minimising changepoint for each segment:

(a) Initialise a zeros vector to collect the final changepoints s = 0⃗

(b) Initialise a current position index p = N + 1 and current changepoint index k = q∗

(c) While k > 0:

i. Record the segment ending at sk = Lp,k+1 − 1 and update p = Lp,k+1

ii. Decrement k by one to move to backtrace to the previous segment

Output: Return the vector of changepoints s and the total cost CT

Neutralising the Trend(s)

Upon identifying the changepoints in the residuals, a linear model is fitted to the residuals within
each segment to capture the trend. The correction is then applied to the aortic valve (AV) diameter
measurements themselves by subtracting the difference between the linear model(s) predictions and
the AV diameter measurements. This method effectively neutralises the unwarranted trend(s).

Example and Intuitive Explanation:

Consider a simple example where N = 5 and Q = 2, and this can be simplified further by ignoring
the penalty constant β and the minimum window size ω. The matrix M keeps track of the minimal
cost of segmenting the data with different numbers of changepoints:

• Rows in M represent the number of data points considered from the beginning of the dataset
(from 0 up to N)

• Columns in M represent the number of changepoints used (from 0 up to Q)

• The entry Mi,q represents the minimal cost of segmenting the first i data points with q change-
points

The cost matrix M of this example would be computed as follows:

1. First Column (q = 1):

• M1,1 is 0 because there are no data points and no segments meaning no cost

• Mi,1 for i > 0 calculates the cost of fitting all data points up to i with no changepoints.

These entries can be used for further computation in the next column

2. Second Column (q = 2):

• For each data point i, the cost of the best single changepoint segmentation up to i is
computed in Mi,1. This involves finding the index 0 < j < i that minimises the cost of
segmenting the data into two parts, i.e. the minimal cost is the sum of two terms:

(a) The cost of fitting data from 1 to j as one segment, which were already computed

for all j in the previous column i.e. they are simply equal to the elements Mj,1

(b) The cost from j + 1 to i considering it as a separate segment (thus introducing one
changepoint)

3. Further Columns (q > 2):

• Similar to q = 1, the minimal cost involves finding the index 0 < j < i such that is the
sum of the following two terms is minimised:

(a) The cost of fitting q− 1 segments from 1 to j were already computed for all j in the

previous column i.e. they are simply equal to the elements Mj,q−1

(b) The cost of the segment from j + 1 to i (thus introducing another changepoint)
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The resulting matrix M for the example can be seen below:

M =



0 ∞ ∞
C(y1, 0) ∞ ∞

C(y1:2, 0) C(y2, 1) + C(y1, 0) ∞

C(y1:3, 0) min
0<j<3

{C(yj:3, 1) + C(y1:j , 0) } C(y3, 2) + C(y2, 1) + C(y1, 0)

C(y1:4, 0) min
0<j<4

{C(yj:4, 1) + C(y1:j , 0) } min
0<j<4

{C(yj:4, 2) + min
i<l<j

{C(yl:j , 1) + C(yi:l, 0) }}

C(y1:5, 0) min
0<j<5

{C(yj:5, 1) + C(y1:j , 0) } min
0<j<5

{C(yj:4, 2) + min
i<l<j

{C(yl:j , 1) + C(yi:l, 0) }}



=



0 ∞ ∞
C(y1, 0) ∞ ∞

C(y1:2, 0) C(y2, 1) +M2,1 ∞

C(y1:3, 0) min
0<j<3

{C(yj:3, 1) + Mj,1 } C(y3, 2) + C(y2, 1) +M2,1

C(y1:4, 0) min
0<j<4

{C(yj:4, 1) + Mj,1 } min
0<j<4

{C(yj:4, 2) + min
i<l<j

{C(yl:j , 1) + Ml,1 }}

C(y1:5, 0) min
0<j<5

{C(yj:5, 1) + Mj,1 } min
0<j<5

{C(yj:4, 2) + min
i<l<j

{C(yl:j , 1) + Ml,1 }}



=



0 ∞ ∞
C(y1, 0) ∞ ∞
C(y1:2, 0) C(y2, 1) +M2,1 ∞

C(y1:3, 0) min
0<j<3

{C(yj:3, 1) +Mj,1} C(y3, 1) +M3,1

C(y1:4, 0) min
0<j<4

{C(yj:4, 1) +Mj,1} min
0<j<4

{C(yj:4, 2) + Mj,2 }

C(y1:5, 0) min
0<j<5

{C(yj:5, 1) +Mj,1} min
0<j<5

{C(yj:5, 2) + Mj,2 }


The matrix L stores the indices j of the changepoints that yielded the minimal costs in matrix M .
This facilitates the “reconstruction of optimal segmentation”. The process begins by determining
the minimal total cost of segmenting the entire data sequence, which is found in the last row of M .
Specifically, it identifies the column that contains the smallest element in the final row, indicating
the optimal number of changepoints q∗. Using this, we can traceback via the matrix L to find the
locations of the changepoints i.e.

1. Store the element of final row and column q∗ i.e. LN+1,q∗

2. Store the element Li,q∗−1 with i = LN+1,q∗

3. Store the element Li,q∗−2 with i = Li,q∗−1

4. Repeat until reaching the first changepoint

5. Output as the vector s

The first column of L is made up entirely of negative ones and are not included in the locations of the
final, optimal changepoints. This makes sense, since the first column of the cost matrix represents
zero changepoints.

Introducing the penalty parameter β and the minimum window size ω does not change the under-
standing of the algorithm. The penalty parameter simply allows one to tweak how heavily adding
changepoints is penalised, and the minimum window size speeds up the algorithm. To further speed
up the algorithm – since there are over 70,000 data points – the data is aggregated by taking a
weekly average. This reduces the data down to 1307 data points. Considering there is still a large
amount of data, choosing a window size of 50 speeds up the algorithm considerably and would be
a safe choice.
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6.3 Methodologies for the Echocardiographic Bias Correction

There are two considerations: whether there is a statistically significant difference and if there is,
how can that difference be quantified.

6.3.1 Investigating the Statistical Significance of a Possible Bias

To investigate the statistical significance of a potential echo bias, the same method can be employed
on both the UMCG and Lopez et al. datasets. The method used is as follows:

1. Combine the datasets using a subset of the donor data that matches the demographics of the
echocardiographic dataset used

2. Introduce a new binary variable, “source”, which records whether the data is from the echo
or the donor dataset

3. Create a full GAM with AV as the outcome variable, taking into account all explanatory
variables and their interactions as is done in equation 14, and include the source variable as a
main effect only

4. Check the statistical significance of the source variable

6.3.2 Quantifying the Systematic Difference

Since there are two distinct datasets, the UMCG dataset which only includes adults and the Lopez
et al. dataset only includes individuals 18 and under, slightly different approaches are used to obtain
pseudo-echo measurements for the donor data. Separate bridging models will be made for the adults
and individuals 18 and under. Furthermore, the Lopez et al. dataset was only acquired later into
the project. Thus, it is interesting to compare the outcomes of the method used before this data
was available.

For Adults: First, train the best model structure found on a subset of the donor data that matches
the demographics of the UMCG data i.e. above 18 years old and and a maximum weight of 105kg.
Next, obtain pseudo-physical AV diameter measurements for the UMCG echo dataset. Finally, build
a bridging model between the physical AV diameter predictions and the UMCG echo AV diameter
measurements. The model trained on the UMCG data is an LM:

AVecho = β0 + β1AVPhysical + β2Age + ε, (19)

A simple model is used due to the small amount of data. This model can then be used to obtain
pseudo-echo measurements for the donor data for adults.

For Individuals 18 and Under: A subset of the donor data that more closely matches the
demographics of the Lopez et al. dataset is used i.e. 18 years old and under and a maximum weight
of 100kg. Two methods are employed:

1. Predict pseudo-echo AV diameter predictions for the donor data subset using the Lopez et al.
model. Build a bridging model between the pseudo-echo and the physical measurements

2. Using the best model structure trained on the donor data subset, predict pseudo-physical
AV diameter predictions for the Lopez et al. data. Build a bridging model between the
pseudo-physical and the echo measurements. This relationship is modelled using a GAM:

AVecho = β0 + s(AVPhysical) + s(Age) + s(Height) + s(Weight) + ε, (20)

The number of knots k has been limited to k = 3, this avoids overfitting. This model can then
be used to obtain pseudo-echo measurements for the donor data for individuals 18 and under.
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Prior to obtaining the Lopez et al. data, the regression equations from the other established models
were considered for method (1). However, for these other models, comparing the use of regression
equations to using their respective datasets was not feasible due to their datasets not being publicly
available. Therefore, it made more sense to focus on the bridging model created using the Lopez
model compared to using the Lopez data itself. Thus, method (1) will be compared to method
(2) by plotting the AVecho predictions against each other, if the points closely fit the line y = x
then method (1) would have been a good approximation of using the data itself. Finally, to obtain
pseudo-echo AV diameter measurements for individuals under 18, only method (2) will be used.
This approach is independent of the modelling choices of Lopez et al. and instead assumes our
model is representative of physical AV diameter measurements. This is in contrast to assuming that
the less elaborate Lopez model is representative of echocardiographic AV diameter measurements.
Since our model is based on a larger dataset, it is more logical to quantify the differences in this
way.
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7 Results and Discussion

7.1 Model Performance Analysis

This section presents a detailed comparison of the goodness-of-fit measures and evaluation metrics
for full and reduced models, using both linear models (LM) and generalised additive models (GAM).
The comparison is based on several criteria, including R-squared, AIC, BIC, RMSE, and MAE,
across different samples and subgroups. Moreover, a comparison of the uncertainty via estimated
standard deviation plots is also included.

Table 5: Performance metrics for full and reduced models.

Model R-squared AIC BIC
Full LM 0.902 -148636.0 -148480.0
Reduced LM 0.902 -148638.7 -148519.4
Full GAM 0.904 -149932.9 -149235.9
Reduced GAM 0.904 -149810.7 -149343.0

In Table 5, it can be seen that all models achieve very high adjusted R-squared values. The GAMs
have a slightly higher value compared to the LMs, by only 0.002. Comparable AIC and BIC values
are observed between the full and reduced models. For linear models, the reduced LM has slightly
better AIC and BIC values. Despite having slightly worse AIC and BIC values, the reduced GAM
is a much more parsimonious model compared to the full GAM – with 10 terms versus 22 terms,
respectively – while maintaining very similar AIC and BIC values.

Table 6: In-sample and out-of-sample RMSE and MAE results for full and reduced models.

Eval. Metric Sample Full LM Reduced LM Full GAM Reduced GAM
RMSE (mm) In-sample 1.763985 1.764133 1.752673 1.754413

K-fold (Avg.) 1.764222 1.764097 1.754455 1.755377
UMCG Echo 2.543261 2.544735 2.315956 2.318628
Lopez Echo 1.391259 1.391380 1.358851 1.359828

MAE (mm) In-sample 1.384991 1.385223 1.374275 1.375764
K-fold (Avg.) 1.385285 1.385154 1.375803 1.376667
UMCG Echo 2.037670 2.039143 1.851335 1.860262
Lopez Echo 1.104750 1.104991 1.080442 1.080516

In Table 6, the full GAM outperforms all other models across every evaluation metric for every test
sample. While it is expected for the full GAM to perform best for in-sample evaluation metrics, it
is noteworthy that it also outperforms in out-of-sample metrics. This indicates that the full GAM is
not overfitting, as it performs better on the validation datasets compared to the more parsimonious
reduced GAM. The same observation applies to the full linear model, which does not overfit when
compared to the reduced LM.

Table 7: RMSE and MAE results for the different extreme subgroups for full and reduced models.

Eval. Metric Group Full LM Redu. LM Full GAM Redu. GAM
Avg. RMSE Obese Individuals 1.875770 1.875622 1.864358 1.866417
(mm) Very short adults 1.832929 1.832246 1.819279 1.818732

Older females 1.494494 1.496397 1.489364 1.502334
Older males 1.596249 1.595268 1.570000 1.566699

Avg. MAE Obese Individuals 1.468307 1.468306 1.460621 1.463904
(mm) Very short adults 1.461398 1.461121 1.450046 1.454131

Older females 1.191640 1.193283 1.172177 1.183168
Older males 1.275015 1.274464 1.262003 1.262182
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The full GAM outperforms in each extreme subgroup, except for older males, where the reduced
GAM performs better for the average MAE by 0.003301. Notably, the GAM models only perform
slightly better than the linear models. This aligns with the data exploration, in Figure 6 which
suggested potential improvements with a non-linear approach, but also showed that the linear fits
were already very good. Thus, it is not surprising that the linear models still perform very well
comparatively. Overall, each model achieves very similar metrics.

With the concerns of overfitting stamped out, it is reasonable to proceed with the uncertainty
comparison with just the full linear model and the full generalised additive models.

7.1.1 Results for using BSA Instead of Height and Weight Separately

The GAM model using Body Surface Area (BSA) as a variable achieved the same adjusted R-
squared as the models that use height and weight separately. Since the BSA model is not nested
within any of the height and weight models, their AIC and BIC values are not directly comparable.

Table 8: In-sample and out-of-sample RMSE and MAE results comparing the BSA model and the
full GAM using height and weight.

Eval. Metric Sample BSA Model Height & Weight
RMSE (mm) In-sample 1.769331 1.752673

K-fold (Avg.) 1.770114 1.754455
UMCG Echo 2.139797 2.315956
Lopez Echo 1.369318 1.358851

MAE (mm) In-sample 1.386055 1.374275
K-fold (Avg.) 1.386709 1.375803
UMCG Echo 1.700905 1.851335
Lopez Echo 1.088719 1.080442

On average, the differences between the evaluation metrics were expected to be subtle. The full
GAM with height and weight performs better in every case, except on the UMCG echo data. While
this is surprising, it could be due to the small size of this dataset, which may be affecting the validity
of the finding.

Table 9: RMSE and MAE results for extreme subgroups for the BSA model and the full GAM using
height and weight.

Group Avg. RMSE (mm) Avg. MAE (mm)
BSA Height & Weight BSA Height & Weight

Obese Individuals 1.879414 1.864358 1.471787 1.460621
Very Short Adults 1.894769 1.819279 1.493917 1.450046
Older Females 1.518651 1.489364 1.174030 1.172177
Older Males 1.574918 1.570000 1.262424 1.262003

The differences between the models are not as significant as expected. The full GAM with height
and weight performs better consistently. The largest improvement – that is still a very small differ-
ence in actuality – is observed for the very short adults group, with a difference of approximately
0.08mm for the average RMSE and approximately 0.04mm for the average MAE.
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Using a model of the residuals for each model, as specified in equation 18, the conditional standard
deviations were plotted against the continuous variables and split by sex.

Figure 25: The conditional standard deviation plotted against age and weight and split by sex.

When looking at the standard deviation with respect to age and weight in Figure 25, the standard
devation of the full GAM is always consistently below the GAM using BSA and the full LM.

Figure 26: The conditional standard deviation plotted against the height and split by sex.

The standard deviation with respect to height in Figure 26 reveals something interesting: the GAM
using BSA shows a dramatic increase in standard deviation after around 160cm for males. In this
plot the full GAM demonstrates the most visible improvement, seen for males.

From the goodness-of-fit measures, evaluation metrics, and the estimated uncertainty plots, the best
overall model is the full GAM. Thus, this is the model that will be used going forward.
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Below are the residuals plotted against the predictions as well as a QQ-plot, seen in Figure 27.

(a) QQ-plot for the residuals. The residuals
are computed on the original scale. The QQ-line
is in red.

(b) Residuals versus predictions plot. The
estimated standard deviation with respect to the
predictions is given in blue.

Figure 27: Residual plots for the full GAM on the donor data.

The QQ-plot looks very good, showing only very slight skewness away from the QQ-line towards
both ends. This implies that the residuals do not exhibit significant deviations or outliers, and
there is little evidence of skewness or kurtosis. This indicates that the residuals of the model are
approximately normally distributed, which validates the model’s fit and robustness. The residuals
versus the predictions also look quite good, though this plot does seem to indicate towards some
heteroscedasticity. This can be further investigated by plotting the residuals against the predictors,
as is done in Figure 28.

Figure 28: Plots of the residuals against the three continuous predictors for the full GAM applied
to the donor data.

When looking at the residuals plotted against the predictors, it initially seems there is quite heavy
heteroscedasticity in the plot for height. However, notice that the conditional standard deviations
– modelled with respect to the plotted variable only – show that the vast majority of the points
are centred around zero. Overall, the residuals of the full GAM appear reasonable. There is some
heteroscedasticity present, particularly notable when looking at the standard deviation in the plot
of the residuals with respect to age. Given the wide demographic variability of the dataset, this
is unsurprising. It would be expected that for very low ages there is minimal variability, which
increases significantly after puberty, and then reduces somewhat in adulthood, as discussed in the
Theory section. And this is indeed what is seen in the residual plot and standard deviation plot
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(Figure 25). The conditional standard deviation plots show slightly different shapes since those are
partial effect plots of the standard deviation modelled on all variables, isolating the effect of each
predictor. Lastly, the residuals versus the dissection date are shown below in Figure 29.

Figure 29: Plot of the residuals against the dissection date for the full GAM applied to the donor
data.

The residuals over time clearly exhibit a similar negative trend to what was seen in the AV over time
from the exploration. In fact, the trend seen here looks more significant and the possible change-
points look more obvious than the trend seen in the AV diameter measurements (Figure 7). There is
also an indication of other plausible changepoints, which will be explored further in the next section.

7.2 Outcome of Trend Correction

The use of a tailored SN algorithm and the correction technique, as specified in section 6.2, improved
the trends seen in the residuals. This is demonstrated below with figures of the weekly average of
the residuals over time before and after corrections have been applied to each segment identified.

In Figure 30, it can be seen that four changepoints were found. These are located at the dates
1995/05/07, 2004/08/01, 2010/08/15, and 2015/02/08.
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(a) Before correction. (b) After correction.

Figure 30: The plots depict the residuals aggregated by taking a weekly average, the four change-
points in blue dashed lines, and a horizontal line is plotted at zero in red.

A visible difference can be observed for each segment. The initial trend observed, the negative trend
between 1995/05/07 and 2004/08/01, looks much improved. There other changepoints were not as
clearly visible in the residuals (Figure 29), but after being objectively identified and corrected it has
resulted in a noticeable improvement. There is a lot of variation seen before the first changepoint at
1995/05/07, this is due to the much smaller amount of data before this point. The algorithm does
not identify any changepoints in this first segment, this is a positive sign as it implies the penalty
is working as it should i.e. applying lots of small corrections in a region with sparse data would not
be appropriate.

The residuals against the dissection date after the trend correction process are shown in Figure 31.
This can be compared to Figure 29, depicting the residuals before the correction. Visually, it looks
as though all of the identified trends have been eliminated entirely. The residuals now look very
well-distributed around zero. It is also wise to take another look at the other residual plots for the
trend-corrected model.

Figure 31: Plot of the residuals against the dissection date for the full GAM applied to the donor
data after the trend correction process.
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From Figure 32a, the QQ-plot looks slightly better when compared to the plot of the full, uncorrected
GAM (Figure 27a). There is less deviation from the QQ-line seen at the upper end. The residuals
versus predictions plot looks indistinguishable from Figure 27b. When plotting the residuals with
respect to the predictors, the same can be seen i.e. they are indistinguishable from Figure 28.

(a) QQ-plot for the residuals. The residuals
are computed on the original scale. The QQ-line is
in red.

(b) Residuals versus predictions plot. The
estimated standard deviation with respect to the
predictions is given in blue.

Figure 32: Residual plots for the trend-corrected model on the trend-corrected donor data.

The R squared value increased to 0.922 from 0.904. What remains to be seen is how the model now
performs with respect to the evaluation metrics, these are shown in Table 10.

Table 10: Trend correction. In-sample and out-of-sample RMSE and MAE results comparing the
full GAM before and after the correction.

Eval. Metric Sample Before Correction After Correction
RMSE (mm) In-sample 1.752673 1.579097

K-fold (Avg.) 1.754455 1.580592
UMCG Echo 2.315956 2.393776
Lopez Echo 1.358851 1.306000

MAE (mm) In-sample 1.374275 1.235021
K-fold (Avg.) 1.375803 1.236103
UMCG Echo 1.851335 1.917620
Lopez Echo 1.080442 1.022533

The in-sample and K-fold evaluation metrics show quite a significant improvement of about 0.18mm
in the RMSE and 0.14mm in the MAE. There is an improvement seen in the Lopez echo data. For
the UMCG echo data the model before correction is performing slightly better. One of the goals
was that the model after the trend correction would generalise better. Overall, this seems to have
been achieved since there is an improvement for the performance on the Lopez data and there is no
notable deterioration on the UMCG data.

Considering the significant improvement in the residuals over time and the evaluation metrics, the
final models will include a trend correction.
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7.3 Effects of Echo Bias Correction

The results of the Echo correction has been separated into four sections: the statistical significance,
the adults, those 18 and under, and combining the two corrections after having found pseudo-echo
AV diameters for each subset.

7.3.1 Statistical Significance of an Echo Bias

To investigate whether there is a statistically significant difference between the physical and echocar-
diographic measurements, the method used is described in Section 6.3.

It was found that the binary predictor for the source of the data was significant with a p-value
smaller than 0.001 for both the UMCG and Lopez et al. datasets. The summary of the results can
be seen in Tables 15 and 16.

7.3.2 The Results for Adults

Quantifying the difference in adults was straightforward. Using the full GAM trained on a subset of
the donor data, predictions for the UMCG data were made. This difference was then modeled via
a full linear model. A GAM was not used due to the limited amount of data, a nonlinear approach
would overfit, as was indicated to in the exploration in Figure 17.

The difference of the donor model pseudo-physical AV predictions and the UMCG echo AV diameter
measurements with respect to the predictors are plotted below in Figure 33.

Figure 33: Plots of the difference between the donor model predictions and the UMCG AV diameter
measurements against the variables. A linear fit is applied to the data in blue, and the shaded area
represents the confidence interval.

Despite the limited data, there does seem to be a plausible indication of a consistent echo bias. In
both height and weight, the donor measurements appear to be consistently larger than the echo
estimates by just under 2mm on average. There is a visible positive gradient seen in the difference
against age. This evidence towards age being included in the bridging model. It should be noted
that the donor model is trained on data that has a maximum age of 59, thus making AV diameter
predictions up to age 80 is quite a large extrapolation.

An echo correction is applied to the adult subset of the donor data. However, the reliability of this
echo bias estimate is questionable since this difference is based on a very small dataset.
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7.3.3 The Results for Individuals 18 and Under

As described in the methodology section 6.3, two different methods were discussed for those 18 and
under. These two methods will continue to be referred to as methods (1) and (2).

Figure 34: Plots of the pseudo-echo AV diameters for a subset of the donor data. In red is the line
y = x, and in blue is a linear fit to the relationship.

From Figure 34 it can be seen that, if the Lopez data was not available and only the model was,
method (1) would have been a very close approximation of creating a bridging model using the
data itself. The linear fit to the data, in blue, is extremely close to the line y = x. This shows
that, for the demographic studied by Lopez et al., their model is similarly representative of echo AV
diameters measurements as our model is for the physical AV diameters of the donor data. However,
notice that there is cone-shaped variance around the linear fit i.e. on average the two methods are
very close but there is increasing variability as the AV diameters get larger.

Using method (2), the relationship between the bias and the predictors has been visualised below:

Figure 35: Plots of the difference between the donor model predictions and the Lopez AV diameter
measurements against the variables. A LOESS fit is applied to the data in blue.
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Figure 35 matches what would be expected from the exploration of the difference. Overall, the bias
does not look very large. Notably, donor measurements are approximately 1mm larger than echo
estimates for the very low end of age and weight, and approximately 1mm smaller for the higher
end of weight. This is in contrast to the relationship seen for adults, where the bias increases with
respect to all the predictors. This could result in disjointed AV diameter measurements when both
bias correction models are applied if too much flexibility is used for the bridging models.

This correction will be applied, however it would not be unreasonable to conclude that this bias is
not clinically significant i.e. it is not greater than 2mm on average (based on expert opinion).

7.3.4 The Combined Echo Corrections and Resulting Model

Once pseudo-echo AV diameters were obtained for both adults and individuals 18 and under, the
donor subsets could be recombined and the best model structure was retrained on this data. This
results in a model for pseudo-echo AV diameters for a very large demographic. It should be noted
that this now includes an extrapolation for weights larger than 100kg.

The R squared of the echo-corrected model increased to a value of 9.22. Next, the residuals were
plotted as usual in Figure 36.

(a) QQ-plot for the residuals. The residuals are
computed on the original scale. The QQ-line is in
red.

(b) Residuals versus predictions plot. The es-
timated standard deviation with respect to the pre-
dictions is given in blue.

Figure 36: Residual plots for the full GAM on the donor data after the echo bias corrections.

From the QQ-plot (Fig. 36a) the residuals look closer to normally distributed as there seems to be
less deviation from the QQ-line (when compared to the full GAM without correction). However,
in Figure 36b, there appear to be a few new outliers introduced when looking at the predictions
between 10mm and 15mm. Moreover, the overall shape has noticeably changed. There is less vari-
ation for lower predicted values leading to a more accentuated cone shape.
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Figure 37: Plots of the residuals against the three continuous predictors for the full GAM applied
to the donor data after the echo bias corrections.

When potting the residuals against the predictors in Figure 37, it can be seen that the shape of the
variation of the residuals is more pronounced for all three continuous predictors. Overall, it can be
seen that after the echo correction there is more deviation from the homoscedasticity assumption,
further motivating the necessity of using a conditional standard deviation for the Z-score computa-
tions. Lastly, notice that there is slightly more bulging in the residuals at around age 18 after the
combined echo correction. This is likely due to the separate echo corrections applied to adults and
individuals under 18.

Table 11: Echocardiographic bias correction. In-sample and out-of-sample RMSE and MAE
results comparing the full GAM before and after the correction.

Eval. Metric Sample Before Correction After Correction
RMSE (mm) In-sample 1.752673 1.721622

K-fold (Avg.) 1.754455 1.722995
UMCG Echo 2.315956 1.509165
Lopez Echo 1.358851 1.206946

MAE (mm) In-sample 1.374275 1.328663
K-fold (Avg.) 1.375803 1.329901
UMCG Echo 1.851335 1.254647
Lopez Echo 1.080442 0.919731

The evaluation metrics in Table 11 match what would be expected. Since the corrections were based
on the UMCG and Lopez datasets, the evaluation metrics improved significantly on those samples.
This does indicate that there is an improvement on echo data. However, it is important to note
that these are no longer validation datasets as they are not independent from the data the model is
trained on. It is also noteworthy that the in-sample and K-fold evaluations improved.

7.4 The Final Models and a Comparison to the Established Models

As discussed in Theory section 5.3.4, two separate models are required to predict the healthy AV
diameter: one for diagnosis and another for aortic valve replacement (AVR) surgery. In both cases,
the full generalised additive model is used. The final models cannot reasonably be written out
explicitly with the estimated coefficients since there are over 400 terms. For the clinical implemen-
tation, a web tool will be developed. An example of how this web tool may look in practice is given
in Figure 49. Additionally, the summary tables can be found in the Appendix and are referenced
in the text.
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A Model to Predict Healthy Aortic Valve Diameters for AVR Surgery

The model used to predict healthy AV diameters for AVR surgery is the full GAM with the trend
correction applied. The summary is given in Table 17. The evaluation metrics compared to the two
most commonly used models are given below.

Table 12: Model for AVR surgery. RMSE and MAE results comparing the full GAM trend-
corrected to the Lopez et al. and Cantinotti et al. models.

Eval. Metric Sample AVR Model Lopez Cantinotti
RMSE (mm) Donor 1.579097 2.564206 2.114441

UMCG Echo 2.393776 1.770278 1.941664
Lopez Echo 1.306000 1.275022 1.481374

MAE (mm) Donor 1.235021 2.043886 1.652006
UMCG Echo 1.917620 1.491492 1.500794
Lopez Echo 1.022533 0.977995 1.127006

Table 12 demonstrates that, for the donor data, the AVR model surpasses the Lopez and Cantinotti
models by 0.98mm and 0.53mm, respectively, in terms of RMSE. The Lopez model, however, per-
forms better on both the UMCG and Lopez echo datasets. While the Lopez model only slightly
outperforms the AVR model on the Lopez dataset, it significantly outperforms it on the UMCG
dataset. Given that both datasets utilise echo measurements, this result is not too unexpected.
However, the Lopez model’s superior performance on the UMCG data is noteworthy, as it is a
significant extrapolation beyond the age range it was trained on, making this outcome somewhat
surprising.

In this case we are most concerned with how it performs on the donor data, since this model will
be used to predict the physical AV diameter needed for the aortic valve replacement. Lets compare
the estimated uncertainty of each model with respect to the predictors, in Figure 38.

Figure 38: Conditional standard deviations applied to the trend-corrected donor data.
Plots of the standard deviations against the three continuous predictors.

The final donor model trend-corrected massively outperforms the Lopez and Cantinotti models in
terms of certainty with respect to each predictor. The Lopez model has exponentially increasing
uncertainty with respect to age, it is especially drastic for males. The Cantinotti model shows a
similar exponential behaviour in the standard deviation after a weight of about 100kg for females
and under 75kg for males. These behaviours make sense since – for both the age and weight – these
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are massive extrapolations for the Lopez and Cantinotti models. Nonetheless, even within the de-
mographics that the Cantinotti and Lopez models are trained on, the donor model consistently
demonstrates better certainty. Interestingly, when looking at the standard deviation against weight,
the Lopez model depicts very different behaviour for the different sexes. Notice that the standard
deviation remains very similar for both sexes for the final donor model, but not for the other models.
This is because the donor model takes sex into account.

Overall, the trend-corrected, full GAM is the better performing and more suitable model to predict
healthy aortic valve diameters for aortic valve replacement surgery.

Separate Models for Diagnosis That Incorporate the Echo Correction

The model to predict the healthy average AV diameter and the variance are full GAMs and incor-
porate both the trend correction and echocardiographic bias correction. First the trend correction
is applied, and then the echo correction. The model summaries for the AV diameter prediction and
the variance are given in Tables 18 and 19.

As was done for the previous model, the evaluation metrics of the diagnostic model are compared
to the Lopez et al. and Cantinotti et al. models in Table 13.

Table 13: Model for Diagnosis. RMSE and MAE results comparing the full GAM including the
trend and echo bias correction to the Lopez et al. and Cantinotti et al. models.

Eval. Metric Sample Diagnostic Model Lopez Cantinotti
RMSE (mm) Donor (pseudo-echo) 1.550151 1.940521 2.198464

UMCG Echo 1.493045 1.770278 1.941664
Lopez Echo 1.205917 1.275022 1.481374

MAE (mm) Donor (pseudo-echo) 1.195610 1.502287 1.698825
UMCG Echo 1.236335 1.491492 1.500794
Lopez Echo 0.918554 0.977995 1.127006

The diagnostic donor model outperforms when tested on every dataset. As mentioned before, since
the corrections were applied using the UMCG and Lopez datasets, these are no longer fully inde-
pendent validation datasets for the donor model. However, it is still notable that the diagnostic
model now outperforms the Lopez model on the Lopez dataset. Although, the model without an
echo correction already performed comparably to the Lopez model on the Lopez data.

As was seen with the model for AVR, the diagnostic model achieves better estimated uncertainty
with respect to all the variables when compared to the Lopez and Cantinotti. The plots can be seen
in Figure 39. While the diagnostic model is outperforming, it is also noteworthy that the Lopez and
Cantinotti models are performing better on the pseudo-echo donor data when compared to Figure
38, before the echo correction is applied. This is also reflected in the evaluation metrics.
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Figure 39: Conditional standard deviations applied to the trend and echo-corrected
donor data. Plots of the standard deviations against the three continuous predictors.

While it is definitely worthwhile to see how much better the donor model performs for a wider de-
mographic, comparing the models on the entire donor dataset goes well beyond the scope they are
trained on. In this case it is also useful to check the conditional standard deviations on the Lopez
et al. dataset. This is a way to analyse and compare performance on true echo measurements, and
within the same demographics that the Lopez and Cantinotti models were trained on.

Figure 40: Conditional standard deviations applied to the Lopez data. Plots of the standard
deviations against the three continuous predictors.

Figure 40 shows that the diagnostic donor model and the Lopez et al. model perform similarly,
however the standard deviation of the donor model remains consistently below in each plot. Again,
the Lopez and Cantinotti models demonstrate different behaviour for males and females, especially
the Cantinotti model which has increasingly larger standard deviations for females.

Ultimately, it could be argued either way whether the echocardiographic bias correction is most
appropriate and necessary. Since the UMCG data is so limited, any performance metrics on this
dataset should be taken with a pinch of salt. Thus, the lack-luster performance of the uncorrected
donor model could be reasonably disregarded. The performance of the donor model on the Lopez
data is very good regardless of whether an echo bias correction is included or not. Having said that,
the performance of the echo-corrected donor model on the Lopez data outperforms the Lopez model
itself. Thus, a case could certainly be made to include the correction.
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8 Conclusion

This study aimed to develop a refined model for aortic valve (AV) diameter measurements that
accounts for demographic variability and measurement technique discrepancies. The goal was to
enhance predictive accuracy and uncertainty quantification in AV diameter measurements, partic-
ularly for extreme demographic cases. In the case of diagnosis, this would allow for more accurate
Z-score computations. In preparation for surgery, this would result in more accurate healthy AV
diameter predictions when choosing a prosthetic for aortic valve replacement (AVR).

The results demonstrate that the full generalised additive model (GAM) with height and weight
consistently performs better than other models, including the linear model (LM) and the GAM using
body surface area (BSA). Explicitly, the full GAM – including tensor product smooth interaction
terms – shows the best performance in terms of goodness-of-fit measures and evaluation metrics, as
well as in the estimated uncertainty plots. Although, the improvements are modest in clinical terms.

Using a tailored segment neighbourhood (SN) algorithm, trend corrections were applied to the AV
diameter measurements through an iterative changepoint analysis via the residuals. Significant im-
provements were observed in the in-sample evaluation metrics and the residuals, particularly for the
negative trend observed in the residuals between 1995/05/07 and 2004/08/01. Furthermore, using
an objective algorithm led to the identification of changepoints and trends that would have other-
wise gone undetected. Although the echocardiographic datasets – namely the UMCG and Lopez
et al. datasets – used as validation did not show improvements, there was no notable deterioration
in performance, supporting the inclusion of a trend correction in the final models. Additionally,
implementing the SN algorithm myself developed a better understanding of how it works and how
it can be best implemented. Despite finding a package towards the end of my project that would
likely have been sufficient, this experience was very valuable.

For diagnostic purposes, the donor model that incorporated an echocardiographic bias correction
consistently demonstrated better performance across all three datasets when compared to the Lopez
and Cantinotti models. It was noted that the performance of the donor model on the Lopez data, re-
gardless of whether an echo bias correction is included, was very good. However, the echo-corrected
donor model outperformed on the Lopez data when compared to the Lopez model itself, making a
case for including this correction.

With regards to future research, a larger dataset of echocardiograpic AV diameter measurements
spanning both adults and individuals under 18 would be ideal to better investigate whether there
is a bias between physical and echo measurements. This would allow for a more comprehensive
analysis as to whether the donor dataset can be reliably applied for diagnosis. Moreover, the Cry-
olife donor dataset also includes pulmonary valve measurements, these were not explored and a
predictive model could be made for these as well.

This research was conducted in collaboration with my supervisors, Prof. M.A. Grzegorczyk and
Prof. G.A. Lunter, as well as specialists in the field of Cardiology Prof. T. Ebels and Dr J. P.
van Melle. Their expertise were invaluable in this study and its outcomes. We are currently in the
process of writing a paper and developing an accompanying web tool that will present our findings
and final models in an accessible and practical format. We aim (and hope) to publish this work soon.

Overall, the models to predict AV diameters developed in this study offer significant improvements
in predictive accuracy and uncertainty. For the first time, the uncertainty – that includes the nat-
ural variation seen in wide demographics – has been modelled. These things combined are crucial
for clinical applications, allowing for more reliable diagnosis and prediction of healthy AV diameter
for AVR surgery.
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A Appendix: Tables

Parametric Coefficients

Term Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.067245 0.007983 384.22 < 2e− 16∗∗∗

Sex1 -0.061782 0.001794 -34.43 < 2e− 16∗∗∗

Approximate Significance of Smooth Terms

Smooth Term edf Ref.df F p-value

s(logAge) 13.170 14 59.998 < 2e− 16∗∗∗

s(logAge):Sex0 2.645 14 4.256 < 2e− 16∗∗∗

s(logAge):Sex1 0.055 14 0.004 0.00243∗∗

s(logWeight) 7.182 14 8.045 < 2e− 16∗∗∗

s(logWeight):Sex0 1.622 14 0.915 2.74e− 05∗∗∗

s(logWeight):Sex1 0.002 14 0.000 0.01063∗

s(sqrtHeight) 9.446 14 71.284 < 2e− 16∗∗∗

s(sqrtHeight):Sex0 0.000 14 0.000 0.42787
s(sqrtHeight):Sex1 0.001 14 0.000 0.38667
ti(logWeight,sqrtHeight) 2.257 16 0.342 0.00564∗∗

ti(logWeight,sqrtHeight):Sex0 0.919 16 0.075 0.02285∗

ti(logWeight,sqrtHeight):Sex1 0.000 16 0.000 0.16863
ti(sqrtHeight,logAge) 0.000 16 0.000 0.48991
ti(sqrtHeight,logAge):Sex0 0.000 16 0.000 0.37306
ti(sqrtHeight,logAge):Sex1 0.000 16 0.000 0.41644
ti(logWeight,logAge) 8.298 16 4.593 < 2e− 16∗∗∗

ti(logWeight,logAge):Sex0 0.617 16 0.049 0.06737
ti(logWeight,logAge):Sex1 0.000 16 0.000 0.43634
ti(logWeight,sqrtHeight,logAge) 10.410 48 0.759 < 2e− 16∗∗∗

ti(logWeight,sqrtHeight,logAge):Sex0 8.515 48 0.467 1.20e− 05∗∗∗

ti(logWeight,sqrtHeight,logAge):Sex1 0.000 48 0.000 0.86403

Signif. codes: 0∗∗∗, 0.001∗∗, 0.01∗, 0.05 .

R-sq.(adj) = 0.904, Deviance explained = 90.4%

fREML = -74868, Scale est. = 0.0071192, n = 71197

Table 14: Summary of the model fit for the full GAM.
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Parametric Coefficients

Term Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.081974 0.009940 310.065 < 2e− 16∗∗∗

Source1 0.071900 0.009929 7.241 4.5e− 13∗∗∗

Sex1 -0.067029 0.001903 -35.230 < 2e− 16∗∗∗

Approximate Significance of Smooth Terms

Smooth Term edf Ref.df F p-value

s(logAge) 6.340 14 109.460 < 2e− 16∗∗∗

s(logAge):Sex0 3.340 14 7.123 < 2e− 16∗∗∗

s(logAge):Sex1 0.001 14 0.000 0.00267∗∗

s(logWeight) 6.654 14 78.660 < 2e− 16∗∗∗

s(logWeight):Sex0 1.781 14 1.490 2.28e− 06∗∗∗

s(logWeight):Sex1 0.001 14 0.000 0.04736∗

s(sqrtHeight) 0.002 14 0.000 0.00497∗∗

s(sqrtHeight):Sex0 4.229 14 52.278 < 2e− 16∗∗∗

s(sqrtHeight):Sex1 5.470 14 39.509 < 2e− 16∗∗∗

ti(logWeight,sqrtHeight) 0.000 16 0.000 0.93434
ti(logWeight,sqrtHeight):Sex0 3.293 16 0.691 0.00276∗∗

ti(logWeight,sqrtHeight):Sex1 0.001 16 0.000 0.39393
ti(sqrtHeight,logAge) 0.001 16 0.000 0.46799
ti(sqrtHeight,logAge):Sex0 1.568 16 0.417 0.00499∗∗

ti(sqrtHeight,logAge):Sex1 0.001 16 0.000 0.53884
ti(logWeight,logAge) 3.641 16 2.137 < 2e− 16∗∗∗

ti(logWeight,logAge):Sex0 3.313 16 0.512 0.00521∗∗

ti(logWeight,logAge):Sex1 0.001 16 0.000 0.23193
ti(logWeight,sqrtHeight,logAge) 0.001 64 0.000 0.37873
ti(logWeight,sqrtHeight,logAge):Sex0 2.846 64 0.069 0.10763
ti(logWeight,sqrtHeight,logAge):Sex1 2.990 64 0.069 0.10300

Signif. codes: 0∗∗∗, 0.001∗∗, 0.01∗, 0.05 .

R-sq.(adj) = 0.447, Deviance explained = 44.8%

fREML = -64525, Scale est. = 0.0063243, n = 58058

Table 15: Donor and UMCG source significance. Summary of the full GAM fit with a binary
variable for the source of the data.
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Parametric Coefficients

Term Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.655905 0.017928 148.142 < 2e− 16∗∗∗

Source2 -0.049223 0.002082 -23.638 < 2e− 16∗∗∗

Sex1 -0.039785 0.004022 -9.891 < 2e− 16∗∗∗

Approximate Significance of Smooth Terms

Smooth Term edf Ref.df F p-value

s(logAge) 4.854 14 2.854 < 2e− 16∗∗∗

s(logAge):Sex0 0.000 14 0.000 0.789741
s(logAge):Sex1 0.000 14 0.000 0.758164
s(logWeight) 8.009 14 7.088 < 2e− 16∗∗∗

s(logWeight):Sex0 0.000 14 0.000 0.581012
s(logWeight):Sex1 0.000 14 0.000 0.566644
s(sqrtHeight) 3.497 14 2.256 < 2e− 16∗∗∗

s(sqrtHeight):Sex0 0.000 14 0.000 0.896791
s(sqrtHeight):Sex1 0.000 14 0.000 0.841144
ti(logWeight,sqrtHeight) 1.161 16 0.099 0.011658∗

ti(logWeight,sqrtHeight):Sex0 1.444 16 0.178 0.027875∗

ti(logWeight,sqrtHeight):Sex1 0.000 16 0.000 0.588503
ti(sqrtHeight,logAge) 4.035 16 1.072 < 2e− 16∗∗∗

ti(sqrtHeight,logAge):Sex0 1.206 16 0.120 0.008301∗∗

ti(sqrtHeight,logAge):Sex1 0.001 16 0.000 0.197733
ti(logWeight,logAge) 0.000 16 0.000 0.746000
ti(logWeight,logAge):Sex0 3.137 16 0.723 0.000153∗∗∗

ti(logWeight,logAge):Sex1 0.000 16 0.000 0.067495
ti(logWeight,sqrtHeight,logAge) 0.120 64 0.531 < 2e− 16∗∗∗

ti(logWeight,sqrtHeight,logAge):Sex0 0.000 64 0.000 0.396452
ti(logWeight,sqrtHeight,logAge):Sex1 0.000 60 0.000 0.748679

Signif. codes: 0∗∗∗, 0.001∗∗, 0.01∗, 0.05 .

R-sq.(adj) = 0.926, Deviance explained = 92.6%

fREML = -14166, Scale est. = 0.01035, n = 16436

Table 16: Donor and Lopez source significance. Summary of the full GAM fit with a binary
variable for the source of the data.
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Parametric Coefficients

Term Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.074066 0.008256 372.32 < 2e− 16∗∗∗

Sex1 -0.061052 0.001802 -33.88 < 2e− 16∗∗∗

Approximate Significance of Smooth Terms

Smooth Term edf Ref.df F p-value

s(logAge) 13.210 14 48.042 < 2e− 16∗∗∗

s(logAge):Sex0 2.906 14 6.972 < 2e− 16∗∗∗

s(logAge):Sex1 0.008 14 0.001 0.002343∗∗

s(logWeight) 6.576 14 10.920 < 2e− 16∗∗∗

s(logWeight):Sex0 1.667 14 0.781 0.000123∗∗∗

s(logWeight):Sex1 0.000 14 0.000 0.114077
s(sqrtHeight) 7.933 14 26.789 < 2e− 16∗∗∗

s(sqrtHeight):Sex0 0.001 14 0.000 0.374278
s(sqrtHeight):Sex1 0.001 14 0.000 0.319876
ti(logWeight,sqrtHeight) 6.537 16 3.056 < 2e− 16∗∗∗

ti(logWeight,sqrtHeight):Sex0 0.001 16 0.000 0.213513
ti(logWeight,sqrtHeight):Sex1 0.000 16 0.000 0.568359
ti(sqrtHeight,logAge) 5.637 16 1.188 7.22e− 06∗∗∗

ti(sqrtHeight,logAge):Sex0 0.001 16 0.000 0.056236 .
ti(sqrtHeight,logAge):Sex1 2.091 16 0.223 0.009851∗∗

ti(logWeight,logAge) 5.554 16 3.158 < 2e− 16∗∗∗

ti(logWeight,logAge):Sex0 2.193 16 0.363 0.000941∗∗∗

ti(logWeight,logAge):Sex1 0.000 16 0.000 0.403036
ti(logWeight,sqrtHeight,logAge) 10.110 48 0.499 1.13e− 05∗∗∗

ti(logWeight,sqrtHeight,logAge):Sex0 2.393 48 0.096 0.005800∗∗

ti(logWeight,sqrtHeight,logAge):Sex1 0.000 47 0.000 0.408821

Signif. codes: 0∗∗∗, 0.001∗∗, 0.01∗, 0.05 .

R-sq.(adj) = 0.922, Deviance explained = 92.3%

fREML = -81960, Scale est. = 0.0058339, n = 71199

Table 17: Summary of the full GAM with the trend correction applied.

55



Parametric Coefficients

Term Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.042591 0.008141 373.74 < 2e− 16∗∗∗

Sex1 -0.063385 0.001514 -41.85 < 2e− 16∗∗∗

Approximate Significance of Smooth Terms

Smooth Term edf Ref.df F p-value

s(logAge) 11.65 14 34.965 < 2e− 16∗∗∗

s(logAge):Sex0 0.009 14 0.001 0.000831∗∗∗

s(logAge):Sex1 3.631 14 11.600 < 2e− 16∗∗∗

s(logWeight) 7.502 14 13.389 < 2e− 16∗∗∗

s(logWeight):Sex0 1.681 14 1.294 5.92e− 06∗∗∗

s(logWeight):Sex1 0.001 14 0.000 0.014477∗

s(sqrtHeight) 7.468 14 30.839 < 2e− 16∗∗∗

s(sqrtHeight):Sex0 0.001 14 0.000 0.332864
s(sqrtHeight):Sex1 0.133 14 0.010 0.254426
ti(logWeight,sqrtHeight) 6.290 16 3.875 < 2e− 16∗∗∗

ti(logWeight,sqrtHeight):Sex0 0.000 16 0.000 0.931679
ti(logWeight,sqrtHeight):Sex1 0.000 16 0.000 0.844650
ti(sqrtHeight,logAge) 3.089 16 0.838 0.000116∗∗∗

ti(sqrtHeight,logAge):Sex0 0.000 16 0.000 0.772222
ti(sqrtHeight,logAge):Sex1 0.001 16 0.000 0.667928
ti(logWeight,logAge) 6.547 16 10.611 < 2e− 16∗∗∗

ti(logWeight,logAge):Sex0 0.001 16 0.000 0.052153 .
ti(logWeight,logAge):Sex1 2.348 16 0.457 0.000372∗∗∗

ti(logWeight,sqrtHeight,logAge) 11.39 48 0.729 1.38e− 06∗∗∗

ti(logWeight,sqrtHeight,logAge):Sex0 0.001 48 0.000 0.871501
ti(logWeight,sqrtHeight,logAge):Sex1 0.001 47 0.000 0.928091

Signif. codes: 0∗∗∗, 0.001∗∗, 0.01∗, 0.05 .

R-sq.(adj) = 0.927, Deviance explained = 92.7%

fREML = -83323, Scale est. = 0.0056168, n = 71199

Table 18: Summary of the diagnostic model, a full GAM with the trend and echo bias correction.
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Parametric Coefficients

Term Estimate Std. Error t value Pr(> |t|)
(Intercept) 2.50540 0.02036 123.085 < 2e− 16∗∗∗

Sex1 -0.30073 0.03412 -8.815 < 2e− 16∗∗∗

Approximate Significance of Smooth Terms

Smooth Term edf Ref.df F p-value

s(Age) 8.618 14 21.414 < 2e− 16∗∗∗

s(Age):Sex0 1.755 14 0.498 0.008599∗∗

s(Age):Sex1 0.009 13 0.001 0.027544∗

s(Weight) 2.234 14 0.389 0.028441∗

s(Weight):Sex0 1.360 14 0.333 0.016009∗

s(Weight):Sex1 0.005 14 0.000 0.360066
s(Height) 0.001 14 0.000 0.821821
s(Height):Sex0 5.630 14 1.299 0.000669∗∗∗

s(Height):Sex1 0.001 14 0.000 0.886755

Signif. codes: 0∗∗∗, 0.001∗∗, 0.01∗, 0.05 .

R-sq.(adj) = 0.0324, Deviance explained = 3.26%

fREML = 1.9763e+05, Scale est. = 15.066, n = 71199

Table 19: Summary of the conditional variance GAM for the diagnostic model.
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B Appendix: Figures

Figure 41: Histograms and bar chart for the raw donor data.

Figure 42: Correlation matrix for the continuous variables for the donor data.
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Figure 43: The predictors over time with LOESS fits for the donor data.
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Figure 44: Histograms and bar chart for the raw echo data.

Figure 45: Density plots split by sex for the adult echo data. Female is orange, male is teal.
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Figure 46: Linearity transformations for the adult UMCG echo data. The plots on the top are
before the chosen transformations are applied and the plots on the bottom are after.

Figure 47: Histograms and bar chart for the Lopez et al. echo data.
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Figure 48: Correlation matrix for the continuous variables for the Lopez et al. data.

Figure 49: An example of a the web tool would look. When ‘predict healthy AVD’ is toggled,
the model for AVR surgery would be used. When ‘diagnosis via echo’ is toggled, the echo-corrected
AVD model and the model to estimate the standard deviation is used to compute a Z-score.

62



C Appendix: Code

The code for the implementation of the segment neighbourhood algorithm and trend correction are
included below. For the complete code, please visit: https://github.com/LeahDijkshoorn/
AVD-MSc-thesis

Segment Neighbourhood Function

1 segmentNeighbourhood <- function(data , maxChangepoints , costFunction , penalty ,

minWindowSize = 1) {

2 n <- length(data)

3

4 # Initialise matrices to store costs and positions of last changepoints

5 costMatrix <- matrix(Inf , n + 1, maxChangepoints + 1)

6 lastChangepointMatrix <- matrix(-1, n + 1, maxChangepoints + 1)

7 totalCost <- rep(Inf , maxChangepoints + 1)

8

9 # Initialise the cost of zero segments , no data

10 costMatrix [1, 1] <- 0

11

12 # Dynamic programming to fill the matrices

13 for (q in 1:( maxChangepoints + 1)) {

14 for (i in 2:(n + 1)) {

15 if (q == 1) {

16 # Only calculate if segment is large enough to be valid

17 if (i - 1 >= minWindowSize) {

18 costMatrix[i, q] <- costFunction(data [1:(i - 1)], penalty , q - 1)

19 }

20 } else {

21 # Ensure j starts at least minWindowSize before i

22 for (j in 1:(i - 1)) {

23 if (i - j >= minWindowSize) {

24 currentCost <- costFunction(data[j:(i - 1)], penalty , q - 2) +

costMatrix[j, q - 1]

25 if (!is.na(currentCost) && currentCost < costMatrix[i, q]) {

26 costMatrix[i, q] <- currentCost

27 lastChangepointMatrix[i, q] <- j

28 }

29 }

30 }

31 }

32 }

33 totalCost[q] <- costMatrix[n+1, q] + penalty * (q - 1)

34 }

35

36 # Determine optimal number of changepoints based on total cost

37 optimalChangepoints <- which.min(totalCost) - 1

38 segments <- numeric(optimalChangepoints)

39

40 # Reconstruct optimal segmentation

41 currentSegment <- optimalChangepoints

42 currentPosition <- n + 1

43 while (currentSegment > 0) {

44 segments[currentSegment] <- lastChangepointMatrix[currentPosition ,

currentSegment + 1] - 1 # First run starts at end of data

45 currentPosition <- lastChangepointMatrix[currentPosition , currentSegment + 1] #

Update current position to end of previous segment

46 currentSegment <- currentSegment - 1

47 }

48

49 return(list(changepoints = segments , cost = totalCost[optimalChangepoints + 1]))

50 }
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Trend Correction Function

1 correct_trend_and_update <- function(data , start_date , end_date) {

2 start_date <- as.Date(start_date)

3 end_date <- as.Date(end_date)

4

5 # Subset the data based on the provided changepoints

6 date_subset_data <- data[data$dissection_date >= start_date & data$dissection_date
<= end_date , ]

7

8 # Fit linear model and correct for trend

9 lm_trend_correction <- lm(Residuals ~ as.Date(dissection_date), data = date_subset

_data)

10 trend_predictions <- predict(lm_trend_correction , newdata = date_subset_data)

11 #trend_difference_FromMean <- trend_predictions - mean(data$AV)
12

13 date_subset_data$AV_trend_correction <- date_subset_data$AV - trend_predictions

14

15 # Merge corrected AV values back into the main dataset

16 data <- merge(data , date_subset_data[c("DonorID", "AV_trend_correction")], by = "

DonorID", all.x = TRUE)

17

18 # Update AV_corrected in the original dataset

19 data$AV_corrected <- ifelse(!is.na(data$AV_trend_correction), data$AV_trend_
correction , data$AV)

20

21 # Replace original column

22 data$AV <- data$AV_corrected
23

24 # Clean up by removing temporary columns

25 data$AV_trend_correction <- NULL

26 data$AV_corrected <- NULL

27

28 return(data)

29 }
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